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	47 
	48 
 49 
SUMMARY 50 
 51 

Synthetic development is a nascent field of research that uses the tools of synthetic biology to 52 
design genetic programs directing cellular patterning and morphogenesis in higher eukaryotic cells, 53 
mainly mammalian ones. Current design methods of these genetic programs proceed inefficiently, relying 54 
on trial and error processes. By contrast, computational models can act as rapid testing platforms, 55 
revealing the networks, signals, and responses required for achieving robust target structures. We 56 
introduce a computational model where contact dependent cell-cell signaling networks and cellular 57 
responses can be chosen in a modular fashion, allowing in silico recreation of known synthetic 58 
morphogenic trajectories such as those resulting in multilayered synthetic spheroids. By altering the 59 
modular components, our model also allows for the exploration of new trajectories that can result in 60 
hollowed, elongated, and oscillatory structures. Our model functions as a testing ground illuminating how 61 
synthetic biology tools can be used to create particular structures. In addition, it can provide valuable 62 
insight into our understanding of both imagined and extant cellular morphologies. 63 
	64 
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 66 
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	69 
INTRODUCTION 70 
 71 

During the development of multicellular organisms, cells self-organize into complex tissue and 72 
organ architectures essential for proper function. Self-organization is driven by genetically encoded 73 
programs that dictate interactions at multiple biological levels, from cellular to tissue and organ levels 74 
(Santorelli et al., 2019; Toda et al., 2019; Turner et al., 2016). Deconstructive approaches, such as gene 75 
knock-out or interference experiments have traditionally been used to investigate how self-organization 76 
arises from these levels (Bashor et al., 2010; Libby et al., 2018). More recently, reconstructive approaches 77 
are increasingly being employed (Elowitz and Leibler, 2000; Li et al., 2018; Santorelli et al., 2018; Tigges 78 
et al., 2009). These approaches emphasize identification of the universal principles that govern life 79 
(Elowitz and Lim, 2010). 80 

In the field of developmental biology, the goal of reconstruction is to understand primary 81 
components and their role in self-organization (Bashor et al., 2010; Davies, 2017; Lim, 2010; Mukherji 82 
and van Oudenaarden, 2009). For instance, which genes or genetic circuits, in which cells, allow and 83 
control specific natural or non-natural tissue development? Synthetic development seeks to integrate 84 
synthetic genetic circuits into cells to control both the stimuli they sense and their subsequent behavior in 85 
order to achieve synthetic multicellular development (Santorelli et al., 2019; Toda et al., 2018, 2019). 86 

For example, by adding synthetic signaling and adhesion circuits to the genome of non-87 
assembling cells, e.g. mouse fibroblast cells in culture, it is possible to achieve self-assembling patterned 88 
spheroids (Toda et al., 2018). Similar genetic circuits could, in theory, be used to design other 89 
developmental trajectories in such non-developing cellular systems, however it remains unclear exactly 90 
how to predict which genetic circuits would be required for any given target structure (Briers et al., 2019; 91 
Santorelli et al., 2019). 92 
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Currently, synthetic development programs are designed intuitively, based on literature search 93 
and preliminary experiments in simplified setups, before implementation into living cells. As a result, 94 
reconstruction attempts move slowly, relying on a cycle of design, cell implementation, behavior 95 
monitoring, redesign, and so forth. This can be both time-consuming and costly, therefore limiting 96 
exploration of the genetic circuits, behaviors, and experimental parameters critical for achieving desired 97 
structures and features (Briers et al., 2019). Arguably, the most limiting step of reconstructive approaches 98 
is the first, design, which indicates our incomplete understanding of the underlying biology. A sensible 99 
initial guess could be shown to be erroneous only after months of cell implementation work. In these 100 
situations where not everything is known, even semi-predictive computational models could be of 101 
significant value, allowing rapid implementation of many designs in silico. These various designs could 102 
be tested for viability and pre-optimized before biological implementation, thereby saving time and cost 103 
(Briers et al., 2019; Santorelli et al., 2019). Additionally, such a framework could both facilitate the 104 
design of novel tissues of potential biomedical interest and delineate which structures might or might not 105 
be possible (Elowitz and Lim, 2010; Ollé-Vila et al., 2016). 106 

