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Abstract 5

Animal behavior constantly adapts to changes, for example when the statistical 6

properties of the environment change unexpectedly. For an agent that interacts with 7

this volatile setting, it is important to react accurately and as quickly as possible. It has 8

already been shown that when a random sequence of motion ramps of a visual target is 9

biased to one direction (e.g. right or left), human observers adapt their eye movements 10

to accurately anticipate the target’s expected direction. Here, we prove that this ability 11

extends to a volatile environment where the probability bias could change at random 12

switching times. In addition, we also recorded the explicit prediction of the next 13

outcome as reported by observers using a rating scale. Both results were compared to 14

the estimates of a probabilistic agent that is optimal in relation to the assumed 15

generative model. Compared to the classical leaky integrator model, we found a better 16

match between our probabilistic agent and the behavioral responses, both for the 17

anticipatory eye movements and the explicit task. Furthermore, by controlling the level 18

of preference between exploitation and exploration in the model, we were able to fit for 19

each individual’s experimental dataset the most likely level of volatility and analyze 20

inter-individual variability across participants. These results prove that in such an 21

unstable environment, human observers can still represent an internal belief about the 22

environmental contingencies, and use this representation both for sensory-motor control 23

and for explicit judgments. This work offers an innovative approach to more generically 24

test the diversity of human cognitive abilities in uncertain and dynamic environments. 25

Author summary 26

Understanding how humans adapt to changing environments to make judgments or plan 27

motor responses based on time-varying sensory information is crucial for psychology, 28

neuroscience and artificial intelligence. Current theories for how we deal with the 29

environment’s uncertainty, that is, in response to the introduction of some randomness 30

change, mostly rely on the behavior at equilibrium, long after after a change. Here, we 31

show that in the more ecological case where the context switches at random times all 32

along the experiment, an adaptation to this volatility can be performed online. In 33

particular, we show in two behavioral experiments that humans can adapt to such 34

volatility at the early sensorimotor level, through their anticipatory eye movements, but 35

also at a higher cognitive level, through explicit ratings. Our results suggest that 36

humans (and future artificial systems) can use much richer adaptive strategies than 37

previously assumed. 38
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1 Motivation 39

1.1 Volatility of sensory contingencies and the adaptation of 40

cognitive systems 41

We live in a fundamentally volatile world for which our cognitive system has to 42

constantly adapt. In particular, this volatility may be generated by processes with 43

different time scales. Imagine for instance you are a general practitioner and that you 44

usually report an average number of three persons infected by flu per week. However, 45

this rate is variable and over the past week you observe that the rate increased to ten 46

cases. In consequence, two alternative interpretations are available: the first possibility 47

is that there is an outbreak of flu and one should then estimate its incidence (i.e. the 48

rate of new cases) since the inferred outbreak’s onset, in order to quantify the infection 49

rate specific to this outbreak, but also to update the value of the probability of a new 50

outbreak at a longer time scale. Alternatively, these cases are “unlucky” coincidences 51

that originate from the natural variability of the underlying statistical process which 52

drive patients to the doctor, and which are instances drawn from the same stationary 53

random process. In that option, it may be possible to readjust the estimated baseline 54

rate of infection with this new data. This example illustrates one fundamental problem 55

with which our cognitive system is faced: when observing new sensory evidence, should 56

I stay and continue to exploit this novel data with respect to my current beliefs about 57

the environment’s state or should I go and explore a new hypothesis about the random 58

process generating the observations since the detection of a switch in the environment? 59

This uncertainty in the environment’s state is characterized by its volatility which by 60

definition measures the temporal variability of the sufficient parameters of a random 61

variable. Such meta-analysis of the environment’s statistical properties is an effective 62

strategy at a large temporal scale level, as that for the flu outbreak of our example, but 63

also at all levels which are behaviorally relevant, such as contextual changes in our 64

everyday life. Inferring near-future states in a dynamic environment, such that one can 65

prepare to act upon them ahead of their occurrence — or at least forming beliefs as 66

precise as possible about a future environmental context — is an ubiquitous challenge 67

for cognitive systems [1]. In the long term, how the human brain dynamically manages 68

this trade-off between exploitation and exploration is essential to the adaptation of the 69

behavior through reinforcement learning [2]. 70

In controlled psychophysical experimental settings which challenge visual perception 71

or sensorimotor associations, such adaptive processes have been mostly put in evidence 72

by precisely analyzing the participants’ behavior in a sequence of experimental trials. 73

These typically highlight sequential effects at the time scale of several seconds to 74

minutes or even hours in the case of the adaptation to a persistent sensorimotor relation. 75

Indeed, stimulus history of sensory events influences how the current stimulus is 76

perceived [3–7] and acted upon [8–11]. Two qualitatively opposite effects of the stimulus 77

history have been described: negative (adaptation), and positive (priming-like) effects. 78

Adaptation reduces the sensitivity to recurrently presented stimuli, thus yielding a 79

re-calibrated perceptual experience [12–14]. On the other hand, priming is a facilitatory 80

effect that enhances the identification of repeated stimuli [15, 16]: in sensorimotor 81

control, the same stimulus presented several times could indeed lead to faster and more 82

precise responses. Interestingly, priming effects are sometimes paralleled by anticipatory 83

motor responses which are positively correlated with the repetition of stimulus 84

properties. A well-known example of this behavior are anticipatory smooth eye 85

movements (aSPEM or shortly, anticipatory pursuit), as we will illustrate in the next 86

section. 87

Overall, the ability to take into account statistical regularities in the event sequence 88

appears as a fundamental ability for the adaptive behavior of living species. 89
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Importantly, few studies have addressed the question of whether the estimate of such 90

regularities is explicit, and whether such explicit reports of the dynamic statistical 91

estimates would eventually correlate with the measures of behavioral adaptation or 92

priming. Here we aim at investigating this question in the specific case of the processing 93

of a target’s motion direction. In addition, we attempt to palliate the lack of a solid 94

modeling approach to best understand the computation underlying behavioral 95

adaptation to the environment’s statistics, and in particular how sequential effects are 96

integrated within a hierarchical statistical framework. 97

Bayesian inference offers an effective methodology to deal with this question. Indeed, 98

these methods allow to define and quantitatively assess a range of hypotheses about the 99

processing of possibly noisy information by some formal agents [17–19]. A key principle 100

in the Bayesian inference approach is to introduce so-called latent variables which 101

explicitly represent different hypotheses by the agent and how these may predict 102

experimental outcomes. Each hypothesis defines different weights in the graph of 103

probabilistic dependencies between variables (for instance between the number of 104

patients at a practitioner and the reality of a flu pandemic). Then, using the rules of 105

probability calculus and knowing incoming measurements, one can progressively update 106

beliefs about the latent variables, and eventually infer the hidden structure underlying 107

the received inputs [20,21]. For instance, using Bayes’s rule, one can combine the 108

likelihood of observations given a given generative model and the prior on these latent 109

variables [22] such that beliefs about latent variables may be represented as probabilities. 110

Of particular interest for us is the possibility to quantitatively represent in this kind of 111

probabilistic model the predictive and iterative nature of a sequence of events. Indeed, 112

once the belief about latent variables is formed from the sensory input, this belief can 113

be used to update the prior over future beliefs [23]. In such models, the comparison 114

between expectations and actual data leads to continuous updates of the estimates of 115

the latent variables, but also of the validity of the model. There are numerous examples 116

of Bayesian approaches applied to the study of the adaptation to volatility. For instance, 117

Meyniel et al [24] simulated a hierarchical Bayesian model over five previously published 118

datasets [25–29] in the domain of cognitive neuroscience. Here we focus on an extension 119

of this approach to the study of motion processing and eye movements. 120

1.2 Anticipatory Smooth Pursuit Eye Movements (aSPEM) 121

Humans are able to accurately track a moving object with a combination of saccades 122

and Smooth Pursuit Eye Movements (for a review see [30]). These movements allow us 123

to align and stabilize the object on the fovea, thus enabling high-resolution visual 124

processing. This process is delayed by different factors such as axonal transduction, 125

neural processing latencies and the inertia of the oculomotor system [31]. When 126

predictive information is available about target’s motion, an anticipatory Smooth 127

Pursuit Eye Movement (aSPEM or shortly, anticipatory pursuit) is generated before its 128

appearance [32–34] thereby reducing visuomotor latency [35]. Moreover, some 129

experiments have demonstrated the existence of prediction-based smooth pursuit 130

maintenance during the transient disappearance of a moving target [36–38] and even 131

predictive acceleration or deceleration during visual tracking [37,39]. Overall, although 132

the initiation of smooth pursuit eye movements is almost always driven by a visual 133

motion signal, it is now clear that smooth pursuit behavior can be modulated at 134

different stages by extra-retinal, predictive information even in the absence of a direct 135

visual stimulation [40]. Several functional and computational models have been 136

proposed in the literature for the different forms of prediction-based smooth eye 137

movements, such as zero-lag tracking of a periodic target [41] or pursuit maintenance 138

during target occlusion [39]. More recently an effort has been made to provide a more 139

general theoretical framework, which is based on Bayesian inference and the 140
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reliability-based cue combination. Although the mapping of this theoretical framework 141

onto neuronal functions remains to be elucidated, it has the clear advantage of 142

generality, as for instance, it would encompass all forms of smooth pursuit behavior, 143

including prediction-based and visually-guided tracking [42–45]. Here, we present a 144

model extending this recent theoretical effort to include the adaptivity to a volatile 145

environment. 146

Experience-based anticipatory pursuit behavior is remarkable in different aspects. 147

First, its buildup is relatively fast, such that only a few trials are sufficient to observe 148

the effects of specific regularities in the properties of visual motion, such as speed, 149

timing or direction [10,44,46]. Second, it is a robust phenomenon, which has been 150

observed on a large population of human participants and even in non-human primates 151

(for a recent review see [47]). Note also, that human participants seem to be largely 152

unaware of this behavior (as inferred from informal questioning). Finally, this kind of 153

behavior has proven to be exquisitely sensitive to the probabilistic properties of the 154

sensorimotor context. 155

Typically, anticipatory pursuit is observed after a temporal cue and before target 156

motion onset [33, 34, 46]. In previous studies [11, 48], we have analyzed how forthcoming 157

motion properties, such as target speed or direction, can be anticipated with coherently 158

oriented eye movements. We have observed that the amplitude of anticipation, as 159

measured by the mean anticipatory eye velocity, increases when the target repeatedly 160

moves in the same direction. In particular, the mean anticipatory eye velocity is linearly 161

related to the probability of motion’s speed or direction. These results are coherent with 162

findings by other groups [46,49–51] and they indicate that anticipatory pursuit behavior 163

is potentially a useful marker to study the internal representation of motion expectancy, 164

and in particular to analyze how such expectancy is dynamically modulated by 165

probabilistic contingencies in shaping oculomotor behavior. 166

1.3 Contributions 167

The goal of this study is to generalize the adaptive process observed in anticipatory 168

pursuit [48,51] to more ecological settings and also to broaden its scope by showing that 169

such adaptive processes occur also at an explicit level. We already mentioned that by 170

manipulating the probability bias for target motion direction, it is possible to modulate 171

the strength (direction and mean velocity) of anticipatory pursuit. This suggests that 172

probabilistic information about direction bias may be used to inform the internal 173

representation of motion prediction for the initiation of anticipatory movements. 174

