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Abstract

Deep learning models have shown great promise in predicting genome-wide
regulatory effects from DNA sequence, but their informativeness for human complex
diseases and traits is not fully understood. Here, we evaluate the disease infor-
mativeness of allelic-effect annotations (absolute value of the predicted difference
between reference and variant alleles) constructed using two previously trained deep
learning models, DeepSEA and Basenji. We apply stratified LD score regression
(S-LDSC) to 41 independent diseases and complex traits (average N=320K) to
evaluate each annotation’s informativeness for disease heritability conditional on a
broad set of coding, conserved, regulatory and LD-related annotations from the
baseline-LD model and other sources; as a secondary metric, we also evaluate
the accuracy of models that incorporate deep learning annotations in predicting
disease-associated or fine-mapped SNPs. We aggregated annotations across all
tissues (resp. blood cell types or brain tissues) in meta-analyses across all 41
traits (resp. 11 blood-related traits or 8 brain-related traits). These allelic-effect
annotations were highly enriched for disease heritability, but produced only limited
conditionally significant results – only Basenji-H3K4me3 in meta-analyses across
all 41 traits and brain-specific Basenji-H3K4me3 in meta-analyses across 8 brain-
related traits. We conclude that deep learning models are yet to achieve their
full potential to provide considerable amount of unique information for complex
disease, and that the informativeness of deep learning models for disease beyond
established functional annotations cannot be inferred from metrics based on their
accuracy in predicting regulatory annotations.

Introduction

Disease risk variants identified by genome-wide association studies (GWAS) lie predomi-
nantly in non-coding regions of the genome1,2,3,4,5,6,7, motivating broad efforts to generate
genome-wide maps of regulatory marks across tissues and cell types8,9,10,11. Recently,
deep learning models trained using these genome-wide maps have shown considerable
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promise in predicting regulatory marks directly from DNA sequence12,13,14,15,16,17,18. In
particular, these studies showed that variant-level deep learning annotations (predictive
annotations based on the reference allele) attained high accuracy in predicting the
underlying chromatin marks13,14,15,16, and that models incorporating allelic-effect deep
learning annotations (absolute value of the predicted difference between reference and
variant alleles) attained high accuracy in predicting disease-associated SNPs13,14,15,16.
Additional applications of deep learning models, including analyses of signed allelic-effect
annotations, are discussed in the Discussion section. However, it is unclear whether deep
learning annotations at commonly varying SNPs contain unique information for complex
disease that is not present in other annotations.

Here, we evaluate the informativeness for complex disease of allelic-effect annotations
at commonly varying SNPs constructed using two deep learning models previously
trained on tissue-specific regulatory features (DeepSEA13,15 and Basenji16). We apply
stratified LD score regression5,19 (S-LDSC) to 41 independent diseases and complex
traits (average N=320K) to evaluate each annotation’s informativeness for disease
heritability conditional on the underlying variant-level annotations as well as a broad
set of coding, conserved, regulatory and LD-related annotations from the baseline-LD
model19 and other sources (imputed Roadmap and ChromHMM annotations11,20,21,22).
As a secondary metric, we also evaluate the accuracy of models that incorporate deep
learning annotations in predicting disease-associated or fine-mapped SNPs23,24. We
aggregate DeepSEA and Basenji annotations across all tissues in meta-analyses across
all 41 traits, across blood cell types in meta-analyses across 11 blood-related traits, and
across brain tissues in meta-analyses across 8 brain-related traits.

Results

Overview of methods

We define a genomic annotation as an assignment of a numeric value (either binary
or continuous-valued) to each SNP (Methods). Our focus is on continuous-valued
annotations (with values between 0 and 1) trained by deep learning models to predict
biological function from DNA sequence. Annotation values are defined for each SNP
with minor allele count ≥ 5 in a 1000 Genomes Project European reference panel25, as
in our previous work5. We have publicly released all new annotations analyzed in this
study (see URLs).

In our analysis of allelic-effect (∆) deep learning annotations across 41 traits, we ana-
lyzed 16 non-tissue-specific deep learning annotations: 8 DeepSEA annotations13,15 pre-
viously trained to predict 4 tissue-specific chromatin marks (DNase, H3K27ac, H3K4me1,
H3K4me3) known to be associated with active promoter and enhancer regions across
127 Roadmap tissues11,26, aggregated using the average (Avg) or maximum (Max)
across tissues, and 8 analogous Basenji annotations16, quantile-matched with DeepSEA
annotations to lie between 0 and 1 (Table 1 and Methods). To assess whether the
allelic-effect annotations provided unique information for disease, we conservatively
included the underlying variant-level (V) annotations (Table S1) as well as a broad
set of coding, conserved, regulatory and LD-related annotations in our analyses: 86
annotations from the baseline-LD (v2.1) model19, which has been shown to effectively
model LD-dependent architectures27; 8 Roadmap annotations11 (for same chromatin
marks as DeepSEA and Basenji annotations), imputed using ChromImpute20; and 40
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ChromHMM annotations21,22 based on 20 ChromHMM states across 127 Roadmap
tissues11 (Table S2). When comparing pairs of annotations that differed only in their ag-
gregation strategy (Avg/Max), chromatin mark (DNase/H3K27ac/H3K4me1/H3K4me3),
model (DeepSEA/Basenji) or type (variant-level/allelic-effect), respectively, we observed
large correlations across aggregation strategies (average r = 0.71), chromatin marks
(average r = 0.58), models (average r = 0.54) and types (average r = 0.48) (Figure S1).

In our analysis of 11 blood-related traits (resp. 8 brain-related traits), we analyzed 8
DeepSEA annotations and 8 Basenji annotations that were aggregated across 27 blood
cell types (resp. 13 brain tissues), instead of all 127 tissues. Details of other annotations
included in these analyses are provided below.

We assessed the informativeness of these annotations for disease heritability using
stratified LD score regression (S-LDSC) with the baseline-LD model5,19. We considered
two metrics, enrichment and standardized effect size (τ?). Enrichment is defined as the
proportion of heritability explained by SNPs in an annotation divided by the proportion
of SNPs in the annotation5, and generalizes to continuous-valued annotations with values
between 0 and 128. Standardized effect size (τ?) is defined as the proportionate change
in per-SNP heritability associated with a 1 standard deviation increase in the value
of the annotation, conditional on other annotations included in the model19; unlike
enrichment, τ? quantifies effects that are unique to the focal annotation. In our “marginal”
analyses, we estimated τ? for each focal annotation conditional on annotations from the
baseline-LD model. In our “joint” analyses, we merged baseline-LD model annotations
with focal annotations that were marginally significant after Bonferroni correction and
performed forward stepwise elimination to iteratively remove focal annotations that
had conditionally non-significant τ? values after Bonferroni correction, as in ref.19.
All analyses of allelic-effect annotations were further conditioned on jointly significant
annotations from a variant-level analysis, if any. Distinct from evaluating deep learning
annotations using S-LDSC, we also evaluated the accuracy of models that incorporate
deep learning annotations in predicting disease-associated or fine-mapped SNPs23,24

(Methods).

A Basenji all-tissues allelic-effect annotation is conditionally in-
formative for disease

We evaluated the informativeness of allelic-effect deep learning annotations for disease
heritability by applying S-LDSC with the baseline-LD model5,19 to summary association
statistics for 41 independent diseases and complex traits (average N=320K); for 6
traits we analyzed two different data sets, leading to a total of 47 data sets analyzed
(Table S3). We meta-analyzed results across these 47 data sets, which were chosen to
be independent28. The 41 traits include 27 UK Biobank traits29 for which summary
association statistics are publicly available (see URLs).

Although our main focus is on allelic-effect deep learning annotations, analysis of
variant-level deep learning annotations was a necessary prerequisite step, for two reasons:
(i) allelic-effect annotations are computed as differences between variant-level annotations
for each allele, and (ii) we wished to condition analyses of allelic-effect annotations on
jointly significant variant-level annotations, if any. We thus constructed 8 variant-level
DeepSEAV annotations by applying previously trained DeepSEA models15 (see URLs)
for each of 4 tissue-specific chromatin marks (DNase, H3K27ac, H3K4me1, H3K4me3)
across 127 Roadmap tissues11 to 1kb of human reference sequence around each SNP;
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for each chromatin mark, we aggregated variant-level DeepSEAV annotations across
the 127 tissues using either the average (Avg) or maximum (Max) across tissues (Table
1 and Methods). The DeepSEA model was highly predictive of the corresponding
tissue-specific chromatin marks, with AUROC values reported by ref.15 ranging from
0.77 − 0.97 (Table S4). We also constructed 8 variant-level BasenjiV annotations by
applying previously trained Basenji models16 (see URLs) and aggregating across tissues
in analogous fashion (Table 1 and Methods); Basenji uses a Poisson likelihood model,
unlike the binary classification approach of DeepSEA, and analyzes 130kb of human
reference sequence around each SNP using dilated convolutional layers. The constituent
tissue-specific BasenjiV annotations do not lie between 0 and 1; so we transformed
these annotations to lie between 0 and 1 via quantile matching with corresponding
DeepSEAV annotations, to ensure a fair comparison of the two approaches (Methods).
Although the variant-level DeepSEAV and BasenjiV annotations were highly enriched
for heritability, we determined that none of them were conditionally informative across
the 41 traits (Figures S2, S3, S4, S5, S6 and Supplementary Note). This is an expected
result, because the variant-level deep learning annotations simply predict measured
variant-level annotations from Roadmap that are also included in the model.

Our main focus is on allelic-effect annotations (absolute value of the predicted dif-
ference between reference and variant alleles), which have been the focus of recent
work13,14,15,16. We evaluated the informativeness of 8 non-tissue-specific DeepSEA∆
and 8 non-tissue-specific Basenji∆ allelic-effect annotations (Table 1) for disease heri-
tability by applying S-LDSC to the 41 traits. Analyses of allelic-effect annotations were
conditioned on the baseline-LD model plus 7 annotations from Figure S6. For ease of
comparison, allelic-effect Basenji annotations were quantile-matched with corresponding
allelic-effect DeepSEA annotations, analogous to analyses of variant-level annotations.

A summary of the results is provided in Figure 1 (All tissues, All traits column;
numerical results in Table S5), which reports the number of allelic-effect annotations of
various types with significant heritability enrichment, marginal conditional signal, and
joint conditional signal, respectively. In our marginal analysis of disease heritability, all
allelic-effect annotations from DeepSEA and Basenji models were significantly enriched
for heritability across 41 traits; the allelic-effect Basenji∆ annotations were more enriched
for disease heritability (2.40x) than allelic-effect DeepSEA∆ annotations (1.91x) (Table
S6). However, only 0 DeepSEA∆ annotations and 1 Basenji∆ annotation, Basenji∆-
H3K4me3-Max, attained a Bonferroni-significant standardized effect size (τ?) (Figure 2
and Table S6); results were similar when conditioned on just the baseline-LD model (Table
S7). Despite the high correlation between variant-level and allelic-effect annotations
(r = 0.48; Figure S1), the corresponding variant-level annotation (BasenjiV-H3K4me3-
Max) did not produce significant conditional signal (Figure 2 and Table S8), consistent
with Figure S2). We note that since Basenji∆-H3K4me3-Max was the only marginally
significant annotation in the non-tissue-specific allelic-effect analysis, it is automatically
jointly significant.

To assess the impact of conditioning on conservation-related annotations, we per-
formed a marginal analysis in which we no longer conditioned on the 11 conservation-
related annotations of the baseline-LD model (e.g. GERP++30,19 , PhastCons31, con-
servation across 29 mammals32, Background selection statistic33; Table S9). In this
analysis, 6 DeepSEA∆ and 4 Basenji∆ produced Bonferroni-significant conditional
signals (Table S10). This implies that conditioning on conservation-related annota-
tions had a major impact on our primary analysis. Consistent with this finding, we
observed substantial correlations (up to r = 0.24) between allelic-effect annotations
and conservation-related annotations (Figure S7). These results can be viewed as a
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proof-of-concept that allelic-effect annotations can uncover biological signals.

We investigated the k-mer composition of regions proximal to the Basenji∆-H3K4me3-
Max annotation. For each of all 682 possible k-mers with 1 ≤ k ≤ 5 (merged with their
reverse complements), we assessed the weighted k-mer enrichment in 1kb regions around
each SNP in the annotation (Methods). Many CpG-related k-mers (k ≥ 3) attained
Bonferroni-significant enrichments, with the largest and most significant enrichments
attained by CGCGC (4.1x and P=3.5-e10) and CGGCG (4.1x and P=3.6e-10) (Table
S11); these were far larger and more statistically significant than enrichments for simple
GC-rich motifs such as the 2-mer CpG (1.2x and P=0.3), ruling out a systematic GC
artifact as an explanation for our findings. We note that the CGCG motif is known to
correlate with nucleosome occupancy34,35, which may potentially be expected since active
promoters tend to have well-positioned nucleosomes marked by H3K4me3. Although
the 5-mers CGCGC and CGGCG are too small to associate to known transcription
factor binding motifs, we determined that the 9-mer GCGGTGGCT, which was enriched
for heritability of blood-related traits in a previous study36 and is associated with the
ZNF33A transcription factor binding motif, was enriched in the Basenji∆-H3K4me3-Max
annotation (Table S12).

As an alternative to conditional analysis using S-LDSC, we analyzed various sets of
annotations by training a gradient boosting model to classify 12, 296 SNPs from the
NIH GWAS catalog23 and assessing the AUROC, as in ref.13,16 (Methods); although
this is not a formal conditional analysis, comparing the AUROC achieved by different
sets of annotations can provide an indication of which annotations provide unique
information for disease. Results are reported in Table S13. We reached three main
conclusions. First, the aggregated DeepSEA∆ and Basenji∆ annotations were informative
for disease (AUROC = 0.584 and 0.592, respectively, consistent with enrichments of
these annotations (DeepSEA∆: 1.50x, Basenji∆: 1.75x) for NIH GWAS SNPs; Table
S14). Second, including tissue-specific DeepSEA∆ and Basenji∆ annotations for all 127
tissues slightly improved the results (AUROC = 0.602 and 0.611, respectively; lower
than AUROC = 0.657 and 0.666 reported in ref.16 because our analysis was restricted
to chromatin marks and did not consider transcription factor binding site (TFBS) or
cap analysis of gene expression (CAGE) data). Third, the disease informativeness of
the baseline-LD model plus 7 non-tissue-specific annotations from Figure S6) (AUROC
= 0.762) was not substantially impacted by adding the aggregated DeepSEA∆ and
Basenji∆ annotations (AUROC = 0.766 and 0.769, respectively). These findings were
consistent with our S-LDSC analyses; in particular, the slightly higher AUROC for
Basenji and DeepSEA allelic-effect annotations (across all analyses) was consistent with
our S-LDSC results showing higher enrichments and a conditionally significant signal
for Basenji annotations. Although a key limitation of the NIH GWAS catalog is that it
consists predominantly of marginally associated variants that have not been fine-mapped,
which thus form a noisy SNP set, these analyses show that it does contain useful signal.

We conclude that allelic-effect DeepSEA and Basenji annotations that were aggregated
across tissues were enriched for heritability across the 41 traits (with higher enrichments
for Basenji), and that one Basenji allelic-effect annotation was conditionally informative.
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A Basenji brain-specific allelic-effect annotation is conditionally
informative for disease

We evaluated the informativeness of blood-specific allelic-effect annotations across 11
blood-related traits (Table S3), and the informativeness of brain-specific allelic-effect
annotations across 8 brain-related traits (Table S3).

As in the all-tissues analysis, we first evaluated tissue-specific variant-level annota-
tions. The blood-specific variant-level DeepSEAV and BasenjiV annotations were highly
enriched for heritability across 11 blood-related traits, but we determined that none
of them were conditionally informative (Figures S8, S9, S10, S11 and Supplementary
Note). The brain-specific variant-level DeepSEAV and BasenjiV annotations were also
highly enriched for heritability across 8 brain-related traits; surprisingly, two of these
annotations (DeepSEAV-H3K4me3-brain-Max and BasenjiV-H3K27ac-brain-Max) were
conditionally informative (Figures S12, S13, S14, S15 and Supplementary Note). This is
a surprising result, because the brain-specific variant-level deep learning annotations
simply predict measured brain-specific variant-level annotations from Roadmap that
were also included in the model and suggests new information can be retrieved for brain
tissues from de-noising of epigenomic signal using deep learning models. A possible
reason for this may be poorer representation of brain tissues in the Roadmap data
compared to the blood cell types.

We evaluated the informativeness of 8 blood-specific DeepSEA∆ and 8 blood-specific
Basenji∆ annotations (Table 1) for disease heritability by applying S-LDSC to the 11
blood-related traits. These analyses were conditioned on the the the baseline model
plus 7 non-tissue-specific annotations from Figure S6, 6 blood-specific Roadmap and
ChromHMM annotations from Figure S11 and Basenji∆-H3K4me3-Max (the 1 significant
non-tissue-specific allelic-effect annotation; Figure 2 and Table S6).

A summary of the results is provided in Figure 1 (Blood cell types, Blood traits
column); numerical results in Table S5. In our marginal analysis of disease heritability, all
blood-specific allelic-effect annotations were enriched for disease heritability. Furthermore,
blood-specific Basenji∆ annotations were much more enriched for disease heritability
(4.57x) than blood-specific DeepSEA∆ annotations (2.20x), despite similar annotation
sizes (Table S15). However, none of the blood-specific allelic-effect annotations attained
a Bonferroni-significant standardized effect size (τ?) (Table S15). (When we did not
condition on the 11 conservation-related annotations of the baseline-LD model (Table S9),
this remained the case (Table S16). In contrast, when we did not condition on Basenji∆-
H3K4me3-Max, 0 blood-specific DeepSEA∆ annotations and 1 Basenji∆ annotation
attained a Bonferroni-significant τ? (Table S17); when we did not condition on Basenji∆-
H3K4me3-Max or the 6 blood-specific annotations from S11, 0 blood-specific DeepSEA∆
annotations and 6 blood-specific Basenji∆ annotations attained a Bonferroni-significant
τ? (Table S18)).

We also analyzed various sets of blood-specific allelic-effect annotations by training
a gradient boosting model to classify 8,741 fine-mapped autoimmune disease SNPs24

(relevant to blood-specific annotations only) and assessing the AUROC (analogous to
Table S13). Results are reported in Table S19. We reached three main conclusions. First,
the aggregated blood-specific DeepSEA∆ and Basenji∆ annotations were informative for
disease, with Basenji being more informative (AUROC = 0.613 and 0.672, respectively,
consistent with moderate enrichments (DeepSEA∆: 1.71x, Basenji∆: 2.37x) of these
annotations for the fine-mapped SNPs; Table S20). Second, including cell-type-specific
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allelic-effect DeepSEA∆ and Basenji∆ annotations for all 27 blood cell types slightly
improved the results (AUROC = 0.633 and 0.684, respectively). Third, the disease
informativeness of the blood-specific variant-level joint model plus Basenji∆-H3K4me3-
Max (AUROC = 0.848) was not substantially impacted by adding the aggregated
blood-specific DeepSEA∆ and Basenji∆ annotations (AUROC = 0.847 and 0.851,
respectively). These findings were consistent with our S-LDSC analysis.

We evaluated the informativeness of 8 brain-specific DeepSEA∆ and 8 brain-specific
Basenji∆ annotations (Table 1) for disease heritability by applying S-LDSC to the 8
brain-related traits. These analyses were conditioned on the baseline-LD model plus 7
non-tissue-specific annotations from Figure S6, DeepSEAV-H3K4me3-brain-Max and
BasenjiV-H3K27ac-brain-Max (the 2 significant brain-specific variant-level annotations;
Figure S12) plus 4 additional brain-specific annotations from Figure S15 plus Basenji∆-
H3K4me3-Max (the 1 significant non-tissue-specific allelic-effect annotation; Figure 2
and Table S6).

A summary of the results is provided in Figure 1 (Brain tissues, Brain traits column);
numerical results in Table S5. In our marginal S-LDSC analysis, brain-specific Basenji∆
annotations were more enriched for disease heritability (2.53x) than brain-specific
DeepSEA∆ annotations (1.94x), despite similar annotation sizes. Two brain-specific
Basenji∆ annotations (Basenji∆-H3K4me3-brain-Max and Basenji∆-H3K4me3-brain-
Avg) attained a Bonferroni-significant standardized effect size (τ?) (Figure 3 and Table
S21). (When we did not condition on the 11 conservation-related annotations of the
baseline-LD model (Table S9), 8 brain-specific DeepSEA∆ and 6 brain-specific Basenji∆
annotations attained a Bonferroni-significant τ? (Table S22). In addition, when we
did not condition on Basenji∆-H3K4me3-Max, 0 brain-specific DeepSEA∆ annotations
and 3 brain-specific Basenji∆ annotations attained a Bonferroni-significant τ? (Table
S23); when we did not condition on Basenji∆-H3K4me3-Max or the 6 brain-specific
annotations from Figure S12 and Figure S15, 7 brain-specific DeepSEA∆ annotations
and 7 brain-specific Basenji∆ annotations attained a Bonferroni-significant τ? (Table
S24)).

Despite the high correlation between variant-level and allelic-effect annotations
(r = 0.48; Figure S1), the corresponding variant-level annotations (BasenjiV-H3K4me3-
brain-Max and BasenjiV-H3K4me3-brain-Avg) did not produce significant signal (Figure
3 and Table S25), consistent with our variant-level analysis (Figure S12). However, when
we did not condition on these two variant-level annotations, 4 brain-specific DeepSEA∆
annotations and 6 brain-specific Basenji∆ annotations attained a Bonferroni-significant
τ? (Table S26).

We jointly analyzed the two annotations, Basenji∆-H3K4me3-brain-Max and Basenji∆-
H3K4me3-brain-Avg, that were Bonferroni-significant in marginal analyses (Figure 3) by
performing forward stepwise elimination to iteratively remove annotations that had condi-
tionally non-significant τ? values after Bonferroni correction (based on the 80 variant-level
and allelic-effect brain-specific annotations tested in marginal analyses). Of these, only
Basenji∆-H3K4me3-brain-Max was jointly significant in the resulting brain-specific final
joint model, with τ? very close to 0.5 (Figure 3, Table S21 and Table S27); annotations
with τ? ≥ 0.5 are unusual, and considered to be important36. A k-mer enrichment
analysis (analogous to above) indicated that Basenji∆-H3K4me3-brain-Max was enriched
for the k-mers CGCGC (6.2x and p=1.1e-25) and CGGCG (6.1x and p=4.9e-25) (far
larger and more statistically significant than enrichments for simple GC-rich motifs such
as the 2-mer CpG (1.4x and P=0.32)), analogous to Basenji∆-H3K4me3-Max (Table
S11). The 9-mer GCGGTGGCT (which was enriched for heritability of blood-related
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traits in a previous study36, is associated with the ZNF33A transcription factor binding
motif, and was enriched in the Basenji∆-H3K4me3-Max annotation; see above) was not
enriched in the Basenji∆-H3K4me3-brain-Max annotation (Table S12).

We did not consider secondary analyses of fine-mapped SNPs for brain-related traits,
due to the lack of a suitable resource analogous to ref.24.

We conclude that blood-specific allelic-effect annotations were very highly enriched
for heritability but not uniquely informative for blood-related traits, whereas one brain-
specific allelic-effect annotation was uniquely informative for brain-related traits. Blood-
specific and brain-specific allelic-effect Basenji annotations generally outperformed
DeepSEA annotations, yielding higher enrichments and the sole conditionally significant
annotation, similar to our non-tissue-specific allelic-effect analyses.