While current computational models can successfully replicate various natural developmental 107 
processes (Belmonte et al., 2016; Hester et al., 2011; Hutson et al., 2017; Lakatos et al., 2018; Lambert et 108 
al., 2018; Lin et al., 2009; Marin-Riera et al., 2018; Shaya et al., 2017; Swat et al., 2015), they exist 109 
disparately, functioning as highly specialized tools tailored to the specific mechanisms/programs of the 110 
focal biological system. In the case of synthetic development, an effective computational framework 111 
requires generalizability and modularity. In order to maximize the designs that can be tested in silico, the 112 
model must reflect the broadness and modularity of tools employed in synthetic biology itself. Such a 113 
framework would not only enable great flexibility in design testing, it would also facilitate the exploration 114 
of numerous parameters and networks promoting robust development as well as elucidating novel designs 115 
that could yield as yet unimagined structures of interest.  116 

Here we describe the development and use of a computational framework for synthetic 117 
development circuit design. Inspired by the use of synthetic Notch (synNotch) pathways to program 118 
multicellular morphogenesis (Toda et al., 2018), the framework allows the design of synthetic cell-cell 119 
contact-dependent signaling networks with user defined cellular inputs and responses. In this paper, we 120 
first describe a generalizable cell-cell contact dependent signaling model (named GJSM, generalized 121 
juxtacrine signaling model) that could be modified to capture different types of signaling inputs and 122 
dynamics. We describe then the GJSM implementation the model in a cellular Potts environment (Swat et 123 
al., 2012) and how we pair the signaling with different behavioral outputs to mimic the modularity of the 124 
synNotch protein tool in an extended framework (Fig.1 and methods). We describe then the use of this 125 
framework to recapitulate currently implemented synthetic structures like multi-layered spheroids (Fig. 2-126 
4). Finally, we describe several design-implementation-test cycles for novel genetic programs for other 127 
multicellular behaviors such as hollowing, elongation, and oscillation (Fig. 5-7). We believe that this type 128 
of framework will enable the field to move towards a more deterministic and constructive understanding 129 
of developmental signaling logic. 130 
 131 
RESULTS 132 
 133 
Brief overview of the computational method (for more details see STAR Methods) 134 

	135 
Our computational model captures contact-dependent signaling and links it to various changes in 136 

cell behaviors. Cell-cell signaling that relies on contact-dependence (aka juxtacrine) generally functions 137 
using similar logic: if cell (A) expressing a ligand is in contact with cell (B), and cell (B) expresses the 138 
cognate receptor for that ligand, then cell (B) will expresses the target genes (Bosenberg and Massagué, 139 
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1993; Massagué, 1990; Massagué and Pandiella, 1993) (Fig. 1a, Biological). When target gene products 140 
accumulate sufficiently, the behavior of the responding cell (B) changes (Fig. 1b, Biological). 141 

To model this modality of signaling, we conceptually separated it in two parts: (i) signaling-142 
dependent continuous changes in target gene expression in receiver cells, and (ii) gene expression 143 
dependent change in cell behavior (see STAR methods for full details). For the first part, we use 144 
differential equations to model input-dependent response. The strength of the response (target gene 145 
induction) in the receiver cell over time depends on several factors: the number of sender cells, the 146 
number of ligands on each sender cell, the number of receptors on the receiver cell, and the amount of 147 
contact between sender(s) and receiver. In a simplified two cell case with sender cell (A) and receiver cell 148 
(B), if the receptors on (B) are in excess, signaling depends primarily on the amount of ligand on cell (A) 149 
and the fraction of (A)’s surface contacting (B) (Fig. 1a, Biological). To capture this signaling, we define 150 
L as the number of ligands on cell (A)’s surface and Φ as the fraction of (A)’s surface in contact with 151 
(B)’s surface. We can then define the signal S that cell (B) receives as S=Φ*L (Fig 1a, Model). Increasing 152 
the fraction of shared surface induces a stronger response (Fig. 1a, right graph). This is one specific case 153 
of signaling, where ligand is limiting; for the generalized model, see STAR methods. This part of the 154 
model (Fig. 1a) accounts for the continuous changes in gene expression in receiver cells. 155 

To model the target gene expression dependent change in cell behavior, we take a step-wise 156 
approximation where we define thresholds of gene activation that induce transition from a basal cell state 157 
to an activated state and vice versa. In this way, behavioral transitions are discrete instead of continuous 158 
(Anderson, 2005; Hester et al., 2011; Hutson et al., 2017) (Fig. 1b, right graph). Thresholds for transition 159 
from basal to active state and back from active to basal state can be different and are defined as model 160 
parameters. The state machine schematic for this type of network is proposed in Fig. 1b, Model.  161 

