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ABSTRACT 35 

Sterols are very well known for their important roles in membranes and signaling in eukaryotes. 36 

Plants stand out among eukaryotes by the large variety of sterols that they can produce, and 37 

employing them across a wide spectrum of physiological processes. Therefore, it is critical to 38 

understand the wiring of the biosynthetic pathways by which plants generate these distinct 39 

sterols, to allow manipulating them and dissect their precise physiological roles. Many 40 

enzymatic steps show a deep evolutionary conservation, while others are executed by 41 

completely different enzymes. Here, we review the complexity and variation of the biosynthetic 42 

routes of the most abundant phytosterols in the green lineage and how different enzymes in 43 

these pathways are conserved and diverged from humans,yeast and even bacteria. Based on 44 

their evolutionary conservation we discuss the use of human and yeast sterol biosynthesis 45 

inhibitors  in plants, as an argument for the development of plant-tailored inhibitors of sterol 46 

biosynthesis. 47 
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Introduction 56 

Sterols are a class of triterpenoid lipids that consist of a hydrated phenanthrene group 57 

and a cyclopentane ring that have been a topic of great interest for researchers for many 58 

decades due to their essential physiological roles in eukaryotic organisms (Benveniste, 2004; 59 

Hartmann, 1998). 60 

For instance, the sterol composition in membranes has a crucial impact on membrane 61 

fluidity and transmembrane export and import processes, and some sterols can even act as 62 

second messengers or signaling molecules during developmental and cellular signaling 63 

processes. The importance of sterols for eukaryotic organisms is even more apparent when 64 

looking from an evolutionary point of view, since the occurrence of sterol biosynthesis is thought 65 

to be a key evolutionary step in the advent of eukaryotic life (Galea and Brown, 2009). 66 

Indeed, the ancient rise in atmospheric O2 levels to the current 21% O2 not only drove 67 

the evolution of the earliest eukaryotic single-cell organisms, it also allowed for the occurrence 68 

of sterol biosynthesis pathways, which require O2 (Galea and Brown, 2009; Mouritsen, 2005). 69 

This is contrasted by the occurrence of hopanoids in prokaryotes, which are ring-structured 70 

molecules that look similar to sterols, but that do not require O2 for their biosynthesis and lack a 71 

3β-hydroxyl group, but exert analogous functions in the membranes as cholesterol (Berry et al., 72 

1993; Mangiarotti et al., 2019; Saenz et al., 2015). Intriguingly, the advent of sterol biosynthesis 73 

may also have acted as an early defense mechanism protecting against oxidative damage in 74 

these primitive eukaryotes, since sterols have been shown to function as a primitive cellular 75 

defense against O2 and reactive oxygen species (ROS) and are able to regulate cellular and 76 

organellar O2 entry (Galea and Brown, 2009). It is thus possible that primitive eukaryotes 77 

evolved sterols as an adaptive response to the rising atmospheric O2 levels, instead of just a 78 

consequence of it like previously assumed. Notably, some bacteria also produce sterols, 79 

presumably due to horizontal gene transfer (Bode et al., 2003; Rivas-Marin et al., 2019). 80 
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While sterols occur in all eukaryotic organisms, the types and amounts of sterols varies 81 

considerably between the different kingdoms. For instance, cholesterol is the major sterol 82 

produced in animals, whereas fungi mainly produce ergosterol. Plants, on the other hand, 83 

produce a wide variety of sterols (or phytosterols), with over 200 kinds known to date 84 

(Benveniste, 2004; Guo et al., 1995; Schaller, 2004). Within the phytosterols, campesterol, 85 

stigmasterol and β-sitosterol make up the predominant molecules of the sterol profile in plants 86 

(Benveniste, 2004; Hartmann, 1998): e.g. 64% campesterol, 6% stigmasterol and 11% β-87 

sitosterol in Arabidopsis (Benveniste, 2004; Schaeffer et al., 2001). These three phytosterols 88 

have either a methyl group (campesterol) or an ethyl group (β-sitosterol and stigmasterol) on 89 

their C-24 position, and thus are also called 24-methylsterols and 24-ethylsterols, respectively 90 

(Schaller et al., 1998). The balance between 24-methylsterols and 24-ethylsterols differs 91 

between plant species and is highly regulated, since their ratio has an important effect on 92 

several cellular processes (Schaller, 2003). For instance, reproductive organs such as flowers 93 

and seedpods are negatively affected by moderate changes in the campesterol/β-sitosterol 94 

ratio, while more severe changes in the campesterol/β-sitosterol ratio have no significant effect 95 

on stem elongation (Schaller, 2003). 96 

The main function of phytosterols is the regulation of the fluidity and permeability of 97 

membranes (Schaller, 2003). They achieve this by interacting with the saturated alkyl chains of 98 

the phospho- and sphingolipids that make up the membrane bilayers, thus limiting their mobility 99 

and permeability depending on the type and amount of sterols (Hartmann, 1998). While all of 100 

the phytosterols are able to regulate membrane fluidity and permeability, their efficiency in doing 101 

so varies (Hartmann, 1998; Schuler et al., 1990; Schuler et al., 1991). For instance, cholesterol 102 

has the largest stabilizing effect on membranes, followed by campesterol, β-sitosterol, and 103 

stigmasterol (Grunwald, 1971; Hodzic et al., 2008). Therefore, changes in the membrane sterol 104 

composition have an effect on the membrane permeability and function (Valitova et al., 2010). 105 
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While phytosterols are mainly present in the PM, small amounts of them have also been found 106 

in membranes of the ER (Hartmann and Benveniste, 1987), mitochondria (Meance et al., 1976), 107 

vacuole (Yoshida and Uemura, 1986) and chloroplasts (Hartmann and Benveniste, 1987). 108 

Another function in membranes to which phytosterols contribute is the formation of so-called 109 

“lipid rafts”. These lipid rafts are small, dynamic membrane domains rich in phytosterols and 110 

sphingolipids, in which certain enzymes and signaling complexes are gathered (Laloi et al., 111 