Discussion

We have evaluated the informativeness for disease of (variant-level and) allelic-effect
annotations constructed using two previously trained deep learning models, DeepSEA13,15

and Basenji16. We evaluated each annotation’s informativeness using S-LDSC5,19;
as a secondary metric, we also evaluated the accuracy of gradient boosting models
incorporating deep learning annotations in predicting disease-associated or fine-mapped
SNPs23,24, as in previous work13,16. In non-tissue-specific analyses, we identified one
allelic-effect Basenji annotation that was uniquely informative for 41 diseases and complex
traits. In blood-specific analyses, we identified no deep learning annotations that were
uniquely informative for 11 blood-related traits. In brain-specific analyses, we identified
brain-specific variant-level DeepSEA and Basenji annotations and a brain-specific allelic-
effect Basenji annotation that were uniquely informative for 8 brain-related traits. We
caution that—because we conditioned on a broad set of known functional annotations, in
contrast to previous studies—the improvements provided by deep learning annotations
were very small in magnitude, implying that further work is required to achieve the full
potential of deep learning models for complex disease.

Our results imply that the informativeness of deep learning annotations for disease
cannot be inferred from metrics such as AUROC that evaluate their accuracy in pre-
dicting underlying regulatory annotations derived from experimental assays. Instead,
deep learning annotations must be evaluated using methods that specifically assess their
informativeness for disease, conditional on a broad set of other functional annotations.
The S-LDSC method that we applied here is one such method, and the accuracy of gradi-
ent boosting models incorporating both deep learning annotations and other functional
annotations can also be a useful metric. We emphasize the importance of conditioning
on a broad set of functional annotations, in order to assess whether deep learning
models leveraging DNA sequence provide unique (as opposed to redundant) information.
Previous work has robustly linked deep learning annotations to disease12,13,14,15,16, but
those analyses did not condition on a broad set of other functional annotations.

Our work has several limitations, representing important directions for future research.
First, our analyses of deep learning annotations using S-LDSC are inherently focused
on common variants, but deep learning models have also shown promise in prioritizing
rare pathogenic variants15,37,38. The value of deep learning models for prioritizing
rare pathogenic variants has been questioned in a recent analysis focusing on Human
Gene Mutation Database (HGMD) variants39, meriting further investigation. Second,
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our analyses of allelic-effect annotations are restricted to unsigned analyses, but signed
analyses have also proven valuable in linking deep learning annotations to molecular traits
and complex disease16,40,41. However, genome-wide signed relationships are unlikely to
hold for the regulatory marks (DNase and histone marks) that we focus on here, which
do not correspond to specific genes or pathways. Third, we focused here on deep learning
models trained to predict specific regulatory marks, but deep learning models have also
been used to predict a broader set of regulatory features, including gene expression
levels and cryptic splicing15,16,38, that may be informative for complex disease. We
have also not considered the application of deep learning models to TFBS, CAGE and
ATAC-seq data16,41, which is a promising future research direction. Fourth, we focused
here on deep learning models trained using human data, but models trained using data
from other species may also be informative for human disease42,41. Fifth, the forward
stepwise elimination procedure that we use to identify jointly significant annotations19 is
a heuristic procedure whose choice of prioritized annotations may be close to arbitrary
in the case of highly correlated annotations. Nonetheless, our framework does impose
rigorous criteria for conditional informativeness. Finally, beyond deep learning models, it
is of high interest to evaluate other machine learning methods for predicting regulatory
effects43,44,45,46,47.

URLs

• Annotations analyzed in this study:
https://data.broadinstitute.org/alkesgroup/LDSCORE/DeepLearning/

• 1000 Genomes Project Phase 3 data:
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502

• UK Biobank summary statistics:
https://data.broadinstitute.org/alkesgroup/UKBB/

• Baseline-LD annotations:
https://data.broadinstitute.org/alkesgroup/LDSCORE/

• BOLT-LMM software:
https://data.broadinstitute.org/alkesgroup/BOLT-LMM

• DeepSEA pre-trained model:
https://github.com/FunctionLab/ExPecto

• Basenji pre-trained model:
https://github.com/calico/basenji
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Methods

Genomic annotations and the baseline-LD model

We define a functional annotation as an assignment of a numeric value to each SNP;
annotations can be either binary or continuous-valued (Methods). Our focus is on
continuous-valued annotations (with values between 0 and 1) trained by deep learning
models to predict biological function from DNA sequence. We define a genomic annota-
tion as an assignment of a numeric value to each SNP in a predefined reference panel
(e.g., 1000 Genomes Project25; see URLs). Continuous-valued annotations can have any
real value; our focus is on continuous-valued annotations with values between 0 and 1.
Annotations that correspond to known or predicted function are referred to as functional
annotations. The baseline-LD model (v.2.1) contains 86 functional annotations (see
URLs). These annotations include binary coding, conserved, and regulatory annota-
tions (e.g., promoter, enhancer, histone marks, TFBS) and continuous-valued linkage
disequilibrium (LD)-related annotations.

DeepSEA and Basenji annotations

Tissue-specific deep learning annotations were derived using two pre-trained Convolu-
tional Neural Net (CNN) models: DeepSEA13,15 (architecture from ref.15) and Basenji16

(see URLs). DeepSEA is a classification based model trained on binary peak call data
from 2, 002 cell-type specific TFBS, histone mark and chromatin accessibility annotations
from the ENCODE21 and Roadmap Epigenomics11 projects. Basenji is a Poisson likeli-
hood model trained on original count data from 4, 229 cell-type specific histone mark,
chromatin accessibility and FANTOM5 CAGE48,49 annotations. Additionally, Basenji
uses dilated convolutional layers that allow scanning much larger contiguous sequence
around a variant (≈ 130kb) compared to DeepSEA (1kb). We restricted our analyses to
DNase-I Hypersensitivity Sites (DHS) and 3 histone marks (H3K27ac, H3K4me1 and
H3K4me3) that are known to be associated with active enhancers and promoters50.

For each SNP with minor allele count ≥ 5 in 1000 Genomes, we applied the pre-
trained DeepSEA and Basenji models to the surrounding DNA sequence (based on the
reference allele) to compute the predicted probability of a tissue-specific chromatin mark
(DNase, H3K27ac, H3K4me1, H3K4me3) to generate the corresponding variant-level
annotation. To generate the corresponding allelic-effect annotation, we compute the
predicted difference in probability between the reference and the alternate alleles. The
Basenji annotations were quantile-matched to corresponding DeepSEA annotations to
ensure a fair comparison of the two approaches. We aggregated these probabilistic anno-
tations across all 127 Roadmap tissues by taking either the average (Avg) or maximum
(Max) to generate non-tissue specific annotations, yielding 8 DeepSEA annotations and
8 Basenji annotations. Similarly, we aggregated over 27 blood cell types (resp. 13 brain
tissues) to generate blood (resp. brain) specific annotations for each chromatin mark.

BiClassCNN annotations

We trained a new deep learning model, BiClassCNN, to prioritize SNPs within non-
tissue-specific annotations; analyses of BiClassCNN annotations are described in the
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Supplementary Note. BiClassCNN analyzes 1kb of human reference sequence around
each SNP (analogous to DeepSEA). The positive training set for BiClassCNN consists
of 1kb of reference sequence around SNPs that are known to have the functionality of
interest (e.g. coding); we included all such sequences in the positive training set. The
negative training set consists of 1kb of reference sequence around SNPs that are 1kb away
from all SNPs with the functionality of interest; we included a subset of such sequences
in the negative training set, so as to match the overall size, GC content and repeat
element content of the positive set (as in ref.43,51). We used a shallow Convolutional
Neural Net architecture for training (see Figure S16).

We ran two training models, one for the even chromosomes and one for odd chro-
mosomes, and used the trained model on even (resp. odd) chromosomes to assign a
predicted probability of functionality (e.g. coding), based on sequence context, to each
SNP on odd (resp. even) chromosomes. Unlike DeepSEA and Basenji, BiClassCNN
annotations were restricted to regions of known functionality (e.g. coding) by setting
annotation values to 0 outside those regions; thus, BiClassCNN prioritizes SNPs within
regions of known functionality (e.g. coding). (BiClassCNN annotations that were not
restricted in this fashion were far less informative for disease.)

We restricted S-LDSC analyses of BiClassCNN annotations to annotations for which
the BiClassCNN AUROC value was at least 0.6 (Table 1 and Table S4). This eliminated
three annotations (Intron, H3K27ac and UTR-3’), leaving a total of 12 BiClassCNN
annotations.

Other annotations

We also considered:

• (Table S32) 8 Roadmap annotations11 (analogous to DeepSEA and Basenji anno-
tations) imputed using ChromImpute20.

• (Table S32) 40 ChromHMM annotations21,22 based on 20 ChromHMM states across
127 Roadmap tissues11, again aggregated using the average (Avg) or maximum
(Max) across tissues.

• (Table S33) 12 annotations consisting of CpG-island, local CpG-content and local
GC-content annotations, as well as these annotations restricted to coding, repressed
and TSS regions (for which BiClassCNN produced conditionally significant signals).
The CpG-island annotation was retrieved from the UCSC genome browser52. Local
CpG-content and local GC-content denote the proportion of CpG and G + C
dinuclotides in ±1kb regions around each variant of the genome, computed using
the hg19 reference genome fasta file. By definition, the LocalGCcontent annotation
is of larger size than the LocalCpGcontent annotation.

• (Table S33) 3 annotations consisting of a pLI annotation, as well as this annotation
restricted to coding and TSS regions. The pLI annotation was defined by annotating
each SNP in a 5kb window around a gene with the pLI score of that gene53. We
did not consider the pLI annotation restricted to repressed regions because unlike
TSS and coding, repressed regions are not directly linked to a gene.

• (Table S33) 2 coding annotations, SIFT54 and Polyphen55,56, which have been
analyzed in previous work57,58.
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Stratified LD score regression

Stratified LD score regression (S-LDSC) is a method that assesses the contribution of a
genomic annotation to disease and complex trait heritability5,19. Let acj be the value
of annotation c for SNP j, where acj may be binary (0/1), continuous or probabilistic.
S-LDSC assumes a linear model for Y on the normalized genotype matrix X:

YN×1 = XN×MβM×1 + ε, (1)

where β = (β1, β2, · · · , βM ) is the genotype effect size and ε denotes environmental
noise. S-LDSC assumes that the per-SNP heritability for each SNP j can be decomposed
as

var (βj) :=
∑
c

acjτc, (2)

where τc is the per-SNP contribution of one unit of annotation ac to heritability.
Under this model assumption, the GWAS summary χ2 statistics can be linked to τc as
follows:

E
[
χ2
j

]
= N

∑
c

l(j, c)τc + 1, (3)

where l(j, c) =
∑
k ackr

2
jk is the stratified LD score of SNP j with respect to annota-

tion c and rjk is the genotypic correlation between SNPs j and k.

We assess the informativeness of an annotation c using two metrics. The first metric
is enrichment (E), defined as follows (for binary and probabilistic annotations only):

Ec =

h2
g(c)

h2
g∑

j acj

M

, (4)

where h2g(c) is the heritability explained by the SNPs in annotation c, weighted by
the annotation values.

The second metric is standardized effect size (τ?) defined as follows (for binary,
probabilistic, and continuous-valued annotations):

τ?c =
τcsdc
h2
g

M

, (5)

where sdc is the standard error of annotation c, h2g the total SNP heritability and M
is the total number of SNPs on which this heritability is computed (equal to 5, 961, 159 in
our analyses). τ?c represents the proportionate change in per-SNP heritability associated
to a 1 standard deviation increase in the value of the annotation. The main difference
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between enrichment and τ? is that τ?c quantifies effects that are unique to the focal
annotation c (after conditioning on all other annotations), whereas enrichment quantifies
effects that are unique and/or non-unique to the focal annotation. We computed
the statistical significance (p-values) of the enrichment and τ? of each annotation via
block-jackknife, as previously described5; for τ?, we assumed that τ?

se(τ?) ∼ N(0, 1).

Weighted k-mer enrichment Analysis

We performed weighted k-mer enrichment analyses of the deep learning annotations
that were conditionally informative for disease heritability, for all 682 possible k-mers
with 1 ≤ k ≤ 5 (merged with their reverse complements). Results of these analyses are
reported in Table S11 and Table S50.

For each k-mer i, we computed k-mer counts κ
(i)
s in the 1kb regions around each

SNP s in the genome.

For each deep learning annotation D, for each k-mer i, we computed the weighted

average W(i)
D of k-mer counts κ(i), weighted by values of the probabilistic annotation:

W(i)
D :=

∑
s

Dsκ
(i)
s . (6)

We comparedW(i)
D withW(i)

Dnull , where Dnull is defined as the probabilistic annotation
with all values uniformly equal to D̄, the average value (annotation size) of annotation
D.

We computed the weighted k-mer enrichment of annotation D with respect to k-mer
i as

WKE
(i)
D :=W(i)

D /W(i)

Dnull (7)

We assessed the statistical significance of the weighted k-mer enrichment via a
permutation test in which we randomly permuted the values of the deep learning

annotation D across SNPs and compared WKE
(i)
D to values of WKE

(i)
Dperm for each

permuted annotation Dperm. We computed p-values by fitting a Gaussian distribution

to the values of WKE
(i)
Dperm across 10,000 such permutations.

Classification of disease-associated or fine-mapped SNPs

As an alternative to conditional analysis using S-LDSC, we evaluated the efficacy of
various sets of annotations for classifying 12,296 disease-associated SNPs from the NIH
GWAS catalog23 (as in ref.13,16) or 8,741 fine-mapped autoimmune disease SNPs24

against the same number of control SNPs, matched for minor allele frequency. We
used XGBoost, a machine learning technique based on gradient tree boosting59,60. To
optimize classification performance, we selected XGBoost parameter settings to minimize
overfitting, as in ref.61.
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Tables

Table 1. List of non-tissue-specific allelic-effect analyzed. We list the 16
allelic-effect deep learning annotations (8 DeepSEA∆, 8 Basenji∆) and their an-
notation sizes (average annotation value across SNPs). A list of non-tissue-specific
variant-level annotations is provided in Table S1.

Allelic-effect annotations Size (%)

DeepSEA∆-DNase-Avg 0.3
DeepSEA∆-DNase-Max 2.0
DeepSEA∆-H3K27ac-Avg 0.2
DeepSEA∆-H3K27ac-Max 0.9
DeepSEA∆-H3K4me1-Avg 0.3
DeepSEA∆-H3K4me1-Max 1.7
DeepSEA∆-H3K4me3-Avg 0.1
DeepSEA∆-H3K4me3-Max 0.7
Basenji∆-DNase-Avg 0.3
Basenji∆-DNase-Max 2.1
Basenji∆-H3K27ac-Avg 0.2
Basenji∆-H3K27ac-Max 0.9
Basenji∆-H3K4me1-Avg 0.3
Basenji∆-H3K4me1-Max 1.7
Basenji∆-H3K4me3-Avg 0.1
Basenji∆-H3K4me3-Max 0.7
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(A)

(B)

(C)

Figure 1. Summary of disease informativeness of allelic-effect deep learning an-
notations: We report the number of allelic-effect annotations with significant heritability
enrichment, marginal conditional τ?, and joint conditional τ?, across (A) different deep learn-
ing models (DeepSEA/Basenji), (B) different aggregation strategies (Avg/Max) and (C)
different chromatin marks (DNase/H3K27ac/H3K4me1/H3K4me3). Numerical results are
reported in Table S5 (numerical summary of results), Table S6 (enrichment and marginal τ?

for all tissues, all traits analysis), Table S15 (enrichment and marginal τ? of blood cell types,
blood traits analysis), Table S21 (enrichment and marginal τ? of brain tissues, brain traits
analysis) and Table S27 (joint τ? of brain tissues, brain traits analysis). No Supplementary
Table is needed for joint τ? of all tissues, all traits (1 marginally significant annotation) or
blood cell types, blood traits (0 marginally significant annotations)
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(A)

(B)
**
**

Figure 2. Disease informativeness of non-tissue-specific allelic-effect deep learn-
ing annotations: (A) Heritability enrichment, conditioned on the non-tissue-specific
variant-level joint model. Horizontal line denotes no enrichment. (B) Standardized effect
size τ? conditioned on either the non-tissue-specific variant-level joint model (marginal analy-
sis: left column, white) or the variant-level joint model plus 1 non-tissue-specific allelic-effect
Basenji annotation (Basenji∆-H3K4me3-Max) (non-tissue-specific final joint model: right
column, dark shading. Results are meta-analyzed across 41 traits. Results are displayed only
for the allelic-effect annotation (Basenji∆-H3K4me3-Max) with significant τ? in marginal
analyses after correcting for 106 (variant-level + allelic-effect) non-tissue-specific annotations
tested (P < 0.05/106), along with the corresponding variant-level annotation; the correlation
between the two annotations is 0.43. For non-tissue-specific final joint model (right column),
** denotes P < 0.05/106. Error bars denote 95% confidence intervals. Numerical results are
reported in Table S6 and Table S8.
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(A)

(B)
**

Figure 3. Disease informativeness of brain-specific allelic-effect deep learning an-
notations: (A) Heritability enrichment, conditioned on the brain-specific variant-level joint
model and the 1 significant non-tissue-specific allelic-effect annotation (Basenji∆-H3K4me3-
Max). Horizontal line denotes no enrichment. (B) Standardized effect size τ? conditioned
on either the brain-specific variant-level joint model and Basenji∆-H3K4me3-Max (marginal
analysis: left column, white) or the same model plus 1 brain-specific allelic-effect annotation
(Basenji∆-H3K4me3-brain-Max) (brain-specific final joint model: right column, dark shad-
ing). Results are meta-analyzed across 8 brain-related traits. Results are displayed only for
the 2 allelic-effect annotations with significant τ∗ in marginal analyses after correcting for 80
(variant-level + allelic-effect) brain-specific annotations tested (P < 0.05/80), along with the
corresponding variant-level annotations; the correlation between the two allelic-effect anno-
tations is 0.78, and the average correlation between the two pairs of variant-level (Basenji)
and allelic-effect (Basenji∆) annotations is 0.44. For brain-specific final joint model (right
column), ** denotes P < 0.05/80. Error bars denote 95% confidence intervals. Numerical
results are reported in Table S21 and Table S27.
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Supplementary Note

Overview of analysis of variant-level annotations

In this supplementary note, we perform disease heritability analysis of 25 variant-
level deep learning annotations from three models (8 DeepSEAV, 8 BasenjiV and 9
BiClassCNN), as well as other variant-level epigenomic annotations such as 8 Roadmap
annotations11 (analogous to DeepSEAV and BasenjiV annotations), imputed using
ChromImpute20; and 40 ChromHMM annotations21,22 based on 20 ChromHMM states
across 127 Roadmap tissues11 (Table S2). The variant-level deep learning annotations
can be treated as a de-noised representation of Roadmap data learned from sequence
architecture. All these annotations contributed to the conditional model in the analysis
of the allelic-effect deep learning annotations in the main text. All analyses of variant-
level annotations were conditional on a broad set of coding, conserved, regulatory and
LD-related annotations in our analyses: 86 annotations from the baseline-LD (v2.1)
model19. In our analysis of 11 blood-related traits (resp. 8 brain-related traits), for
variant-level annotations, we analyzed 16 variant-level annotations (8 DeepSEAV and
8 BasenjiV) that were aggregated across 27 blood cell types (resp. 13 brain tissues),
instead of all 127 tissues.

We calculated the variant-level DeepSEAV annotations by applying previously trained
DeepSEA models15 (see URLs) for each of 4 tissue-specific chromatin marks (DNase,
H3K27ac, H3K4me1, H3K4me3) across 127 Roadmap tissues11 to 1kb of human reference
sequence around each SNP ad calculating the predicted occurrence of the mark based
on the sequence (with respect to the reference allele); for each chromatin mark, we
aggregated allelic-effect DeepSEA annotations across the 127 tissues using either the
average (Avg) or maximum (Max) across tissues (Table 1 and Methods). Similarly,
we calculated the variant-level BasenjiV annotations by applying previously trained
Basenji models16 (see URLs) and aggregating across tissues in analogous fashion (1 and
Methods). The constituent tissue-specific BasenjiV annotations do not lie between 0
and 1, and ref.16 did not report AUROC values; we transformed these annotations
to lie between 0 and 1 via quantile matching with corresponding DeepSEAV annota-
tions, to ensure a fair comparison of the two approaches (Methods). When comparing
pairs of annotations that differed only in their aggregation strategy (Avg/Max), chro-
matin mark (DNase/H3K27ac/H3K4me1/H3K4me3), model (DeepSEA/Basenji) or type
(variant-level/allelic-effect), respectively, we observed large correlations across aggrega-
tion strategies (average r = 0.71), chromatin marks (average r = 0.58), models (average
r = 0.54) and types (average r = 0.48) (Figure S1).

Both DeepSEA and Basenji models were trained on tissue-specific features and
these features were then aggregated across tissues; as an alternative, we performed
a new Convolutional Neural Net training of sequences that separates out non-tissue-
specific functional features from putatively non-functional features (Figure S16). We
constructed 9 annotations from a new CNN model called BiClassCNN that separates
non-tissue-specific functional regions from potentially non-functional regions for different
functional categories (Table 1 and Methods); unlike variant-level DeepSEAV and BasenjiV
annotations, the BiClassCNN model was only applied to non-tissue-specific annotations
(e.g. coding, promoter, or TSS), and was used to prioritize SNPs within these annotations
by restricting BiClassCNN predictions to the underlying annotations; prior to this
restriction, the BiClassCNN model was highly predictive of the underlying annotations,
with AUROC values ranging from 0.67− 0.84 (Table S4).
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No all-tissues variant-level annotation is conditionally informa-
tive for disease

In our marginal analysis of disease heritability using S-LDSC, all DeepSEAV annotations
were highly enriched for disease heritability (average enrichment 2.2x), but only one
DeepSEAV annotation (DeepSEAV-H3K4me3-Max) attained a Bonferroni-significant
standardized effect size (τ?) conditional on the baseline-LD model (Figure S2 and
Table S29). This implies that high AUROC values for variant-level annotations do not
necessarily translate into conditional informativeness for human disease. A summary of
the results is provided in Figure S17 (All tissues, All traits column; numerical results in
Table S28), which reports the number of variant-level annotations of various types with
significant heritability enrichment, marginal conditional signal, and joint conditional
signal, respectively. In our marginal analysis of disease heritability using S-LDSC, all
BasenjiV annotations were highly enriched for disease heritability (average enrichment
2.2x), but no BasenjiV annotation attained a Bonferroni-significant τ? conditional on
the baseline-LD model (Table S29). In our marginal analysis of disease heritability
using S-LDSC, all BiClassCNN annotations were highly enriched for disease heritability
(average enrichment 2.9x) except for BiClassCNN-Repressed (which was depleted, 0.68x),
and 4 BiClassCNN annotations attained a Bonferroni-significant τ? conditional on the
baseline-LD model (Figure S2 and Table S30). 3 of these 4 annotations (BiClassCNN-
Coding, BiClassCNN-Repressed, and BiClassCNN-TSS) produced independent signals
(Table S31).

To ensure a conservative assessment of which annotations provide unique information
for disease, we included a broader set of annotations in our analyses. First, we included
8 Roadmap annotations11 (analogous to DeepSEAV and BasenjiV annotations) imputed
using ChromImpute20, and 40 ChromHMM annotations21,22 based on 20 ChromHMM
states across 127 Roadmap tissues11, again aggregated using the average (Avg) or maxi-
mum (Max) across tissues (Table S2 and Methods). Of these, 4 Roadmap annotations
and 17 ChromHMM annotations attained a Bonferroni-significant τ? conditional on
the baseline-LD model (Figure S3, Figure S4 and Table S32). Second, motivated by
the BiClassCNN results (see above), we investigated additional annotations related to
coding, repressed and TSS regions. We determined that BiClassCNN-TSS was highly
correlated with CpG-island, local CpG-content (±1kb) and local GC-content (±1kb)
annotations (Figure S5). We thus incorporated CpG-island, local CpG-content and
local GC-content annotations, as well as these annotations restricted to coding, re-
pressed and TSS regions. We also considered a gene-level annotation (±5kb) based
on probability of loss-of-function intolerance (pLI)53, the pLI annotation restricted to
coding and TSS regions, and PolyPhen55,56 and SIFT54 coding annotations (12 + 5 = 17
additional annotations; Table S33 and Methods). 11 of these 17 annotations attained a
Bonferroni-significant τ? conditional on the baseline-LD model (Table S33).