The two parts of the model, continuous signaling and discrete response, are highly modular and 162 
can be designed independently of one another. 163 

 164 
The Model Qualitatively Recapitulates Simple Synthetic Structures 165 
	166 

Known synthetic development structures are currently derived from juxtacrine signaling 167 
dependent expression of different adhesion proteins (Toda et al., 2018). In this in vitro assays, cells are 168 
engineered with the appropriate signaling networks and responses, then between 20 and 200 cells are 169 
mixed together and grown for 2-3 days in ultra-low attachment plates, and their morphological and 170 
signaling evolution is followed via fluorescent microscopy. The first example is the two-layer spheroid 171 
(Fig. 2a); it is the result of a single forward network where CD19 on (A) blue cells bind to an αCD19 172 
synNotch receptor on (B) gray cells to drive expression of green fluorescent protein (GFP) and E-173 
cadherin, a homotypic adhesion protein (Toda et al., 2018). When approximately 100 (A) and 100 (B) 174 
cells are mixed together in a non-adhesive extracellular environment (ultra-low attachment, U-bottom 175 
plates), signaling induces (B) cells to become GFP-positive and preferentially adhere to one another. The 176 
(B) cells then deform to the extent where they cannot be individually distinguished from one another and, 177 
over time, form the inner layer of the spheroid. Blue (A) cells remain on the outer layer (Toda et al., 178 
2018).  179 

To replicate the in vitro experimental setup in silico, we defined cell signaling and response 180 
behaviors in L929 analogs that we call in silico L929 (ISL929); we then “mixed” these cells by 181 
initializing 20-200 cells in a 100x100x100 lattice containing an inert medium (to model ultra-low 182 
attachment plates), as a radially symmetric blob to maintain a consistent initial cell aggregate shape while 183 
also maintaining a similar cell total and ratio to that of the reference experiment (more info in the STAR 184 
methods, Computational Methods Details chapter). We then ran the simulation for 1000 monte carlo steps 185 
(mcs) per one hour of experiment time and follow the evolution of signaling and morphology (timescale 186 
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was determined by comparing the qualitative and quantitative space-time morphological evolution, and 187 
(A’) and (B’) activation rate, to that of the reference three-layer experiment, see below Fig. 3d-e). 188 

To simulate the 2 layer spheroid in this setup, we programmed our in silico L929 (ISL929, see 189 
STAR Methods) cells with the same logic as the in vitro (Fig. 2b): (A) cells in contact with (B) cells send 190 
activation signals to (B) cells; (B) cells accumulate target genes over time if signaled to and with 191 
sufficient target gene level, excite to (B’). (B’) cells adhere to other (B’) cells and they can take a more 192 
compacted morphology, via relaxation of their spherical morphology constraints λSur and λVol (See STAR 193 
Methods for details). Starting with a mixture of approximately 100 (A) and 100 (B) cells, we consistently 194 
(n=3) obtained two-layer structures (Fig. 2b) qualitatively similar to that of the in vitro results (Fig. 2a). 195 
We noticed that this 2-layered structure could be generated for a number of values of adhesion matrix (not 196 
shown).  197 

One way to quantitatively track sorting is to follow a homogeneity index (Flenner et al., 2008; 198 
Olimpio et al., 2018; Sun and Wang, 2013); we define a homogeneity index for a given cell type, based 199 
on the average percentage of surface area that the cells of that cell type share with either other of the same 200 
or of different cell types. This measure ranges from 0 to 1, with 1 indicating maximal homogeneity (see 201 
STAR Methods, Simulation Quantifications). We followed sorting over time by quantifying homogeneity 202 
index of cells (B)/(B’) and (A) separately over time. The homogeneity index increases only slowly for 203 
cells of type A, reflecting the lack of active sorting for A cells, and instead increases dramatically for cells 204 
B/B’, starting from around when the induction of transition BàB’ happens (around 7000 mcs, Fig. 2b).  205 

We noted that, from the in vitro system, it does seem that the reversion to the ground state is little 206 
or negligible. Computationally here we used an approximation where the active state B’ never goes back 207 
to B. We compared, in the context of 3-layered structures below (Fig. 3c and S3), the results of 208 
simulations with this approximation with ones where the threshold for activation was the same as of 209 
induction, and we did not see statistic differences, which motivated us to keep this assumption of 210 
“irreversibility” for the positive-feedback based networks.  211 