However, previous studies have overlooked the importance to design a realistic 175

generative model to dynamically manipulate the probability bias and generate an 176

ecologically relevant input sequence of target directions. A possible confound comes 177

from the fact that previous studies have used fixed-lengths sequences of trials, stacked 178

in a sequence of conditions defined by the different probability biases. Indeed, observers 179

may potentially pick up the information on the block’s length to predict the occurrence 180

of a switch (a change in probability bias) during the experiment. Second, we observed 181

qualitatively that following a switch, the amplitude of anticipatory pursuit velocity 182

changed gradually, consistently with other adaptation paradigms [52–54]. The estimate 183

of the characteristic temporal parameters for this adaptation mechanism may become 184

particularly challenging in a dynamic context, where the probabilistic contingencies vary 185

in time in an unpredictable way. Finally, whether and how the information processing 186

underlying the buildup of anticipatory pursuit and its dynamics is linked to an explicit 187

estimate of probabilities is still largely unknown. 188

To assess the dynamics of the adaptive processes which compensate for the 189

variability within sensory sequences, one may generate random sequences of Target 190

Directions (TDs) using a dynamic value for the probability bias p = Pr(TD is ’right’), 191
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Fig 1. Smooth pursuit eye movements and explicit direction predictions in
a volatile switching environment We test the capacity of human participants to
adapt to a volatile environment. (A) We use a 3-layered generative model of
fluctuations in target directions (TD) that we call the Binary Switching model. This
TD binary variable is chosen using a Bernoulli trial of a given probability bias. This
probability bias is constant for as many trials until a switch is generated. At a switch,
the bias is chosen at random from a given prior. Switches are generated in the third
layer as binary events drawn from a Bernoulli trial with a given hazard rate (defined
here as 1/40 per trial). We show one realization of a block of 200 trials. (B) The
eye-movements task was an adapted version of a task developed by [48]. Each trial
consisted of sequentially: a fixation dot (FIX, of random duration between 400 and
800 ms), a blank screen (GAP, of fixed duration of 300 ms) and a moving ring-shaped
target (TARGET, with 15 °/s velocity) which the observers were instructed to follow.
The direction of the target (right or left) was drawn pseudo-randomly according to the
generative model defined above. (C) In order to titrate the adaptation to the
environmental volatility of target direction at the explicit and conscious level, we invited
each observer to perform on a different day a new variant of the direction-biased
experiment, where we asked participants to predict, before each trial, their estimate of
the forthcoming direction of the target. As shown in this sample screenshot, this was
performed by moving a mouse cursor (black triangle) on a continuous rating scale
between “Left”, to “Unsure” and finally “Right”.
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with a parametric mechanism controlling for the volatility at each trial. In the 192

Hierarchical Gaussian Filter model [55], for instance, volatility is controlled as a 193

non-linear transformation of a random walk (modeled itself by a Brownian motion with 194

a given diffusion coefficient). Ultimately, this hierarchical model allows to generate a 195

sequence of binary choices where volatility is controlled by a specific random variable 196

which fluctuates in time according to some probabilistic law. Such a forward 197

probabilistic model is invertible using some simplifying assumptions and allows to 198

extract a time-varying inference of the agent’s belief about volatility [56]. Herein, to 199

explicitly analyze the effect of history length, we rather extend the protocol of [48] such 200

that the probability bias is still fixed within sub-blocks but that these sub-blocks have 201

variable lengths, that is, by introducing switches occurring at random times. Therefore, 202

similarly to [57], we use a model for which the bias p in target direction varies according 203

to a piecewise-constant function. We expect that within each of these sub-blocks that 204

we defined, the uncertainty about of the value of p will progressively decrease as we 205

accumulate trials. In addition, the range of possible biases was finite 206

(p ∈ {0, .1, .25, .5, .75, .9, 1}) in our previous study. In the present work, we also extend 207

the paradigm by drawing p as a continuous random variable within the whole range of 208

possible probability biases (that is, the segment [0, 1]). 209

As a summary, we first draw random events (that we denote as “switches”) with a 210

given mean frequency (the “hazard rate”) and which controls the strength of the 211

volatility. Second, the value p of the bias only changes at the moment of a switch, 212

independently of the previous bias’ value and it is stationary between two switches, 213

forming what we call an “epoch”. Third, target direction is drawn as a Bernoulli trial 214

using the current value of p. Such a hierarchical structure is presented in Figure 1-A, 215

where we show the realization of the target’s directions sequence, the trajectory of the 216

underlying probability bias (hidden to the observer), and the occurrences of switches. 217

Mathematically, this can be considered as a three-layered hierarchical model defining 218

the evolution of the model at each trial t as the vector (xt2, xt1, xt0). At the topmost 219

layer, the occurrence xt2 ∈ {0, 1} of a switch (1 for true, 0 for false) is drawn from a 220

Bernoulli trial B parameterized by its hazard rate h (as the frequency of occurrence for 221

each trial). The value of τ = 1
h thus gives the average duration (in number of trials) 222

between the occurrence of two switches. In the middle layer, the probability bias p of 223

target direction is a random variable that we define as xt1 ∈ [0, 1]. It is chosen at 224

random from a prior distribution P at the moment of a switch, and else it is constant 225

until the next occurrence of a switch. The prior distribution P can be for instance the 226

uniform distribution U on [0, 1] or Jeffrey’s prior J (see Appendix 8.3). Finally, a target 227

moves either to the left or to the right, and we denote this variable (target direction, 228

TD) as xt0 ∈ {0, 1}. This direction is drawn from a Bernoulli trial parameterized by the 229

direction bias p = xt1. In short, this is described according to the following equations: 230
Occurrence of a switch: xt2 ∝ B(1/τ)

Dynamics of probability bias p = xt1

{
if xt2 = 0 then xt1 = xt−1

1
else xt1 ∝ P

Sequence of directions: xt0 ∝ B(xt1)

(1)

In this study, we generated a sequence of 600 trials, and there is by construction a 231

switch at t = 0 (that is, x0
2 = 1). In addition, we imposed in our sequence that a switch 232

occurs after trial numbers 200 and 400, in order to be able to compare adaptation 233

properties across these three different trial blocks. With such a three-layered structure, 234

the model generates the randomized occurrence of switches, itself generating epochs 235

with constant direction probability and finally the random sequence of Target Direction 236

(TD) occurrences at each trial. This system of three equations defined in Equation 1 237

defines the Binary Switching model which we used for the generation of experimental 238
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sequences presented to human participants in the experiments. We will use that 239

generative model as the basis for an ideal observer model equipped to invert that 240

generative model in order to estimate the time-varying probability bias for a given 241

sequence of observations (TDs). The comparison of human behavior with the ideal 242

observer model’s predictions will allow us to test it as a model for the adaptation of 243

human behavior to the environment’s volatility. 244

This paper is organized in five parts. After this introduction where we presented the 245

motivation for this study, the next section (Section 2) will present an inversion of the 246

(forward) binary switching generative model, coined the Binary Bayesian Change-Point 247

(BBCP) model. To our knowledge, such algorithm was not yet available, and we will 248

here provide with an exact analytical solution by extending previous results from [58] to 249

the binary nature of data in the Binary Switching model presented above 250

(see Equation 1). In addition, the proposed algorithm is biologically realistic as it uses 251

simple computations and is online, that is, all computations on the sequence may be 252

done using solely a set of variables available at the present trial, compactly representing 253

all the sequence history seen in previous trials. We will also provide a computational 254

implementation and a quantitative evaluation of this algorithm. Then, we will present 255

in Section 3 the analysis of experimental evidence to validate the generalization of 256

previous results with this novel switching protocol. In order to understand the nature of 257

the representation of motion regularities underlying adaptive behavior, we collected 258

both the recording of eye movements and the verbal explicit judgments about 259

expectations on motion direction. In one session, participants were asked to estimate 260

“how much they are confident that the target will move to the right or left in the next 261

trial” and to adjust the cursor’s position on the screen accordingly (see Figure 1-C). In 262

the other experimental session on a different day, we showed the same sequence of 263

target directions and recorded participants’ eye movements (see Figure 1-B). Combining 264

these theoretical and experimental results, a novelty of our approach is to use the 265

BBCP agent as a regressor which will allow us to match experimental results and to 266

compare its predictive power compared to classical models such as the leaky integrator 267

model. Hence, we will show that behavioral results match best with the BBCP model. 268

In Section 4, we will synthesize these results by inferring the volatility parameters 269

inherent to the models by best-fitting it to each each individual participant. This will 270

allow the analysis of inter-individual behavioral responses for each session. In particular, 271

we will test if one could extract observers’ prior (preferred) volatility, that is, a measure 272

of the dynamic compromise between exploitation (“should I stay?”) and exploration 273

(“should I go?”) for the two different sessions challenging predictive adaptive processes 274

both at the implicit and explicit levels. Finally, we will summarize and conclude this 275

study and offer some perspectives for future work in Section 5. 276

2 Results: Binary Bayesian Change-Point (BBCP) 277

detection model 278

As we saw above, Bayesian methods provide a powerful framework for studying human 279

behavior and adaptive processes in particular. For instance, [55] first defined a 280

multi-layered generative model for sequences of input stimuli. By inverting this 281

stochastic forward process, they could extract relevant descriptors at the different levels 282

of the model and fit these parameters with the recorded behavior. Here, we use a 283

similar approach, focusing specifically on the binary switching generative model, as 284

defined in Equation 1. To begin, we define as a control a first ideal observer, the leaky 285

integrator (or forgetful agent), which has an exponentially-decaying memory for the 286

events that occurred in the past trials. This agent can equivalently be described as one 287
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which assumes that volatility is stationary with a fixed characteristic frequency of 288

switches. Then, we extend this model to an agent which assumes the existence of 289

(randomly occurring) switches, that is, that the agent is equipped with the prior 290

knowledge that the value of the probability bias may change at specific (yet randomly 291

drawn) trials, as defined by the forward probabilistic model in Equation 1. 292

2.1 Forgetful agent (Leaky integrator) detection model 293

The leaky integrator ideal observer represents a classical, widespread and realistic model 294

of how trial-history shapes adaptive processes in human behavior [59]. It is also well 295

adapted to model motion expectation in the direction-biased experiment which leads to 296

anticipatory pursuit. In this model, given the sequence of observations xt0 from trial 0 to 297

t, the expectation p = x̂t+1
1 of the probability for the next trial direction can be 298

modeled by making a simple heuristic [59]: This probability is the weighted average of 299

the previously predicted probability, x̂t1, with the new information xt0, where the weight 300

corresponds to a leak term (or discount) equal to (1− h), with h ∈ [0, 1]. At trial t, this 301

model can be expressed with the following equation: 302

x̂t+1
1 = (1− h) · x̂t1 + h · xt0 (2)

where x̂t=0
1 is equal to some prior value (0.5 in the unbiased case), corresponding to the 303

best guess at t = 0 (prior to the observation of any data). 304

In other words, the predicted probability x̂t+1
1 is computed from the integration of 305

previous instances with a progressive discount of past information. The value of the 306

scalar h represents a compromise between responding rapidly to changes in the 307

environment (h ≈ 1) and not prematurely discarding information still of value for slowly 308

changing contexts (h ≈ 0). For that reason, we call this scalar the hazard rate in the 309

same way to that defined for the binary switching generative model presented above 310