2007; Malinsky et al., 2013; Simon-Plas et al., 2011; Simons and van Meer, 1988). Lipid rafts 112 

have been successfully identified and isolated in several plant species and detailed analyses of 113 

their composition confirmed the presence of the main phytosterols campesterol, β-sitosterol and 114 

stigmasterol, as well as other sterols, sterol glycosides and sphingolipids (Cacas et al., 2012; 115 

Mongrand et al., 2004; Simon-Plas et al., 2011). Consequently, the phytosterol content of 116 

membranes indirectly affects enzyme activity, signal transduction, ion transport, and protein-117 

protein and protein-lipid interactions that take place in and over these membranes 118 

(Grandmougin-Ferjani et al., 1997; Schaller, 2003). 119 

This is evidenced by the wide range of severe phenotypes that were reported for 120 

mutants defective in sterol biosynthesis. Phenotypes of such mutants include extreme dwarfism 121 

and disturbances in embryogenesis, vascularization, fertility, cell differentiation and proliferation, 122 

depending on the sterol biosynthesis step that is disturbed (Azpiroz et al., 1998; Catterou et al., 123 

2001; Clouse, 2000; Guo et al., 1995; He et al., 2000; Piironen et al., 2000; Schaller, 2003). 124 

Currently, the origin of these sterol mutant phenotypes is poorly understood. Some can be 125 

explained by defects in auxin transport (Men et al., 2008; Pan et al., 2009; Titapiwatanakun et 126 

al., 2009; Willemsen et al., 2003; Yang et al., 2013) or ethylene signaling (Souter et al., 2002), 127 

whereas others derive from defects in brassinosteroid signaling as campesterol serves as a 128 

biosynthetic precursor of the brassinosteroid brassinolide. Furthermore, there are indications 129 

that phytosterols can act as signaling/regulatory molecules during plant growth and 130 
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development (Fujioka and Sakurai, 1997; Guo et al., 1995; Lindsey et al., 2003; Vriet et al., 131 

2013).  132 

In conclusion, phytosterols not only are vital structural components of membranes, they 133 

also play key roles during plant growth and development. Therefore, the large variety of plant 134 

sterols allows plants to adapt to constantly changing environmental conditions. 135 

 136 

Conservation and divergence in the early sterol biosynthesis pathway  137 

The initial pathway from which all triterpenes (including phytosterols, lanosterol and 138 

cholesterol) are derived is called the mevalonate (MVA) pathway, which is largely conserved 139 

across eukaryotes and archaea (Buhaescu and Izzedine, 2007; Lombard and Moreira, 2011) 140 

(Fig. 1). The end products of the MVA pathway are isopentenyl pyrophosphate (IPP) and 141 

dimethylallyl pyrophosphate (DMAPP), which form the primary building blocks of all isoprenoids 142 

(Goldstein and Brown, 1990).  143 

The MVA pathway starts with the condensation of two acetyl-CoA molecules into 144 

acetoacetyl-CoA by acetoacetyl-CoA thiolase. An additional condensation in the next step 145 

catalyzed by HMG-CoA synthase (HMGS) results in the formation of 3-hydroxy-3-146 

methylglutaryl-CoA (HMG-CoA). Subsequent reduction of HMG-CoA by HMG-CoA reductase 147 

(HMGR) leads to the production of mevalonate. In contrast to humans, plants often have 148 

multiple HMGR isoforms in their genomes. For instance, the Arabidopsis genome contains two 149 

HMGR genes that encode for three HMGR isoforms, of which HMG1 is most abundantly 150 

expressed (Enjuto et al., 1994; Enjuto et al., 1995). Consistent with its biochemical role in the 151 

mevalonate pathway, the pleiotropic hmg1 phenotype can be rescued by exogenous application 152 

of squalene (Suzuki et al., 2004). 153 
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  In the last steps of the eukaryotic MVA pathway, MVA undergoes two phosphorylations 154 

at its 5-OH position (catalyzed by mevalonate-5-kinase (MK) and phosphomevalonate kinase 155 

(PMK)), followed by a decarboxylation (catalyzed by mevalonate 5-diphosphate decarboxylase 156 

(MDD)), resulting in IPP. This IPP, together with its derivative DMAPP that is synthesized by 157 

IPP isomerase (IDI), form the starting molecules of the pathways leading to the production of a 158 

large variety of isoprenoids (Goldstein and Brown, 1990). Archaea use a modified MVA pathway 159 

in comparison to eukaryotes, in which the last three enzymes have been replaced by other 160 

enzymes (Boucher et al., 2004). 161 

Interestingly, unlike animals and fungi, plants also have the ability to produce IPP and DMAPP 162 

via an alternative pathway: the methylerythritol phosphate (MEP) or non-mevalonate pathway 163 

(Banerjee and Sharkey, 2014; Chappell, 2002), which takes place in the plastids and is mostly 164 

used for the biosynthesis of various mono-, di- and tetraterpenoids (Laule et al., 2003; Zhao et 165 

al., 2013) (Fig. 1). The MEP pathway is the main pathway for IPP and DMAPP biosynthesis in 166 

bacteria, with some exceptions (Lombard and Moreira, 2011), and is obtained by plants during 167 

the endosymbiosis event with cyanobacteria that originated the plastids (Lange et al., 2000). 168 

On the other hand, the IPP and DMAPP produced by the cytosolic MVA pathway are mainly 169 

used for the production of phytosterols, triterpenoids and sesquiterpenoids. Interestingly, many 170 

green algae species do not possess the MVA pathway and are solely reliant on the MEP 171 

pathway for isoprenoid biosynthesis (Lohr et al., 2012). Notably, there are indications of 172 

crosstalk between the cytosolic MVA and plastidial MEP pathways in plants (Mendoza-173 

Poudereux et al., 2015; Tansey and Shechter, 2001). Furthermore, it was recently shown that 174 

plants express a functional homolog of the isopentenyl phosphate kinase (IPK) that was 175 

originally identified in archaebacteria as part of their modified MVA pathway (Dellas and Noel, 176 

2010; Henry et al., 2015). This enzyme catalyzes the phosphorylation of isopentenyl phosphate 177 

(IP) and dimethylallyl phosphate (DMAP) into IPP and DMAPP, respectively, thus increasing 178 
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their availability for terpenoid production (Henry et al., 2015; Henry et al., 2018). Interestingly, 179 