We jointly analyzed all 38 annotations that were Bonferroni-significant in our marginal
analyses (Figure S2, Figure S3, Figure S4, Table S29, Table S30, Table S32, Table S33)
by performing forward stepwise elimination to iteratively remove annotations that had
conditionally non-significant τ∗ values after Bonferroni correction (based on a total of 106
(variant-level + allelic-effect) non-tissue-specific annotations tested in marginal analyses).
Of these, 0 DeepSEAV, 0 BiClassCNN, 1 Roadmap, 1 ChromHMM, 3 local GC-content
and 2 pLI annotations were jointly significant in the resulting joint model (Figure S2,
Figure S6 and Table S34); these annotations were included in all of the conditional
analyses below. We determined that the surviving Roadmap-H3K4me1-Avg annotation
was sufficient to eliminate the DeepSEAV-H3K4me3-Max annotation that was significant
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in our marginal analysis (Table S35), and that the local GC-content annotations were
sufficient to eliminate the 4 BiClassCNN annotations that were significant in our marginal
analysis (Table S36).

We also analyzed various sets of allelic-effect annotations by training a gradient
boosting model to classify 12, 296 SNPs from the NIH GWAS catalog23 and assessing the
AUROC (analogous to Table S13), as in ref.13,16 (Methods). Results are reported in Table
S37. We reached three main conclusions. First, the aggregated variant-level DeepSEAV
and BasenjiV annotations were only moderately informative for disease (AUROC =
0.582 and 0.612, respectively, consistent with moderate enrichments (DeepSEAV: 1.49x,
BasenjiV: 1.49x) of these annotations for NIH GWAS SNPs; Table S38). Second,
including tissue-specific variant-level DeepSEAV and BasenjiV annotations for all 127
tissues had little impact on the results (AUROC = 0.591 and 0.620, respectively).
Third, the disease informativeness of the baseline-LD model (AUROC = 0.758) was not
substantially impacted by adding the aggregated variant-level DeepSEAV and BasenjiV
annotations (AUROC = 0.759 and 0.766, respectively); results were similar for the
non-tissue-specific joint model (baseline-LD model + 7 annotations). These findings
were consistent with our S-LDSC analyses.

We conclude that variant-level DeepSEAV and BasenjiV annotations that were
aggregated across tissues were highly enriched for heritability but not conditionally
informative across the 41 traits, and that marginally significantly informative BiClassCNN
annotations were explained away by local GC-content.

DeepSEA and Basenji brain-specific variant-level annotations are
conditionally informative for disease

We next evaluated the informativeness of blood-specific variant-level annotations for
blood-related diseases and traits. We analyzed 11 independent blood-related traits (6
autoimmune diseases and 5 blood cell traits; ref.28 and Table S3) by running S-LDSC
conditioned on the non-tissue-specific variant-level joint model (baseline-LD model + 7
annotations; Figure S6).

We analyzed 8 blood-specific variant-level DeepSEAV and 8 blood-specific variant-
level BasenjiV annotations (Table S39), representing the blood-specific analogues of
the non-tissue-specific variant-level DeepSEAV and BasenjiV annotations from Table 1;
in each case we computed the Average (Avg) or Maximum (Max) of cell-type-specific
DeepSEAV and BasenjiV variant-level annotations across blood cell types. A summary
of the results is provided in Figure S17 (Blood cell types, Blood traits column); numerical
results in Table S28. In our marginal S-LDSC analysis, both blood-specific BasenjiV
annotations and blood-specific DeepSEAV annotations were very highly enriched (average
enrichment 4.15x and 3.75x, respectively). However, only 0 blood-specific DeepSEAV
annotations and 4 blood-specific BasenjiV annotations attained a Bonferroni-significant
standardized effect size (τ?) conditional on the non-tissue-specific variant-level joint
model (Figure S8 and Table S39).

We also analyzed 8 blood-specific Roadmap and 40 blood-specific ChromHMM
annotations (Table S40), representing the blood-specific analogues of the non-tissue-
specific Roadmap and ChromHMM annotations from Table S2. In our marginal S-LDSC
analysis, all 8 blood-specific Roadmap annotations and 23 blood-specific ChromHMM
annotations attained a Bonferroni-significant τ? (Figure S9, Figure S10 and Table S40).

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 17, 2020. ; https://doi.org/10.1101/784439doi: bioRxiv preprint 

https://doi.org/10.1101/784439
http://creativecommons.org/licenses/by-nc-nd/4.0/


We jointly analyzed the 35 blood-specific annotations that were Bonferroni-significant
in marginal analyses (4 BasenjiV, 8 Roadmap, 23 ChromHMM; Figure S8, Figure S9 and
Figure S10) by performing forward stepwise elimination to iteratively remove annotations
that had conditionally non-significant τ? values after Bonferroni correction (based on the
80 (variant-level + allelic effect) blood-specific annotations tested in marginal analyses).
Of these, 0 BasenjiV, 2 Roadmap and 4 ChromHMM annotations were jointly significant
in the resulting joint model (Figure S8, Figure S11 and Table S41). We determined that
the 2 surviving blood-specific Roadmap annotations were sufficient to eliminate 3 of the
4 blood-specific BasenjiV annotations that were significant in marginal analyses (Table
S42). We note that several of the blood-specific Roadmap and ChromHMM annotations
had τ? > 0.5 in the blood-specific joint model (Figure S11) (annotations with τ? > 0.5
are unusual, and considered to be important36), consistent with the well-documented
importance of tissue-specific annotations, particularly for blood-related traits5,11.

We also analyzed various sets of blood-specific annotations by training a gradient
boosting model to classify 8,741 fine-mapped autoimmune disease SNPs24 (relevant
to blood-specific annotations only) and assessing the AUROC (analogous to Table
S37). Results are reported in Table S43. We reached three main conclusions. First,
the aggregated blood-specific variant-level DeepSEAV and BasenjiV annotations were
informative for disease, with BasenjiV being more informative (AUROC = 0.621 and
0.664, respectively, consistent with moderate enrichments (DeepSEAV: 1.75x, BasenjiV:
1.97x) of these annotations for the fine-mapped SNPs; Table S44). Second, including
cell-type-specific variant-level DeepSEAV and BasenjiV annotations for all 27 blood cell
types had little impact on the results (AUROC = 0.631 and 0.671, respectively). Third,
the disease informativeness of the non-tissue-specific joint model (AUROC = 0.845)
was not substantially impacted by adding aggregated blood-specific DeepSEAV and
BasenjiV variant-level annotations (AUROC = 0.849 and 0.853, respectively); results
were similar for the the blood-specific joint model (non-tissue-specific joint model + 6
blood annotations). These findings were consistent with our S-LDSC analyses.

We next evaluated the informativeness of brain-specific variant-level annotations
for brain-related diseases and traits, analogous to blood. We analyzed 8 independent
brain-related traits (ref.28 and Table S3) by running S-LDSC conditioned on the non-
tissue-specific variant-level joint model (baseline-LD model + 7 annotations; Figure
S6).

We analyzed 8 brain-specific variant-level DeepSEAV and 8 brain-specific variant-
level BasenjiV annotations (Table S45), representing the brain-specific analogues of the
non-tissue-specific variant-level DeepSEAV and BasenjiV annotations from Table 1; in
each case we computed the Average (Avg) or Maximum (Max) of tissue-type-specific
DeepSEAV and BasenjiV variant-level annotations across brain tissues. A summary of
the results is provided in Figure S17 (Brain tissues, Brain traits column); numerical
results in Table S28. In our marginal S-LDSC analysis, both brain-specific DeepSEAV
and BasenjiV annotations were highly enriched (average enrichment 2.71x and 2.73x,
respectively; Table S45). Furthermore, all 8 brain-specific DeepSEAV annotations and
all 8 brain-specific BasenjiV annotations attained a Bonferroni-significant standardized
effect size (τ?) conditional on the non-tissue-specific variant-level joint model (Figure
S12 and Table S45).

We also analyzed 8 brain-specific Roadmap and 40 brain-specific ChromHMM
annotations (Table S46), representing the brain-specific analogues of the non-tissue-
specific Roadmap and ChromHMM annotations from Table S2. In our marginal S-LDSC
analysis, all 8 brain-specific Roadmap annotations and 13 brain-specific ChromHMM
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annotations attained a Bonferroni-significant τ∗ (Figure S13, Figure S14 and Table S46).

We jointly analyzed the 37 brain-specific annotations that were Bonferroni-significant
in marginal analyses (8 DeepSEAV, 8 BasenjiV, 8 Roadmap, 13 ChromHMM; Figure S12,
Figure S13 and Figure S14) by performing forward stepwise elimination to iteratively
remove annotations that had conditionally non-significant τ? values after Bonferroni
correction (based on the 80 (variant-level + allelic-effect) brain-specific annotations
tested in marginal analyses). Of these, 1 DeepSEAV, 1 BasenjiV, 1 Roadmap and 3
ChromHMM annotations were jointly significant in the resulting joint model (Figure S12,
Figure S15 and Table S47). We determined that neither the 1 surviving brain-specific
Roadmap annotation nor the 3 surviving brain-specific ChromHMM annotations were
sufficient to eliminate any of the 8 DeepSEAV and 8 BasenjiV brain annotations that
were significant in marginal analyses (Table S48 and Table S49). We note that none of
the brain-specific DeepSEAV, BasenjiV, Roadmap and ChromHMM annotations had
τ? > 0.5 in the brain-specific joint model (Figure S12 and Figure S15). We did not
consider secondary analyses of fine-mapped SNPs for brain-related traits, due to the
lack of a suitable resource analogous to ref.24.

We conclude that blood-specific variant-level DeepSEAV and BasenjiV annotations
that were aggregated across blood cell types were very highly enriched for heritability
but not uniquely informative for blood-related traits. On the other hand, brain-specific
variant-level DeepSEAV and BasenjiV annotations that were aggregated across brain
tissues were uniquely informative for brain-related traits. This may be because brain
tissues are not as well-represented in Roadmap data as blood cell types, leaving more
room for new information to be retrieved by deep learning models. This also justifies
that though allelic-effect annotations should definitely be the annotations of primary
interest, variant-level annotations may also be of some value, and should be conditioned
on.

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 17, 2020. ; https://doi.org/10.1101/784439doi: bioRxiv preprint 

https://doi.org/10.1101/784439
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S1. List of non-tissue-specific variant-level deep learning annotations
analyzed. We list the 25 variant-level deep learning annotations (8 DeepSEAV, 8
BasenjiV, 9 BiClassCNN) and their annotation sizes.

Variant-level annotations Size (%)

DeepSEAV-DNase-Avg 1.6
DeepSEAV-DNase-Max 13.2
DeepSEAV-H3K27ac-Avg 3.2
DeepSEAV-H3K27ac-Max 13.7
DeepSEAV-H3K4me1-Avg 5.5
DeepSEAV-H3K4me1-Max 23.2
DeepSEAV-H3K4me3-Avg 1.7
DeepSEAV-H3K4me3-Max 8.8
BasenjiV-DNase-Avg 1.6
BasenjiV-DNase-Max 13.1
BasenjiV-H3K27ac-Avg 3.2
BasenjiV-H3K27ac-Max 13.7
BasenjiV-H3K4me1-Avg 5.5
BasenjiV-H3K4me1-Max 23.2
BasenjiV-H3K4me3-Avg 1.7
BasenjiV-H3K4me3-Max 8.8
BiClassCNN-Coding 1.0
BiClassCNN-Enhancer 2.6
BiClassCNN-Promoter 2.7
BiClassCNN-Repressed 36.0
BiClassCNN-SuperEnhancer 6.7
BiClassCNN-TFBS 7.9
BiClassCNN-TSS 0.8
BiClassCNN-UTR-5’ 0.4
BiClassCNN-WeakEnhancer 1.1
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Table S2. List of non-tissue-specific Roadmap and ChromHMM annotations
analyzed. We list the 8 Roadmap and 40 ChromHMM annotations that we analyzed,
together with the size of the annotation. These annotations are probabilistic, thus the
size of the annotation is defined as the average annotation across all reference SNPs.

Annotation Size (in %)

Roadmap-DNase-Avg 2.2%
Roadmap-H3K27ac-Avg 3.1%
Roadmap-H3K4me1-Avg 4.4%
Roadmap-H3K4me3-Avg 1.7%
Roadmap-DNase-Max 13.4%
Roadmap-H3K27ac-Max 21.4%
Roadmap-H3K4me1-Max 25.4%
Roadmap-H3K4me3-Max 6.6%
ChromHMM-DNase-Avg 0.7%
ChromHMM-Active Enhancer 1-Avg 0.3%
ChromHMM-Active Enhancer 2-Avg 0.4%
ChromHMM-Enhancer acetylation-Avg 0.3%
ChromHMM-Active Enhancer Flanking-Avg 0.5%
ChromHMM-Weak Enhancer 1-Avg 0.3%
ChromHMM-Weak Enhancer 2-Avg 1.2%
ChromHMM-Heterochromatin-Avg 1.4%
ChromHMM-Promoter Bivalent-Avg 0.3%
ChromHMM-Promoter Downstream 1-Avg 0.4%
ChromHMM-Promoter Downstream 2-Avg 0.2%
ChromHMM-Promoter Poised-Avg 0.2%
ChromHMM-Promoter Upstream-Avg 0.4%
ChromHMM-Quiescent-Avg 78.4%
ChromHMM-Repressed Polycomb-Avg 1.7%
ChromHMM-TSS-Avg 0.2%
ChromHMM-Transcription Enhancer 3’-Avg 0.2%
ChromHMM-Transcription Enhancer 5’-Avg 0.4%
ChromHMM-Transcription Weak Enhancer-Avg 0.5%
ChromHMM-Transcriptional Regulator-Avg 0.3%
ChromHMM-DNase-Max 9.2%
ChromHMM-Active Enhancer 1-Max 7.1%
ChromHMM-Active Enhancer 2-Max 9.9%
ChromHMM-Enhancer acetylation-Max 11.3%
ChromHMM-Active Enhancer Flanking-Max 11.1%
ChromHMM-Weak Enhancer 1-Max 7.7%
ChromHMM-Weak Enhancer 2-Max 19.9%
ChromHMM-Heterochromatin-Max 7.1%
ChromHMM-Promoter Bivalent-Max 1.9%
ChromHMM-Promoter Downstream 1-Max 1.4%
ChromHMM-Promoter Downstream 2-Max 1.5%
ChromHMM-Promoter Poised-Max 6.7%
ChromHMM-Promoter Upstream-Max 2.5%
ChromHMM-Quiescent-Max 91.0%
ChromHMM-Repressed Polycomb-Max 9.9%
ChromHMM-TSS-Max 0.9%
ChromHMM-Transcription Enhancer 3’-Max 3.1%
ChromHMM-Transcription Enhancer 5’-Max 4.8%
ChromHMM-Transcription Weak Enhancer-Max 4.7%
ChromHMM-Transcriptional Regulator-Max 3.3%
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Table S3. List of 41 diseases and complex traits analyzed. We first list the 11
blood-related traits (5 blood cell traits and 6 autoimmune diseases), followed by 10
brain traits (with 2 traits analyzed by two different datasets). Overall, for 6 traits we
analyzed two different data sets, leading to a total of 47 data sets.

Trait Source N

Platelet Count UKBiobank29 444382
Red Blood Cell Count UKBiobank29 445174
Red Blood Cell Distribution Width UKBiobank29 442700
Eosinophil Count UKBiobank29 439938
White Blood Cell Count UKBiobank29 444502
Auto Immune Traits (Sure) UKBiobank29 459324
Crohn’s Disease Jostins et al., 2012 Nature62 20883
Rheumatoid Arthritis Okada et al., 2014 Nature63 37681
Ulcerative Colitis Jostins et al., 2012 Nature62 27432
Lupus Bentham et al., 201564 14267
Celiac Dubois et al., 201065 15283

Age at Menarche UKBiobank29 242278
BMI Speliotes et al., 2010 Nat Genet66 122033
BMI UKBiobank29 457824
Depressive symptoms Okbay et al., 2016 Nat Genet67 161460
Neuroticism UKBiobank29 372066
Schizophrenia SCZ Working Group of the PGC, 2014 Nature4 70100
Years of Education Okbay et al., 2016 Nature67 328917
Ever Smoked TAG Consortium, 2010 Nat Genet68 74035
Smoking Status UKBiobank29 457683
Bipolar Disorder PGC Bipolar Disorder Group69 16731

Age at Menopause UKBiobank29 143025
Age first birth Barban et al., 2016 Nat Genet70 222037
Anorexia Boraska et al., 2014 Mol Psych71 32143
Autism Spectrum PGC Cross-Disorder Group, 2013 Lancet72 10263
College Education UKBiobank29 454813
Coronary Artery Disease Schunkert et al., 2011 Nat Genet73 77210
Dermatologic Diseases UKBiobank29 459324
Eczema UKBiobank29 458699
FEV1-FVC Ratio UKBiobank29 371949
Forced Vital Capacity (FVC) UKBiobank29 371949
Hair Color UKBiobank29 452720
HDL Teslovich et al., 2010 Nature74 97749
Heel T Score UKBiobank29 445921
Height Lango Allen et al., 2010 Nature75 131547
Height UKBiobank29 458303
High Cholesterol UKBiobank29 459324
Hypothyroidism UKBiobank29 459324
LDL Teslovich et al., 2010 Nature74 93354
Morning Person UKBiobank29 410520
Number children ever born Barban et al., 2016 Nat Genet70 318863
Respiratory and Ear-nose-throat Diseases UKBiobank29 459324
Skin Color UKBiobank29 453609
Sunburn Occasion UKBiobank29 344229
Tanning UKBiobank29 449984
Type 2 Diabetes Morris et al., 2012 Nat Genet76 60786
Type 2 Diabetes UKBiobank29 459324
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Table S4. AUROC values of deep learning annotations. AUROC (Area under
the ROC curve) for DeepSEAV (reported by ref.15) and BiClassCNN annotations.
For the DeepSEA model, the Minimum-Maximum (Average) AUROC across all tis-
sues is reported. The constituent tissue-specific Basenji annotations do not lie on a
probabilistic scale, and ref.16 did not report AUROC values

Annotation Area under ROC curve (AUROC)

DeepSEAV-DNase
All: 0.83-0.95 (0.91)
brain: 0.84-0.92 (0.88)
blood: 0.86-0.94 (0.89)

DeepSEAV-H3K27ac
All: 0.78-0.88 (0.84)
brain: 0.80-0.85 (0.82)
blood: 0.78-0.87 (0.83)

DeepSEAV-H3K4me1
All: 0.77-0.86 (0.81)
brain: 0.79-0.83 (0.80)
blood: 0.78-0.83 (0.81)

DeepSEAV-H3K4me3
All: 0.88-0.97 (0.92)
brain: 0.89-0.95 (0.91)
blood: 0.88-0.95 (0.92)

BiClassCNN-Coding 0.79
BiClassCNN-DNase 0.69
BiClassCNN-Enhancer 0.72
BiClassCNN-H3K4me1 0.70
BiClassCNN-H3K4me3 0.73
BiClassCNN-Promoter 0.76
BiClassCNN-Repressed 0.70
BiClassCNN-SuperEnhancer 0.67
BiClassCNN-TFBS 0.75
BiClassCNN-TSS 0.84
BiClassCNN-UTR-5’ 0.75
BiClassCNN-WeakEnhancer 0.74
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Table S5. Number of significantly disease informative non-tissue-specific
allelic-effect deep learning annotations. Number of significantly disease informa-
tive non-tissue-specific allelic-effect annotations across different aggregation strategies
(A) different deep learning models (DeepSEA and Basenji), (B) different aggregation
strategies (Average and Maximum) and (C) different types of epigenomic marks, in
terms of marginal enrichment in heritability, conditional τ? and joint τ? for all traits,
blood traits and brain traits respectively. See Figure 1 for visual illustration.

PANEL A

Enrichment

Model Aggr. Strategy Number of signif-
icant annotations

DeepSEA∆
All tissues. All traits 8
Brain tissues, Brain traits 8
Blood cell types, Blood traits 8

Basenji∆
All tissues. All traits 8
Brain tissues, Brain traits 8
Blood cell types, Blood traits 8

Marginal τ?

Model Aggregation Strategy Number of signif-
icant annotations

DeepSEA∆
All tissues. All traits 0
Brain tissues, Brain traits 0
Blood cell types, Blood traits 0

Basenji∆
All tissues. All traits 1
Brain tissues, Brain traits 2
Blood cell types, Blood traits 0

Joint τ?

Model Aggregation Strategy Number of signif-
icant annotations

DeepSEA∆
All tissues. All traits 0
Brain tissues, Brain traits 0
Blood cell types, Blood traits 0

Basenji∆
All tissues. All traits 1
Brain tissues, Brain traits 1
Blood cell types, Blood traits 0

PANEL B

Enrichment

Model Aggr. Strategy Number of signif-
icant annotations

Avg
All tissues. All traits 8
Brain tissues, Brain traits 8
Blood cell types, Blood traits 8

Max
All tissues. All traits 8
Brain tissues, Brain traits 8
Blood cell types, Blood traits 8

Marginal τ?

Model Aggregation Strategy Number of signif-
icant annotations

Avg
All tissues. All traits 0
Brain tissues, Brain traits 1
Blood cell types, Blood traits 0

Max
All tissues. All traits 1
Brain tissues, Brain traits 1
Blood cell types, Blood traits 0

Joint τ?
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Model Aggregation Strategy Number of signif-
icant annotations

Avg
All tissues. All traits 0
Brain tissues, Brain traits 0
Blood cell types, Blood traits 0

Max
All tissues. All traits 1
Brain tissues, Brain traits 1
Blood cell types, Blood traits 0

PANEL C

Enrichment

Model Aggr. Strategy Number of signif-
icant annotations

DNase
All tissues. All traits 4
Brain tissues, Brain traits 4
Blood cell types, Blood traits 4

H3K27ac
All tissues. All traits 4
Brain tissues, Brain traits 4
Blood cell types, Blood traits 4

H3K4me1
All tissues. All traits 4
Brain tissues, Brain traits 4
Blood cell types, Blood traits 4

H3K4me3
All tissues. All traits 4
Brain tissues, Brain traits 4
Blood cell types, Blood traits 4

Marginal τ?

Model Aggregation Strategy Number of signif-
icant annotations

DNase
All tissues. All traits 0
Brain tissues, Brain traits 0
Blood cell types, Blood traits 0

H3K27ac
All tissues. All traits 0
Brain tissues, Brain traits 0
Blood cell types, Blood traits 0

H3K4me1
All tissues. All traits 0
Brain tissues, Brain traits 0
Blood cell types, Blood traits 0

H3K4me3
All tissues. All traits 1
Brain tissues, Brain traits 2
Blood cell types, Blood traits 0

Joint τ?