(see Equation 1). Moreover, one can define τ = 1/h as a characteristic time (in units of 311

number of trials) for the temporal integration of information. Looking more closely at 312

this expression, the “forgetful agent” computed in Equation 2 consists of an 313

exponentially-weighted moving average (see Appendix 8.1). It may thus be equivalently 314

written in the form of a time-weighted average: 315

x̂t+1
1 = (1− h)t+1 · x̂t=0

1 + h ·
∑

0≤i≤t

(1− h)i · xt−i0 (3)

The first term corresponds to the discounted effect of the prior value, which tends to 0 316

as t increases. More importantly, as 1− h < 1, the second term corresponds to the leaky 317

integration of novel observations. Inversely, let us now assume that the true probability 318

bias for direction changes randomly with a mean rate of once every τ trials: 319

Pr(xt2 = 1) = h. As a consequence, the probability that the bias does not change is 320

Pr(xt2 = 0) = 1− h at each trial. Assuming independence of these occurrences, the 321

predicted probability p = x̂t+1
1 is thus proportional to the sum of the past observations 322

weighted by the belief that the bias has not changed during i trials in the past, that is, 323

exactly as defined by the second term of the right-hand side in Equation 3. This shows 324

that assuming that changes occur at a constant rate (x̂t2 = h) but ignoring more precise 325

information on the temporal occurrence of the switch, the optimal solution to this 326

inference problem is the ideal observer defined in Equation 3, which finds an online 327

recursive solution in Equation 2. We therefore proved here that the heuristic derived for 328

the leaky integrator is an exact inversion of the two-layered generative model which 329

assumes a constant epoch-duration between switches of the probability bias. 330

The correspondence that we proved between the weighted moving average heuristic 331

and the forgetful agent model as an ideal solution to that generative model leads us to 332
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several interim conclusions. First, the time series of inferred x̂t+1
1 values can serve as a 333

regressor for behavioral data to test whether human observers follow a similar strategy. 334

In particular, the free parameter of the model (h), may be fitted to the behavioral 335

dataset. Testing different hypothesis for the value of h thus allows to infer the agents’ 336

most likely belief in the (fixed) weight decay. Now, since we have defined a first 337

generative model and the corresponding ideal observer (the forgetful agent), we next 338

define a more complex model, in order to overcome some of the limits of the leaky 339

integrator. Indeed, a first criticism could be that this model is too rigid and does not 340

sufficiently account for the dynamics of contextual changes [60] as the weight decay 341

corresponds to assuming a priori a constant precision in the data sequence, contrary to 342

more elaborate Bayesian models [61]. It seems plausible that the memory size (or 343

history length) used by the brain to infer any event probability can vary, and that this 344

variation could be related to an estimate of environmental volatility as inferred from 345

past data. The model presented in Equation 3 uses a constant weight for all trials, while 346

the actual precision of each trial can be potentially evaluated and used for 347

precision-weighted estimation of the probability bias. To address this hypothesis, our 348

next model is inspired by the Bayesian Change-Point detection model [58] of an ideal 349

agent inferring the trajectory in time of the probability bias (xt1), but also predicting 350

the probability Pr(xt2 = 1) of the occurrence of switches. 351

2.2 Binary Bayesian Change-Point (BBCP) detection model 352

There is a crucial difference between the forgetful agent presented above and an ideal 353

agent which would invert the (generative) Binary Switching model (see Equation 1). 354

Indeed, at any trial during the experiment, the agent may infer beliefs about the 355

probability of the volatility xt2 which itself is driving the trajectory of the probability 356

bias xt1. Knowing that the latter is piece-wise constant, an agent may have a belief over 357

the number of trials since the last switch. This number, that is called the run-length 358

rt [58], is useful in two manners. First, it allows the agent to restrict the prediction x̂t+1
1 359

of xt+1
1 only based on those samples produced since the last switch, from t− rt until t. 360

Indeed, the samples xt0 which occurred before the last switch were drawn independently 361

from the present true value xt1 and thus cannot help estimating the latter. As a 362

consequence, the run-length is a latent variable that captures at any given trial all the 363

hypotheses that may be occurring. Second, it is known that for this estimate, the 364

precision (that is, the inverse of variance) on the estimate x̂t+1
1 grows linearly with the 365

number of samples: The longer the run-length, the sharper the corresponding 366

(probabilistic) belief. We have designed an agent inverting the binary switching 367

generative model by extending the Bayesian Change-Point (BCP) detection model [58]. 368

The latter model defines the agent as an inversion of a switching generative model for 369

which the observed data (input) is Gaussian. We present here an exact solution for the 370

case of the Binary Switching model, that is, for which the input is binary (here, left or 371

right). 372

In order to define in all generality the change-point (switch) detection model, we will 373

initially describe the fundamental steps leading to its construction, while providing the 374

full algorithmic details in Appendix 8.3. The goal of predictive processing at trial t is to 375

infer the probability Pr(xt+1
0 |x0:t

0 ) of the next datum knowing what has been observed 376

until that trial (that we denote by x0:t
0 = {x0

0, . . . , x
t
0}). This prediction uses the agent’s 377

prior knowledge that data is the output of a given (stochastic) generative model (here, 378

the Binary Switching model). To derive a Bayesian predictive model, we introduce the 379

run-length as a latent variable which gives to the agent the possibility to represent 380

different hypotheses about the input. We therefore draw a computational graph (see 381

Figure 2-A) where, at any trial, an hypothesis is formed on as many “nodes” than there 382

are run-lengths. Note that run-lengths may be limited by the total number of trials t. 383
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Fig 2. Binary Bayesian Change-Point (BBCP) detection model. (A) This
plot shows a synthesized sequence of 13 events, either a leftward or rightward movement
of the target (TD). Run-length estimates are expressed as hypotheses about the length
of an epoch over which the probability bias was constant, that is, the number of trials
since the last switch. Here, the true probability bias switched from a value of .5 to .9 at
trial 7, as can be seen by the trajectory of the true run-length (blue line). The BBCP
model tries to capture the occurrences of a switch by inferring the probability of
different possible run-lengths. At any new datum (trial), this defines a Hidden Markov
Model as a graph (trellis), where edges indicate that a message is being passed to
update each node’s probability (as represented by arrows from trial 13 to 14). Black
arrows denote a progression of the run-length at the next step (no switch), while gray
lines stand for the possibility that a switch happened: In this case the run-length would
fall back to zero. The probability for each node is represented by the grey scale (darker
grey colors denote higher probability) and the distribution is shown in the inset for two
representative trials: 5 and 11. Overall, this graph shows how the model integrates
information to accurately identify a switch and produce a prediction for the next trial
(e.g. for t = 14). (B) On a longer sequence of 200 trials, representative of a trial block
of our experimental sequence (see Figure 1-A), we show the actual events which are
observed by the agent (TD), along with the (hidden) dynamics of the true probability
bias Ptrue (blue line), the value inferred by a leaky integrator (Pleaky, orange line) and
the results of the BBCP model in estimating the probability bias PBBCP (green line),
along with .05 and .95 quantiles (shaded area). This shows that for the BBCP model,
the accuracy of the predicted value of the probability bias is higher than for the leaky
integrator. Below, we show the belief (as grayscales) for the different possible
run-lengths. The green and orange line correspond to the mean run-length which is
inferred, respectively, by the BBCP and leaky models: Note that in the BBCP, while it
takes some trials to detect switches, they are in general correctly identified (transitions
between diagonal lines) and that integration is thus faster than for the leaky integrator,
as illustrated by the inferred value of the probability bias.
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As a readout, we can use this knowledge of the predictive probability conditioned on the 384

run-length, such that one can compute the marginal predictive distribution: 385

Pr(xt+1
0 |x0:t

0 ) =
∑
rt≥0

Pr(xt+1
0 |rt, x0:t

0 ) · β(r)
t (4)

where Pr(xt+1
0 |rt, x0:t

0 ) is the probability of the Bernoulli trial modeling the outcome of 386

a future datum xt+1
0 , conditioned on the run-length and β(r)

t = Pr(rt|x0:t
0 ) is the 387

probability for each possible run-length given the observed data. Note that we know 388

that, at any trial, there is a single true value for this variable rt and that β(r)
t thus 389

represents the agent’s inferred probability distribution over the run-length r. As a 390

consequence, β(r)
t is scaled such that

∑
r≥0 β

(r)
t = 1. 391

With these premises, we define the BBCP as a prediction / update cycle which 392

connects nodes from the previous trial to that at the current trial. Indeed, we will 393

predict the probability β(r)
t at each node, knowing either an initial prior, or its value on 394

a previous trial. In particular, at the occurrence of the first trial, we know for certain 395

that there is a switch and initial beliefs are thus set to the values β(0)
0 = Pr(rt = 0) = 1 396

and ∀r > 0, β(r)
0 = Pr(r0 = r) = 0. Then, at any trial t > 0, as we observe a new 397

datum xt0, we use a knowledge of β(r)
t−1 at trial t− 1, the likelihood 398

π
(r)
t = Pr(xt0|rt−1, x0:t−1

0 ) and the transition probabilities defined by the generative 399

model to predict the beliefs over all nodes: 400

β
(r)
t ∝

∑
rt−1≥0

β
(r)
t−1 · Pr(rt|rt−1) · π(r)

t (5)

In the computational graph, Equation 5 corresponds to a message passing from the 401

nodes at time t− 1 to that at time t. We will now detail how to compute the transition 402

probabilities and the likelihood. 403

First, knowing that the data is generated by the Binary Switching model 404

(see Equation 1), the run-length is either null at the moment of a switch, or its length 405

(in number of trials) is incremented by 1 if no switch occurred: 406{
if xt2 = 1, rt = 0
else xt2 = 0, rt = rt−1 + 1 (6)

This may be illustrated by a graph in which information will be represented at the 407

different nodes for each trial t. This defines the transition matrix Pr(rt|rt−1) as a 408

partition in two exclusive possibilities: Either there was a switch or not. It allows us to 409

compute the growth probability for each run-length. On the one hand, the belief of an 410

increment of the run-length at the next trial is: 411

β
(r+1)
t = 1

B
· β(r)

t−1 · π
(r)
t · (1− h) (7)

where h is the scalar defining the hazard rate. On the other hand, it also allows to 412

express the change-point probability as: 413

β
(0)
t = 1

B
·
∑
r≥0

β
(r)
t−1 · π

(r)
t · h (8)

with B such that
∑
r≥0 β

(r)
t = 1. Note that β(0)

t = h and thus B =
∑
r≥0 β

(r)
t−1 · π

(r)
t . 414

Knowing this probability strength and the previous value of the prediction, we can 415
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therefore make a prediction for our belief of the probability bias at the next trial t+ 1, 416

prior to the observation of a new datum xt+1
0 and resume the prediction / update cycle 417