IPP can be dephosphorylated back to IP by a subset of Nudix superfamily hydrolases (Henry et 180 

al., 2018). Together, these findings illustrate the highly complex metabolic regulation of IPP and 181 

DMAPP levels for terpenoid biosynthesis in plants. 182 

Subsequently, in the cytosol, farnesyl pyrophosphate (FPP) is formed by two sequential 183 

condensation reactions, in which two IPP molecules are added to DMAPP. These condensation 184 

reactions are catalyzed by farnesyl pyrophosphate synthase (FPPS) (Kulkarni et al., 2013). In 185 

the plastidial MEP pathway, on the other hand, FPP is synthesized in two steps, in which IPP 186 

and DMAPP are first converted to GPP by GPPS followed by the formation of FPP from GPP 187 

and IPP by a plastidial FPPS (Manzano et al., 2016). In the cytosol, FPP can either enter the 188 

sesquiterpene biosynthesis pathway, or be further converted to squalene, a C-30 molecule 189 

which is a condensation of two FPP units catalyzed by squalene synthase (SQS) (Tansey and 190 

Shechter, 2001). Squalene is produced via this pathway in both pro- and eukaryotes, where it is 191 

the universal precursor of hopanoids and steroids, respectively. In plants, animals and fungi, 192 

squalene is further converted to 2,3-oxidosqualene by squalene epoxidase (SQE; see further) 193 

(Thimmappa et al., 2014). 194 
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195 
Fig. 1. Schematic overview of the MVA and MEP pathways in Arabidopsis thaliana. CoA, Coenzyme A; DMAP, 196 

dimethylallyl phosphate; DMAPP, dimethylallyl pyrophosphate; DXP, 1-deoxy-D-xylulose 5-phosphate; DXR, DXP 197 

reductoisomerase; DXS, DXP synthase; FPP, farnesyl pyrophosphate; FPPS, farnesyl pyrophosphate synthase; GA-198 

3P, glyceraldehyde 3-phosphate; GGPP, geranylgeranyl pyrophosphate; GPP, geranyl pyrophosphate; GPPS, 199 

geranyl pyrophosphate synthase; HMG, 3-Hydroxy-3-methylglutaryl; HMGR, HMG-CoA reductase; HMGS, HMG-200 

CoA synthase; IDI, IPP isomerase; IPK, isopentenyl phosphate kinase; IP, isopentenyl phosphate; IPP, isopentenyl 201 

pyrophosphate; MDD, mevalonate 5-diphosphate decarboxylase; MEP, methylerythritol phosphate; MK, mevalonate-202 

5-kinase; MVA, mevalonate; PMK, phosphomevalonate kinase.   203 
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 204 

Early Phytosterol biosynthesis – 2,3-oxidosqualene as a precursor for 205 

phytosterols 206 

As mentioned before, the biosynthesis of sterols in eukaryotes begins with the 207 

epoxidation of squalene into 2,3-oxidosqualene by SQUALENE EPOXIDASEs (SQE) 208 

(Thimmappa et al., 2014). Of three functional SQEs in Arabidopsis that can rescue SQE 209 

deficient yeast (Laranjeira et al., 2015; Rasbery et al., 2007), SQE1 seems to play the most 210 

predominant function, as a single mutant displays pleiotropic phenotypes in the root and shoot 211 

(Pose et al., 2009; Rasbery et al., 2007). However, these phenotypes were not due to the 212 

reduced sterol content of the mutant, but rather due to its hyperaccumulation of squalene 213 

(Doblas et al., 2013). Moreover, the sqe1 phenotypes could be explained by misregulation of 214 

ROS production (Pose et al., 2009), unlike later sterol biosynthetic mutants that display 215 

misregulated ethylene production and auxin transport (See further) (Souter et al., 2002; Souter 216 

et al., 2004). This observation gives further credibility to the hypothesis that sterol biosynthesis 217 

may have evolved as an adaptation to oxidative stress (Galea and Brown, 2009). Furthermore, 218 

these data provide evidence for a primordial role for a conserved oxidosqualene biosynthesis 219 

pathway acting as the earliest section of the phytosterol biosynthesis pathway. However, the 220 

absence of completely predictable reductions in the total phytosterol levels upon interference 221 

with enzymes involved in oxidosqualene biosynthesis indicates an important gap in our 222 

understanding of how early phytosterol biosynthesis is regulated. Indeed, recently, an 223 

alternative SQE has been identified in the diatom Phaeodactylum tricornutum, that belongs to 224 

the fatty acid hydroxylase superfamily instead of to the flavoprotein monooxygenases like the 225 

conventional SQEs (Pollier et al., 2019). This suggests that different enzymatic reactions in 226 

plant phytosterol biosynthesis can be mediated by a wider palette of enzymes than would be 227 

expected based on sequence homology to yeast and human sterol biosynthetic genes.  228 
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Depending on the plant species, there are multiple cyclization pathways that convert 2,3-229 

oxidosqualene into different cyclic triterpene derivatives, based on the oxidosqualene cyclases 230 

(OSCs) that are present. These OSCs evolved from bacterial squalene/hopane synthases, and 231 

include cycloartenol synthase (CAS), lanosterol synthase (LAS), thalianol synthase (THAS) and 232 

β-amyrin synthase (bAS) (Sawai et al., 2006; Thimmappa et al., 2014). The most prominent of 233 

these pathways starts with the cyclization of 2,3-oxidosqualene into cycloartenol, which is 234 

catalyzed by the enzyme cycloartenol synthase 1 (CAS1) in Arabidopsis (Gas-Pascual et al., 235 

2014; Rees et al., 1969; Thimmappa et al., 2014). This pathway mainly produces the three 236 

major phytosterols as end-products, namely campesterol, β-sitosterol and stigmasterol, via a 237 

complex series of enzyme-catalyzed conversions. Interestingly, the bacterium Stigmatella 238 

aurantiaca also produces cycloartenol via a CAS enzyme that is similar to that of plants (Bode 239 

et al., 2003), and a squalene monooxygenase and an OSC were found to be essential for 240 

lanosterol biosynthesis in the bacterium Gemmata obscuriglobus (Rivas-Marin et al., 2019). 241 