	212 
The Model Recapitulates Higher-order Synthetic Structures Qualitatively and Quantitatively 213 
 214 
QUALITATIVE 215 

While the two-layer structure is the result of a single forward network, we hypothesized that the 216 
model could easily be expanded to capture morphologies resulting from higher order signaling. We tested 217 
this hypothesis by extending the forward network to a back-and-forth network where (A) activates (B), 218 
then (B’) activates (A). This network was used in vitro to generate both central-symmetric 3-layered 219 
structures (Fig. 3) and also non-central symmetric structures (Fig. 4), based on the choice of adhesion 220 
molecules.  221 

One first central-symmetric 3-layered structure is the so-called 3-layered structure. In vitro, this is 222 
accomplished by modifying the forward network such that (B) cells express GFP-ligand that binds to 223 
αGFP-ligand synNotch on blue (A) cells, driving blue (A) cells’ expression of mCherry and low E-224 
cadherin. When around 200A cells are mixed with around 40B cells, the first step is the induction of B 225 
cells to B’; the B’ cells are homotypically adhesive so they form the core, and they also signal to cells A 226 
to induce them to A’. (A’) cells are moderately adhesive to (B’) cells and weakly to (A’) cells (Toda et 227 
al., 2018) (Fig. 3a, Development 0-20hr).  228 

The implementation in silico follows the same design logic. The forward network used to 229 
generate the two-layer structure is modified such that the excited (B’) state gains a ligand communication 230 
channel that can signal to (A) and (A’) cells that express the cognate receptor. The adhesion matrix is 231 
modified such that the (A’) cells are intermediately adherent to (B’) and weakly to the rest of the cells 232 
(Fig. 3b). When we simulated the development of a system comprising around 200A and 50B cells, we 233 
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observed that there was first induction of B to B’ cells that formed a core. Then the B’ cells started to 234 
communicate to the A cells to turn red starting (Fig. 3b, Development). At the endpoint we observed 235 
structures similar to that of the in vitro results, a three-layer structure consisting of a green core 236 
surrounded by concentric shells of red, then blue (Fig. 3b and Movie S1). We also obtained similar 237 
structures when we started from different amount of cells A and B (Fig. S1 and Movie S2). In silico, we 238 
showed that signaling is necessary for three-layer formation: without excitation to (B’) and (A’), no 239 
sorting occurred either qualitatively or quantitatively (Fig. S2). Of note, the three-layer structure has 240 
known regenerative capabilities in vitro, reforming the three-layer structure if bisected (Toda et al., 2018) 241 
(Fig. 3a). In silico three-layer structure also exhibited regeneration, but only partially (Fig. 3b and Movie 242 
S3). Reasons for this are addressed in the discussion. 243 

At this point we carried out a fine-tuning of the parameters to qualitatively match the timelines of 244 
activation; we converged to model parameters for which 1000mcs = 1h by comparing the in silico and the 245 
in vitro timelapse stills. For example, the activation of green cells occur at around 7000mcs in silico, and 246 
the activation of red cells occur at 13,000mcs. This alignment was achieved by tuning the parameters.  247 

Other, non-central-symmetric synthetic structures were generated with the back-and-forth 248 
network, differing in the signaling-induced adhesion proteins (Toda et al., 2018). Once we identified the 249 
signaling parameters that would best recapitulate the three layers structure, we moved to the other 250 
structures. We decided to keep the signaling parameters consistent between networks (same signaling 251 
parameters for all back-and-forth). Moreover, when E-cadherin was used again, we used the same 252 
numerical values across different simulations. For new cadherins, we estimated the value by best-253 
guessing based on literature, and by fine tuning the similarity of the structures that we obtained to the in 254 
vitro structures. By modifying the adhesion matrix to reflect different cadherin-type adhesion and the 255 
corresponding spherical morphology constraints to reflect deformation in adhesive cells we were able to 256 
recapitulate the structures derived from the back-and-forth signaling network in silico with the correct 257 
timescale (Fig. 4a, Fig. S4-S5, Movies S3-7).  258 

 259 
QUANTITATIVE 260 

Quantifying morphogenesis is known to be relatively difficult. Nevertheless, we wanted to have a 261 
quantitative sense of whether our computational models were able to recapitulate the in vitro systems, 262 
apart from the qualitative observed likelihood of the images.  263 