Model Aggregation Strategy Number of signif-
icant annotations

DNase
All tissues. All traits 0
Brain tissues, Brain traits 0
Blood cell types, Blood traits 0

H3K27ac
All tissues. All traits 0
Brain tissues, Brain traits 0
Blood cell types, Blood traits 0

H3K4me1
All tissues. All traits 0
Brain tissues, Brain traits 0
Blood cell types, Blood traits 0

H3K4me3
All tissues. All traits 1
Brain tissues, Brain traits 1
Blood cell types, Blood traits 0
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Table S6. S-LDSC results for marginal analysis of non-tissue-specific allelic-
effect DeepSEA∆ and Basenji∆ annotations conditioned on non-tissue-
specific variant-level joint model. Standardized Effect sizes (τ?) and Enrichment
(E) of 8 non-tissue-specific DeepSEA∆ and 8 non-tissue-specific Basenji∆ annotations,
when conditioned on the non-tissue-specific variant-level joint model (baseline-LD
model + 7 annotations from Figure S6). Results are meta-analyzed across 41 traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)
DeepSEA∆-DNase-Avg (0.3%) 0.07 0.07 0.32 2.3 0.21 3.3e-07
DeepSEA∆-DNase-Max (2.0%) -0.034 0.066 0.61 1.6 0.1 1.5e-05
DeepSEA∆-H3K27ac-Avg (0.2%) 0.056 0.075 0.45 2 0.12 9.7e-10
DeepSEA∆-H3K27ac-Max (0.9%) 0.02 0.064 0.75 1.7 0.095 3.3e-10
DeepSEA∆-H3K4me1-Avg (0.3%) 0.014 0.057 0.81 1.7 0.066 1.9e-12
DeepSEA∆-H3K4me1-Max (1.7%) -0.051 0.06 0.4 1.4 0.061 2.7e-07
DeepSEA∆-H3K4me3-Avg (0.1%) 0.078 0.07 0.27 2.6 0.16 0.00042
DeepSEA∆-H3K4me3-Max (0.7%) 0.069 0.071 0.33 2 0.087 2.6e-13
Basenji∆-DNase-Avg (0.3%) -0.001 0.13 0.99 2.7 0.36 0.00038
Basenji∆-DNase-Max (2.0%) 0.14 0.075 0.071 2.3 0.17 1.1e-10
Basenji∆-H3K27ac-Avg (0.3%) 0.19 0.11 0.075 2.4 0.18 6.3e-11
Basenji∆-H3K27ac-Max (0.9%) 0.078 0.036 0.032 2.1 0.11 1.3e-18
Basenji∆-H3K4me1-Avg (0.3%) 0.14 0.063 0.027 2 0.1 5.6e-16
Basenji∆-H3K4me1-Max (1.7%) 0.13 0.05 0.0093 1.9 0.091 4.2e-16
Basenji∆-H3K4me3-Avg (0.1%) 0.16 0.071 0.023 3.2 0.19 6.8e-14
Basenji∆-H3K4me3-Max (0.7%) 0.32 0.053 7.7e-10 2.6 0.13 3.3e-18
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Table S7. S-LDSC results for marginal analysis of non-tissue-specific allelic-
effect DeepSEA∆ and Basenji∆ annotations conditioned on baseline-LD
model. Standardized Effect sizes (τ?) and Enrichment (E) of 8 non-tissue-specific
DeepSEA∆ and 8 non-tissue-specific Basenji∆ annotations, when conditioned on the
baseline-LD model. Results are meta-analyzed across 41 independent traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)
DeepSEA∆-DNase-Avg (0.3%) -0.059 0.08 0.46 2 0.22 2.9e-05
DeepSEA∆-DNase-Max (2.0%) -0.24 0.079 0.0019 1.3 0.11 7.7e-05
DeepSEA∆-H3K27ac-Avg (0.2%) 0.046 0.073 0.52 2 0.12 6e-13
DeepSEA∆-H3K27ac-Max (0.9%) -0.05 0.068 0.47 1.7 0.093 2.7e-11
DeepSEA∆-H3K4me1-Avg (0.3%) -0.054 0.061 0.38 1.6 0.062 3.6e-14
DeepSEA∆-H3K4me1-Max (1.7%) -0.21 0.068 0.002 1.3 0.059 4.2e-06
DeepSEA∆-H3K4me3-Avg (0.1%) 0.19 0.069 0.006 2.9 0.18 1.7e-11
DeepSEA∆-H3K4me3-Max (0.7%) 0.074 0.076 0.34 2.1 0.095 2.1e-16
Basenji∆-DNase-Avg (0.3%) -0.037 0.12 0.77 2.6 0.36 3.9e-05
Basenji∆-DNase-Max (2.0%) 0.032 0.07 0.65 2.2 0.17 1.3e-06
Basenji∆-H3K27ac-Avg (0.2%) 0.21 0.1 0.042 2.4 0.18 7e-08
Basenji∆-H3K27ac-Max (0.9%) 0.011 0.036 0.76 2.1 0.11 5.2e-14
Basenji∆-H3K4me1-Avg (0.3%) 0.089 0.056 0.11 1.9 0.097 1.6e-
Basenji∆-H3K4me1-Max (1.7%) 0.034 0.046 0.45 1.9 0.089 1.6e-12
Basenji∆-H3K4me3-Avg (0.1%) 0.22 0.075 0.0028 3.2 0.21 4.6e-13
Basenji∆-H3K4me3-Max (0.7%) 0.33 0.058 1.1e-08 2.6 0.14 6.3e-16
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Table S8. S-LDSC results for marginal analysis of non-tissue-specific
variant-level BasenjiV annotations conditioned on the non-tissue-specific
variant-level joint model and the non-tissue-specific final joint model. Stan-
dardized Effect sizes (τ?) and Enrichment (E) of 8 non-tissue-specific Basenji variant
level annotations, when conditioned on (Top) non-tissue-specific variant-level joint
model (baseline-LD model + 7 annotations from Figure S6) and (Bottom) non-tissue-
specific final joint model comprising of the non-tissue-specific variant-level joint model
plus 1 significant allelic-effect annotation (Basenji∆-H34me3-Max) from Figure 2.
Results are meta-analyzed across 41 independent traits.

Conditional on non-tissue-specific variant-level joint model
Annotation τ? se(τ?) p(τ?) E se (E) p(E)
BasenjiV-DNase-Avg (1.6%) -0.085 0.064 0.18 2.5 0.19 1.4e-13
BasenjiV-DNase-Max (13.2%) -0.052 0.06 0.38 1.8 0.075 2.3e-19
BasenjiV-H3K27ac-Avg (3.2%) 0.047 0.055 0.39 2.5 0.14 1.2e-17
BasenjiV-H3K27ac-Max (13.7%) -0.018 0.03 0.55 1.8 0.073 1e-17
BasenjiV-H3K4me1-Avg (5.5%) 0.041 0.04 0.31 2 0.075 1.6e-18
BasenjiV-H3K4me1-Max (23.2%) -0.046 0.025 0.067 1.6 0.046 1.6e-19
BasenjiV-H3K4me3-Avg (1.7%) 0.017 0.058 0.77 3.7 0.24 5.1e-17
BasenjiV-H3K4me3-Max (8.8%) 0.029 0.033 0.38 2 0.083 1.6e-17

Conditional on non-tissue-specific final joint model
Annotation τ? se(τ?) p(τ?) E se (E) p(E)
BasenjiV-DNase-Avg (1.6%) -0.11 0.065 0.08 1.8 0.074 1.4e-38
BasenjiV-DNase-Max (13.2%) -0.11 0.065 0.099 2.5 0.19 8.6e-32
BasenjiV-H3K27ac-Avg (3.2%) 0.0051 0.055 0.93 2.5 0.13 1.3e-33
BasenjiV-H3K27ac-Max (13.7%) -0.075 0.03 0.012 1.8 0.072 1.5e-31
BasenjiV-H3K4me1-Avg (5.5%) -0.011 0.04 0.79 1.9 0.073 7.9e-32
BasenjiV-H3K4me1-Max (23.2%) -0.11 0.036 0.76 1.6 0.046 3.5e-33
BasenjiV-H3K4me3-Avg (1.7%) -0.031 0.061 0.61 3.5 0.23 5.3e-34
BasenjiV-H3K4me3-Max (8.8%) -0.026 0.036 0.47 1.9 0.081 3.4e-32
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Table S9. The 11 conservation related terms in the baseline-LD model. The
names of the 11 annotations related to conservation that were removed in the anal-
ysis with no conservation in Tables S10, S16 and S22. See URLs for the full list of
baseline-LD annotations.

Conservation related Annotations
Conserved LindbladToh32

Conserved LindbladToh.extend.50032

Conserved Vertebrate phastCons46way31

Conserved Vertebrate phastCons46way.extend.50031

Conserved Mammal phastCons46way31

Conserved Mammal phastCons46way.extend.50031

Conserved Primate phastCons46way31

Conserved Primate phastCons46way.extend.50031

GERP.NS30,19

GERP.RSsup430,19

Backgrd Selection Stat33
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Table S10. S-LDSC results for marginal analysis of non-tissue-specific
allelic-effect DeepSEA∆ and Basenji∆ annotations conditioned on the non-
tissue-specific variant-level model without any conservation related anno-
tations. Standardized Effect sizes (τ?) and Enrichment (E) of 8 non-tissue-specific
DeepSEA∆ and 8 non-tissue-specific Basenji∆ annotations, when conditioned on
the non-tissue-specific variant-level model (baseline-LD model + 7 annotations from
Figure S6) without any conservation related annotations. Results are meta-analyzed
across 41 independent traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)
DeepSEA∆-DNase-Avg (0.3%) 0.34 0.083 3.4e-05 3 0.19 4.7e-13
DeepSEA∆-DNase-Max (2.0%) 0.32 0.093 0.00057 2.1 0.12 7.6e-13
DeepSEA∆-H3K27ac-Avg (0.2%) 0.44 0.088 6.3e-07 2.6 0.12 1.1e-24
DeepSEA∆-H3K27ac-Max (0.9%) 0.4 0.077 2.4e-07 2.2 0.094 4.6e-22
DeepSEA∆-H3K4me1-Avg (0.3%) 0.38 0.074 2e-07 2.1 0.067 2.4e-24
DeepSEA∆-H3K4me1-Max (1.7%) 0.35 0.082 2.1e-05 1.9 0.068 7.1e-18
DeepSEA∆-H3K4me3-Avg (0.1%) 0.34 0.087 7.3e-05 3.5 0.19 2.7e-18
DeepSEA∆-H3K4me3-Max (0.7%) 0.3 0.085 0.00043 2.4 0.098 3.7e-19
Basenji∆-DNase-Avg (0.3%) 0.21 0.13 0.12 3.1 0.36 1.6e-14
Basenji∆-DNase-Max (2.0%) 0.33 0.07 3e-06 2.4 0.16 8.7e-22
Basenji∆-H3K27ac-Avg (0.2%) 0.23 0.12 0.049 2.4 0.19 9e-26
Basenji∆-H3K27ac-Max (0.9%) 0.11 0.039 0.0071 2 0.11 2.2e-24
Basenji∆-H3K4me1-Avg (0.3%) 0.28 0.066 1.5e-05 2 0.1 8.9e-27
Basenji∆-H3K4me1-Max (1.7%) 0.22 0.04 7.1e-08 1.9 0.088 2.3e-24
Basenji∆-H3K4me3-Avg (0.1%) 0.18 0.076 0.015 3.4 0.21 7.6e-25
Basenji∆-H3K4me3-Max (0.7%) 0.3 0.058 1.7e-07 2.6 0.15 2.1e-28
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Table S11. Weighted k-mer enrichments for significant allelic-effect Basenji
annotations. We report the weighted k-mer enrichment and enrichment p-value for
the top significantly enriched k-mers (1 ≤ k ≤ 5) for the two allelic effect annota-
tions found significant: Basenji∆-H3K4me3-Max and Basenji∆-H3K4me3-brain-Max
annotations. The Bonferonni corrcection threshold is 0.05/(4 ∗ 682) where 682 is the
number of k-mers analyzed for the 2 significant variant-level annotations analyzed in
Table S50 and the 2 significant allelic-effect annotations analyzed here. We also report
results for simple GC-rich motifs (blue font) for comparison purposes.

Basenji∆-H3K4me3-Max
kmer enrichment pvalue

CGGCG 4.1 3.6e-10
CGCGC 4.1 3.5e-10
CGCCG 4.0 7.4e-10

CC 1.14 0.39
CG 1.22 0.33
C 1.07 0.44

Basenji∆-H3K4me3-brain-Max
kmer enrichment pvalue

CGCGC 6.2 1.1e-25
CGGCG 6.1 4.9e-25
CGCCG 6 2.8e-24
CGCG 4.3 1.8e-11

CGCGG 4.2 4.9e-11
CCGCG 4.2 9.8e-11
CGCGA 3.7 5.4e-08
AGCGC 3.5 2.8e-07
CCCGC 3.4 8.9e-07
CGCCC 3.3 2.2e-06
ACGCG 3.2 7.7e-06

CC 1.23 0.32
CG 1.45 0.32
C 1.12 0.41
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Table S12. Enrichment of two 9-mers of interest for significant allelic-effect
Basenji∆ annotations. We report the weighted k-mer enrichment and enrichment
p-value of two 9-mers, GCGGTGGCT and GTGGTGGCT, with previously reported
evidence of being connected to trait architecture36, with respect to the two allelic ef-
fect annotations found significant: Basenji∆-H3K4me3-Max and Basenji∆-H3K4me3-
brain-Max annotations. We additionally also compare against the same annotation for
blood (Basenji∆-H3K4me3-blood-Max) for a better comparison.

Basenji∆-H3K4me3-Max
kmer enrichment pvalue

GCGGTGGCT 1.12 9.7e-08
GTGGTGGCT 0.96 1.00

Basenji∆-H3K4me3-brain-Max
kmer enrichment pvalue

GCGGTGGCT 1.03 0.003
GTGGTGGCT 0.85 1.00

Basenji∆-H3K4me3-blood-Max
kmer enrichment pvalue

GCGGTGGCT 1.19 3.3e-19
GTGGTGGCT 0.93 1.00
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Table S13. AUROC of various sets of annotations incorporating non-tissue-
specific allelic-effect deep learning annotations in predicting 12, 296 NIH
GWAS SNPs. We report the AUROC for a gradient boosting model trained using
each respective set of annotations, either without including baseline-LD model an-
notations; including baseline-LD model annotations; or including annotations from
the non-tissue-specific variant-level joint model (baseline-LD model + 7 annotations;
baseline-LD+7).

Feature GWAS SNPs
DeepSEA∆-Avg/Max 0.584
Basenji∆-Avg/Max 0.592

DeepSEA∆-All 0.602
Basenji∆-All 0.611
baseline-LD 0.758

baseline-LD + DeepSEA∆-Avg/Max 0.767
baseline-LD + Basenji∆-Avg/Max 0.767

baseline-LD + DeepSEA∆-All 0.770
baseline-LD + Basenji∆-All 0.772

baseline-LD+7 0.762
baseline-LD+7 + DeepSEA∆-Avg/Max 0.766
baseline-LD+7 + Basenji∆-Avg/Max 0.769

baseline-LD+7 + DeepSEA∆-All 0.771
baseline-LD+7 + Basenji∆-All 0.773
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Table S14. Enrichment of NIH GWAS SNPs for non-tissue-specific allelic-
effect annotations. We report the enrichment in deep learning annotations (along
with Jackknife standard error) at top 12, 296 known disease-associated SNPs from
NIH GWAS catalog23.

Feature GWAS SNPs
Basenji∆-DNase-Avg 1.93 (0.020)
Basenji∆-DNase-Max 1.70 (0.012)

Basenji∆-H3K27ac-Avg 1.76 (0.01)
Basenji∆-H3K27ac-Max 1.63 (0.009)
Basenji∆-H3K4me1-Avg 1.54 (0.008)
Basenji∆-H3K4me1-Max 1.53 (0.008)
Basenji∆-H3K4me3-Avg 2.08 (0.022)
Basenji∆-H3K4me3-Max 1.79 (0.011)
DeepSEA∆-DNase-Avg 1.64 (0.01)
DeepSEA∆-DNase-Max 1.41 (0.007)

DeepSEA∆-H3K27ac-Avg 1.57 (0.009)
DeepSEA∆-H3K27ac-Max 1.46 (0.008)
DeepSEA∆-H3K4me1-Avg 1.43 (0.007)
DeepSEA∆-H3K4me1-Max 1.33 (0.006)
DeepSEA∆-H3K4me3-Avg 1.67 (0.013)
DeepSEA∆-H3K4me3-Max 1.50 (0.007)
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Table S15. S-LDSC results for marginal analysis of blood-specific allelic-
effect deep learning annotations against blood-specific variant-level joint
model and 1 significant non-tissue-specific Basenji∆ annotation. Standard-
ized Effect sizes (τ?) and Enrichment (E) of 8 blood-specific DeepSEA∆ and 8 blood-
specific Basenji∆ annotations, when conditioned on the blood-specific joint model
annotations (baseline-LD model + 7 non-tissue-specific annotations from Figure S6
+ 6 blood-specific Roadmap and ChromHMM annotations from Figure S11) and 1
significant allelic-effect annotation (Basenji∆-H3K4me3-Max) from Table S6. Results
are meta-analyzed across 11 blood-related traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)
DeepSEA∆-DNase-blood-Avg (0.2%) -0.4 0.12 0.00074 2.3 0.38 1.8e-05
DeepSEA∆-DNase-blood-Max (0.6%) -0.35 0.11 0.0011 2 0.26 5.1e-11
DeepSEA∆-H3K27ac-blood-Avg (0.2%) -0.23 0.11 0.028 2.6 0.23 1.6e-08
DeepSEA∆-H3K27ac-blood-Max (0.5%) -0.34 0.11 0.002 2.1 0.16 1.8e-08
DeepSEA∆-H3K4me1-blood-Avg (0.3%) -0.35 0.13 0.0035 1.9 0.16 1.3e-08
DeepSEA∆-H3K4me1-blood-Max (0.8%) -0.34 0.12 0.0023 1.7 0.14 6.4e-07
DeepSEA∆-H3K4me3-blood-Avg (0.1%) -0.3 0.11 0.0063 2.7 0.35 4.3e-08
DeepSEA∆-H3K4me3-blood-Max (0.4%) -0.38 0.14 0.0056 2.2 0.24 7.9e-10
Basenji∆-DNase-blood-Avg (0.2%) -0.31 0.2 0.12 5 0.41 9.5e-11
Basenji∆-DNase-blood-Max (0.6%) -0.012 0.22 0.96 4.7 0.28 4e-08
Basenji∆-H3K27ac-blood-Avg (0.2%) 0.34 0.17 0.046 4.8 0.29 1.5e-08
Basenji∆-H3K27ac-blood-Max (0.5%) 0.23 0.17 0.17 4 0.19 2.9e-08
Basenji∆-H3K4me1-blood-Avg (0.3%) 0.033 0.1 0.75 3.6 0.2 4.9e-09
Basenji∆-H3K4me1-blood-Max (0.8%) -0.006 0.15 0.97 3.3 0.17 1.3e-08
Basenji∆-H3K4me3-blood-Avg (0.1%) 0.57 0.33 0.083 6.5 0.55 2.6e-09
Basenji∆-H3K4me3-blood-Max (0.4%) 0.39 0.3 0.21 4.7 0.3 7.8e-09
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Table S16. S-LDSC results for marginal analysis of blood-specific allelic-
effect deep learning annotations against blood-specific variant-level joint
model and 1 significant non-tissue-specific Basenji∆ annotation but with-
out any conservation related annotation. Standardized Effect sizes (τ?) and
Enrichment (E) of 8 blood-specific DeepSEA∆ and 8 blood-specific Basenji∆ annota-
tions, when conditioned on the blood-specific variant-level joint model (baseline-LD
model + 7 non-tissue-specific annotations from Figure S6 + 6 blood-specific Roadmap
and ChromHMM annotations from Figure S11) and Basenji∆-H3K4me3-Max but
without the conservation related annotation. Results are meta-analyzed across 11
blood-related traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)
DeepSEA∆-DNase-blood-Avg (0.2%) -0.17 0.13 0.18 2.6 0.38 0.0089
DeepSEA∆-DNase-blood-Max (0.6%) -0.067 0.1 0.51 2.3 0.26 0.0035
DeepSEA∆-H3K27ac-blood-Avg (0.2%) 0.078 0.1 0.45 3.1 0.23 1.9e-05
DeepSEA∆-H3K27ac-blood-Max (0.5%) -0.035 0.1 0.74 2.4 0.16 0.00016
DeepSEA∆-H3K4me1-blood-Avg (0.3%) -0.026 0.087 0.76 2.2 0.16 0.00011
DeepSEA∆-H3K4me1-blood-Max (0.8%) -0.007 0.085 0.93 2 0.14 0.00054
DeepSEA∆-H3K4me3-blood-Avg (0.1%) -0.031 0.1 0.77 3.3 0.35 0.00039
DeepSEA∆-H3K4me3-blood-Max (0.4%) -0.11 0.14 0.43 2.6 0.23 0.00079
Basenji∆-DNase-blood-Avg (0.2%) -0.042 0.17 0.8 5 0.41 2.2e-05
Basenji∆-DNase-blood-Max (0.6%) 0.13 0.18 0.47 4.6 0.29 6.2e-07
Basenji∆-H3K27ac-blood-Avg (0.2%) 0.42 0.12 0.00039 4.8 0.29 5.1e-09
Basenji∆-H3K27ac-blood-Max (0.5%) 0.32 0.11 0.0047 4 0.2 3.5e-09
Basenji∆-H3K4me1-blood-Avg (0.3%) 0.19 0.094 0.044 3.5 0.2 9.8e-09
Basenji∆-H3K4me1-blood-Max (0.8%) 0.14 0.11 0.17 3.2 0.17 3.8e-08
Basenji∆-H3K4me3-blood-Avg (0.1%) 0.6 0.2 0.0021 6.5 0.49 1.9e-07
Basenji∆-H3K4me3-blood-Max (0.4%) 0.4 0.14 0.0049 4.7 0.3 4.9e-09
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Table S17. S-LDSC results for marginal analysis of blood-specific allelic-
effect deep learning annotations against blood-specific variant-level joint
model. Standardized Effect sizes (τ?) and Enrichment (E) of 8 blood-specific
DeepSEA∆ and 8 blood-specific Basenji∆ annotations, when conditioned on
the blood-specific variant-level joint model annotations (baseline-LD model + 7
non-tissue-specific annotations from Figure S6 + 6 blood-specific Roadmap and
ChromHMM annotations from Figure S11). Results are meta-analyzed across 11
blood-related traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)
DeepSEA∆-DNase-blood-Avg (0.2%) -0.24 0.14 0.089 2.4 0.38 0.00027
DeepSEA∆-DNase-blood-Max (0.6%) -0.18 0.1 0.075 2 0.26 5e-06
DeepSEA∆-H3K27ac-blood-Avg (0.2%) -0.073 0.1 0.48 2.7 0.23 9.2e-09
DeepSEA∆-H3K27ac-blood-Max (0.5%) -0.22 0.12 0.066 2.1 0.16 1.1e-07
DeepSEA∆-H3K4me1-blood-Avg (0.3%) -0.21 0.089 0.021 1.9 0.16 2.6e-08
DeepSEA∆-H3K4me1-blood-Max (0.8%) -0.22 0.1 0.036 1.7 0.14 7.7e-06
DeepSEA∆-H3K4me3-blood-Avg (0.1%) -0.12 0.11 0.27 2.9 0.36 1.7e-06
DeepSEA∆-H3K4me3-blood-Max (0.4%) -0.23 0.15 0.11 2.3 0.25 1.8e-07
Basenji∆-DNase-blood-Avg (0.2%) 0.039 0.17 0.81 5.1 0.41 3.7e-11
Basenji∆-DNase-blood-Max (0.6%) 0.22 0.18 0.22 4.7 0.29 7.1e-08
Basenji∆-H3K27ac-blood-Avg (0.2%) 0.45 0.12 0.00025 4.8 0.31 2.3e-07
Basenji∆-H3K27ac-blood-Max (0.5%) 0.36 0.11 0.0017 4 0.21 2.1e-07
Basenji∆-H3K4me1-blood-Avg (0.3%) 0.22 0.096 0.021 3.6 0.21 4.5e-08
Basenji∆-H3K4me1-blood-Max (0.8%) 0.18 0.11 0.11 3.3 0.18 1.1e-07
Basenji∆-H3K4me3-blood-Avg (0.1%) 0.67 0.2 0.00067 6.5 0.52 5.6e-09
Basenji∆-H3K4me3-blood-Max (0.4%) 0.47 0.15 0.0018 4.8 0.32 1.2e-07
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Table S18. S-LDSC results for marginal analysis of blood-specific allelic-
effect deep learning annotations conditioned on the non-tissue-specific
final joint model. Standardized Effect sizes (τ?) and Enrichment (E) of 8 blood-
specific DeepSEA∆ and 8 blood-specific Basenji∆ annotations, when conditioned on
the non-tissue-specific final joint model. Results are meta-analyzed across 11 blood-
related traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)
DeepSEA∆-DNase-blood-Avg (0.2%) -0.37 0.14 0.0064 2.9 0.52 1.8e-06
DeepSEA∆-DNase-blood-Max (0.6%) -0.49 0.12 2.4e-05 2 0.28 1.6e-06
DeepSEA∆-H3K27ac-blood-Avg (0.2%) 0.024 0.11 0.83 3.3 0.29 1.2e-18
DeepSEA∆-H3K27ac-blood-Max (0.5%) -0.23 0.11 0.038 2.4 0.2 1.2e-16
DeepSEA∆-H3K4me1-blood-Avg (0.3%) -0.33 0.099 0.0011 2 0.18 2e-10
DeepSEA∆-H3K4me1-blood-Max (0.8%) -0.47 0.098 1.4e-06 1.7 0.15 4.8e-08
DeepSEA∆-H3K4me3-blood-Avg (0.1%) -0.071 0.12 0.56 3.8 0.41 1.4e-08
DeepSEA∆-H3K4me3-blood-Max (0.4%) -0.23 0.13 0.078 2.7 0.28 5.7e-09
Basenji∆-DNase-blood-Avg (0.2%) 0.56 0.2 0.0049 7.2 0.57 1.6e-09
Basenji∆-DNase-blood-Max (0.6%) 0.69 0.21 0.00081 5.8 0.37 5.1e-09
Basenji∆-H3K27ac-blood-Avg (0.2%) 1.8 0.26 1.5e-12 6.2 0.38 6.6e-09
Basenji∆-H3K27ac-blood-Max (0.5%) 1.5 0.22 1.1e-11 4.8 0.25 1.5e-08
Basenji∆-H3K4me1-blood-Avg (0.3%) 1.2 0.2 7.7e-09 4.6 0.28 2.1e-09
Basenji∆-H3K4me1-blood-Max (0.8%) 1 0.19 8.7e-08 4 0.22 3.4e-09
Basenji∆-H3K4me3-blood-Avg (0.1%) 1.9 0.36 1.3e-07 8.6 0.68 3e-09
Basenji∆-H3K4me3-blood-Max (0.4%) 2.1 0.36 7.4e-09 5.7 0.34 1.3e-08
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Table S19. AUROC of various sets of annotations incorporating blood-
specific allelic-effect deep learning annotations in predicting 8,741 fine-
mapped autoimmune disease SNPs. We report the AUROC for a gradient boost-
ing model trained using each respective set of annotations, either without includ-
ing baseline-LD model annotations; including baseline-LD model annotations; or
including annotations from the blood-specific variant-level joint model plus Basenji∆-
H3K4me3-Max (baseline-LD+7+6blood+1).