 Cycloartenol is first converted to 24-methylenecycloartenol by the addition of a methyl-242 

group at the C-24 position by C-24 sterol methyltransferase 1 (SMT1), which is a key regulatory 243 

step of phytosterol biosynthesis (Neelakandan et al., 2009; Shi et al., 1996). In the next step, 244 

removal of a methyl group from the C-4 position of 24-methylenecycloartenol leads to in 245 

cycloeucalenol. In Arabidopsis, this step is catalyzed by three members of the sterol-4α-methyl 246 

oxidase 1 (SMO1) enzyme family (Darnet and Rahier, 2004). The opening of the cyclopropane 247 

ring of cycloeucalenol by cycloeucalenol cycloisomerase (CPI1) subsequently leads to the 248 

production of obtusifoliol (Benveniste, 2002). Obtusifoliol then undergoes demethylation of its C-249 

14 position, which results in the formation of 4α-methyl-5α-ergosta-8,14,24(28)-trien-3β-ol 250 

(Rahier and Taton, 1986). This reaction is catalyzed by obtusifoliol 14α-demethylase (CYP51G1 251 

in Arabidopsis), a cytochrome P450 enzyme. Next, 4α-methyl-5α-ergosta-8,14,24(28)-trien-3β-252 

ol is converted to 4α-methylfecosterol by the sterol C-14 reductase FACKEL (FK). In the 253 
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following step, the C-7 double bond of 4α-methylfecosterol undergoes a reduction catalyzed by 254 

the C-8,7 sterol isomerase HYDRA1 (HYD1) (Souter et al., 2002), which leads to the formation 255 

of 24-methylenelophenol. 256 

This part of the phytosterol pathway in Arabidopsis is encoded by single genes and the 257 

corresponding mutants often display strong phenotypes, including cpi, smt1, cyp51, hyd1 and 258 

fk. The cpi mutant is characterized by increased levels of cycloeucalenol and its derivatives, and 259 

has severe defects in its growth and development (Men et al., 2008). The smt1, hyd1 and fk 260 

mutants have reduced phytosterol and BR levels, and are severely impaired in embryogenesis, 261 

cell polarity, root growth, gravitropism and vascular development (Diener et al., 2000; Schrick et 262 

al., 2000; Souter et al., 2002; Topping et al., 1997; Willemsen et al., 2003). The abnormal 263 

vascular development phenotype of the hyd1 and fk mutants could be partially rescued by 264 

crossing these mutants with auxin-resistant mutants, indicating that the hyd1 and fk mutants 265 

may have disturbed auxin signaling or transport (Souter et al., 2002). Similarly, the abnormal 266 

root phenotype in hyd1 and fk could be rescued by crossing these mutants with a dominant 267 

ethylene-resistant mutant, suggesting they also have disturbed ethylene signaling (Souter et al., 268 

2002). Recently, tissue-specific complementation of the hyd1 mutant suggests that many of its 269 

phenotypes can be explained by defective patterning of PIN auxin transporters, and associated 270 

defects in auxin transport (Diener et al., 2000). Interestingly, the smt1 mutant is hypersensitive 271 

to Ca2+ ions, since lowering the Ca2+ concentration in the growth medium of this mutant resulted 272 

in improved root growth, probably due to alterations in membrane permeability (Diener et al., 273 

2000). 274 
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Fig. 2. Schematic overview of the main sterol biosynthesis pathway in Arabidopsis thaliana and putative 278 

target sites of inhibitors. CAS, cycloartenol synthase; CoA, Coenzyme A; CPI, cycloeucalenol cycloisomerase; 279 

CVP1, cotyledon vascular pattern 1; CYP51G1, cytochrome P450 51G1; CYP710A1, cytochrome P450 710A1; 280 

DET2, DEETIOLATED2; DIM, DIMINUTO; DMAPP, dimethylallyl pyrophosphate; DWF1/5/7, DWARF1/5/7; FK, 281 

FACKEL; FPP, farnesyl pyrophosphate; FPPS, farnesyl pyrophosphate synthase; HMG, 3-Hydroxy-3-methylglutaryl; 282 

HMGR, HMG-CoA reductase; HMGS, HMG-CoA synthase; HYD, HYDRA; IDI, IPP isomerase; IPP, isopentenyl 283 

pyrophosphate; LAS, lanosterol synthase; MDD, mevalonate 5-diphosphate decarboxylase; MK, mevalonate-5-284 

kinase; MVA, mevalonate; PMK, phosphomevalonate kinase; SMO, sterol-4α-methyl oxidase; SMT1/2/3, C-24 sterol 285 

methyltransferase 1/2/3; SQE, squalene epoxidase; SQS, squalene synthase; STE1, STEROL1; THAS1, thalianol 286 

synthase. 287 

 288 

Phytosterol biosynthesis – parallel branches for stigmasterol and campesterol 289 

From 24-methylenelophenol onwards, the pathway bifurcates via two separate 290 

branches, eventually resulting in either 24-ethylsterols (β-sitosterol and stigmasterol) or 24-291 

methylsterols (campesterol) as end-products, respectively. Campesterol can subsequently be 292 

used as a precursor for brassinosteroid biosynthesis. 293 

The 24-ethylsterol branch pathway begins with a second methylation of the C-24 294 

position of 24-methylenelophenol by the enzymes C-24 sterol methyltransferase 2/cotyledon 295 

vascular pattern 1 (SMT2/CVP1) and C-24 sterol methyltransferase 3 (SMT3), which results in 296 

24-ethylidenelophenol (Bouvier-Nave et al., 1998; Carland et al., 2010). Like with SMT1, the 297 

reaction catalyzed by SMT2/CVP1 is an important regulatory step in sterol biosynthesis, since it 298 

determines the ratio of 24-methyl- and 24-ethylsterols, which affects several developmental 299 

processes in plants (Bouvier-Nave et al., 1997; Carland et al., 2002; Schaeffer et al., 2001). 300 