(see Equations 4, 7 and 8). 418

Integrated in our cycle, we update beliefs on all nodes by computing the likelihood 419

π
(r)
t of the current datum xt0 knowing the current belief at each node, that is, based on 420

observations from trials 0 to t− 1. A major algorithmic difference with the BCP 421

model [58], is that here, the observed data is a Bernoulli trial and not a Gaussian 422

random variable. The random variable xt1 is the probability bias used to generate the 423

sequence of events xt0. We will infer it for all different hypotheses on rt, that is, 424

knowing there was a sequence of rt Bernoulli trials with a fixed probability bias in that 425

epoch. Such an hypothesis will allow us to compute the distribution Pr(xt+1
0 |rt, x0:t

0 ) by 426

a simple parameterization. Mathematically, a belief on the random variable xt1 is 427

represented by the conjugate probability distribution of the binomial distribution, that 428

is, by the beta-distribution B(xt1;µ(r)
t , ν

(r)
t ). It is parameterized here by its sufficient 429

statistics, the mean µ(r)
t and sample size ν(r)

t (see Appendix 8.2 for our choice of 430

parameterization). First, at the occurrence of a switch (for the node rt = 0) beliefs are 431

set to prior values (before observing any datum): µ(0)
t = µprior and ν(0)

t = νprior. By 432

recurrence, one can show that at any trial t > 0, the sufficient statistics (µ(r)
t , ν

(r)
t ) can 433

be updated from the previous trial following: 434

ν
(r+1)
t = ν

(r)
t−1 + 1 (9)

As a consequence, ∀r, t; ν(r)
t is the sample size corrected by the initial condition, that is, 435

ν
(r)
t = r+ νprior. For the mean, the series defined by µ(r+1)

t is the average at trial t over 436

the r + 1 last samples, which can also be written in a recursive fashion: 437

µ
(r+1)
t = 1

ν
(r+1)
t

· (ν(r)
t−1 · µ

(r)
t−1 + xt0) (10)

This updates for each node the sufficient statistics of the probability density function at 438

the current trial. 439

We can now detail the computation of the likelihood of the current datum xt0 with 440

respect to the current beliefs : π(r)
t = Pr(xt0|µ

(r)
t−1, ν

(r)
t−1). This scalar is returned by the 441

binary function L(r|o) which evaluates at each node r the likelihood of the parameters 442

of each node whenever we observe a counterfactual alternative outcome o = 1 or o = 0 443

(respectively right or left) knowing a mean bias p = µ
(r)
t−1 and a sample size r = ν

(r)
t−1. 444

For each outcome, the likelihood of observing an occurrence of o, is the probability of a 445

binomial random variable knowing an updated probability bias of p·r+o
r+1 , a number 446

p · r + o of trials going to the right and a number (1− p) · r + 1− o of trials to the left. 447

After some algebra, this defines the likelihood as : 448

L(r|o) = 1
Z
· (p · r + o)p·r+o · ((1− p) · r + 1− o)(1−p)·r+1−o (11)

with Z such that L(r|o = 1) + L(r|o = 0) = 1. The full derivation of this function is 449

detailed in Appendix 8.4. This provides us with the likelihood function and finally the 450

scalar value π(r)
t = L(r|xt0). 451

Finally, the agent infers at each trial the belief and parameters at each node and 452

uses the marginal predictive probability (see Equation 4) as a readout. This probability 453

bias is best predicted by its expected value x̂t+1
1 = Pr(xt+1

0 |x0:t
0 ) as it is marginalized 454

over all run-lengths: 455

x̂t+1
1 =

∑
r≥0

µ
(r)
t · β

(r)
t (12)
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Interestingly, it can be proven that if, instead of updating beliefs with Equations 7 456

and 8, we set nodes’ beliefs to the constant vector β(r)
t = h · (1− h)r, then the marginal 457

probability is equal to that obtained with the leaky integrator (see Equation 2). This 458

highlights again that, contrary to the leaky integrator, the BBCP model uses a 459

dynamical model for the estimation of the volatility. Still, as for the latter, there is only 460

one parameter h = 1
τ which informs the BBCP model that the probability bias switches 461

on average every τ trials. Moreover, note that the resulting operations (see 462

Equations 4, 7, 8, 11 and 12) which constitute the BBCP algorithm can be implemented 463

online, that is, only the state at trial t and the new datum xt0 are sufficient to predict 464

all probabilities for the next trial. In summary, this prediction/update cycle exactly 465

inverts the binary switching generative model and constitutes the Binary Bayesian 466

Change-Point (BBCP) detection model. 467

2.3 Quantitative analysis of the BBCP detection model 468

We have implemented the BBCP algorithm using a set of Python scripts. This 469

implementation provides also some control scripts to test the behavior of the algorithm 470

with synthetic data. This strategy allows to qualitatively and quantitatively assess this 471

ideal observer model against a ground truth before applying it on the trial sequence 472

that was used for the experiments and ultimately comparing it to the human behavior. 473

Figure 2-A shows a graph-based representation of the BBCP estimate of the run-length 474

for one instance of a short sequence (14 trials) of simulated data xt0 of leftward and 475

rightward trials, with a switch in the probability bias of moving rightward occurring at 476

trial 7 (see figure caption for a detailed explanation). Figure 2-B, illustrates the 477

predicted probability x̂t1, as well as the corresponding uncertainty (the shaded areas 478

correspond to .05 and .95 quantiles) when we applied respectively the BBCP (green 479

curve) and the forgetful agent (orange curve) model to a longer sequence of 200 trials, 480

characteristic of our behavioral experiments. In the bottom panel, we show the 481

dynamical evolution of the belief on the latent variable (run-length), corresponding to 482

the same sequence of 200 trials. The BBCP model achieves a correct detection of the 483

switches after a short delay of a few trials. 484

Two main observations are noteworthy. First, after each detected switch, beliefs align 485

along a linear ridge, as our model best estimate of the current run-length is steadily 486

incremented by 1 at each trial until a new switch, and the probability x̂t1 is predicted by 487

integrating sensory evidence in this epoch: the model “stays”. Then, we observe that 488

shortly after a switch (an event that is hidden to the agent), the belief assigned to a 489

smaller run-length smoothly increases while while the belief on the previous epoch 490

decreases. At the trial for which the relative probability of the previous epoch is lower 491

that that of the new, there is a transition to a new state: the model “goes”. Such 492

dynamic is similar to the slow / fast heuristic model proposed in other studies [62]. 493

Second, we can use this information to readout the most likely probability bias and use 494

it as a regressor for the behavioral data. Note that the leaky integrator model is 495

implemented by the agent assuming a fixed-length profile (see orange line in Figure 2-B), 496

allowing for a simple comparison of the BBCP model with the leaky integrator. Again, 497

we see that a fixed-length model gives qualitatively a similar output but with two 498

disadvantages compared to the BBCP model, namely that there is a stronger inertia in 499

the dynamics of the model estimates and that there is no improvement in the precision 500

of the estimates after a switch. In contrast, after a correct switch detection in the 501

BBCP model, the value of the inferred probability converges rapidly to the true 502

probability as the number of observations steadily increases after a switch. 503

In order to quantitatively evaluate the algorithm and following a similar strategy 504

as [63], we computed an overall cost C as the negative log-likelihood (in bits) of the 505
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predicted probability bias, knowing the true probability and averaged over all T trials: 506{
C = 1

T

∑
t C(xt1, x̂t1) with C(xt1, x̂t1) = H(xt1, x̂t1)−H(xt1, xt1)

where H(xt1, x̂t1) = −x1
t log2(x̂t1)− (1− x1

t) log2(1− x̂t1) (13)

The measure C(xt1, x̂t1) explicitly corresponds to the average score of our model, as the 507

Kullback-Leibler distance of x̂t1 compared to the hidden true probability bias xt1. We 508

have tested 100 trial blocks of 2000 trials for each read-out. In general, we found that 509

the inference is better for the BBCP algorithm (C = 0.171± 0.030) than for the leaky 510

integrator (C = 0.522± 0.128), confirming that it provides overall a better description of 511

the data. Note that the only free parameter of this model is the hazard rate h assumed 512

by the agent (as in the fixed-length agent). Although more generic solutions 513

exist [64–66], we decided as a first step to keep this parameter fixed for our agent, and 514

evaluate how well it matches to the experimental outcomes at the different scales of the 515

protocol: averaged over all observers, for each individual observer or independently in all 516

individual trial blocks. In a second step, by testing different values of h assumed by the 517

agent but for a fixed hazard rate h = 1/40 in the Binary Switching model, we found that 518

the distance given by Equation 13 is minimal for the true hazard rate used to generate 519

the data. In other words, this analysis shows that the agent’s inference is best for a 520

hazard rate equal to that implemented in the generative model and which is actually 521

hidden to the BBCP agent. This property will be important in a following section to 522

validate the estimated hazard rate implicitly assumed by an individual participant on 523

the basis of the set of responses given to the sequence of stimuli (see Section 4). As a 524

summary, for each trial of any given sequence, we obtain an estimate of the probability 525

bias assumed by the ideal observer and which we may use as a regressor. We will now 526

present the analysis of this model’s match to our experimental measures of anticipatory 527

eye movements and explicit guesses about target motion direction. 528

3 Results: Anticipatory pursuit and explicit ratings 529

We used the binary switching model model to generate the (pseudo-)random sequence of 530

the target’s directions (the alternation of leftward/rightward trials) as the sequence of 531

observations that were used in both sessions (see Figure 3). In the top panel of Figure 3, 532

we show the actual sequence of binary choices (TD, leftward or rightward) of the 533

Bernoulli trials. In the panel below, we compare the true value of the hidden probability 534

bias x1 (step-like blue curve), and the median predicted values using the leaky 535

integrator (Pleaky, orange color) and BBCP model (PBBCP, green color), along with the 536