Feature Farh et al
DeepSEA∆-blood-Avg/Max 0.613
Basenji∆-blood-Avg/Max 0.672

DeepSEA∆-blood-All 0.633
Basenji∆-blood-All 0.684

baseline-LD 0.841
baseline-LD + DeepSEA∆-blood-Avg/Max 0.847
baseline-LD + Basenji∆-blood-Avg/Max 0.852

baseline-LD + DeepSEA∆-blood-All 0.848
baseline-LD + Basenji∆-blood-All 0.851

baseline-LD+7+6blood+1 0.848
baseline-LD+7+6blood+1 + DeepSEA∆-blood-Avg/Max 0.847
baseline-LD+7+6blood+1 + Basenji∆-blood-Avg/Max 0.851

baseline-LD+7+6blood+1 + DeepSEA∆-blood-All 0.849
baseline-LD+7+6blood+1 + Basenji∆-blood-All 0.851
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Table S20. Enrichment of fine-mapped autoimmune disease SNPs for blood-
specific allelic-effect annotations. We report the enrichment in blood-specific
deep learning allelic-effect annotations (along with Jackknife standard error) for 8741
fine-mapped SNPs in immune-related traits24.

Feature Farh et al
Basenji∆-DNase-blood-Avg 2.59 (0.05)
Basenji∆-DNase-blood-Max 2.41 (0.04)

Basenji∆-H3K27ac-blood-Avg 2.44 (0.03)
Basenji∆-H3K27ac-blood-Max 2.29 (0.03)
Basenji∆-H3K4me1-blood-Avg 2.21 (0.03)
Basenji∆-H3K4me1-blood-Max 2.09 (0.02)
Basenji∆-H3K4me3-blood-Avg 2.52 (0.03)
Basenji∆-H3K4me3-blood-Max 2.40 (0.03)
DeepSEA∆-DNase-blood-Avg 1.87 (0.03)
DeepSEA∆-DNase-blood-Max 1.62 (0.02)

DeepSEA∆-H3K27ac-blood-Avg 1.83 (0.03)
DeepSEA∆-H3K27ac-blood-Max 1.60 (0.01)
DeepSEA∆-H3K4me1-blood-Avg 1.58 (0.01)
DeepSEA∆-H3K4me1-blood-Max 1.45 (0.01)
DeepSEA∆-H3K4me3-blood-Avg 2.01 (0.04)
DeepSEA∆-H3K4me3-blood-Max 1.66 (0.02)
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Table S21. S-LDSC results for marginal analysis of brain-specific allelic-
effect deep learning annotations against brain-specific variant-level joint
model and 1 significant non-tissue-specific Basenji∆ annotation. Standard-
ized Effect sizes (τ?) and Enrichment (E) of 8 brain-specific DeepSEA∆ and 8 brain-
specific Basenji∆ annotations, when conditioned on brain-specific variant-level joint
model (baseline-LD model + 7 non-tissue-specific annotations from Figure S6 +
DeepSEAV-H3K4me3-brain-Max and BasenjiV-H3K27ac-brain-Max (the 2 signifi-
cant brain-specific variant-level annotations; Figure S12) + 4 additional brain-specific
annotations from Figure S15) and 1 significant non-tissue-specific annotation from
Table S6). Results are meta-analyzed across 8 brain-related traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)
DeepSEA∆-DNase-brain-Avg (0.4%) -0.027 0.075 0.72 1.9 0.25 6.1e-05
DeepSEA∆-DNase-brain-Max (0.7%) -0.011 0.074 0.88 1.8 0.26 2.8e-05
DeepSEA∆-H3K27ac-brain-Avg
(0.2%)

0.029 0.071 0.68 1.8 0.1 6e-07

DeepSEA∆-H3K27ac-brain-Max
(0.4%)

-0.021 0.072 0.77 1.7 0.11 5.6e-07

DeepSEA∆-H3K4me1-brain-Avg
(0.3%)

0.0093 0.065 0.89 1.7 0.086 3.4e-07

DeepSEA∆-H3K4me1-brain-Max
(0.6%)

-0.013 0.069 0.85 1.6 0.1 1.6e-07

DeepSEA∆-H3K4me3-brain-Avg
(0.1%)

-0.001 0.08 0.99 2.5 0.22 3.6e-05

DeepSEA∆-H3K4me3-brain-Max
(0.2%)

-0.055 0.088 0.54 2.5 0.19 6.5e-06

Basenji∆-DNase-brain-Avg (0.4%) 0.25 0.083 0.0024 2.9 0.16 1.5e-07
Basenji∆-DNase-brain-Max (0.7%) 0.12 0.077 0.12 2.6 0.18 5.9e-06
Basenji∆-H3K27ac-brain-Avg (0.2%) 0.11 0.05 0.023 2.1 0.12 4.4e-07
Basenji∆-H3K27ac-brain-Max (0.4%) 0.1 0.055 0.071 2 0.15 2.2e-07
Basenji∆-H3K4me1-brain-Avg
(0.3%)

0.11 0.058 0.058 1.9 0.077 1e-06

Basenji∆-H3K4me1-brain-Max
(0.6%)

0.083 0.06 0.17 1.9 0.085 1.1e-07

Basenji∆-H3K4me3-brain-Avg
(0.1%)

0.34 0.097 0.00047 3.5 0.18 2.5e-08

Basenji∆-H3K4me3-brain-Max
(0.2%)

0.46 0.095 1.4e-06 3.4 0.19 3.2e-08
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Table S22. S-LDSC results for marginal analysis of brain-specific allelic-
effect deep learning annotations against brain-specific variant-level joint
model and 1 significant non-tissue-specific Basenji∆ annotation but with-
out any conservation related annotations. Standardized Effect sizes (τ?) and
Enrichment (E) of 8 brain-specific DeepSEA∆ and 8 brain-specific Basenji∆ annota-
tions, when conditioned on the brain-specific variant-level joint model (baseline-LD
model + 7 non-tissue-specific annotations from Figure S6 + DeepSEAV-H3K4me3-
brain-Max and BasenjiV-H3K27ac-brain-Max (the 2 significant brain-specific variant-
level annotations; Figure S12) + 4 additional brain-specific annotations from Figure
S15) and Basenji∆-H3K4me3-Max but without the conservation related annotations.
Results are meta-analyzed across 8 brain-related traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)
DeepSEA∆-DNase-brain-Avg (0.4%) 0.48 0.078 4.5e-10 2.9 0.19 9.1e-11
DeepSEA∆-DNase-brain-Max (0.7%) 0.42 0.077 4e-08 2.7 0.2 1.5e-09
DeepSEA∆-H3K27ac-brain-Avg (0.2%) 0.48 0.074 6.3e-11 2.4 0.1 1.4e-10
DeepSEA∆-H3K27ac-brain-Max (0.4%) 0.39 0.075 2.5e-07 2.3 0.11 1.1e-09
DeepSEA∆-H3K4me1-brain-Avg (0.3%) 0.42 0.066 1.8e-10 2.2 0.088 2.4e-11
DeepSEA∆-H3K4me1-brain-Max (0.6%) 0.43 0.071 1.2e-09 2.2 0.11 5.2e-10
DeepSEA∆-H3K4me3-brain-Avg (0.1%) 0.44 0.083 9.1e-08 3.8 0.23 1.1e-10
DeepSEA∆-H3K4me3-brain-Max (0.2%) 0.42 0.092 4.4e-06 3.6 0.2 2.4e-11
Basenji∆-DNase-brain-Avg (0.4%) 0.73 0.095 1.5e-14 3.6 0.17 1.7e-13
Basenji∆-DNase-brain-Max (0.7%) 0.53 0.079 1.7e-11 3.2 0.18 3.9e-12
Basenji∆-H3K27ac-brain-Avg (0.2%) 0.14 0.051 0.0068 2 0.12 1.7e-08
Basenji∆-H3K27ac-brain-Max (0.4%) 0.14 0.051 0.0059 2 0.16 2e-07
Basenji∆-H3K4me1-brain-Avg (0.3%) 0.3 0.058 1.9e-07 2 0.077 7.9e-10
Basenji∆-H3K4me1-brain-Max (0.6%) 0.34 0.06 1.2e-08 2.1 0.086 5.9e-11
Basenji∆-H3K4me3-brain-Avg (0.1%) 0.4 0.085 3e-06 4 0.19 1e-10
Basenji∆-H3K4me3-brain-Max (0.2%) 0.5 0.079 2.4e-10 3.8 0.19 2.9e-11
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Table S23. S-LDSC results for marginal analysis of brain-specific allelic-
effect deep learning annotations conditioned on the brain-specific variant-
level joint model. Standardized Effect sizes (τ?) and Enrichment (E) of 8 brain-
specific DeepSEA∆ and 8 brain-specific Basenji∆ annotations, when conditioned
on the brain-specific variant-level joint model (baseline-LD model + 7 non-tissue-
specific annotations from Figure S6 + DeepSEAV-H3K4me3-brain-Max and BasenjiV-
H3K27ac-brain-Max (the 2 significant brain-specific variant-level annotations; Figure
S12) + 4 additional brain-specific annotations from Figure S15). Results are meta-
analyzed across 8 brain-related traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)
DeepSEA∆-DNase-brain-Avg (0.4%) 0.0038 0.076 0.96 1.9 0.25 1.7e-06
DeepSEA∆-DNase-brain-Max (0.7%) 0.022 0.075 0.77 1.8 0.26 1.9e-06
DeepSEA∆-H3K27ac-brain-Avg
(0.2%)

0.065 0.072 0.36 1.8 0.1 1.8e-09

DeepSEA∆-H3K27ac-brain-Max
(0.4%)

0.022 0.073 0.76 1.7 0.11 1.2e-09

DeepSEA∆-H3K4me1-brain-Avg
(0.3%)

0.039 0.065 0.55 1.7 0.087 1.5e-09

DeepSEA∆-H3K4me1-brain-Max
(0.6%)

0.022 0.069 0.76 1.6 0.1 7.6e-11

DeepSEA∆-H3K4me3-brain-Avg
(0.1%)

0.025 0.08 0.75 2.6 0.22 8.5e-07

DeepSEA∆-H3K4me3-brain-Max
(0.2%)

-0.021 0.089 0.81 2.5 0.19 1.3e-08

Basenji∆-DNase-brain-Avg (0.4%) 0.29 0.081 0.00041 2.8 0.16 1e-08
Basenji∆-DNase-brain-Max (0.7%) 0.16 0.076 0.035 2.5 0.18 3.7e-07
Basenji∆-H3K27ac-brain-Avg (0.2%) 0.15 0.048 0.0026 2 0.12 1.1e-08
Basenji∆-H3K27ac-brain-Max (0.4%) 0.13 0.048 0.0054 2 0.16 2e-0
Basenji∆-H3K4me1-brain-Avg
(0.3%)

0.14 0.056 0.014 1.9 0.076 3.8e-08

Basenji∆-H3K4me1-brain-Max
(0.6%)

0.12 0.058 0.041 1.9 0.083 2.6e-09

Basenji∆-H3K4me3-brain-Avg
(0.1%)

0.36 0.08 7.7e-06 3.6 0.18 5.5e-10

Basenji∆-H3K4me3-brain-Max
(0.2%)

0.41 0.074 4.1e-08 3.4 0.19 6.3e-10
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Table S24. S-LDSC results for marginal analysis of brain-specific allelic-
effect deep learning annotations conditioned on the non-tissue-specific
final joint model. Standardized Effect sizes (τ?) and Enrichment (E) of 8 brain-
specific DeepSEA∆ and 8 brain-specific Basenji∆ annotations, when conditioned on
the non-tissue-specific final joint model. Results are meta-analyzed across 8 brain-
related traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)
DeepSEA∆-DNase-brain-Avg (0.4%) 0.25 0.073 0.00053 2.4 0.17 1.4e-05
DeepSEA∆-DNase-brain-Max (0.7%) 0.21 0.072 0.0034 2.2 0.19 3.9e-08
DeepSEA∆-H3K27ac-brain-Avg
(0.2%)

0.3 0.061 9.4e-07 2 0.094 4.8e-09

DeepSEA∆-H3K27ac-brain-Max
(0.4%)

0.28 0.064 1.1e-05 2 0.1 5.2e-07

DeepSEA∆-H3K4me1-brain-Avg
(0.3%)

0.27 0.056 1e-06 1.9 0.08 7e-10

DeepSEA∆-H3K4me1-brain-Max
(0.6%)

0.27 0.062 2e-05 1.9 0.097 1.7e-08

DeepSEA∆-H3K4me3-brain-Avg
(0.1%)

0.44 0.071 4.5e-10 3.4 0.22 7.8e-05

DeepSEA∆-H3K4me3-brain-Max
(0.2%)

0.5 0.072 2.6e-12 3.3 0.19 3.3e-06

Basenji∆-DNase-brain-Avg (0.4%) 0.56 0.097 9.1e-09 3.1 0.16 3.5e-09
Basenji∆-DNase-brain-Max (0.7%) 0.46 0.073 3.5e-10 2.9 0.16 9.2e-08
Basenji∆-H3K27ac-brain-Avg (0.2%) 0.32 0.046 5.4e-12 2.1 0.096 7.8e-08
Basenji∆-H3K27ac-brain-Max (0.4%) 0.25 0.048 1.6e-07 2.1 0.13 4.5e-08
Basenji∆-H3K4me1-brain-Avg
(0.3%)

0.34 0.069 6.3e-07 2.1 0.072 4.8e-09

Basenji∆-H3K4me1-brain-Max
(0.6%)

0.23 0.084 0.0072 2 0.08 7.6e-11

Basenji∆-H3K4me3-brain-Avg
(0.1%)

0.79 0.11 2.6e-13 3.7 0.18 1.1e-08

Basenji∆-H3K4me3-brain-Max
(0.2%)

0.91 0.079 4e-30 3.4 0.18 2.3e-08
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Table S25. S-LDSC results for marginal analysis of brain-specific Basenji
variant-level annotations and allelic-effect annotations conditioned on ei-
ther the brain-specific variant-level joint model and Basenji∆-H3K4me3-
Max or the brain-specific final joint model. We report the standardized effect
sizes (τ∗) and enrichment (E) of Basenji-H3K4me3-brain-Avg, Basenji-H3K4me3-
brain-Max and Basenji∆-H3K4me3-brain-Avg, when conditioned on either the brain-
specific variant-level joint model (baseline-LD model + 7 non-tissue-specific anno-
tations from Figure S6 + DeepSEAV-H3K4me3-brain-Max and BasenjiV-H3K27ac-
brain-Max (the 2 significant brain-specific variant-level annotations; Figure S12) +
4 additional brain-specific annotations from Figure S15) and Basenji∆-H3K4me3-
Max (top panel) or the brain-specific final joint model (bottom panel). Results are
meta-analyzed across 8 brain-related traits.

Conditional on brain specific variant-level joint model and Basenji∆-H3K4me3-Max
Annotation τ? se(τ?) p(τ?) E se (E) p(E)
Basenji-H3K4me3-brain-Avg (1.9%) -0.21 0.097 0.02 3.9 0.29 4.3e-08
Basenji-H3K4me3-brain-Max (3.4%) 0.16 0.11 0.16 3.6 0.19 2.4e-08
Basenji∆-H3K4me3-brain-Avg (0.1%) 0.34 0.097 0.00047 3.5 0.18 2.5e-08
Basenji∆-H3K4me3-brain-Max (0.2%) 0.46 0.095 1.4e-06 3.4 0.19 3.2e-08

Conditional on brain-specific final joint model
Annotation τ? se(τ?) p(τ?) E se (E) p(E)
Basenji-H3K4me3-brain-Avg (1.9%) -0.21 0.098 0.02 3.6 0.3 3e-10
Basenji-H3K4me3-brain-Max (3.4%) 0.049 0.11 0.65 3.4 0.2 1.6e-10
Basenji∆-H3K4me3-brain-Avg (0.1%) -0.62 0.33 0.061 3.3 0.18 1.3e-08
Basenji∆-H3K4me3-brain-Max (0.2%) 0.45 0.13 5e-04 3.3 0.18 2.7e-08
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Table S26. S-LDSC results for marginal analysis of brain-specific allelic-
effect deep learning annotations conditioned on the joint model of brain-
specific Roadmap and ChromHMM annotations but not the variant-level
deep learning annotations. Standardized Effect sizes (τ?) and Enrichment (E) of
8 brain-specific DeepSEA∆ and 8 brain-specific Basenji∆ annotations, when condi-
tioned on the joint model in Table S47) but without the variant-level deep learning
terms. Results are meta-analyzed across 8 brain-related traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)
DeepSEA∆-DNase-brain-Avg (0.4%) 0.22 0.074 0.0024 2.3 0.2 1.8e-05
DeepSEA∆-DNase-brain-Max (0.7%) 0.21 0.073 0.0032 2.2 0.22 0.00014
DeepSEA∆-H3K27ac-brain-Avg
(0.2%)

0.26 0.066 8.5e-05 2 0.1 1.5e-07

DeepSEA∆-H3K27ac-brain-Max
(0.4%)

0.24 0.067 0.0003 2 0.11 1.7e-06

DeepSEA∆-H3K4me1-brain-Avg
(0.3%)

0.21 0.061 0.00068 1.8 0.085 2.6e-08

DeepSEA∆-H3K4me1-brain-Max
(0.6%)

0.21 0.065 0.0011 1.8 0.1 3.3e-06

DeepSEA∆-H3K4me3-brain-Avg
(0.1%)

0.28 0.07 4.6e-05 3.1 0.22 4.8e-08

DeepSEA∆-H3K4me3-brain-Max
(0.2%)

0.31 0.072 1.4e-05 3 0.18 9.9e-09

Basenji∆-DNase-brain-Avg (0.4%) 0.43 0.077 2.9e-08 3 0.16 1.5e-10
Basenji∆-DNase-brain-Max (0.7%) 0.32 0.074 1.8e-05 2.7 0.17 3.6e-08
Basenji∆-H3K27ac-brain-Avg (0.2%) 0.17 0.048 0.00031 2 0.12 1.2e-08
Basenji∆-H3K27ac-brain-Max (0.4%) 0.14 0.048 0.0031 2 0.16 1.4e-07
Basenji∆-H3K4me1-brain-Avg
(0.3%)

0.23 0.056 3.6e-05 1.9 0.076 7.1e-09

Basenji∆-H3K4me1-brain-Max
(0.6%)

0.17 0.058 0.0038 1.9 0.083 1.4e-09

Basenji∆-H3K4me3-brain-Avg
(0.1%)

0.44 0.077 1.3e-08 3.5 0.19 4.7e-10

Basenji∆-H3K4me3-brain-Max
(0.2%)

0.48 0.072 4.6e-11 3.3 0.2 1.8e-10
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Table S27. S-LDSC results for brain-specific final joint model. The results are
conditional on the brain-specific variant-level joint model and 1 significant non-tissue-
specific allelic-effect annotation. Results are meta-analyzed across 8 brain-related
traits

Annotation τ? se(τ?) p(τ?) E se (E) p(E)
Basenji∆-H3K4me3-brain-Avg (0.1%) -0.62 0.33 0.06 3.3 0.18 1.3e-08
Basenji∆-H3K4me3-brain-Max (0.2%) 0.45 0.13 5e-04 3.3 0.18 2.7e-08
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Table S28. Number of significantly disease informative non-tissue-specific
variant-level DeepSEAV and BasenjiV annotations. Number of significantly
disease informative non-tissue-specific variant-level annotations across different ag-
gregation strategies (A) different deep learning models (DeepSEA and Basenji), (B)
different aggregation strategies (Average and Maximum) and (C) different types of
epigenomic marks, in terms of marginal enrichment in heritability, conditional τ? and
joint τ? for all traits, blood traits and brain traits respectively.

PANEL A
Enrichment

Model Aggr. Strategy Number of sig-
nificant annota-
tions

DeepSEAV
All tissues. All traits 8
Brain tissues, Brain traits 8
Blood cell types, Blood traits 8

BasenjiV
All tissues. All traits 8
Brain tissues, Brain traits 8
Blood cell types, Blood traits 8

Marginal τ?