Interestingly, it is thought that SMT2/CVP1 is also able to catalyze the primary C-24 methylation 301 

catalyzed by SMT1, albeit to a lesser extend (Schaeffer et al., 2001). A following double 302 

demethylation of 24-ethylidenelophenol by sterol-4α-methyl oxidase 2 (SMO2) results in the 303 

formation of Δ7-avenasterol (Darnet and Rahier, 2004), which is subsequently converted to 5-304 

dehydroavenasterol by the Δ7-sterol-C5-desaturase DWARF7/STEROL1 (DWF7/STE1) (Choe 305 

et al., 1999b; Gachotte et al., 1996). Next, the sterol Δ7-reductase DWARF5 (DWF5) converts 306 
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this 5-dehydroavenasterol into isofucosterol (Choe et al., 2000). Finally, a C-24 reduction of 307 

isofucosterol by the Δ24-sterol-Δ24-reductase DIMINUTO/DWARF1 (DIM/DWF1) leads to the 308 

generation of β-sitosterol (Choe et al., 1999a), which can then undergo a further C-22 309 

desaturation by the C-22 sterol desaturase CYP710A1, resulting in the end-product of this 310 

pathway: stigmasterol (Morikawa et al., 2006). However, not many details are known about this 311 

desaturation reaction in higher plants. Interestingly, in Arabidopsis, a second CYP710 enzyme 312 

(CYP710A2) is also able to produce stigmasterol from β-sitosterol, and can also produce 313 

brassicasterol from 24-epi-campesterol (Benveniste, 2002; Morikawa et al., 2006). 314 

The 24-methylsterol branch pathway starting from 24-methylenelophenol that eventually 315 

leads to the production of campesterol is similar to the first one and mostly uses the same 316 

enzymes. However, instead of first being methylated at the C-24 position by SMT2/CVP1 and 317 

SMT3 during the first step of this branched pathway, 24-methylenelophenol is directly 318 

demethylated by SMO2. This causes 24-methylenelophenol to be converted to episterol (Darnet 319 

and Rahier, 2004). The rest of the pathway consists of the same steps as the first branched 320 

pathway. First STE1 causes a desaturation of the C-5 position of episterol, which results in 5-321 

dehydroepisterol. This is followed by a reduction of its C-7 position by DWF5, leading to 24-322 

methylenecholesterol (Choe et al., 2000). Finally, a reduction of the C-24 double bond of 24-323 

methylenecholesterol by DIM/DWF1 yields the end-product of this pathway: campesterol. 324 

Besides its function as a structural phytosterol in membranes, campesterol also acts as a 325 

precursor for the brassinosteroid biosynthesis pathway (Choe et al., 1999a; Clouse, 2011). For 326 

details about brassinosteroid biosynthesis, we refer to dedicated reviews (Choe et al., 1999a; 327 

Clouse, 2011). 328 

The smt2/cvp1 mutant has increased campesterol levels and reduced β-sitosterol levels, 329 

and is characterized by moderate developmental defects, such as disturbed venation patterns in 330 

its cotyledons, serrated floral organs and a reduced stature (Carland et al., 2010; Carland et al., 331 
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2002). Unlike the early sterol biosynthesis mutants smt1, hyd1 and fk, more downstream sterol 332 

biosynthesis mutants such as smt2/cvp1, dim/dwf1, dwf5 and dwf7/ste1 show no defects in 333 

embryogenesis. The smt2/cvp1 mutant is smaller than the wild type, but it doesn’t demonstrate 334 

extreme dwarfism (Carland et al., 2002). Although dim/dwf1, dwf5 and dwf7/ste1 affect 335 

successive steps in the conversion of episterol to campesterol, and Δ7-avenasterol to β-336 

sitosterol (Choe et al., 1999a; Choe et al., 1999b; Clouse, 2002), the phenotypes of these 337 

mutants resemble those of brassinosteroid-deficient mutants, reflecting the importance of 338 

campesterol as a precursor of the most biologically active brassinosteroid, brassinolide. 339 

However, while these mutants are significantly smaller than wild-type plants, they don’t display 340 

the extreme dwarfism that is typical of BR biosynthesis mutants. Furthermore, the sterol profile 341 

of these mutants is vastly disturbed, with dwf7/ste1 being almost completely devoid of 342 

campesterol (Choe et al., 1999b; Choe et al., 2000). These macroscopic phenotypes can be 343 

partially rescued by external application of BRs (Choe et al., 1999a; Choe et al., 1999b; Choe et 344 

al., 2000; Klahre et al., 1998; Schaller, 2003), demonstrating that they are largely caused by an 345 

impairment in downstream BR synthesis, rather than a direct effect of campesterol deficiency. 346 

However, since DIM/DWF1, DWF5 and DWF7/STE1 also catalyze the conversion steps of Δ7-347 

avenasterol to β-sitosterol (Fig. 2), their respective mutants are not only deficient in 348 

campesterol, but also in β-sitosterol and stigmasterol, suggesting that the resulting defects in 349 

membrane integrity are at least partially responsible for the observed phenotypes of these 350 

mutants. This is presumably the case for the observed fertility defects, since BR application 351 

does not restore fertility in these mutants, suggesting that phytosterols play an important role 352 

during the plant reproduction that is independent from BRs (Schaller, 2004). 353 

Furthermore, unlike dim/dwf1, dwf5 and dwf7/ste1, the phenotypes of smt2/cvp1 and the 354 

early sterol biosynthesis mutants smt1, cpi, fk and hyd1 cannot be rescued by BR treatment 355 

(Carland et al., 2002; Diener et al., 2000; Schrick et al., 2000). Since these phenotypes are 356 
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independent from the downstream BR pathway, it is possible that early synthesized sterols 357 

(sterol biosynthesis intermediates) can act as signaling molecules themselves, similar to what 358 

has been shown for cholesterol in animals (Edwards and Ericsson, 1999; Farese and Herz, 359 

1998; Vriet et al., 2013). For example, accumulation of the sterol biosynthesis intermediate 4-360 

carboxy-4-methyl-24-methylenecycloartanol (CMMC), which accumulated in a mutant defective 361 

in tethering the sterol C4-demethylation complex, interferes with auxin transport (Edwards and 362 