.05 to .95 quantile range (green shaded area), just as in Figure 2-B. In the middle panel 537

of Figure 3, we show the median (with the 0.25 ans 0.75 quantiles) anticipatory pursuit 538

velocity (for details see Materials and Methods in Section 7) for the 12 participants, 539

throughout a trial block of 200 trials of the experimental sequence. First, one can 540

observe a trend in the polarity of anticipatory pursuit velocity to be negative for 541

probability bias values below .5 and positive for values above .5. Comparing the raw 542

anticipatory pursuit results with the BBCP agent predictions, it appears qualitatively 543

that both traces evolve in good agreement. In particular, both curves unveil similar 544

delays in detecting and taking into account a switch of the probability bias (while being 545

hidden to the observers), reflecting the time (in the order of a few trials) taken to 546

integrate enough information to build up the estimation of a novel expectation about 547

the probability bias value which parameterizes this Bernoulli trial. In general, results 548

are more variable when the bias is weak (p ≈ .5) than when it is strong (close to zero or 549

one), consistent with the well-known dependence of the variance of a Bernoulli trial 550

upon the probability bias (Var(p) = p · (1− p)). In addition, the precision (i.e. the 551

inverse of the variance) of the inferred probability bias x̂1 increases in longer epochs, as 552
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Fig 3. Behavioral results, qualitative overview. For one trial block of 200 trials,
we compare the different model-estimated probabilities with respect to the behavioral
results. The top row represents the sequence of target directions (TD) that were
presented to observers and agents, as generated by the binary switching model
(see Figure 1-A). We show the evolution of the value of the (true) probability bias Ptrue
(blue line) which is hidden to observers and that is used to generate the TD sequence
above. We have overlaid the results of the probability bias predicted with a leaky
integrator (Pleaky, orange line) and with the BBCP model (PBBCP, see Figure 2-B,
green line). Bottom two rows display the raw behavioral results for the n = 12
observers, by showing their median (lines) and the .25 and .75 quantiles (shaded areas):
First, we show the anticipatory pursuit eye velocity, as estimated right before the onset
of the visually-driven pursuit. Below, we show the explicit ratings about the expected
target direction (or bet scores). These plots show a good qualitative match between the
experimental evidence and the BBCP model, in particular after the switches. Note that
short pauses occurred every 50 trials (as denoted by vertical black lines, see main text),
and we added the assumption in the model that there was a switch at each pause. This
is reflected by the reset of the green curve close to the 0.5 level and the increase of the
uncertainty after each pause.
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information is integrated over more trials. As a result, the inferred probability as a 553

function of time seems qualitatively to constitute a reliable regressor for predicting the 554

amplitude of anticipatory pursuit velocity. 555

In addition, the explicit ratings for the next trial’s expected motion direction (or bet 556

scores, red curve in Figure 3) provided in the other experimental session seem to 557

qualitatively follow the same trend. As with anticipatory pursuit, the series of the 558

participants’ bias guesses exhibits a positive correlation with the true probability bias: 559

The next outcome of xt0 will in general be correctly inferred, as compared to a random 560

choice, as reported previously [67]. Indeed, similarly to the amplitude of anticipatory 561

pursuit velocity, we qualitatively compare in Figure 3 the trace of the bet scores with 562

the probability bias x̂1 inferred by the BBCP model. Moreover, we observe again that a 563

stronger probability bias leads to a lower variability in the bet scores, compared to bias 564

values close to 0.5. Again, a (hidden) switch in the value of the bias is most of the time 565

correctly identified after only a few trials. Finally, note that after every pause (black 566

vertical bar in Figure 3), participants tended to favor unbiased guesses, closer to 0.5. 567

We can speculate that this phenomenon could correspond to a spontaneous resetting 568

mechanism of the internal belief on the probability bias and indeed, we can introduce 569

such an assumption in the model as a reset of the internal belief after each pause. To 570

conclude, the experiment performed in this session shows that the probability bias 571

values that are explicitly estimated by participants are qualitatively similar to the 572

implicit ones which supposedly underlie the generation of graded anticipatory pursuit. 573

Quantitatively, we now compare the experimental results with the value of the 574

probability bias x̂1 predicted by the leaky and BBCP algorithms. Compiling results 575

from all participants, we have plotted in Figure 4 the anticipatory pursuit velocity 576

(panel A) and the bet scores (panel B) as a function of the predicted probability biases. 577

In a first analysis, all trials from all participants were pooled together and we show this 578

joint data as an error bar plot as computed for 5 equal partitions of the [0, 1] probability 579

segment showing the median along with the .25 and .75 quantiles. As a comparison, the 580

same method was applied to the true value Ptrue and to the estimate obtained by the 581

leaky integrator Pleaky. We remind here that the true value of the probability bias was 582

coded at the second layer of the binary switching generative model and is hidden both 583

to the agents and to the human observers. Qualitatively, as we can see in Figure 4-A, 584

the predicted probability bias is linearly correlated with the anticipatory pursuit 585

velocity and this dependence is stronger with the the probability bias predicted by the 586

leaky and BBCP algorithms (respectively Pleaky and PBBCP). In a second analysis, we 587

quantitatively estimated the squared Pearson correlation coefficient and the mutual 588

information between the raw data and the different models, both as computed on the 589

whole data or for each observer individually (see insets in Figure 4). The respective 590

values for the whole dataset (r2 = 0.486 and MI = 0.729) and across participants 591

(r2 = 0.459± 0.104 and MI = 0.707± 0.134) are slightly higher than that found by [48] 592

and [11] for anticipatory pursuit measures gathered across experimental trial blocks 593

with fixed direction biases and significantly1 better than that estimated with the true 594

probability (r2 = 0.381± 0.083 with p = 0.002 and MI = 0.562± 0.107 with p = 0.002) 595

and for that estimated by the leaky-integrator model (r2 = 0.366± 0.089 with p = 0.002 596

and MI = 0.622± 0.102 with p = 0.004) see inset). 597

A similar analysis illustrates the relationship between the model-estimated 598

probability bias and the rating value, or bet score, about the expected outcome, which 599

was provided at each trial by participants and is shown in Figure 3. Similarly to the 600

anticipatory pursuit velocity, the rating values are nicely correlated with the probability 601

bias given by the model, as quantified by the squared Pearson correlation coefficient 602

and mutual information across participants (r2 = 0.670± 0.145 and 603

1All following p-values are obtained from the Wilcoxon signed-rank test.
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Fig 4. Behavioral results, quantitative analysis across participants (n = 12).
To analyze the relation between these behavioral data with the predictions made by
models, we first looked at the variability of all these measures conditioned on the
predicted probability and gathered over 5 equal partitions of the [0, 1] probability
segment. For the 12 participants, we collected an estimate of (A) the amplitude of
anticipatory pursuit (aSPEM) and (B) the bet score value. As a regressor, we have used
the true probability (Ptrue = xt1, blue color), and the probability bias estimates obtained
with a leaky integrator (Pleaky, orange color) and by the BBCP model (PBBCP, green
color). We display these functional relations using an error-bar plot showing the median
with .25 and .75 quantiles over the 5 partitions. This shows a monotonous dependency
for both behavioral measures with respect to the probability, close to a linear regression,
but with different strengths. Second, we summarize in insets quantitative measures of
the strength of this dependence for each participant individually, by computing the
squared Pearson correlation coefficient r2 and the mutual information (MI). Dots
correspond to these measures for each individual observer, while the bar gives the
median value over the population. This confirms quantitatively that for both
experimental measures, there is a strong statistical dependency between the behavioral
results and the prediction of the BBCP model, but also that this dependency is
significantly stronger than that obtained with the true probability and with the
estimates obtained with the leaky integrator (stars denote significative differences, see
text for details).

February 4, 2020 17/36

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 4, 2020. ; https://doi.org/10.1101/784116doi: bioRxiv preprint 

https://doi.org/10.1101/784116
http://creativecommons.org/licenses/by/4.0/


MI = 1.312± 0.364). Importantly, this value is again higher for the BBCP model than 604

for the leaky integrator (r2 = 0.551± 0.19 with p = 0.018 and MI = 1.117± 0.409 with 605

p = 0.028), or with the true probability (r2 = 0.490± 0.114 with p = 0.002 and 606

MI = 0.940± 0.255 with p = 0.002). Further notice that, in order to account for some 607

specific changes observed in the behavioral data after the short pauses occurring every 608

50 trials, we added the assumption that there was a switch at each pause. However, 609

removing this assumption did not significantly change the conclusions about the match 610

of the model compared to Ptrue or Pleaky both for eye movements (PBBCP: 611

r2 = 0.452± 0.101 and MI = 0.712± 0.125, Pleaky: r2 = 0.305± 0.077 with p = 0.002 612

and MI = 0.577± 0.096 with p = 0.003 ; Ptrue : r2 = 0.381± 0.083 with p = 0.002 and 613

MI = 0.562± 0.107 with p = 0.002 ) and the bet experiment (PBBCP: 614

r2 = 0.652± 0.142 and MI = 1.255± 0.349, Pleaky: r2 = 0.425± 0.158 with p = 0.002 615

and MI = 0.966± 0.300 with p = 0.002 ; Ptrue : r2 = 0.490± 0.114 with p = 0.002 and 616

MI = 0.940± 0.255 with p = 0.002). To conclude, we deduce that the dynamic 617

estimate of the probability bias produced by the BBCP model is a powerful regressor to 618

explain both the amplitude of anticipatory pursuit velocity and the explicit ratings of 619

human observers experiencing a volatile context for visual motion. 620

4 Results: Analyzing inter-individual differences 621

So far, we have presented the qualitative behavior of individual participants and have 622

reported the quantitative analysis of the data for the fit between experimental and 623

model-inferred estimates of the hidden probability bias. For instance, the experimental 624

measures for the population of 12 participants in Figure 3, support the qualitative 625

match between behavioral data and model predictions, which we then confirmed 626

quantitatively on the whole group of participants. It is important to note that no model 627

fitting procedure was used so far, but only the direct match of the prediction from the 628

BBCP-model resulting from the sequence of binary target directions which were also 629

presented to the human participants, as shown in Figure 2-B. Nevertheless, we observed 630

that in both sessions the qualitative match between model and data varied across 631

participants. This was best characterized by differences in the variability of the 632

responses, but also, for instance, by the different characteristic delays after a switch. 633

This reflects the spectrum of individual behavioral choices between exploitation versus 634

exploration [60]. As a consequence, we were interested in characterizing these individual 635

preferences for each individual participant, and potentially to investigate whether this 636

preference co-varied across the two experimental sessions (i.e. across implicit vs explicit 637

response modalities). Crucially, we have seen that the BBCP model is controlled by a 638

single parameter, the hazard rate, or equivalently by its inverse, the characteristic 639

time τ . Also, we have shown that knowing an observed sequence of behavioral 640

responses, we could fit the value of h which would best explain the observations, as 641

quantified by the squared Pearson correlation coefficient or by the mutual information. 642

Thus, by extracting the best-fit parameters for each participant and experimental 643

session, we expect to better understand the variety of inter-individual differences. 644