Model Aggregation Strategy Number of sig-
nificant annota-
tions

DeepSEA∆
All tissues. All traits 1
Brain tissues, Brain traits 8
Blood cell types, Blood traits 0

Basenji∆
All tissues. All traits 0
Brain tissues, Brain traits 8
Blood cell types, Blood traits 4

Joint τ?

Model Aggregation Strategy Number of sig-
nificant annota-
tions

DeepSEA∆
All tissues. All traits 0
Brain tissues, Brain traits 1
Blood cell types, Blood traits 0

Basenji∆
All tissues. All traits 0
Brain tissues, Brain traits 1
Blood cell types, Blood traits 0

PANEL B
Enrichment

Model Aggr. Strategy Number of sig-
nificant annota-
tions

Avg
All tissues. All traits 8
Brain tissues, Brain traits 8
Blood cell types, Blood traits 8

Max
All tissues. All traits 8
Brain tissues, Brain traits 8
Blood cell types, Blood traits 8

Marginal τ?

29

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 17, 2020. ; https://doi.org/10.1101/784439doi: bioRxiv preprint 

https://doi.org/10.1101/784439
http://creativecommons.org/licenses/by-nc-nd/4.0/


Model Aggregation Strategy Number of sig-
nificant annota-
tions

Avg
All tissues. All traits 0
Brain tissues, Brain traits 8
Blood cell types, Blood traits 2

Max
All tissues. All traits 1
Brain tissues, Brain traits 8
Blood cell types, Blood traits 2

Joint τ?

Model Aggregation Strategy Number of sig-
nificant annota-
tions

Avg
All tissues. All traits 0
Brain tissues, Brain traits 0
Blood cell types, Blood traits 0

Max
All tissues. All traits 0
Brain tissues, Brain traits 2
Blood cell types, Blood traits 0

PANEL C
Enrichment

Model Aggr. Strategy Number of sig-
nificant annota-
tions

DNase
All tissues. All traits 4
Brain tissues, Brain traits 4
Blood cell types, Blood traits 4

H3K27ac
All tissues. All traits 4
Brain tissues, Brain traits 4
Blood cell types, Blood traits 4

H3K4me1
All tissues. All traits 4
Brain tissues, Brain traits 4
Blood cell types, Blood traits 4

H3K4me3
All tissues. All traits 4
Brain tissues, Brain traits 4
Blood cell types, Blood traits 4

Marginal τ?

Model Aggregation Strategy Number of sig-
nificant annota-
tions

DNase
All tissues. All traits 0
Brain tissues, Brain traits 4
Blood cell types, Blood traits 0

H3K27ac
All tissues. All traits 0
Brain tissues, Brain traits 4
Blood cell types, Blood traits 1

H3K4me1
All tissues. All traits 0
Brain tissues, Brain traits 4
Blood cell types, Blood traits 2

H3K4me3
All tissues. All traits 1
Brain tissues, Brain traits 4
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Blood cell types, Blood traits 1

Joint τ?

Model Aggregation Strategy Number of sig-
nificant annota-
tions

DNase
All tissues. All traits 0
Brain tissues, Brain traits 0
Blood cell types, Blood traits 0

H3K27ac
All tissues. All traits 0
Brain tissues, Brain traits 1
Blood cell types, Blood traits 0

H3K4me1
All tissues. All traits 0
Brain tissues, Brain traits 0
Blood cell types, Blood traits 0

H3K4me3
All tissues. All traits 0
Brain tissues, Brain traits 1
Blood cell types, Blood traits 0
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Table S29. S-LDSC results for marginal analysis of non-tissue-specific
variant-level DeepSEAV and BasenjiV annotations. Standardized Effect sizes
(τ?) and Enrichment (E) of 8 non-tissue-specific variant-level DeepSEAV and 8 non-
tissue-specific variant-level BasenjiV annotations, when conditioned on 86 baseline-LD
annotations. Results are meta-analyzed across 41 traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)
BasenjiV-DNase-Avg (1.7%) -0.078 0.07 0.26 2.4 0.2 4.9e-09
BasenjiV-DNase-Max (13.6%) -0.095 0.065 0.14 1.8 0.079 1.7e-16
BasenjiV-H3K27ac-Avg (3.4%) 0.14 0.059 0.016 2.5 0.14 2.7e-16
BasenjiV-H3K27ac-Max (14.2%) -0.026 0.031 0.41 1.8 0.074 9.4e-16
BasenjiV-H3K4me1-Avg (5.6%) 0.08 0.042 0.055 2 0.076 2.7e-17
BasenjiV-H3K4me1-Max (23.7%) -0.057 0.027 0.032 1.6 0.046 1.4e-17
BasenjiV-H3K4me3-Avg (2.0%) 0.17 0.07 0.014 3.7 0.26 1.4e-16
BasenjiV-H3K4me3-Max (9.4%) 0.079 0.036 0.029 2 0.088 5.3e-15
DeepSEAV-DNase-Avg (1.7%) -0.12 0.11 0.27 2.3 0.2 3e-07
DeepSEAV-DNase-Max (13.6%) -0.17 0.078 0.028 1.8 0.075 1.1e-15
DeepSEAV-H3K27ac-Avg (3.4%) 0.19 0.071 0.0089 2.4 0.12 1.1e-17
DeepSEAV-H3K27ac-Max (14.2%) 0.0092 0.06 0.88 1.8 0.066 2.6e-17
DeepSEAV-H3K4me1-Avg (5.6%) 0.015 0.059 0.8 1.9 0.059 2.2e-17
DeepSEAV-H3K4me1-Max (23.7%) -0.13 0.06 0.027 1.6 0.041 8.8e-18
DeepSEAV-H3K4me3-Avg (2.0%) 0.27 0.093 0.0033 4 0.25 7.1e-19
DeepSEAV-H3K4me3-Max (9.4%) 0.25 0.06 4.5e-05 2.2 0.087 2.2e-17
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Table S30. S-LDSC results for marginal analysis of non-tissue-specific Bi-
ClassCNN annotations. Standardized Effect sizes (τ?) and Enrichment (E) of 12
non-tissue-specific BiClassCNN annotations. Results are meta-analyzed across 41
traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)
BiClassCNN-Coding (1.3%) 0.93 0.16 2.5e-09 4.9 0.34 1e-12
BiClassCNN-DNase (9.1%) -0.02 0.04 0.59 2.1 0.18 7.9e-06
BiClassCNN-Enhancer (2.8%) 0.31 0.18 0.09 3.4 0.25 2.3e-17
BiClassCNN-H3K4me1 (29.6%) -0.05 0.07 0.50 1.8 0.073 4.3e-18
BiClassCNN-H3K4me3 (7.4%) 0.42 0.13 0.0019 2.9 0.18 8.8e-16
BiClassCNN-Promoter (2.7%) 0.19 0.05 0.00012 2.5 0.16 8.4e-17
BiClassCNN-Repressed (31.8%) 0.24 0.05 2.6e-06 0.68 0.048 1.2e-05
BiClassCNN-SuperEnhancer (8.0%) -0.03 0.04 0.42 2.2 0.11 1.8e-15
BiClassCNN-TFBS (8.2%) 0.36 0.13 0.0041 2.9 0.21 2.3e-14
BiClassCNN-TSS (1.0%) 0.8 0.13 3.1e-10 6.9 0.61 1e-19
BiClassCNN-UTR-5’ (0.5%) 0.017 0.12 0.89 2.9 0.49 1.7e-06
BiClassCNN-WeakEnhancer (1.3%) -0.15 0.13 0.26 2.3 0.24 1.9e-14
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Table S31. . BiClassCNN-Coding, BiClassCNN-Repressed and
BiClassCNN-TSS produced independent signals.. We report standardized ef-
fect sizes (τ?) and enrichment (E) of the 4 significant BiClassCNN annotations from
Figure 1, when modeled jointly and passed through the forward stepwise elimina-
tion, all conditioned on the baseline-LD model. The three annotations that remain
are BiClassCNN-Coding, BiClassCNN-Repressed and BiClassCNN-TSS. Results are
meta-analyzed across 41 traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)

BiClassCNN-Coding (1.3%) 0.73 0.17 2.2e-05 4.9 0.34 1.4e-15
BiClassCNN-Repressed
(31.8%)

0.19 0.051 0.00018 0.68 0.048 2.9e-07

BiClassCNN-TSS (1.0%) 0.68 0.13 9.6e-08 6.8 0.6 0.00023
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Table S32. S-LDSC results for marginal analysis of non-tissue-specific
Roadmap and ChromHMM annotations. Standardized Effect sizes (τ?) and En-
richment (E) of 8 non-tissue-specific Roadmap and 40 non-tissue-specific ChromHMM
annotations. Results are meta-analyzed across 41 traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)

Roadmap-DNase-Avg (2.2%) 0.39 0.11 0.00034 5.3 0.46 9.7e-13
Roadmap-DNase-Max (13.4%) 0.18 0.075 0.02 3 0.23 3.9e-12
Roadmap-H3K27ac-Avg (3.1%) 0.37 0.084 1.1e-05 4.2 0.27 9.4e-17
Roadmap-H3K27ac-Max (21.4%) 0.16 0.079 0.046 2.5 0.13 6.4e-17
Roadmap-H3K4me1-Avg (4.4%) 0.47 0.077 9.1e-10 3.6 0.19 1.9e-17
Roadmap-H3K4me1-Max (25.4%) 0.094 0.099 0.34 2.2 0.1 8.1e-19
Roadmap-H3K4me3-Avg (1.7%) 0.43 0.088 7.2e-07 5.8 0.41 2.7e-18
Roadmap-H3K4me3-Max (6.6%) -0.12 0.065 0.075 3.3 0.23 5.7e-16
ChromHMM-DNase-Avg (0.7%) -0.12 0.049 0.012 1.4 0.39 0.4
ChromHMM-DNase-Max (9.2%) -0.19 0.061 0.0021 1.5 0.24 0.71
ChromHMM-Active-Enhancer-1-Avg
(0.3%)

-0.15 0.03 3.2e-07 2.7 0.3 1.2e-08

ChromHMM-Active-Enhancer-1-Max
(7.1%)

-0.17 0.044 8.1e-05 2.3 0.22 0.0025

ChromHMM-Active Enhancer 2-Avg
(0.4%)

-0.073 0.052 0.16 2.9 0.34 0.0011

ChromHMM-Active Enhancer 2-Max
(9.9%)

-0.13 0.057 0.027 2.2 0.2 0.011

ChromHMM-Enhancer acetylation-Avg
(0.3%)

-0.19 0.039 8.5e-07 1.4 0.25 0.79

ChromHMM-Enhancer acetylation-Max
(11.3%)

-0.19 0.029 1.8e-10 1.5 0.13 0.0066

ChromHMM-Active Enhancer Flanking-
Avg (0.5%)

-0.12 0.035 0.00085 2.3 0.22 0.0092

ChromHMM-Active Enhancer Flanking-
Max (11.1%)

-0.15 0.046 0.00078 1.9 0.15 0.11

ChromHMM-Weak Enhancer 1-Avg (0.3%) -0.14 0.035 7.1e-05 1.8 0.31 9.9e-08
ChromHMM-Weak Enhancer 1-Max (7.7%) -0.21 0.034 8.8e-10 1.8 0.19 5.1e-06
ChromHMM-Weak Enhancer 2-Avg (1.2%) -0.052 0.036 0.15 2.1 0.14 1.5e-10
ChromHMM-Weak Enhancer 2-Max
(19.9%)

-0.12 0.052 0.02 1.7 0.093 5.8e-11

ChromHMM-Heterochromatin-Avg (1.4%) -0.074 0.02 0.00027 0.3 0.058 2e-18
ChromHMM-Heterochromatin-Max (7.1%) -0.055 0.018 0.0022 0.39 0.038 3.5e-21
ChromHMM-Promoter Bivalent-Avg (0.3%) 0.1 0.042 0.017 6.1 0.48 8.2e-14
ChromHMM-Promoter Bivalent-Max
(1.9%)

0.055 0.041 0.18 4 0.27 2.1e-14

ChromHMM-Promoter Downstream 1-Avg
(0.4%)

0.18 0.062 0.0029 7 0.89 7.8e-12

ChromHMM-Promoter Downstream 1-Max
(1.4%)

0.24 0.063 0.0002 6.5 0.6 8.9e-16

ChromHMM-Promoter Downstream 2-Avg
(0.2%)

-0.014 0.045 0.76 2.5 0.67 0.1

ChromHMM-Promoter Downstream 2-Max
(1.5%)

0.095 0.033 0.004 3.6 0.34 2.2e-14

ChromHMM-Promoter Poised-Avg (0.2%) -0.14 0.046 0.0018 1.3 0.25 0.074
ChromHMM-Promoter Poised-Max (6.8%) -0.23 0.037 1.1e-09 1.2 0.098 0.0011
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Table S32. (continued)

Annotation τ? se(τ?) p(τ?) E se(E) p(E)

ChromHMM-Promoter Upstream-Avg
(0.4%)

0.04 0.051 0.43 5.7 0.45 5.3e-16

ChromHMM-Promoter Upstream-Max
(2.5%)

-0.13 0.045 0.0052 3.8 0.34 7.5e-14

ChromHMM-Quiescent-Avg (78.4%) -0.061 0.018 0.00074 0.73 0.02 3e-18
ChromHMM-Quiescent-Max (91.0%) -0.086 0.014 1.4e-09 0.86 0.01 6.6e-20
ChromHMM-Repressed Polycomb-Avg
(1.7%)

-0.052 0.016 0.0011 1.5 0.065 1.5e-16

ChromHMM-Repressed Polycomb-Max
(9.9%)

-0.072 0.016 6.5e-06 1.3 0.037 2.9e-20

ChromHMM-TSS-Avg (0.2%) -0.0011 0.075 0.99 5.1 1 5.1e-05
ChromHMM-TSS-Max (0.9%) -0.058 0.073 0.42 4.5 0.49 1.7e-10
ChromHMM-Transcription Enhancer 3’-
Avg (0.2%)

0.078 0.027 0.0038 3.4 0.29 1.7e-16

ChromHMM-Transcription Enhancer 3’-
Max (3.1%)

0.088 0.035 0.013 2.8 0.21 6.7e-18

ChromHMM-Transcription Enhancer-5’-
Avg (0.4%)

0.12 0.024 9.7e-07 3.6 0.23 5.4e-18

ChromHMM-Transcription Enhancer 5’-
Max (4.8%)

0.16 0.022 2.2e-13 2.9 0.15 6.5e-19

ChromHMM-Transcription Weak Enhancer-
Avg (0.5%)

0.12 0.024 1.3e-06 2.8 0.16 7.3e-19

ChromHMM-Transcription Weak Enhancer-
Max (4.7%)

0.16 0.022 3e-12 2.6 0.12 1.7e-21

ChromHMM-Transcriptional Regulator-Avg
(0.3%)

0.27 0.039 5.2e-12 6.8 0.51 4.3e-17

ChromHMM-Transcriptional Regulator-
Max (3.3%)

0.22 0.037 4.2e-09 4 0.26 1.8e-18
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Table S33. S-LDSC results for marginal analysis of CpG-island, local CpG-
content, local GC-content, pLI, SIFT and Polyphen annotations. Standard-
ized Effect sizes (τ?) and Enrichment (E) of the weighted Coding, TSS, Repressed
and Gene ±5KB annotations, where the weights may be driven by the underlying
sequence context such as CpG-island, LocalCpG-content (±1kb), LocalGC-content
(±1kb) etc as well as pLI, pLI-Coding, pLI-TSS, PolyPhen and SIFT. All analyses are
conditioned on baseline-LD annotations. Results are meta-analyzed across 41 traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)

CpGisland (0.8%) 0.2 0.051 6.1e-05 6.7 0.61 5e-14
CpGisland-Coding (0.2%) 0.094 0.049 0.056 7.7 1.2 1.6e-11
CpGisland-Repressed (0.02%) -0.074 0.023 0.001 3.9 1.4 0.19
CpGisland-TSS (0.4%) 0.23 0.074 0.0019 8.8 0.98 2.2e-11
LocalCpGcontent (5.5%) -0.19 0.052 0.00025 1.1 0.013 1.5e-15
LocalCpGcontent-Coding
(0.2%)

0.44 0.075 4.9e-09 6 0.45 7.6e-16

LocalCpGcontent-Repressed
(2.2%)

-0.34 0.058 4.9e-09 0.59 0.055 3.7e-10

LocalCpGcontent-TSS (0.2%) 0.66 0.12 3.8e-08 7.1 0.59 1.1e-17
LocalGCcontent (41.0%) -0.15 0.03 5.7e-07 1.1 0.0062 1.1e-11
LocalGCcontent-Coding
(0.8%)

1.1 0.17 1.9e-10 5 0.35 2e-16

LocalGCcontent-Repressed
(18.0%)

-0.68 0.11 5.3e-10 0.63 0.05 1.1e-08

LocalGCcontent-TSS (1.0%) 1.8 0.28 1.7e-10 6.4 0.56 5.7e-19
pLI (14.0%) 0.095 0.011 3.9e-18 1.5 0.034 9.5e-17
pLI-Coding (0.4%) 0.62 0.057 2.5e-27 13 0.78 5.6e-17
pLI-TSS (0.3%) 0.52 0.039 3.5e-41 14 1.1 6.4e-20
Polyphen (0.1%) 0.23 0.081 0.0046 13 2.2 1.8e-10
SIFT (0.1%) -0.067 0.065 0.3 4.6 1.5 4e-06
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Table S34. S-LDSC results for non-tissue-specific variant-level joint model.
Joint S-LDSC model fit of all non-tissue-specific annotations as well as LocalGC-
content, LocalCpG-content and CpG-island weighted annotations of TSS, Repressed
and Coding regions, and pLI, pLI-TSS, pLI-Coding, SIFT and Polyphen. Only 7
annotations were found to be significant conditioned on all other annotations and the
baseline-LD model. Results are meta-analyzed across 41 traits. We also highlight in
red annotations from Figure 1 that were not significant under the joint model

Annotation τ? se(τ?) p(τ?) E se (E) p(E)

ChromHMM-Active-
Enhancer-1-Avg (0.3%)

-0.16 0.03 6.8e-08 2.6 0.29 1.8e-10

Roadmap-H3K4me1-Avg
(4.4%)

0.46 0.079 5e-09 3.6 0.19 6.5e-21

pLI-Coding (0.4%) 0.45 0.054 4e-17 11 0.71 3e-16
pLI-TSS (0.3%) 0.35 0.039 1.4e-19 12 1 8.2e-21
LocalGCcontent (41.0%) -0.16 0.03 1.1e-07 1.1 0.0066 4.2e-17
LocalGCcontent-TSS (1.0%) 1.2 0.28 1.6e-05 5.8 0.52 5.8e-26
LocalGCcontent-Coding
(0.8%)

0.91 0.18 7.8e-07 5.2 0.34 6.7e-20

DeepSEAV-H3K4me3-Max
(9.4%)

0.13 0.06 0.029 2.2 0.077 6.8e-19

BiClassCNN-Coding (1.3%) 0.43 0.28 0.13 5.1 0.34 6.5e-19
BiClassCNN-Promoter
(2.0%)

0.14 0.048 0.0036 2.7 0.17 2.2e-20

BiClassCNN-Repressed
(31.8%)

0.1 0.043 0.02 0.66 0.046 1.1e-08

BiClassCNN-TSS (1.0%) 0.19 0.25 0.44 6.2 0.55 3.9e-18
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Table S35. The Roadmap-H3K4me1-Avg annotation was sufficient to elim-
inate the DeepSEAV-H3K4me3-Max annotation that was significant in
marginal analysis. Standardized Effect sizes (τ?) and Enrichment (E) of the sig-
nificant non-tissue-specific variant-level DeepSEAV and Roadmap annotations from
marginal analysis, when modeled conditioned on each other and the 86 baseline-LD
annotations, and passed through Forward Stepwise Elimination. The results for the
penultimate step of the elimination process is shown. DeepSEAV-H3K4me3-Max is
not significant after correcting for all tested hypothesis (0.05/106) and gets eliminated
next. Results are meta-analyzed across 41 traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)

Roadmap-H3K4me1-Avg (4.4%) 0.455 0.08 1e-08 3.63 0.19 3e-19
DeepSEAV-H3K4me3-Max (9.4%) 0.182 0.06 0.004 2.14 0.08 1e-16
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Table S36. The Local GC-content annotations were sufficient to eliminate
the 4 BiClassCNN annotations that were significant in our marginal anal-
ysis. Meta-analyzed τ? and Enrichment E of the Joint S-LDSC model fit of the 4
BiClassCNN annotations from Figure 1 conditioned on the 86 baseline-LD annota-
tions and 3 LocalGCcontent annotations from Table S34. Results are meta-analyzed
across 41 traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)

BiClassCNN-Coding (1.3%) 0.69 0.3 0.023 5 0.35 1e-16
BiClassCNN-Promoter
(2.7%)

0.15 0.052 0.0039 2.7 0.17 3.1e-20

BiClassCNN-Repressed
(31.8%)

0.1 0.045 0.022 0.69 0.047 1.9e-07

BiClassCNN-TSS (1.0%) 0.13 0.28 0.65 6.6 0.58 3e-19
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Table S37. AUROC of various sets of annotations incorporating non-tissue-
specific variant-level deep learning annotations in predicting 12, 296 NIH
GWAS SNPs. We report the AUROC for a gradient boosting model trained using
each respective set of annotations, either without including baseline-LD model an-
notations; including baseline-LD model annotations; or including annotations from
the non-tissue-specific variant-level joint model (baseline-LD model + 7 annotations;
baseline-LD+7).

Feature GWAS SNPs
DeepSEAV-Avg/Max 0.582
BasenjiV-Avg/Max 0.612

DeepSEAV-All 0.591
BasenjiV-All 0.620
baseline-LD 0.758

baseline-LD + DeepSEAV-Avg/Max 0.759
baseline-LD + BasenjiV-Avg/Max 0.766

baseline-LD + DeepSEAV-All 0.765
baseline-LD + BasenjiV-All 0.770

baseline-LD+7 0.762
baseline-LD+7 + DeepSEAV-Avg/Max 0.764
baseline-LD+7 + BasenjiV-Avg/Max 0.765

baseline-LD+7 + DeepSEAV-All 0.769
baseline-LD+7 + BasenjiV-All 0.772
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Table S38. Enrichment of NIH GWAS SNPs for non-tissue-specific variant-
level annotations. We report the enrichment in deep learning annotations (along
with Jackknife standard error) at top 12, 296 known disease-associated SNPs from
NIH GWAS catalog23.