Ericsson, 1999; Farese and Herz, 1998; Vriet et al., 2013). Also of note is that the sterol 363 

biosynthesis pathways are relatively conserved between Eukaryotes, with diatoms and yeast 364 

using mostly similar or identical enzymes as the higher plants, albeit sometimes in a different 365 

order, which explains the difference in end products obtained (e.g. ergosterol in yeast and 366 

brassicasterol/campesterol in diatoms) (Fabris et al., 2014). Overall, these mutants of early and 367 

late steps of the sterol biosynthesis pathway have been excellent tools in aiding our 368 

understanding of plant sterol biosynthesis and the role of sterols in plant growth and 369 

development. 370 

 371 

Cholesterol biosynthesis in plants 372 

The major sterols in plants are β-sitosterol, campesterol and stigmasterol, but many 373 

plants also produce cholesterol to some degree (Behrman and Gopalan, 2005). While the 374 

cholesterol levels in plants are usually low (100 - 1000 times lower compared to animals), 375 

cholesterol makes up a significant portion of the sterol content in some plant species (e.g. more 376 

than 10% in Solanaceae) (Sonawane et al., 2016). Furthermore, it has been shown to serve 377 

several functions in various plant species, including as membrane component, leaf surface lipid, 378 

and precursor for several plant metabolites such as steroidal glycoalkaloids (SGAs) and 379 

phytoecdysteroids (Cardenas et al., 2015; Dinan, 2001; Japelt and Jakobsen, 2013; Milner et 380 

al., 2011). 381 
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Cholesterol is the major sterol in animals, in which the cholesterol biosynthesis pathway 382 

has been extensively studied and characterized (Nes, 2011), while cholesterol biosynthesis in 383 

plants is still not fully understood. Recently, several genes and enzymes involved in cholesterol 384 

biosynthesis in tomato plants were identified by analyzing transcript and protein co-expression 385 

data, as well as a combination of functional assays (Sonawane et al., 2016). These data 386 

demonstrated the involvement of 12 enzymes in the tomato cholesterol biosynthesis pathway, of 387 

which several also function in the phytosterol biosynthesis pathway to catalyze highly related 388 

enzymatic conversions. Furthermore, the other enzymes that are specific for the cholesterol 389 

biosynthesis pathway seem to have evolved through gene duplication and divergence from 390 

phytosterol biosynthetic enzymes (Sonawane et al., 2016). Unlike animals, cholesterol 391 

biosynthesis in plants does not seem to start from 2,3-oxidosqualene cyclization into lanosterol 392 

by LAS (Sonawane et al., 2016). Instead, the OSC involved is CAS, after which cycloartenol is 393 

not only used for phytosterol biosynthesis, but also cholesterol biosynthesis (Fig. 2). Indeed, in 394 

tomato and potato plants it was shown that sterol side chain reductase 2 (SSR2) is a key 395 

enzyme in cholesterol biosynthesis that catalyzes the conversion of cycloartenol into 396 

cycloartanol, the first committed step in cholesterol biosynthesis (Sonawane et al., 2016). 397 

However, while LAS probably doesn’t contribute significantly to cholesterol biosynthesis, LAS 398 

genes were identified in several plant species, including Arabidopsis (Kolesnikova et al., 2006; 399 

Sawai et al., 2006; Suzuki et al., 2006). Furthermore, it was shown that LAS1 overexpression in 400 

Arabidopsis significantly increases the phytosterol levels while las1 knockout mutants do not 401 

have phytosterols derived from lanosterol, indicating that there exists an alternative phytosterol 402 

biosynthesis pathway that is dependent on LAS (Ohyama et al., 2009). The existence of 403 

alternative pathways contributing to phytosterol biosynthesis could explain why phytosterol 404 

levels in cas1 mutants remain unchanged, despite a strong defect in cycloartenol synthase 405 

activity as indicated by the accumulation of 2,3-oxidosqualene (Babiychuk et al., 2008). 406 
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 407 

Chemical inhibitors of key steps in the plant sterol biosynthesis pathway 408 

Besides mutants, another way in which sterol biosynthesis can be disrupted is through 409 

the action of chemical inhibitors that target specific steps of the sterol biosynthesis pathway 410 

(Fig. 2, Fig. 3). Indeed, sterol biosynthesis inhibitors have proven to be effective tools to probe 411 

and investigate sterol biosynthesis pathways across the different kingdoms. Many of the 412 

currently used sterol biosynthesis inhibitors have seen commercial use as fungicides and 413 

antimycotic drugs, and some can even be used to regulate plant growth (Lenton, 1987; Leroux 414 

et al., 2008). Since the sterol biosynthesis pathways of plants, animals and yeast share many 415 

similar conversion steps that are catalyzed by semi-conserved enzymes, several of the most 416 

used sterol biosynthesis inhibitors function across kingdoms (Ator et al., 1992). Nevertheless, 417 

there still exist clear differences in the sterol biosynthesis pathways between the kingdoms, 418 

leading to different sensitivities and specificities of sterol biosynthesis inhibitors (Nes, 2011). 419 

The following paragraphs will go into more detail about some of the most active and most used 420 

sterol biosynthesis inhibitors in plants, and their presumed targets. The compounds discussed 421 

and their presumed targets in Arabidopsis are indicated in Fig. 2. The numbers in brackets 422 

behind the discussed compounds correlate to their numbers in Fig. 3. 423 

Statins potently inhibit human HMGR activity by occupying the HMG-CoA binding site 424 

(Istvan and Deisenhofer, 2001). Because HMGR is a rate-limiting enzyme in MVA biosynthesis, 425 

statin-based medication is widely used to lower cholesterol levels (reviewed in (Davies et al., 426 

2016). In several plant species, statins, such as lovastatin (1) (or mevilonin) and mevastatin (2) 427 

(or compactin), reduce root growth and sterol biosynthesis (Bach and Lichtenthaler, 1982, 1987; 428 

Kim et al., 2014; Soto et al., 2011), demonstrating that statins can also be used as HMGR 429 

inhibitors in plant sterol research. 430 
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Two allylamine fungicides, namely naftifine (3) and terbinafine (4), are potent non-431 

competitive SQE inhibitors in fungi (Birnbaum, 1990; Ryder, 1991; Nowosielski et al., 2011). 432 

Docking analyses on modelled SQE suggest that terbinafine binding causes a conformational 433 

change that blocks one mode of substrate binding, while changing the geometry of another. 434 

(Nowosielski et al., 2011). Although plant SQEs can complement yeast SQE deficient mutants 435 