Hence, we have fitted the sequence of behavioral responses generated by each 645

participant and for each experimental session, with the predicted probability bias 646

predicted by the BBCP model with different values of its only free parameter, the 647

hazard rate. To avoid any possible bias from the fitting procedure, we tested 1600 648

linearly spaced values of τ from 1 to 1600 trials. For each, we computed the correlation 649

coefficient with the responses of the BBCP model parameterized by the value of the 650

hazard rate h = 1
τ . We then extracted different estimates of haSPEM and hbet, 651

respectively for anticipatory pursuit and the rating scale, by choosing the hazard rate 652

value corresponding to that with maximal correlation coefficient. The scatter plot of the 653
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Fig 5. Analysis of inter-individual differences. (A) We analyzed the behavior of
the n = 12 participants individually, by searching for each participant the best value of
the model’s single free parameter, the hazard rate h. Estimates were performed
independently on both experiments, such that we extracted different estimates of
haSPEM and hbet respectively for the anticipatory pursuit velocity and the rating value.
The dots correspond to independent estimates of the hazard rate for each individual
participant are shown as dots, while the radius is proportional to the squared Person’s
correlation coefficient. This plot shows that best fit hazard rates have a median value of
h∗

aSPEM = 1
14 and h∗

bet = 1
36 . The values are in general higher than the ground truth

(blue line), and in general higher for eye movements (below the diagonal). Note that the
dispersion of hazard-rate best-fit estimates is narrower for the eye movement session
than for the bet experiment. Such an analysis may suggest that participants ultimately
have different mechanisms at the implicit (anticipatory pursuit) and explicit (ratings)
levels for guiding their tendency of exploitation versus exploration. (B) To illustrate the
models corresponding to these best-fitted values of the hazard rates, we show the
predicted probability to the same sequence of TDs, with the lowest ( 1

162 ), optimal ( 1
40 )

and highest ( 1
6 ) hazard rates (respectively from top to bottom).
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best fit values for each individual is shown in Figure 5. This figure suggests, in the first 654

place, that there is some variability in the best fitted value of the hazard rate in both 655

sessions. Overall, the value of correlation coefficient of the best fit hazard rate was 656

slightly higher than that computed in Figure 3 with r2 = 0.471± 0.109 for the eye 657

movement session and r2 = 0.691± 0.152 for the rating scale session. A part of the 658

variability in the estimated hazard rates comes from the limited length of the data 659

blocks, while another part is due to intra-individual and inter-individual variabilities. 660

Overall, the median (with 25% and 75% quantiles) are haSPEM = 0.069 (0.065, 0.080) for 661

the anticipatory pursuit session and hbet = 0.027 (0.012, 0.051) for the rating scale. We 662

observe that these values are close to the (hidden) ground truth value 663

(h = 1/40 = 0.025) used to generate the sequence. In addition, the best-fit hazard rate 664

value is higher for anticipatory pursuit compared to the true value and the rating scale 665

measures. As an interim summary, this analysis reveals that relaxing the free parameter 666

of the BBCP model improves the match of the model to the behavioral data, and that 667

individual best-fitting hazard-rates are variable, especially for the Bet task. Future work 668

might provide important insight about the analysis of these inter-individual differences 669

in terms of each participant’s preference for exploration versus exploitation across 670

different cognitive tasks. 671

The distribution of best-fitted values for each individual participant seemed to 672

qualitatively cluster, but the dataset is still insufficiently large to support the 673

significance of such observation at a quantitative level. Moreover, there is a difference in 674

the distribution of observed hazard rates in both experiments. Indeed, we observed that 675

the marginal distribution for each session is different, with the distribution in the 676

anticipatory pursuit session being narrower than that observed for the rating scale 677

session. In particular, we also observed the same behavior for each trial block 678

independently, suggesting that the origin of this variability mainly comes from 679

inter-individual variability. Second, there is an apparent lack of correlation between the 680

explicit and the implicit estimates of the hazard rate, yet we would need more empirical 681

evidence to prove that this originates from the experimental setup or rather by separate 682

processing of volatility. Such an analysis would suggest that even though the predictive 683

processes at work in both sessions may reflect a common origin for the evaluation of 684

volatility, this estimation is then more strongly modulated by individual preferences 685

when a more explicit cognitive process is at stake. 686

5 Discussion 687

The capacity to adapt our behavior to the environmental regularities has been 688

investigated in different research fields, from motor priming and sensory adaptation to 689

reinforcement learning, machine learning and economics. Several studies have aimed at 690

characterizing the typical time scale over which such adaptation occurs. However, the 691

pattern of environmental regularities could very well change in time, thereby making a 692

fixed time-scale for adaptation a suboptimal cognitive strategy. In addition, different 693

behaviors are submitted to different constraints and respond to different challenges, 694

thus it is reasonable to expect some differences in the way (and time scales) they adapt 695

to the changing environment. This study is an attempt to address these crucial open 696

questions. We have taken an original approach, by assuming a theoretically-defined 697

volatility in the properties of the environment (in the specific context of visual motion 698

tracking) and we have developed an optimal inferential agent, which best captures the 699

hidden properties of the generative model solely based on the trial sequence of target 700

motion. We have then compared the optimal agent’s prediction, as well as a more 701

classical forgetful agent, to two sets of behavioral data, one rooted in the early 702

oculomotor network underlying anticipatory tracking, and the other related to the 703
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explicit estimate of the likelihood of a future event. Our results point to a flexible 704

adaptation strategy in humans, taking into account the volatility of the environmental 705

statistics. The time-scale of this dynamic adaptive process would thus vary across time, 706

but it would also be modulated by the specific behavioral task and by inter-individual 707

differences. In this section we discuss the present work and its implications in view of 708

the existing literature and some general open questions. 709

5.1 Measuring adaptation to volatile environments 710

The time-varying statistical regularities that characterize the environment are likely to 711

influence several cognitive functions. In this study, we have made the choice to focus on 712

a simple and probably mostly unconscious motor behavior (anticipatory pursuit), as 713

well as on the explicit rating of expectation for the forthcoming motion direction. In 714

contrast, we have not addressed the question of whether and how statistical learning 715

affects visual motion perception throughout our model-generated volatile sequences. In 716

an empirical context similar to ours, Maus et al [10] have recently shown that perceptual 717

adaptation for speed estimation occurs concurrently to priming-based anticipatory 718

pursuit throughout a sequence of motion tracking trials with randomly varying speed. 719

They actually found a robust repulsive adaptation effect, with perceptual judgements 720

biased in favor of faster percepts after seeing stimuli that were slower and vice-versa. 721

Concurrently, these authors also found a positive effect on anticipatory pursuit, with 722

faster anticipation after faster stimuli, somehow in agreement with the adaptive 723

properties of anticipatory pursuit that we report here. Moreover, they quantified the 724

trial-history effects on anticipatory pursuit and speed perception by fitting a fixed-size 725

memory model similar to our forgetful agent. They found that anticipatory pursuit and 726

speed perception change over different time scales, with the priming effects being 727

maximized for short-term stimulus history (around 2 trials) and adaptation for longer 728

stimulus history, around 15 trials. Their main conclusion was that perceptual 729

adaptation and oculomotor priming are the result of two distinct readout processes 730

using the same internal representation of motion regularities. Note that both these 731

history lengths can be considered short in comparison to the several hundreds of trials 732

that are commonly used in psychophysics and sensorimotor adaptation studies and that, 733

similar to the present study, the inferred characteristic times are even shorter for the 734

buildup of anticipatory eye movements. However, it is also important to note that in 735

the study by Maus et al [10], the generative model underlying the random sequence of 736

motion trials was different and much simpler than in the present study: In particular 737

the role of environmental volatility was not directly addressed there. This makes a 738

direct comparison between their results and ours difficult beyond a qualitative level. 739

In spite of a multitude of existing studies investigating the dynamics of sequential 740

effects on visual perception (see for example [5, 7]), only few of them have directly 741

addressed the role of the environmental volatility on the different behavioral outcomes. 742

Meyniel et al [24] have compared the predictions of different models, featuring a 743

dynamic adaptation to the environment’s volatility (equivalent to our forgetful agent 744

model) versus a fixed belief model, on five sets of previously acquired data, including 745

reaction time, explicit reports and neurophysiological measures. Interestingly, they 746

concluded that the estimation of a time-varying transition probability matrix 747

constitutes a core building block of sequence knowledge in the brain, which then applies 748

to a variety of sensory modalities and experimental situations. Consequently, sequential 749

effects in binary sequences would be better explained by learning and updating 750

transition probabilities compared to the absolute item frequencies (as in the present 751

work) or the frequencies of their alternations. The critical difference lies in the content 752

of what is learned (transition probabilities versus item frequencies) in an attempt to 753

capture human behavior. Rather than on transition probabilities, here we focused on 754
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the analysis and modeling of human behavior as a function of the frequency of 755

presentation (and its fluctuations in time) of a given event in a binary sequence of 756

alternating visual motion direction. We can speculate that different statistics can play 757

different roles depending on the context, but altogether the study by Meyniel et al [24] 758

and the present one converge to highlight the importance of a dynamic estimate of the 759

hierarchical statistical properties of the environment for efficient behavior. There are 760

also other limits to the agent that we have defined. In this study, we assume that data 761

is provided as a sequence of discrete steps. A similar approach using a Poisson point 762

process allows to extend our model to the continuous time domain, such as addressed by 763

Radillo et al [68]: In their experiments, the authors analyzed the licking behavior of rats 764

in a dynamic environment. The generalization to the time-continuous case is beyond the 765

scope of our current protocol, but it would consist in a natural extension of it to more 766

complex and ecological settings. 767

Our results demonstrate that the BCCP model is relatively good in mimicking the 768

adaptive changes of both (implicit) anticipatory eye movements and (explicit) ratings of 769

direction expectation in a volatile context. However, these two different behavioral 770

measures, the implicit and the explicit one, are not correlated across individuals. This 771

observation is certainly worth deeper investigation in the future as it raises doubts on 772

the existence of a unique hierarchical system for probabilistic inference. The distinction 773

between implicit and explicit processes in the adaptation to a volatile environment has 774

also been addressed by previous work, especially in the field of statistical learning for 775

language processing (see for example [69,70]). More related to the present study, Wu et 776

al [71] compared a classical economic decision task with a motor decision task: they 777

found that participants were more risk seeking in the motor task compared to the first 778

one. In addition, Souto et al [72] have recently reported a lack of correlation between 779

the rate of oculomotor adaptation to unexpected jumps of the visual target and the 780

perceptual uncertainty estimated through an explicit jump direction-discrimination 781

experiment. Finally, the degree of explicitness of the information provided to the 782

participants may also play a role in the context of probabilistic learning. In a task 783

similar to ours, where the behavioral choice was not specifically associated to a reward 784

schedule, Santos and Kowler [51] found large similarities but also some differences in the 785

anticipatory eye movements depending on how the information about the probability 786

bias was conveyed, namely through the simple presentation of a biased sequence versus 787

an explicit probability-cueing procedure. In the first condition, the authors reported a 788

weak non-linearity in the dependence of anticipatory pursuit upon the probability of 789

motion direction, yielding an overweight of the extreme values of probability. In 790

contrast, an opposite non-linearity (underweight) was observed when the target direction 791

was visually-cued with a given probability of validity. Note that in our data, we have 792

not found consistent evidence suggesting a clear non-linearity in either sense. Further 793

work is needed to disentangle the possible specificities (e.g. non linearities, also broadly 794

reported in the economic literature, such as a generic aversion to risk [73]) and the 795

general inter-trial and inter-individual correlations across different tasks and different 796

experimental measures of the cognitive adaptation to the environmental volatility. 797