Feature GWAS SNPs
BasenjiV-DNase-Avg 1.61 (0.010)
BasenjiV-DNase-Max 1.35 (0.005)

BasenjiV-H3K27ac-Avg 1.62 (0.009)
BasenjiV-H3K27ac-Max 1.42 (0.005)
BasenjiV-H3K4me1-Avg 1.48 (0.005)
BasenjiV-H3K4me1-Max 1.31 (0.003)
BasenjiV-H3K4me3-Avg 1.81 (0.016)
BasenjiV-H3K4me3-Max 1.30 (0.006)
DeepSEAV-DNase-Avg 1.58 (0.009)
DeepSEAV-DNase-Max 1.39 (0.004)

DeepSEAV-H3K27ac-Avg 1.58 (0.008)
DeepSEAV-H3K27ac-Max 1.39 (0.004)
DeepSEAV-H3K4me1-Avg 1.46 (0.001)
DeepSEAV-H3K4me1-Max 1.31 (0.003)
DeepSEAV-H3K4me3-Avg 1.81 (0.013)
DeepSEAV-H3K4me3-Max 1.43 (0.005)
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Table S39. S-LDSC results for marginal analysis of blood-specific variant-
level DeepSEAV and BasenjiV annotations. Standardized Effect sizes (τ?) and
Enrichment (E) of 8 blood-specific variant-level DeepSEAV and 8 blood-specific
variant-level BasenjiV annotations, when conditioned on non-tissue-specific variant-
level joint model (baseline-LD and annotations from Figure S6). Results are meta-
analyzed across 11 blood-related traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)

BasenjiV-DNase-blood-Avg (1.9%) 0.06 0.11 0.6 5 0.37 1.2e-12
BasenjiV-DNase-blood-Max (5.4%) 0.22 0.1 0.028 3.5 0.2 8.8e-06
BasenjiV-H3K27ac-blood-Avg (2.5%) 0.59 0.13 4.2e-06 4.6 0.25 3.2e-05
BasenjiV-H3K27ac-blood-Max
(8.5%)

0.38 0.13 0.0045 3.2 0.13 4.5e-05

BasenjiV-H3K4me1-blood-Avg
(6.2%)

0.77 0.13 4.4e-09 3.2 0.15 3.7e-05

BasenjiV-H3K4me1-blood-Max
(13.7%)

0.58 0.13 9.8e-06 2.6 0.095 6.4e-05

BasenjiV-H3K4me3-blood-Avg
(2.0%)

0.34 0.13 0.011 6.9 0.41 5.8e-05

BasenjiV-H3K4me3-blood-Max
(5.5%)

0.34 0.098 0.00065 4.2 0.18 6.7e-05

DeepSEAV-DNase-blood-Avg (1.9%) -0.12 0.13 0.35 4.9 0.36 6e-05
DeepSEAV-DNAse-blood-Max
(5.4%)

0.055 0.11 0.6 3.4 0.18 6.9e-05

DeepSEAV-H3K27ac-blood-Avg
(2.5%)

0.12 0.11 0.29 4 0.21 9.1e-05

DeepSEAV-H3K27ac-blood-Max
(8.5%)

0.14 0.11 0.2 2.8 0.1 9e-05

DeepSEAV-H3K4me1-blood-Avg
(6.2%)

0.14 0.086 0.093 2.8 0.11 0.0001

DeepSEAV-H3K4me1-blood-Max
(13.7%)

0.14 0.073 0.048 2.4 0.074 0.0001

DeepSEAV-H3K4me3-blood-Avg
(2.0%)

-0.25 0.13 0.052 5.8 0.42 4.1e-05

DeepSEAV-H3K4me3-blood-Max
(5.5%)

0.064 0.096 0.5 3.9 0.19 8.3e-05
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Table S40. S-LDSC results for marginal analysis of blood-specific Roadmap
and ChromHMM annotations. Standardized Effect sizes (τ?) and Enrichment (E)
of 8 blood-specific Roadmap and 40 blood-specific ChromHMM annotations, when
conditioned on non-tissue-specific variant-level joint model (baseline-LD and annota-
tions from Figure S6). Results are meta-analyzed across 11 blood-related traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)

Roadmap-DNase-blood-Avg (2.1%) 1.8 0.29 1.6e-09 14 1.2 7.1e-06
Roadmap-DNase-blood-Max (6.2%) 1.4 0.22 9.8e-10 8.7 0.68 1e-05
Roadmap-H3K27ac-blood-Avg (3.2%) 1.5 0.32 2e-06 9.5 0.77 4.9e-06
Roadmap-H3K27ac-blood-Max (10.2%) 1.3 0.21 1.7e-10 6.4 0.43 9.1e-06
Roadmap-H3K4me1-blood-Avg (4.9%) 1.5 0.33 7.3e-06 7.1 0.54 6.4e-06
Roadmap-H3K4me1-blood-Max (11.2%) 1.4 0.24 5.7e-09 5.8 0.42 2.8e-06
Roadmap-H3K4me3-blood-Avg (1.8%) 1.3 0.3 1.5e-05 13 1.1 1e-05
Roadmap-H3K4me3-blood-Max (3.6%) 1.4 0.23 3.6e-09 11 0.86 2.9e-06
ChromHMM-DNase-blood-Avg (0.4%) -0.017 0.11 0.88 2.9 0.91 0.0015
ChromHMM-DNase-blood-Max (2.2%) 0.37 0.099 0.00019 5.2 0.59 3e-07
ChromHMM-Active Enhancer 1-blood-
Avg (0.3%)

1 0.25 3.4e-05 12 2.2 2.1e-05

ChromHMM-Active Enhancer 1-blood-
Max (2.6%)

1 0.17 7.7e-09 9.3 1.1 1.7e-07

ChromHMM-Active Enhancer 2-blood-
Avg (0.4%)

1.1 0.26 2.1e-05 12 1.8 6.4e-07

ChromHMM-Active Enhancer 2-blood-
Max (3.5%)

1.2 0.22 3.3e-08 9 1.1 3.3e-08

ChromHMM-Enhancer acetylation-
blood-Avg (0.2%)

0.24 0.13 0.059 5 0.9 4.9e-06

ChromHMM-Enhancer acetylation-
blood-Max (2.8%)

0.54 0.14 8.3e-05 5.6 0.72 9.5e-06

ChromHMM-Active Enhancer Flanking-
blood-Avg (0.4%)

0.96 0.24 4.6e-05 10 1.6 1.9e-06

ChromHMM-Active Enhancer Flanking-
blood-Max (3.3%)

1.1 0.22 1.1e-06 8.2 1.1 2.3e-07

ChromHMM-Weak Enhancer 1-blood-
Avg (0.3%)

0.43 0.11 5.3e-05 8.8 1 7.4e-08

ChromHMM-Weak Enhancer 1-blood-
Max (2.2%)

0.78 0.14 1.4e-08 8.6 0.89 9.7e-06

ChromHMM-Weak Enhancer 2-blood-
Avg (1.1%)

0.81 0.19 1.3e-05 6.6 0.88 9e-07

ChromHMM-Weak Enhancer 2-blood-
Max (6.5%)

1 0.19 4.1e-08 5.8 0.62 1.6e-07

ChromHMM-Heterochromatin-blood-
Avg (1.2%)

-0.13 0.031 3.2e-05 0.12 0.16 0.00025

ChromHMM-Heterochromatin-blood-
Max (3.2%)

-0.097 0.031 0.002 0.01 0.13 0.00057

ChromHMM-Promoter Bivalent-blood-
Avg (0.3%)

-0.34 0.12 0.0053 2.1 1.5 0.08

ChromHMM-Promoter Bivalent-blood-
Max (0.8%)

-0.078 0.13 0.54 4.7 0.96 1.3e-05

ChromHMM-Promoter Downstream 1-
blood-Avg (0.4%)

0.66 0.18 0.00034 19 2.1 1.4e-05
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Table S40. (continued)

Annotation τ? se(τ?) p(τ?) E se(E) p(E)

ChromHMM-Promoter Downstream 1-
blood-Max (0.9%)

1.1 0.18 3.2e-10 19 1.5 8.7e-06

ChromHMM-Promoter Downstream 2-
blood-Avg (0.1%)

0.51 0.13 0.0001 14 2.2 7.7e-08

ChromHMM-Promoter Downstream 2-
blood-Max (0.7%)

0.65 0.11 1.4e-08 12 1.5 3.8e-11

ChromHMM-Promoter Poised-blood-
Avg (0.2%)

-0.12 0.12 0.32 2.8 1.4 0.0029

ChromHMM-Promoter Poised-blood-
Max (1.6%)

0.065 0.075 0.38 3.6 0.53 2.5e-05

ChromHMM-Promoter Upstream-blood-
Avg (0.5%)

-0.15 0.12 0.22 8.7 1.2 6.9e-08

ChromHMM-Promoter Upstream-blood-
Max (1.3%)

0.59 0.13 1e-05 12 0.86 2.1e-05

ChromHMM-Quiescent-blood-Avg
(80.0%)

-0.21 0.082 0.012 0.52 0.022 4.9e-05

ChromHMM-Quiescent-blood-Max
(86.0%)

-0.092 0.049 0.06 0.64 0.017 6e-05

ChromHMM-Repressed Polycomb-
blood-Avg (1.4%)

-0.17 0.047 0.00037 1.1 0.36 0.089

ChromHMM-Repressed Polycomb-
blood-Max (0.04%)

-0.12 0.04 0.0038 1.3 0.22 0.0036

ChromHMM-TSS-blood-Avg (0.1%) -0.35 0.15 0.022 8.9 3.9 0.0041
ChromHMM-TSS-blood-Max (0.3%) -0.34 0.12 0.0051 7.5 2 0.00049
ChromHMM-Transcription Enhancer 3’-
blood-Avg (0.2%)

0.29 0.11 0.0067 7.7 1.4 1.4e-06

ChromHMM-Transcription Enhancer 3’-
blood-Max (1.1%)

0.45 0.11 2.9e-05 7.6 0.95 4.2e-06

ChromHMM-Transcription Enhancer 5’-
blood-Avg (0.5%)

0.28 0.11 0.0085 6.2 0.96 2.6e-10

ChromHMM-Transcription Enhancer 5’-
blood-Max (2.5%)

0.45 0.11 5.4e-05 5.8 0.68 1.4e-06

ChromHMM-
Transcription Weak Enhancer-
blood-Avg (0.6%)

-0.035 0.1 0.72 3.1 0.87 6.9e-07

ChromHMM-
Transcription Weak Enhancer-
blood-Max (2.6%)

0.19 0.09 0.035 3.9 0.64 6.8e-10

ChromHMM-Transcriptional Regulator-
blood-Avg (0.4%)

0.76 0.11 2.8e-12 14 1.3 1.3e-10

ChromHMM-Transcriptional Regulator-
blood-Max (1.7%)

0.74 0.16 2.6e-06 9.6 1.1 2.4e-11
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Table S41. S-LDSC results for blood-specific variant-level joint model. Stan-
dardized Effect sizes (τ?) and Enrichment (E) of the significant blood-specific variant-
level DeepSEAV, BasenjiV, Roadmap and ChromHMM annotations from Table S39
and Table S40, conditioned on each other and the non-tissue-specific variant-level
joint model (baseline-LD and annotations from Figure S6). Results are meta-analyzed
across 11 blood-related traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)

ChromHMM-
Active Enhancer 2-blood-
Max (3.5%)

0.73 0.18 6.9e-05 7.5 0.89 1.7e-06

ChromHMM-
Promoter Downstream 1-
blood-Max (1.1%)

1 0.21 1.4e-06 15 1.5 3.5e-05

ChromHMM-
Transcriptional Regulator-
blood-Avg (0.4%)

0.84 0.13 1.6e-11 12 1.1 7e-09

ChromHMM-
Repressed Polycomb-blood-
Avg (1.4%)

-0.11 0.032 5.8e-04 1.5 0.35 0.0026

Roadmap-H3K4me1-blood-
Max (11.2%)

0.68 0.18 0.00023 5.4 0.39 6.9e-06

Roadmap-H3K4me3-blood-
Avg (1.8%)

-0.77 0.19 7.4e-05 9.4 0.71 3.8e-05
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Table S42. The 2 surviving blood-specific Roadmap annotations were suf-
ficient to eliminate 3 of the 4 blood-specific variant-level BasenjiV annota-
tions that were significant in marginal analysis. Joint S-LDSC model fit of the
blood-specific variant-level BasenjiV annotations from Table S39 conditioned on the
non-tissue-specific variant-level joint model plus the two Roadmap blood annotations
from Table S41. Results are meta-analyzed across 11 blood-related traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)

BasenjiV-H3K27ac-blood-Avg (2.5%) 0.16 0.12 0.17 4.4 0.23 2e-05
BasenjiV-H3K4me1-blood-Avg (6.2%) 0.34 0.094 0.00031 3.1 0.12 2.5e-05
BasenjiV-H3K4me1-blood-Max
(13.7%)

0.18 0.11 0.096 2.5 0.086 3.9e-05

BasenjiV-H3K4me3-blood-Max (5.5%) -0.052 0.1 0.61 4.1 0.19 3.1e-05
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Table S43. AUROC of various sets of annotations incorporating blood-
specific variant-level deep learning annotations in predicting 8,741 fine-
mapped autoimmune diseease SNPs.We report the AUROC for a gradient boost-
ing model trained using each respective set of annotations, either without including
baseline-LD model annotations; including baseline-LD model annotations; including
annotations from the non-tissue-specific variant-level joint model (baseline-LD model
+ 7 annotations; baseline-LD+7); or including annotations from the blood-specific
joint model (non-tissue-specific joint variant-level joint model + 6 blood annotations;
baseline-LD+7+6Blood).

Feature finemapped SNPs
DeepSEAV-blood-Avg/Max 0.621
BasenjiV-blood-Avg/Max 0.664

DeepSEAV-blood-All 0.631
BasenjiV-blood-All 0.671

baseline-LD 0.841
baseline-LD + DeepSEAV-blood-Avg/Max 0.846
baseline-LD + BasenjiV-blood-Avg/Max 0.852

baseline-LD + DeepSEAV-blood-All 0.849
baseline-LD + BasenjiV-blood-All 0.854

baseline-LD+7 0.845
baseline-LD+7 + DeepSEAV-blood-Avg/Max 0.849
baseline-LD+7 + BasenjiV-blood-Avg/Max 0.853

baseline-LD+7 + DeepSEAV-blood-All 0.848
baseline-LD+7 + BasenjiV-blood-All 0.853

baseline-LD+7+6Blood 0.851
baseline-LD+7+6Blood + DeepSEAV-blood-Avg/Max 0.853
baseline-LD+7+6Blood + BasenjiV-blood-Avg/Max 0.854

baseline-LD+7+6Blood + DeepSEAV-blood-All 0.853
baseline-LD+7+6Blood + BasenjiV-blood-All 0.853

48

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 17, 2020. ; https://doi.org/10.1101/784439doi: bioRxiv preprint 

https://doi.org/10.1101/784439
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S44. Enrichment of fine-mapped autoimmune disease SNPs for blood-
specific variant-level annotations. We report the enrichment in blood-specific
variant-level deep learning annotations (along with Jackknife standard error) for 8741
fine-mapped SNPs in immune-related traits24.

Feature finemapped SNPs
BasenjiV-DNase-blood-Avg 2.02 (0.03)
BasenjiV-DNase-blood-Max 1.80 (0.03)

BasenjiV-H3K27ac-blood-Avg 2.14 (0.02)
BasenjiV-H3K27ac-blood-Max 1.85 (0.02)
BasenjiV-H3K4me1-blood-Avg 2.04 (0.03)
BasenjiV-H3K4me1-blood-Max 1.81 (0.02)
BasenjiV-H3K4me3-blood-Avg 2.17 (0.02)
BasenjiV-H3K4me3-blood-Max 1.95 (0.03)
DeepSEAV-DNase-blood-Avg 1.88 (0.03)
DeepSEAV-DNase-blood-Max 1.68 (0.02)

DeepSEAV-H3K27ac-blood-Avg 1.81 (0.02)
DeepSEAV-H3K27ac-blood-Max 1.67 (0.02)
DeepSEAV-H3K4me1-blood-Avg 1.70 (0.01)
DeepSEAV-H3K4me1-blood-Max 1.55 (0.02)
DeepSEAV-H3K4me3-blood-Avg 1.95 (0.02)
DeepSEAV-H3K4me3-blood-Max 1.76 (0.02)
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Table S45. S-LDSC results for marginal analysis of brain-specific variant-
level DeepSEAV and BasenjiV annotations. Standardized Effect sizes (τ?)
and Enrichment (E) of 8 brain-specific variant-level DeepSEAV and 8 brain-specific
variant-level BasenjiV annotations corresponding to 4 chromatin marks, DNase-1 Hy-
persensitivity Sites (DHS), H3K27ac, H3K4me1 and H3K4me3, when conditioned on
the non-tissue-specific variant-level joint model (baseline-LD and annotations from
Figure S6). Results are meta-analyzed across 8 brain-related traits..

Annotation τ? se(τ?) p(τ?) E se (E) p(E)

DeepSEAV-DNase-brain-Avg (2.9%) 0.5 0.081 8.6e-10 2.9 0.23 5e-05
DeepSEAV-DNase-brain-Max (4.5%) 0.41 0.067 1.7e-09 2.5 0.19 3.4e-05
DeepSEAV-H3K27ac-brain-Avg (3.2%) 0.6 0.066 5.4e-20 2.3 0.072 1.1e-08
DeepSEAV-H3K27ac-brain-Max (7.6%) 0.55 0.062 1.5e-18 2.1 0.076 8.8e-09
DeepSEAV-H3K4me1-brain-Avg (4.7%) 0.37 0.06 5.8e-10 2.1 0.06 3.7e-11
DeepSEAV-H3K4me1-brain-Max
(10.5%)

0.36 0.053 5.3e-12 1.9 0.07 2.6e-11

DeepSEAV-H3K4me3-brain-Avg (1.9%) 0.77 0.095 4.6e-16 4.4 0.26 1.7e-08
DeepSEAV-H3K4me3-brain-Max (3.4%) 0.77 0.085 1e-19 3.8 0.19 2.2e-08
BasenjiV-DNase-brain-Avg (2.9%) 0.47 0.078 1.3e-09 2.7 0.16 8.8e-08
BasenjiV-DNase-brain-Max (4.5%) 0.49 0.076 9.3e-11 2.8 0.18 1.2e-07
BasenjiV-H3K27ac-brain-Avg (3.2%) 0.34 0.049 3.1e-12 2.3 0.079 1.6e-08
BasenjiV-H3K27ac-brain-Max (7.6%) 0.4 0.058 3.6e-12 2.3 0.12 1.7e-06
BasenjiV-H3K4me1-brain-Avg (4.7%) 0.37 0.059 4.1e-10 2.1 0.059 7.6e-11
BasenjiV-H3K4me1-brain-Max (10.5%) 0.33 0.09 0.00022 2 0.062 2.6e-10
BasenjiV-H3K4me3-brain-Avg (1.9%) 0.55 0.074 1.1e-13 3.6 0.18 5.2e-07
BasenjiV-H3K4me3-brain-Max (3.4%) 0.77 0.089 8.2e-18 4 0.3 8.8e-06
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Table S46. S-LDSC for marginal analysis of brain-specific Roadmap and
ChromHMM annotations.Standardized Effect sizes (τ?) and Enrichment (E) of 8
brain-specific Roadmap and 40 brain-specific ChromHMM annotations, when condi-
tioned on the non-tissue-specific variant-level joint model annotations (baseline-LD
and annotations from Figure S6). Results are meta-analyzed across 8 brain-related
traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)

Roadmap-DNase-brain-Avg
(2.4%)

0.55 0.084 5.5e-11 4.9 0.41 5.4e-06

Roadmap-DNase-brain-Max
(5.1%)

0.39 0.079 7.1e-07 3.5 0.21 2.4e-06

Roadmap-H3K27ac-brain-
Avg (3.2%)

0.34 0.09 0.00019 3.5 0.15 1.1e-10

Roadmap-H3K27ac-brain-
Max (8.2%)

0.37 0.095 0.00012 2.9 0.11 7.6e-11

Roadmap-H3K4me1-brain-
Avg (4.4%)

0.48 0.12 5e-05 3.2 0.12 4.4e-11

Roadmap-H3K4me1-brain-
Max (11.2%)

0.46 0.12 0.00016 2.7 0.09 3.6e-11

Roadmap-H3K4me3-brain-
Avg (1.5%)

0.86 0.15 7.7e-09 6.8 0.37 1.1e-12

Roadmap-H3K4me3-brain-
Max (2.9%)

0.72 0.12 1.8e-09 5.7 0.28 4e-12

ChromHMM-DNase-brain-
Avg (0.8%)

-0.12 0.096 0.21 0.86 0.8 0.45

ChromHMM-DNase-brain-
Max (3.0%)

0.062 0.072 0.39 1.8 0.5 0.0031

ChromHMM-Active-
Enhancer-1-brain-Avg (0.4%)

0.24 0.086 0.0061 3.6 0.5 0.06

ChromHMM-Active-
Enhancer-1-brain-Max (1.5%)

0.32 0.1 0.002 3.5 0.45 0.056

ChromHMM-
Active Enhancer 2-brain-Avg
(0.4%)

0.39 0.083 3.4e-06 4.8 0.48 0.00043

ChromHMM-
Active Enhancer 2-brain-Max
(2.2%)

0.36 0.082 8e-06 4 0.3 1e-05

ChromHMM-
Enhancer acetylation-brain-
Avg (0.3%)

0.13 0.054 0.02 2.3 0.29 0.077

ChromHMM-
Enhancer acetylation-brain-
Max (2.2%)

0.19 0.068 0.0047 2.5 0.29 0.016

ChromHMM-
Active Enhancer Flanking-
brain-Avg (0.8%)

0.13 0.057 0.024 2.5 0.21 0.0031

ChromHMM-
Active Enhancer Flanking-
brain-Max (3.1%)

0.16 0.062 0.011 2.3 0.17 0.002
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Table S46. (continued)

Annotation τ? se(τ?) p(τ?) E se(E) p(E)

ChromHMM-
Weak Enhancer 1-brain-Avg
(0.4%)

0.19 0.073 0.0087 3.9 0.56 0.03

ChromHMM-
Weak Enhancer 1-brain-Max
(1.7%)

0.29 0.091 0.0012 4.1 0.51 0.014

ChromHMM-
Weak Enhancer 2-brain-Avg
(1.3%)

0.25 0.074 0.00065 2.8 0.27 3.5e-10

ChromHMM-
Weak Enhancer 2-brain-Max
(5.6%)

0.27 0.085 0.0015 2.5 0.23 3.6e-10

ChromHMM-
Heterochromatin-brain-Avg
(1.2%)

-
0.00042

0.021 0.98 0.37 0.12 0.016

ChromHMM-
Heterochromatin-brain-Max
(2.3%)

0.0051 0.021 0.81 0.42 0.1 0.0058

ChromHMM-
Promoter Bivalent-brain-Avg
(0.2%)

0.15 0.06 0.01 7.4 0.97 0.00052

ChromHMM-
Promoter Bivalent-brain-Max
(0.6%)

0.29 0.058 3e-07 7.2 0.57 2.7e-05

ChromHMM-
Promoter Downstream 1-
brain-Avg (0.4%)

0.29 0.072 7e-05 7.7 0.9 1.5e-05

ChromHMM-
Promoter Downstream 1-
brain-Max (0.6%)

0.47 0.077 1.2e-09 9.1 0.83 1.9e-08

ChromHMM-
Promoter Downstream 2-
brain-Avg (0.2%)

0.12 0.069 0.075 4.4 1.2 0.095

ChromHMM-
Promoter Downstream 2-
brain-Max (0.4%)

0.22 0.068 0.0011 5.5 0.98 0.00026

ChromHMM-
Promoter Poised-brain-Avg
(0.2%)

0.23 0.083 0.0064 4.3 0.81 0.059

ChromHMM-
Promoter Poised-brain-Max
(1.1%)

0.24 0.1 0.018 3.7 0.75 0.11

ChromHMMM-
Promoter Upstream-brain-
Avg (0.5%)

0.46 0.11 2.7e-05 9.6 0.82 1e-10

ChromHMM-
Promoter Upstream-brain-
Max (1.0%)

0.5 0.11 5.9e-06 8.1 0.6 1.3e-11
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Table S46. (continued)

Annotation τ? se(τ?) p(τ?) E se(E) p(E)

ChromHMM-Quiescent-brain-
Avg (77.6%)

-0.22 0.054 5.1e-05 0.81 0.013 8.1e-07

ChromHMM-Quiescent-brain-
Max (86.0%)

-0.088 0.029 0.0025 0.87 0.0098 3.4e-06

ChromHMM-
Repressed Polycomb-brain-
Avg (1.4%)

-0.069 0.025 0.005 1 0.16 0.31

ChromHMM-
Repressed Polycomb-brain-
Max (4.3%)