(Rasbery et al., 2007), they are not highly sensitive to these inhibitors (Yates et al., 1991, 1992; 436 

Wentzinger et al., 2002). This is not surprising as single amino acid substitutions in yeast SQE 437 

are sufficient to confer terbinafine resistance (Leber et al., 2003). Yet, the sqe1-5 mutant is 438 

hypersensitive to terbinafine (Pose et al., 2009). On the other hand, some organisms such as 439 

the diatom P. tricornutum are completely insensitive to terbinafine as they use alternative SQEs 440 

(Fabris et al., 2014; Pollier et al., 2019). 441 

Squalestatins (also called zaragozic acids), are highly potent and specific competitive 442 

inhibitors of rat SQS, with apparent subnanomolar Ki values (Baxter et al., 1992; Bergstrom et 443 

al., 1993). Also in plants, squalestatins are highly potent, as they inhibit SQS in BY-2 cell 444 

suspensions with an IC50 value of 5.5 nM, possibly via an irreversible inhibition mechanism 445 

(Hartmann et al., 2000; Wentzinger et al., 2002). Exogenous application of squalestatin 446 

activates transcriptional responses also seen in lovastatin-treated plants and impairs the plants 447 

fertility (Suzuki et al., 2004). The Arabidopsis genome encodes only a single functional SQS 448 

(SQS1; Busquets et al., 2008), but has not yet been subjected to mutant analysis. 449 

Over the years, several compounds have been identified that inhibit OSCs to varying 450 

degrees by mimicking the carbocationic intermediates formed during the cyclization of 2,3-451 

oxidosqualene. Some examples of OSC inhibitors that have been successfully utilized in plants 452 

are 2-aza-2,3-dihydrosqualene (5) (Duriatti et al., 1985; Cattel et al., 1986), U18666A (6) 453 

(Duriatti et al., 1985; Cattel et al., 1986) and AMO-1618 (7) (Douglas and Paleg, 1978, 1978, 454 

1981). Another class of OSC inhibitors are the 8-azadecalins, such as 4,4,10β-trimethyl-trans-455 
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decal-3β-ol (TMD) (8) and its derivatives (Ruhl et al., 1989; Raveendranath et al., 1990; 456 

Hoshino et al., 1995). However, the 8-azadecalins also inhibit other enzymes besides OSCs 457 

(such as cyclopropyl sterol isomerase, C-14 sterol reductase and C-8,7 sterol isomerase), thus 458 

potentially leading to off-target effects. 459 

In Arabidopsis, the C-24 sterol methyltransferase SMT1 catalyzes the transfer of a 460 

methyl group from S-adenosyl-L-methionine to cycloartenol (Benveniste, 1986; Bouvier-Nave et 461 

al., 1998; Diener et al., 2000), leading to the formation of Δ5 C-24 alkyl sterols. Since SMT1 only 462 

occurs in plants and fungi, and not in animals, it is an interesting target for studying phytosterol 463 

biosynthesis. SMT2/CVP1 and SMT3 are mainly responsible for a second methyl addition, thus 464 

resulting in an ethyl side-chain addition on the C-24 (Schaeffer et al., 2001; Carland et al., 465 

2010). Therefore, the regulation of the SMT enzymes determines the sterol composition in 466 

plants. Many compounds have been designed over the years to act as SMT inhibitors (Nes, 467 

2000). These inhibitors can be broadly classified in three groups: 1) substrate analogues that 468 

act as inactivators of the enzyme, 2) substrate analogues that resemble high-energy 469 

intermediates, and 3) product analogues. While these compounds are generally designed in 470 

fungal systems, some of them have been shown to inhibit SMT1 and SMT2/CVP1 in plants as 471 

well, including the azasteroid inhibitors 25-azacycloartenol (9) (Rahier et al., 1980; Schmitt et 472 

al., 1981; Rahier et al., 1986; Mangla and Nes, 2000), 25-azalanosterol (10) (Rahier et al., 473 

1984) and 24-epiiminolanosterol (11) (Tal and Nes, 1987), which are carbocationic transition 474 

state analogues of the substrates of these enzymes (Rahier et al., 1984). 475 

The 14α-methylsterol demethylase enzyme in plants (obtusifoliol 14α-demethylase) 476 

catalyzes the demethylation of obtusifoliol (Lepesheva and Waterman, 2007). This enzyme is a 477 

cytochrome P450 dependent monooxygenase (CYP51G1 in Arabidopsis) (Benveniste, 1986; 478 

Lepesheva and Waterman, 2007). In fungi and animals, the best studied and most widely used 479 

inhibitors of P450s are the azoles, which are a popular type of antifungal compounds that are 480 
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used for both agricultural and medical purposes (Becher and Wirsel, 2012). Two subclasses of 481 

the azoles are the imidazoles, such as clotrimazole (12), oxiconazole (13), ketoconazole (14), 482 

imazalil (enilconazole) (15) and prochloraz (16), and the triazoles, such as triadimenol (17), 483 

voriconazole (18) and fluconazole (19). They are nitrogen-containing heterocyclic compounds 484 

that form an effective class of fungicides by non-competitively binding to the ferric ion of the 485 

heme group of fungal CYP51, thus preventing it from binding its substrate (Rogerson et al., 486 

1977; Warrilow et al., 2013). Despite being primarily used as fungicides, several azole 487 

compounds also have an effect on plants to a varying degree, where they generally cause 488 

growth inhibition, which may be due to interference with downstream BR biosynthesis 489 

(Scheinpflug and Kuck, 1987; Vanden Bossche et al., 1987; Rozhon et al., 2013; Fabris et al., 490 

2014). However, while nanomolar concentrations of azoles are usually sufficient to inhibit 491 

ergosterol biosynthesis in fungi, micromolar concentrations or higher are often needed to obtain 492 

a similar inhibitory effect on phytosterol biosynthesis in plants and diatoms (Vanden Bossche et 493 

al., 1987; Fabris et al., 2014). The cytochrome P450s are a superfamily of enzymes (Xu et al., 494 