5.2 Hierarchical Bayesian inference in the brain 798

When we perceive the physical world, make a decision or take an action to interact with 799

it, our brain must deal with an ubiquitous property of it, uncertainty. Uncertainty can 800

arise at different levels and be structured around different characteristic time scales. 801

The theoretical framework of Bayesian probabilistic inference, which provides a formal 802

account for the role of uncertainty at multiple levels, has become very popular as a 803

benchmark of optimal behavior in perceptual, sensorimotor and cognitive tasks [74] and, 804

more generally, as a unified framework for studying the brain [75]. Importantly, 805
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plausible hypotheses about the implementation of Bayesian computations —or 806

approximations of them— in the activity of neuronal populations have been 807

proposed [76–78]. However, one should be careful when evaluating the quality of fit of 808

Bayesian inference models for behavioral data, and avoid any over-interpretation of the 809

results. This kind of model fitting aims at evaluating the adequacy of a specific 810

generative inferential model, not of the probabilistic calculus in its detailed 811

implementation. Still, there is actually a common confusion around the idea of a 812

“Bayesian brain”, and we believe that the challenge here is not to validate the 813

hypothesis that the brain implements or not the Bayes’ theorem, or a more complex 814

hierarchical combinations of inferential computations, but rather to test hypotheses 815

about the different generative models that agents may use. 816

The way expectations act on cognitive processes in general has been investigated in a 817

wide range of domains such as predictive coding [79], active inference [75], motor 818

control [80] and reinforcement learning [11,60, 65]. Non-stationary observations can also 819

explain why both local and global effects emerge and why local effects persist in the 820

long run even within purely random sequences [28,81]. This constant update of a 821

general belief on the world can be a consequence of the constant attempt to learn the 822

non-stationary structure of the environment that can change at unpredictable times [81]. 823

Many studies have actually already pointed out the brain’s ability to apprehend 824

non-stationary states in the environment [67,82]. The relatively strong correlation 825

between model predictions and data that we have found in this study is surprising at a 826

first sight as the epochs with constant probability bias (between two switches) have 827

random lengths, and participants have to adapt to such a volatile environment. 828

However, adaptivity to a volatile environment is one of the most exquisite human skills: 829

When faced with some new observations, the observer has to constantly adapt his/her 830

response to either exploit this information by considering that this observation belongs 831

to the same context of the previous observations, or to explore a novel hypothesis about 832

the context. This compromise is one of the crucial components that we wished to 833

explore and which is well captured by the BBCP model. In particular, the model 834

predicts different aspects of the experimental results, from the variability as a function 835

of the inferred probability, to the dynamics of the behavior following a (hidden) switch. 836

Future work will be needed to address the amplitude and dynamics of modulations of 837

visual perception and other cognitive functions in a model-based volatile environment 838

like the one we formally defined in this study, and to compare them to other implicit 839

and explicit behavioral measures (like anticipatory eye movements and explicit 840

expectation ratings). 841

The great interest of understanding why and how humans adapt to the fluctuations 842

of the hierarchical probabilistic context is further highlighted by the fact that such 843

adaptivity may deviate in some pathological disorders, such as schizophrenia [4, 83], or 844

across the natural variability of autistic traits [84]. While it was not our original 845

objective, we have analyzed in this study the individual best-fit parameters (hazard 846

rates) of the BCCP model: despite a consistent variability of such parameters across 847

trial blocks of the experiment, we highlighted some noteworthy tendencies for 848

participants to cluster around specific properties of the dynamic adaptation to a volatile 849

probabilistic environment. Most important, this analysis corroborates and strengthens 850

some recent attempts to realize a computational phenotyping of human participants. 851

However, more extensive studies should be conducted to be able to quantitatively 852

titrate inter-individual tendencies and possibly their relation to traits of personality. 853
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6 Conclusions 854

• We have developed a Bayesian model of an agent estimating the probability bias 855

of a volatile environment with changing points (switches), such that the agent 856

may decide to stay on the current hypothesis about the environment, or to go for 857

a novel one. This allows to dynamically infer the probability bias across time and 858

directly compare model predictions and experimental data, such as measures of 859

adaptive human behavior. 860

• We applied such a framework to the case of a probability bias in a visual motion 861

task where we manipulated the target direction probability. We observed a good 862

match between anticipatory smooth eye movements and the predictions of the 863

model, replicating previous findings and providing a novel solid theoretical 864

framework for them [11,48,51]. 865

• We also found a good match between model predictions and the explicit rating of 866

the expected target motion direction, a novel result suggesting that this model 867

captures some of the brain computations underlying expectancy based motion 868

prediction, at different cognitive levels. 869

• Finally, we found that the experimental data of each different participant matched 870

to different types of belief about the volatile environment, some being more or less 871

conservative than others. Interestingly, each of the two experiments (anticipatory 872

eye movements and explicit rating) provided different distributions, opening the 873

perspective for future computational phenotyping using such a volatile setting. 874

7 Material and Methods 875

7.1 Participants, visual stimuli and experimental design 876

Twelve observers (29 years old ±5.15, 7 female) with normal or corrected-to-normal 877

vision took part in these experiments. They gave their informed consent and the 878

experiments had received ethical approval from the Aix-Marseille Ethics Committee 879

(approval 2014-12-3-05), in accordance with the declaration of Helsinki. 880

Visual stimuli were generated using PsychoPy 1.85.2 [85] on a Mac running OS 881

10.6.8 and displayed on a 22" Samsung SyncMaster 2233 monitor with 1680× 1050 882

pixels resolution at 100 Hz refresh rate. Experimental routines were also written using 883

PsychoPy and controlled the stimulus display (see Figure 1). Observers sat 57 cm from 884

the screen in a dark room. 885

The moving target used in our experiments was a white ring (0.35° outer diameter 886

and 0.27° inner diameter) with a luminance of 102 cd/m2 that moved horizontally on a 887

grey background (luminance 42 cd/m2). Each trial started with a central fixation point 888

displayed for a random duration drawn from a uniform distribution ranging between 400 889

and 800 ms. Then a fixed-duration 300 ms gap occurred between the offset of the 890

fixation point and the onset of the moving target. The target was then presented 891

slightly offset from the fixation location (step-ramp paradigm [86]), either to the right or 892

to the left, and immediately started moving horizontally toward the center at a constant 893

speed of 15°/s, for 1000 ms. The probability p of rightward motion trials was a 894

time-varying random variable which was constant within an epoch of the sequence of a 895

given random size (see main text for the description of the generative model). 896

The paradigm included two experimental sessions performed on two distinct (in 897

general consecutive) days by each participant. The two sessions involved the 898

presentation of the same sequence of trials, while collecting a different behavioral 899

response: explicit rating judgments in the first session (the bet experiment), and eye 900
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movement recordings in the second session. Asked after the experiment, no observer 901

noticed that the same pseudo-random sequence of target directions was used in both 902

experiments. 903

7.2 Eye movements experiment 904

Eye movements were recorded continuously with an eye tracking system (Eyelink 1000, 905

SR Research Ltd., sampled at 1000 Hz), using the Python module Pylink 0.1.0 provided 906

by PsychoPy. Horizontal and vertical eye position data were transferred, stored, and 907

analyzed offline using programs written using Jupyter notebooks. The data analyses 908

were implemented using the Python libraries numpy, pandas and pylab. All the scripts 909

for data analysis, as well as for stimulus presentation, data collection, and preparation 910

of figures are available at https://github.com/chloepasturel/AnticipatorySPEM. 911

To minimize measurement errors, the participant’s head movements were restrained 912

using a chin and forehead rest, so that the eyes in primary gaze position were directed 913

towards the center of the screen. In order to enforce accuracy in gaze position and 914

tracking, we implemented an automatic procedure of fixation control. If the distance 915

between the gaze position and the central fixation point during the fixation epoch 916

exceeded 2° of visual angles, the fixation point started flickering and the counter for the 917

fixation duration was reset to 0. 918

The recorded horizontal and vertical raw gaze position data were numerically 919

differentiated to obtain velocity measures. We adopted an automatic conjoint 920

acceleration and velocity threshold method (the default saccade detection implemented 921

by SR Research) to detect ocular saccades. Saccades and eye-blinks were excluded from 922

eye velocity traces (and replaced by Not-a-Number values in the numerical arrays) 923

before trial averaging and data fitting for the extraction of the oculomotor parameters 924

of interest. In order to extract the relevant parameters of the oculomotor responses, we 925

developed new tools based on a best-fitting procedure of predefined oculomotor patterns 926

and in particular the typical smooth pursuit velocity profile that was recorded in our 927

experiment. A piecewise-defined function was fitted to the different phases of the eye 928

velocity traces: a constant function during fixation, a ramp-like linear function during 929

smooth pursuit anticipation, an increasing sigmoid function during the initiation of 930

visually-guided smooth pursuit, reaching its saturating value during the pursuit 931

steady-state. This analysis was applied to each trial individually and it allowed in 932

particular to estimate the velocity of anticipatory pursuit as the best-fit value of the 933

modeled eye velocity at the moment where the visually-guided pursuit is initiated. Note 934

that this method for estimating anticipatory velocity led to qualitatively identical 935

results to the estimation of the mean eye velocity within an arbitrary temporal window 936

of anticipation, a more classical method that we implemented for instance in a previous 937

study [11]. Some trials were excluded from the analysis as the proportion of missing 938

data-points, due to eye blinks or saccades was considered too large, namely when the 939

missing data exceeded 45 ms during the gap or one third of the total target motion 940

epoch (4.36% of all trials). In addition, trials were also excluded when the 941

eye-movement fitting procedure did not converge, after visual inspection, to a 942

satisfactory match with the data (3.25% of all trials). The python scripts used to 943

analyze eye movements are available at https://github.com/invibe/ANEMO. 944

7.3 The Bet experiment 945

The aim of the Bet experiment was to collect data related to the individual explicit 946

estimates of the probability for the next outcome of a target motion direction. At the 947

beginning of each trial, before the presentation of the moving target, participants had to 948

answer to the question “How sure are you that the target will go left or right”. This 949
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was performed by adjusting a cursor on the screen using the mouse (see 950

Figure Figure 1-C). The cursor could be placed at any point along a horizontal segment 951

representing a linear rating scale with three ticks labeled as “Left”, “Right” (at the 952

extreme left and right end of the segment respectively), and “Unsure” in the middle. 953

Participants had to validate their choice by clicking on the mouse left-button and the 954

actual target motion was shown thereafter. The rationale to collect rating responses on 955

a continuous scale instead of a simple binary prediction (Right/Left) was to be able to 956

infer the individual estimate of the direction bias at the single trial scale (in analogy to 957

the continuous interval for the anticipatory pursuit velocity). We called this experiment 958

the “Bet” experiment, as participants were explicitly encouraged to make reasonable 959

rating estimates, just like if they had to bet money on the next trial outcome. Every 50 960

trials, a “score” was displayed on the screen, corresponding to the proportion of correct 961

direction predictions (Right or Left of the “Unsure” tick) and weighted by the 962

confidence attributed to each answer (the distance of the cursor from the center). 963
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8 Supporting information 1213