-0.046 0.024 0.054 1.2 0.094 0.012

ChromHMM-TSS-brain-Avg
(0.2%)

0.32 0.092 0.00048 7.9 1.6 0.00061

ChromHMM-TSS-brain-Max
(0.4%)

0.44 0.097 5e-06 9 1.3 0.0017

ChromHMM-
Transcription Enhancer 3’-
brain-Avg (0.3%)

0.12 0.038 0.0027 3.6 0.39 0.039

ChromHMM-
Transcription Enhancer 3’-
brain-Max (1.0%)

0.092 0.039 0.017 2.9 0.31 0.0022

ChromHMM-
Transcription Enhancer 5’-
brain-Avg (0.5%)

0.027 0.032 0.4 2.8 0.24 1.7e-08

ChromHMM-
Transcription Enhancer 5’-
brain-Max (1.6%)

0.083 0.034 0.016 2.8 0.2 5.4e-10

ChromHMM-
Transcription Weak Enhancer-
brain-Avg (0.6%)

0.21 0.049 2.8e-05 3.3 0.33 0.00026

ChromHMM-
Transcription Weak Enhancer-
brain-Max (1.8%)

0.22 0.05 1.7e-05 3 0.25 2.2e-11

ChromHMM-
Transcriptional Regulator-
brain-Avg (0.3%)

0.11 0.045 0.019 5 0.52 1.8e-06

ChromHMM-
Transcriptional Regulator-
brain-Max (0.9%)

0.056 0.047 0.24 3.7 0.35 3.3e-06
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Table S47. S-LDSC results for brain-specific variant-level joint model. Stan-
dardized Effect sizes (τ?) and Enrichment (E) of the significant brain-specific variant-
level DeepSEAV, BasenjiV, Roadmap and ChromHMM annotations from Table S45
and Table S46, conditioned on each other and the non-tissue-specific variant-level
joint model annotations (baseline-LD and annotations from Figure S6). Results are
meta-analyzed across 8 brain-related traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)

BasenjiV-H3K27ac-brain-
Max (7.7%)

0.27 0.059 5.4e-06 2.3 0.077 1.3e-08

ChromHMM-
Promoter Bivalent-brain-Max
(0.6%)

0.21 0.056 0.00014 6.9 0.56 3.3e-06

ChromHMM-Transcriptional-
Weak-Enhancer-brain-Max
(1.8%)

0.26 0.06 1.2e-05 3 0.25 4.8e-16

ChromHMM-
Weak Enhancer 2-brain-Avg
(1.3%)

0.27 0.078 0.00067 2.7 0.25 3.4e-12

DeepSEAV-H3K4me3-brain-
Max (3.4%)

0.35 0.09 0.0001 3.6 0.2 5.8e-08

Roadmap-H3K4me3-brain-
Max (2.9%)

0.4 0.091 1.3e-05 5.2 0.28 1.5e-10
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Table S48. The surviving brain-specific Roadmap annotations do not elimi-
nate any brain specific variant-level DeepSEAV and brain-specific variant-
level BasenjiV annotations that were significant in marginal analysis. Stan-
dardized Effect sizes (τ?) and Enrichment (E) of brain-specific DeepSEAV and brain-
specific BasenjiV annotations, conditioned on the non-tissue-specific variant-level
joint model annotations and 1 significant Roadmap brain annotation (Roadmap-
H3K4me3-brain-Max) that is significant in the joint model in Table S47. Results
are meta-analyzed across 8 brain-related traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)

DeepSEAV-DNase-brain-Avg (2.9%) 0.31 0.081 0.00011 2.8 0.24 3.8e-08
DeepSEAV-DNase-brain-Max (4.5%) 0.25 0.069 0.00022 2.5 0.2 2.3e-08
DeepSEAV-H3K27ac-brain-Avg (3.2%) 0.47 0.068 2.4e-12 2.4 0.072 9e-12
DeepSEAV-H3K27ac-brain-Max (7.7%) 0.43 0.064 1.7e-11 2.2 0.072 5.6e-12
DeepSEAV-H3K4me1-brain-Avg (4.7%) 0.3 0.054 1.6e-08 2.1 0.057 4.1e-13
DeepSEAV-H3K4me1-brain-Max
(10.5%)

0.29 0.053 4.9e-08 1.9 0.068 5e-13

DeepSEAV-H3K4me3-brain-Avg (1.9%) 0.5 0.092 5.7e-08 4.4 0.26 1.3e-11
DeepSEAV-H3K4me3-brain-Max (3.4%) 0.54 0.087 6.4e-10 3.8 0.19 6.7e-12
BasenjiV-DNase-brain-Avg (2.9%) 0.34 0.064 8.7e-08 2.8 0.17 1.4e-10
BasenjiV-DNase-brain-Max (4.5%) 0.36 0.068 1.4e-07 2.7 0.15 1.5e-10
BasenjiV-H3K27ac-brain-Avg (3.2%) 0.25 0.055 4e-06 2.4 0.11 1.3e-10
BasenjiV-H3K27ac-brain-Max (7.7%) 0.34 0.056 1.1e-09 2.3 0.073 1.3e-10
BasenjiV-H3K4me1-brain-Avg (4.7%) 0.3 0.053 2.2e-08 2.1 0.059 7e-12
BasenjiV-H3K4me1-brain-Max (10.5%) 0.29 0.087 0.00077 2.1 0.061 1.6e-12
BasenjiV-H3K4me3-brain-Avg (1.9%) 0.31 0.081 0.00014 4.1 0.28 4.8e-11
BasenjiV-H3K4me3-brain-Max (3.4%) 0.61 0.08 2.3e-14 3.8 0.17 3.5e-11
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Table S49. The surviving brain-specific ChromHMM annotations do not
eliminate any brain specific variant-level DeepSEAV and brain-specific
variant-level BasenjiV annotations that were significant in marginal anal-
ysis. Standardized Effect sizes (τ?) and Enrichment (E) of brain-specific variant-level
DeepSEAV and brain-specific variant-level BasenjiV annotations, conditioned on the
non-tissue-specific variant-level joint model annotations and 3 significant ChromHMM
brain annotations that are significant in the joint model in Table S47. Results are
meta-analyzed across 8 brain-related traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)

DeepSEAV-DNase-brain-Avg (2.9%) 0.44 0.079 2e-08 2.8 0.23 3.5e-06
DeepSEAV-DNase-brain-Max (4.5%) 0.36 0.067 5.9e-08 2.5 0.2 1.3e-06
DeepSEAV-H3K27ac-brain-Avg (3.2%) 0.55 0.065 2.6e-17 2.2 0.085 7.1e-08
DeepSEAV-H3K27ac-brain-Max (7.6%) 0.5 0.062 5.3e-16 2.1 0.086 5.4e-08
DeepSEAV-H3K4me1-brain-Avg (4.7%) 0.28 0.053 9.9e-08 1.9 0.07 4.4e-08
DeepSEAV-H3K4me1-brain-Max
(10.5%)

0.28 0.052 5.5e-08 1.8 0.08 2.3e-08

DeepSEAV-H3K4me3-brain-Avg (1.9%) 0.73 0.094 8.4e-15 4.2 0.26 5.4e-08
DeepSEAV-H3K4me3-brain-Max (3.4%) 0.72 0.086 3.9e-17 3.6 0.2 6.3e-08
BasenjiV-DNase-brain-Avg (2.9%) 0.4 0.071 1.7e-08 2.7 0.18 7.2e-08
BasenjiV-DNase-brain-Max (4.5%) 0.42 0.073 5.4e-09 2.7 0.16 5.1e-08
BasenjiV-H3K27ac-brain-Avg (3.2%) 0.30 0.05 1.6e-09 2.2 0.13 1.1e-07
BasenjiV-H3K27ac-brain-Max (7.6%) 0.36 0.057 2.3e-10 2.2 0.084 5.7e-08
BasenjiV-H3K4me1-brain-Avg (4.7%) 0.31 0.057 6.1e-08 2 0.072 6.9e-08
BasenjiV-H3K4me1-brain-Max (10.5%) 0.30 0.089 0.00061 2 0.054 4e-09
BasenjiV-H3K4me3-brain-Avg (1.9%) 0.52 0.073 1e-12 3.8 0.31 2.4e-07
BasenjiV-H3K4me3-brain-Max (3.4%) 0.68 0.096 1.5e-12 3.5 0.2 1.4e-07
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Table S50. Weighted k-mer enrichments for significant variant level brain-
specific variant-level DeepSEAV and BasenjiV annotations. We report the
weighted k-mer enrichment and enrichment p-value for the top significant enriched
k-mers (1 ≤ k ≤ 5) for H3K4me3-DeepSEAV-brain-Max and H3K27ac-BasenjiV-
brain-Max which were jointly significant in the brain-specific variant-level joint model.
The Bonferonni corrcection threshold is 0.05/(4 ∗ 682) where 682 is the number of
k-mers analyzed for the 2 significant variant-level annotations analyzed here and the 2
significant allelic-effect annotations analyzed in Table S11.

H3K4me3-DeepSEAV-brain-Max
kmer enrichment pvalue

CGCGC 8.8 9.6e-55
CGGCG 8.7 2.4e-53
CGCCG 8.5 1.2e-50
CGCG 5.9 5.1e-23

CGCGG 5.7 2.1e-21
CCGCG 5.7 5.0e-21
CGCGA 5.0 7.5e-16
AGCGC 4.8 1.0e-14
CCCGC 4.4 3.9e-12
CGCCC 4.3 1.1e-11
CCGCC 4.1 2.1e-10
ACGCG 4.1 2.2e-10
CCGGC 4.0 1.2e-09
CGGC 4.0 1.4e-09

CGGCC 4.0 1.4e-09
CGCGT 3.9 2.4e-09
CCGC 3.8 6.3e-09
CGCC 3.8 7.4e-09

CGGGC 3.8 9.7e-09
CGAGC 3.7 2.6e-08
CGCAG 3.6 6.2e-08

CGC 3.6 9.3e-08
CTGCG 3.6 1.5e-07
CGCTC 3.4 6.2e-07
CTCGC 3.4 1.1e-06

H3K27ac-BasenjiV-brain-Max
kmer enrichment pvalue

CGGCG 2.8 3.3e-72
CGCGC 2.8 6.4e-70
CGCCG 2.7 1.1e-66
CGCG 2.1 6.7e-27

CGCGG 2 7.4e-22
CCGCG 1.9 2.2e-21
CGCGA 1.9 9.8e-20
AGCGC 1.9 1.2e-18
ACGCG 1.7 2.1e-12
CCCGC 1.7 8.9e-12
CGCCC 1.7 2.3e-11
CGCGT 1.7 3.1e-11
CGAGC 1.6 1.1e-10
CGGC 1.6 2.8e-10

CGCAG 1.6 3.8e-10
CTGCG 1.6 4.4e-10
CCGCC 1.6 1.5e-09
CCGGC 1.6 4.3e-09
CGGCC 1.6 4.7e-09
CCGC 1.6 1.5e-08
CGCC 1.6 1.7e-08
CGC 1.5 2.3e-08

CCGCT 1.5 3.5e-08
CGCTC 1.5 3.4e-08
AGCGG 1.5 4.7e-08
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Figures

Figure S1. Correlations between deep learning annotations. We report correlations
between each pair of variant-level (DeepSEA and Basenji) and/or allelic-effect (DeepSEA∆
and Basenji∆) annotations. When comparing pairs of annotations that differed only in their
aggregation strategy (Avg/Max), chromatin mark (DNase/H3K27ac/H3K4me1/H3K4me3),
model (DeepSEA/Basenji) or type (variant-level/allelic-effect), respectively, we observed
large correlations across aggregation strategies (average r = 0.71), chromatin marks (average
r = 0.58), models (average r = 0.54) and types (average r = 0.48).

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 17, 2020. ; https://doi.org/10.1101/784439doi: bioRxiv preprint 

https://doi.org/10.1101/784439
http://creativecommons.org/licenses/by-nc-nd/4.0/


(A)

(B)

Figure S2. Disease informativeness of non-tissue-specific variant-level deep learn-
ing annotations: (A) Heritability enrichment, conditional on the baseline-LD model. Hor-
izontal line denotes no enrichment. (B) Standardized effect size (τ?) conditional on either
the baseline-LD model (marginal analyses: left column, white) or the baseline-LD model
plus 1 Roadmap, 1 ChromHMM, 3 LocalGCcontent and 2 pLI annotations (non-tissue-
specific variant-level joint model: right column, shaded). Results are meta-analyzed across
41 traits. Results are displayed only for annotations with significant τ? in marginal analyses
after correcting for 106 (variant-level + allelic-effect) non-tissue-specific annotations tested
(P < 0.05/106). None of these annotations were significant after conditioning on the non-
tissue-specific variant-level joint model (right column). Error bars denote 95% confidence
intervals. Numerical results are reported in Table S29, Table S30 and Table S34.
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Figure S3. Disease informativeness of non-tissue-specific Roadmap annotations
in marginal analysis. (A) Heritability enrichment, conditioned on the baseline-LD model.
Horizontal line denotes no enrichment. (B) Standardized effect size (τ?) conditioned on the
baseline-LD model. Results are meta-analyzed across 41 traits. Results are displayed only for
annotations with significant τ? in marginal analyses after correcting for 106 (variant-level +
allelic-effect) non-tissue-specific annotations tested (P < 0.05/106). Error bars denote 95%
confidence intervals. Numerical results are reported in Table S32.
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(A)

(B)

Figure S4. Disease informativeness of non-tissue-specific ChromHMM annota-
tions in marginal analysis. (A) Heritability enrichment, conditioned on the baseline-LD
model. Horizontal line denotes no enrichment. (B) Standardized effect size (τ?) conditioned
on the baseline-LD model. Results are meta-analyzed across 41 traits. Results are displayed
only for annotations with significant τ? in marginal analyses after correcting for 106 (variant-
level + allelic-effect) non-tissue-specific annotations tested (P < 0.05/106). Error bars
denote 95% confidence intervals. Numerical results are reported in Table S32.
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Figure S5. BiClassCNN-TSS is highly correlated with CpG-island, local CpG-
content(±1kb) and local GC-content(±1kb) annotations. (A) Violin plot of the Bi-
ClassCNN TSS annotation for variants that are TSS and fall in a CpG island and variants
that are TSS but do not fall in a CpG island. (B) Scatter plot of the BiClassCNN TSS anno-
tation with the local GC content (1KB) around the variant for all TSS variants. (C) Scatter
plot of the BiClassCNN TSS annotation with the local CpG content (1KB) around the vari-
ant for all TSS variants. Here, by TSS variants, we imply variants that are annotated to
fall in a TSS region as predicted by Segway77,78. The BiClassCNN TSS annotations showed
strong correlation with all three features - CpG-island, Local GC and Local CpG content at
the TSS variants with the correlation with the Local GC content at TSS variants being the
strongest.

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 17, 2020. ; https://doi.org/10.1101/784439doi: bioRxiv preprint 

https://doi.org/10.1101/784439
http://creativecommons.org/licenses/by-nc-nd/4.0/


(A)

(B)

Figure S6. Disease informativeness of non-tissue-specific Roadmap, ChromHMM,
LocalGCcontent and pLI annotations in non-tissue-specific variant-level joint
model. (A) Heritability enrichment, conditioned on the baseline-LD model. Horizontal line
denotes no enrichment. (B) Standardized effect size (τ?) conditioned on each other as well as
the baseline-LD model.Results are meta-analyzed across 41 traits. Results are displayed only
for annotations with significant τ? in marginal analyses after correcting for 106 (variant-level
+ allelic-effect) non-tissue-specific annotations tested (P < 0.05/106). Error bars denote 95%
confidence intervals. Numerical results are reported in Table S34.
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Figure S7. Correlations between non-tissue-specific deep learning annotations
and the baselineLD v2.1 annotations. We report correlations for 16 non-tissue-specific
allelic-effect deep learning annotations and the 85 baseline-LD annotations (excluding the
annotation with all 1s). The 11 conservation related annotations are reported at the bottom
of the table and shaded green.
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Figure S8. Disease informativeness of blood-specific variant-level deep learning
annotations: (A) Heritability enrichment, conditioned on the non-tissue-specific variant-
level joint model. Horizontal line denotes no enrichment. (B) Standardized effect size τ?

conditioned on either the non-tissue-specific variant-level joint model (marginal analysis:
left column, white) or the non-tissue-specific variant-level joint model plus 2 Roadmap and
4 ChromHMM blood-specific annotations (blood-specific variant-level joint model: right
column, dark shading). Results are meta-analyzed across 11 blood-related traits. Results are
displayed only for annotations with significant τ? in marginal analyses after correcting for 80
(variant-level + allelic-effect) blood-specific annotations tested (P < 0.05/80). None of these
annotations were significant after conditioning on the blood-specific variant-level joint model.
Error bars denote 95% confidence intervals. Numerical results are reported in Table S39 and
Table S41.
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Figure S9. Disease informativeness of blood-specific Roadmap annotations in
marginal analysis conditional on the non-tissue-specific variant-level joint model.
(A) Heritability enrichment, conditioned on the non-tissue-specific variant-level joint model
(original baseline-LD annotations and the annotations from Figure S6). Horizontal line de-
notes no enrichment. (B) Standardized effect size (τ?) conditioned on the non-tissue-specific
variant-level joint model. Results are meta-analyzed across 11 blood-related traits. Results
are displayed only for annotations with significant τ? in marginal analyses after correcting
for 80 (variant-level + allelic-effect) blood-specific annotations tested (P < 0.05/80). Error
bars denote 95% confidence intervals. Numerical results are reported in Table S40.
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Figure S10. Disease informativeness of blood-specific ChromHMM annotations in
marginal analysis conditional on the non-tissue-specific variant-level joint model.
(A) Heritability enrichment, conditioned on the non-tissue-specific variant-level joint model
(original baseline-LD annotations and the annotations from Figure S6). Horizontal line de-
notes no enrichment. (B) Standardized effect size (τ?)conditioned on the non-tissue-specific
variant-level joint model. Results are meta-analyzed across 11 blood-related traits. Results
are displayed only for annotations with significant τ? in marginal analyses after correcting
for 80 (variant-level + allelic-effect) blood-specific annotations tested (P < 0.05/80). Error
bars denote 95% confidence intervals. Numerical results are reported in Table S40.
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Figure S11. Disease informativeness of blood-specific Roadmap and ChromHMM
annotations in blood-specific final joint model. (A) Heritability enrichment, condi-
tioned on each other and non-tissue-specific variant-level joint model (original baseline-LD
annotations and the annotations from Figure S6). Horizontal line denotes no enrichment. (B)
Standardized effect size (τ?) conditioned on each other and the non-tissue-specific variant-
level joint model. Results are meta-analyzed across 11 blood-related traits. Results are dis-
played only for annotations with significant τ? in marginal analyses after correcting for 80
(variant-level + allelic-effect) blood-specific annotations tested (P < 0.05/80). Error bars
denote 95% confidence intervals. Numerical results are reported in Table S41.
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**
**

Figure S12. Disease informativeness of brain-specific variant-level deep learning
annotations: (A) Heritability enrichment, conditioned on the non-tissue-specific variant-
level joint model. Horizontal line denotes no enrichment. (B) Standardized effect size τ?

conditioned on either the non-tissue-specific variant-level joint model (marginal analysis: left
column, white) or the non-tissue-specific variant-level joint model plus 1 DeepSEA, 1 Basenji,
1 Roadmap and 3 ChromHMM brain-specific annotations (brain-specific variant-level joint
model: right column, dark shading). Results are meta-analyzed across 8 brain-related traits.
Results are displayed only for annotations with significant τ? in marginal analyses after cor-
recting for 80 (variant-level + allelic-effect) brain-specific annotations tested (P < 0.05/80).
For brain-specific variant-level joint model, ** denotes P < 0.05/80. Error bars denote 95%
confidence intervals. Numerical results are reported in Table S45 and Table S47.
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Figure S13. Disease informativeness of brain-specific Roadmap annotations in
marginal analysis conditional on the non-tissue-specific variant-level joint model.
(A) Heritability enrichment, conditioned on the non-tissue-specific variant-level joint model
(original baseline-LD annotations and the annotations from Figure S6). Horizontal line de-
notes no enrichment. (B) Standardized effect size (τ?) conditioned on the non-tissue-specific
variant-level joint model. Results are meta-analyzed across 8 brain-related traits. Results are
displayed only for annotations with significant τ? in marginal analyses after correcting for
80 (variant-level + allelic-effect) blood-specific annotations tested (P < 0.05/80). Error bars
denote 95% confidence intervals. Numerical results are reported in Table S46.
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Figure S14. Disease informativeness of brain-specific ChromHMM annotations in
marginal analysis conditional on the non-tissue-specific variant-level joint model.
(A) Heritability enrichment, conditioned on the non-tissue-specific variant-level joint model
(original baseline-LD annotations and the annotations from Figure S6). Horizontal line de-
notes no enrichment. (B) Standardized effect size (τ?) conditioned on the non-tissue-specific
variant-level joint model. Results are meta-analyzed across 8 brain-related traits. Results are
displayed only for annotations with significant τ? in marginal analyses after correcting for
80 (variant-level + allelic-effect) blood-specific annotations tested (P < 0.05/80). Error bars
denote 95% confidence intervals. Numerical results are reported in Table S46.
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Figure S15. Disease informativeness of brain-specific Roadmap and ChromHMM
annotations in brain-specific final joint model. (A) Heritability enrichment, condi-
tioned on the non-tissue-specific variant-level joint model (original baseline-LD annota-
tions and the annotations from Figure S6), and all brain-specific variant-level DeepSEA
and Basenji, and Roadmap and ChromHMM annotations. Horizontal line denotes no enrich-
ment. (B) Standardized effect size (τ?) conditioned on the non-tissue-specific variant-level
joint model and all brain-specific variant-level DeepSEA and Basenji, and Roadmap and
ChromHMM annotations. Results are meta-analyzed across 8 brain-related traits. Results
are displayed only for annotations with significant τ? in marginal analyses after correcting
for 80 (variant-level + allelic-effect) blood-specific annotations tested (P < 0.05/80). Error
bars denote 95% confidence intervals. Numerical results are reported in Table S47.
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Figure S16. The Neural net architecture for BiClassCNN. The architecture of the
Covolutional Neural Net (CNN) model used for BiClassCNN training. It comprioses of two
layers - 1 layer being Convolutional+MaxPool with 5 filters and 1 Fully Connected hidden
layer with 10 nodes leading to the final output layer with 2 nodes distinguishing between the
positive and negative sets. We chose the convolutional filter to be of size 4 and stride length
1 and the MaxPool filter to pool every 4 bases at a time. RELU activation was used.
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Figure S17. Number of significantly disease informative variant-level deep learn-
ing annotations: Number of significant non-tissue-specific, blood-specific and brain-specific
variant-level annotations across (A) different deep learning models (DeepSEA and Basenji),
(B) different aggregation strategies (Average and Maximum) and (C) different types of epige-
nomic marks, in terms of marginal enrichment in heritability, conditional τ? and joint τ?

for all traits, blood traits and brain traits respectively. For all traits analysis, the analysis is
conditioned on the baseline-LD model. For blood traits analysis, the analysis is conditioned
on non-tissue-specific variant-level joint model. For brain traits analysis, the analysis is con-
ditioned on non-tissue-specific variant-level joint model. Numerical results are reported in
Table S28 (numerical summary of results), Table S29 (enrichment and marginal τ? for all
tissues, all traits analysis), Table S34 (joint τ? of all tissues, all traits analysis), Table S39
(enrichment and marginal τ? for blood cell types, blood traits analysis), Table S41 (joint τ?

of blood cell types, blood traits analysis), Table S45 (enrichment and marginal τ? for brain
tissues, brain traits analysis) and Table S47 (joint τ? of brain tissues, brain traits analysis).
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