2015), that are often sensitive to imidazoles (Murray, 1999). Of note is that azoles can be found 495 

or even designed that display a certain degree of preference towards specific cytochrome P450 496 

enzymes. Well-known examples in plants are uniconazole as an inhibitor of CYP707As that are 497 

involved in abscisic acid catabolism (Saito et al., 2006), and brassinazole as an inhibitor of 498 

CYP90B1 that is involved in brassinosteroid biosynthesis (Asami et al., 2000). Importantly, both 499 

uniconazole and brassinazole can inhibit CYP90B1 activities, suggesting that one should be 500 

wary of off-target side effects when using these inhibitors, especially when using them at high 501 

concentrations. Recently, analysis of crystals of CYP90B1 in complex with uniconazole and 502 

brassinazole demonstrated important differences in binding conformation (Fujiyama et al., 2019) 503 

which highlighted the importance of using crystal structures of plant CYPs to guide the design of 504 

new, more-specific inhibitors. 505 
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Besides the azoles, also pyrimidine-type fungicides, such as fenarimol (20), nuarimol 506 

(21) and triarimol (22), and pyridine-type fungicides are thought to affect the CYP51 ortholog 507 

and other cytochrome P450 enzymes, such as CYP710A1 in plants (Shive and Sisler, 1976; 508 

Schmitt and Benveniste, 1979; Buchenauer and Rohner, 1981; Burden et al., 1987; Scheinpflug 509 

and Kuck, 1987; Mercer et al., 1989; Leroux et al., 2008; Oh et al., 2015). Overall, these 510 

compounds all cause strong reductions in root- and shoot growth with varying potency, and are 511 

phytotoxic at high concentrations due to a severe reduction in phytosterols and an accumulation 512 

of 14α-methylsterols (Burden et al., 1987; Lurssen, 1987). 513 

CPI, C-14 sterol reductase and C-8,7 sterol isomerase are enzymes that catalyze similar 514 

reactions at different stages of the sterol biosynthesis pathway (Benveniste, 1986), making them 515 

shared targets for molecular inhibition. An important class of inhibitors that target these 516 

enzymes are the morpholine fungicides, such as fenpropimorph (23), dodemorph (24), 517 

aldimorph (25) and tridemorph (26) (Kerkenaar et al., 1981; Baloch et al., 1984; Baloch and 518 

Mercer, 1987; Mercer et al., 1989; Marcireau et al., 1990). These compounds exert their 519 

fungitoxicity by inhibiting C-8,7 sterol isomerase (nM concentrations) and/or C-14 sterol 520 

reductase (µM concentration) in fungi and yeast, with different morpholines having different 521 

specificities (Kerkenaar et al., 1981; Baloch et al., 1984; Baloch and Mercer, 1987; Kerkenaar, 522 

1987; Marcireau et al., 1990). For instance, while fenpropimorph can effectively inhibit both the 523 

C-8,7 sterol isomerase and C-14 sterol reductase in fungi, tridemorph primarily inhibits the C-8,7 524 

sterol isomerase (Baloch et al., 1984; Kerkenaar, 1987). However, morpholines also function in 525 

plants, albeit less potently and less specifically, where they have been shown to inhibit HYD1 526 

(the plant C-8,7 sterol isomerase) (Rahier et al., 1986; Taton et al., 1987), FK (the plant C-14 527 

sterol reductase) (Mercer et al., 1989; Taton et al., 1989; He et al., 2003) and CPI (Taton et al., 528 

1987) to a varying degree. Similarly, fenpropimorph treatment caused alterations in the sterol 529 

content of the diatom P. tricornutum that could be explained by inhibition of multiple enzymes 530 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2019. ; https://doi.org/10.1101/784272doi: bioRxiv preprint 

https://doi.org/10.1101/784272
http://creativecommons.org/licenses/by/4.0/


25 

 

involved in its sterol biosynthesis pathway (Fabris et al., 2014). While fenpropimorph is the most 531 

active and commonly used morpholine in plants, it requires relatively high concentrations to 532 

function (30 - 100 μM), is unstable and relatively expensive. Plants treated with morpholines 533 

have a disturbed sterol profile and growth impairments, similar to mutants defective in the 534 

targeted enzymes (Bladocha and Benveniste, 1983; Burden et al., 1987; He et al., 2003). 535 

However, while the morpholine compounds disturb the normal sterol profile of plants, they are 536 

generally not phytotoxic (Bladocha and Benveniste, 1983; Taton et al., 1987, 1987). 537 

Interestingly, in plants, 8-azadecalins such as N-benzyl-8-aza-4α,10-dimethyl-trans-decal-3β-ol 538 

(27) and N-(1,5,9-trimethyldecyl)-4α,10-dimethyl-8-aza-trans-decal-3β-ol (TMDAD) (28) have 539 

been shown to be more potent inhibitors of HYD1 and CPI than the morpholines (Rahier et al., 540 

1985; Taton et al., 1987). A strong, more specific inhibitor of C-14 sterol reductases is the 541 

antifungal agent 15‐aza‐24‐methylene‐D‐homocholesta‐8,14‐dien‐3β‐ol (15-azasterol) (29), 542 

which has been used to inhibit FK in several plant species, including Arabidopsis (Schrick et al., 543 

2002) and bramble cells (Schmitt et al., 1980).  544 

While most of the abovementioned sterol biosynthesis inhibitors have been used to 545 

inhibit plant growth and study plant and diatom sterol biosynthesis to some degree, it is clear 546 

that many of these compounds originate as antifungal compounds for which the effect in plants 547 

is often not completely understood. Indeed, much of the underlying mechanisms of these 548 

inhibitors in plants and diatoms are still not completely clear and are often presumed based on 549 

their function in fungi and/or animals. It should also be noted that only limited recent data is 550 

available for most of these inhibitors in plants, as evidenced by the relatively old sources 551 

referenced in the last paragraphs. This further supports the notion that the current knowledge 552 

and toolset of sterol biosynthesis inhibitors in plants is lacking. The identification of more active 553 

compounds that selectively target specific enzymes in the plant sterol biosynthesis pathway 554 
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through a systematic approach, informed by crystal structures, would therefore be highly 555 

welcomed to study sterol biosynthesis in the green lineage. 556 
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 557 

Fig. 3. Structures of sterol biosynthesis inhibitors organized according to their putative targets. 558 
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