8.1 Appendix : leaky integrator 1214

Given a series of observations {xi0}0≤i≤t with ∀i, xi0 ∈ {0, 1}, we defined 1215

x̂t1 = (1− 1/τ)t+1 · x̂t=0
1 + 1/τ ·

∑
0≤i≤t

(1− 1/τ)i · xt−i0

= (1− h)t+1 · x̂t=0
1 + h ·

∑
0≤i≤t

(1− h)i · xt−i0

If we write it for trial t− 1, we have 1216

x̂t−1
1 = (1− h)t · x̂t=0

1 + h ·
∑

0≤i≤t−1
(1− h)i · xt−1−i

0

= (1− h)t · x̂t=0
1 + h ·

∑
1≤j≤t

(1− h)j−1 · xt−j0

(1− h) · x̂t−1
1 = (1− h)t+1 · x̂t=0

1 + h ·
∑

1≤i≤t

(1− h)i · xt−i0

It follows that the integrative formula above becomes an iterative relation: 1217

x̂t1 = (1− h)t+1 · x̂t=0
1 + h ·

∑
0≤i≤t

(1− 1/τ)i · xt−i0

= (1− h)t+1 · x̂t=0
1 + h · xt0 + h ·

∑
1≤i≤t

(1− h)i · xt−i0

= h · xt0 + (1− h) · x̂t−1
1

such that finally 1218

x̂t1 = (1− h) · x̂t−1
1 + h · xt0

As a result, the definitions in Equation 2 and Equation 3 are equivalent. 1219

8.2 The Bernoulli, binomial and Beta distributions 1220

Let us define some basic concepts. A Bernoulli trial is the outcome of a binary random 1221

variable x knowing a probability bias µ (with 0 ≥ µ ≥ 1) and can be formalized as: 1222

Pr(x|µ) = µx · (1− µ)1−x

The binomial distribution is defined as the probability that the sum X of ν 1223

independent Bernoulli trials is k: 1224

Pr(k; ν, µ) = Pr(X = k) =
(
ν

k

)
· µk · (1− µ)ν−k

Knowing such a model for X, it can be of interest to find an estimate of the 1225

parameter of the Bernoulli trial, that is of the probability bias µ. This distribution 1226

function is called the conjugate of the binomial distribution which is the 1227

Beta-distribution. For example, the beta distribution can be used in Bayesian analysis 1228
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to describe initial knowledge concerning probability of success such as the probability 1229

that a product will successfully complete a stress test. The beta distribution is a 1230

suitable model for the random behavior of percentages and proportions. 1231

It is usually defined using shape parameters α and β: 1232

Pr(p|α, β) = 1
B(α, β) · p

α−1 · (1− p)β−1

Note that here, the variable is the probability bias p. The normalization constant 1233

B(α, β) is given by the beta function. By definition: 1234

α = µ · ν
β = (1− µ) · ν

Inversely, α+ β = ν and µ = α
α+β = 1− β

α+β 1235

8.3 Appendix 2: BBCP algorithm 1236

To summarize, the algorithm that we presented is an implementation of the “Bayesian 1237

Online Changepoint Detection” by [58] extended for the class of binary inputs. Using 1238

the definition of the run-length Section 2.2, the flow-chart of the algorithm is: 1239

1. Initialize 1240

• P (r0 > 0) = 0 or P (r0 = 0) = 1 and 1241

• µ
(0)
0 = µprior and ν(0)

0 = νprior 1242

2. Observe New Datum xt0 ∈ {0, 1}, 1243

(a) Evaluate Predictive Probability π(r)
t = P (xt0|µ

(r)
t , ν

(r)
t ). 1244

(b) Calculate Growth Probabilities 1245

P (rt = rt−1 + 1, x0:t) = P (rt−1, x0:t−1)π(r)
t (1− h), 1246

(c) Calculate Changepoint Probabilities 1247

P (rt = 0, x0:t) =
∑
rt−1

P (rt−1, x0:t−1)π(r)
t · h, 1248

(d) Calculate Evidence P (x0:t) =
∑
rt−1

P (rt, x0:t), 1249

(e) Determine run-length Distribution P (rt|x0:t) = P (rt, x0:t)/P (x0:t). 1250

3. Update sufficient statistics 1251

• at a switch µ(0)
t+1 = µprior, ν(0)

t+1 = νprior, 1252

• else, ν(r+1)
t+1 = ν

(r)
t + 1 and ν(r+1)

t+1 · µ(r+1)
t+1 = ν

(r)
t · µ

(r)
t + xt0. 1253

4. Return to step 2. 1254

In the following, we detail some intermediate steps and highlight some key differences 1255

with their implementation. We also provide a python implementation of the algorithm, 1256

which is available at https://github.com/laurentperrinet/Bayesianchangepoint. 1257
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8.3.1 Initialization 1258

Note that the prior distribution is itself a Beta distribution: P ∝ B(p;µprior, νprior). It 1259

will by symmetry be unbiased: µprior = .5. Concerning the shape, it can be for instance 1260

the uniform distribution U on [0, 1], that is νprior = 2 or Jeffrey’s prior J , that is 1261

νprior = 1. We chose the latter for the generation of trials as the uniform distribution 1262

would yield more samples around .5. Qualitatively, this would result in more difficult 1263

task in discriminating a probability bias from another. Jeffrey’s prior was more adapted 1264

to that task. 1265

8.3.2 Prediction: run-length distribution 1266

The steps to achieve the update rule are: 1267

Pr(xt0|x0:t−1
0 ) =

∑
rt

Pr(xt0|rt, x0:t−1
0 ) · β(r)

t

Pr(xt0|x0:t−1
0 ) =

∑
rt

Pr(xt0|rt, x0:t−1
0 ) · Pr(rt|x0:t−1

0 )

with Pr(rt|x0:t−1
0 ) ∝

∑
rt−1

Pr(rt|rt−1) · Pr(xt0|rt−1, x0:t−1
0 ) · Pr(rt−1|x0:t−2

0 )

Finally we obtain Equation 5:

β
(r)
t ∝

∑
rt−1

Pr(rt|rt−1) · Pr(xt0|rt−1, x0:t−1
0 ) · β(r)

t−1

8.3.3 Prediction: sufficient statistics 1268

The recursive formulation in Equation 9 and Equation 10 comes from the expression 1269

ν
(r)
t · µ

(r)
t =

t−1∑
i=t−r−1

xi0

and therefore 1270

ν
(r+1)
t+1 · µ(r+1)

t+1 =
t+1−1∑

i=t+1−r−1−1
xi0

=
t∑

i=t−r−1
xi0

= ν
(r)
t · µ

(r)
t + xt0

8.3.4 Quantitative evaluation 1271

To quantitatively evaluate our results with respect to another probability bias, we 1272

computed in Equation 13 the cost as the Kullback-Leibler divergence KL(p̂|p) between 1273

samples p̂ and model p under the hypothesis of a Bernoulli trial: 1274

KL(p̂|p) = p̂ · log
(
p̂

p

)
+ (1− p̂) · log

(
1− p̂
1− p

)
. (14)
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8.4 Appendix: likelihood function 1275

We want to compute L(r|o) = Pr(o|p, r) where o ∈ {0, 1} such that we can evaluate 1276

Predictive Probability π0:t = P (xt0|µ
(r)
t , ν

(r)
t ) in the algorithm above with µ(r)

t and ν(r)
t 1277

the sufficient statistics at trial t for node (r). The likelihood of observing o = 1 is that 1278

of a binomial (conjugate of a Beta distribution) of 1279

• mean rate of choosing hypothesis o = 1 equal to p·r+o
r+1 , 1280

• number of choices where o = 1 equals to p · r + 1. 1281

More generally, by observing o, the new rate is p′ = p·r+o
r+1 . 1282

8.4.1 Mathematical derivation 1283

The likelihood will give the probability of this novel rate given the known parameters 1284

and their update (in particular r′ = r + 1): 1285

L(r|o) = (p · r + o

r + 1 )
p·r+o

· (1− p · r + o

r + 1 )r+o−(p·r+o)

= 1
(r + 1)r+1 · (p · r + o)p·r+o · ((1− p) · r + 1− o)(1−p)·r+1−o

since both likelihood sum to 1, the likelihood of drawing o in the set {0, 1} is equal to 1286

L(r|o) = L(r|o)
L(r|o = 1) + L(r|o = 0)

= (p · r + o)p·r+o · ((1− p) · r + 1− o)(1−p)·r+1−o

(p · r + 1)p·r+1 · ((1− p) · r)(1−p)·r + (p · r)p·r · ((1− p) · r + 1)(1−p)·r+1

= (1− o) · (p · r)p·r · ((1− p) · r + 1)(1−p)·r+1 + o · (p · r + 1)p·r+1 · ((1− p) · r)(1−p)·r

(p · r + 1)p·r+1 · ((1− p) · r)(1−p)·r + (p · r)p·r · ((1− p) · r + 1)(1−p)·r+1

This can also be written by isolating the part which depends on o and for a given 1287

run-length and knowing sufficient statistics describing the sufficient statistics at each 1288

node r: 1289

L(r|o) = 1
Z
· (p · r + o)p·r+o · ((1− p) · r + 1− o)(1−p)·r+1−o (15)

with Z such that L(r|o = 1) + L(r|o = 0) = 1, that is Equation 11. 1290

8.4.2 Python code 1291

1292
def likelihood(o, p, r): 1293

""" 1294

Knowing $p$ and $r$, the sufficient statistics of the beta distribution 1295

$B(\alpha, \beta)$ : 1296

$$ 1297

alpha = p*r 1298

beta = (1-p)*r 1299

$$ 1300

the likelihood of observing o=1 is that of a binomial of 1301
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1302

- mean rate of choosing hypothesis "o=1" = (p*r + o)/(r+1) 1303

- number of choices where "o=1" equals to p*r+1 1304

1305

since both likelihood sum to 1, the likelihood of drawing o in the set {0, 1306

1} 1307

is equal to 1308

1309

""" 1310

def L(o, p, r): 1311

P = (1-o) * ( 1. - 1 / (p * r + 1) )**(p*r) * ((1-p) * r + 1) 1312

P += o * ( 1. - 1 / ((1-p) * r + 1) )**((1-p)*r) * (p * r + 1) 1313

return P 1314

1315

L_yes = L(o, p, r) 1316

L_no = L(1-o, p, r) 1317

return L_yes / (L_yes + L_no) 13181319

See the code online. 1320

8.4.3 Properties 1321

This function has some properties, notably symmetries: 1322

• for certain outcomes, ∀r > 0, L(o|p = 0, r) = 1− o and L(o|p = 1, r) = o, 1323

• if r = 0, the likelihood is uniform L(o) = 1/2, 1324

• Pr(o|p, r) = Pr(1− o|1− p, r). 1325

Note also that as r grows, the likelihood gets sharper. 1326
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