We decided to first focus on the target gene expression dynamics. We first measured the target 264 
gene induction over time in the in vitro system, from the timelapse movies; the % induction of GFP is the 265 
normalized amount of green fluorescence over time, and we can follow how that increases over time, 266 
starting from around 5-7h. For the in silico system, the quantification is on the activated cells, with the 267 
last time step normalized to 1. Fig. 3c shows the similarity between the induction dynamics in vitro and in 268 
silico, both for the green and the red channel. Interestingly, the similarities are not only in the induction 269 
time (which we obtained through parameter tuning), but also on the slope and shape of the curves, which 270 
have not been target of parameter optimization. This shows that our model can quantitatively recapitulate 271 
the time evolution of signaling over time of the in vitro system.  272 

We wanted then to assess whether the morphological evolution over time in silico was similar to 273 
that in vitro. In vitro, we noticed from the published time-lapse of the three-layered structure development 274 
that the circularity of the structures in the 2D projection evolves over time to reach a steady state by the 275 
end of simulation; this was both true for the overall structure and of the cadherin-expressing cells (Fig. 276 
3d). To quantify these features, we defined a circularity index in 2D and a sphericity index in 3D for the 277 
comparison of the in vitro and in silico structures (see STAR methods, Video Analysis). When we 278 
measured these morphology indexes over time, we found that they generated similar temporal evolution 279 
and convergence to a steady state by the end of simulations.  280 
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Lastly, we wanted next to assess how much the computational system is able to quantitatively 281 
capture robustness of the development, which is an emergent property of the biological counterparts. 282 
Although the synthetic development of the in vitro structures does not happen identically 100% of the 283 
times, it is reported to form a similar structure with one core in the 57% of the times (Toda et al., 2018). 284 
We wanted to see if our computational system, based on the stochasticity of the cellular potts evolution 285 
algorithm, would recapitulate this feature. To measure reproducibility of the in silico system, we 286 
quantified the number of cores formed over repeated simulations (n=30 simulations). We saw that the 287 
majority of the simulations yielded a 1-core structure, some a 2-core, and a minority a non-core structure 288 
(Fig. 3c). We compared this distribution to the distribution of morphologies obtained in the biological 289 
system (Toda et al., 2018), and found them similar (Pearson χ2=0.24, d.f.=2, P>0.89), indicating that our 290 
in silico system can recapitulate reproducibility features of the in vitro cellular systems.  291 

We also tested whether these quantitative analysis were dependent on the reversibility of the 292 
induction. A chi-squared analysis did not reveal a significant difference from the in vitro core distribution, 293 
Pearson χ2 =4.75, d.f.=2, P>0.09. Quantitatively, the sphericity and activation timescale were similar to 294 
that of in vitro circularity and activation (Fig. S3b).  295 
	296 
The Model Recapitulates Synthetic Structures Generated by Lateral Inhibition Circuits Starting from 297 
Genetically Uniform Cell Populations 298 
	299 

Our model can recapitulate synthetic structures resulting from single or multiple levels of 300 
activation juxtacrine signaling. However, patterning and morphogenesis can also result from inhibition 301 
juxtacrine signaling as in the classic example of checkerboard patterning from lateral inhibition (Cohen et 302 
al., 2010; Collier et al., 1996; Ghosh and Tomlin, 2001; Shaya et al., 2017; Simakov, S A David and 303 
Pismen, 2013; Sprinzak et al., 2010, 2011). To capture inhibition juxtacrine signaling, we modified our 304 
model such that, S→-S (S is signal) and β→-β (threshold of signaling) to yield high signaling to low 305 
reporter production and low signaling to high reporter production (See STAR Methods). We tested the 306 
inhibition version of the model on lateral inhibition by generating the following network: red (A) cells 307 
send inhibition signals to neighboring red (A) and (A’) green cells (Fig. S6a). The inhibition signal then 308 
inhibits red color, representing red reporter fused ligand and activates green reporter. Red (A) cells with 309 
sufficient red inhibition/green activation excite to (A’) green. In order to allow reporter inhibition as 310 
required in lateral inhibition, we set the reversion threshold equal to the activation threshold. The network 311 
is predicted, starting from genetically uniform cells, to generate cell states differentiation. To test if this 312 
was true in our setup, we simulated development starting from a static, regularly shaped monolayer of red 313 
(A) cells, and we were able to obtain the classic checkerboard pattern of lateral inhibition (Fig. S6, 314 
Model, top). We then tested this lateral-inhibition network on a disordered cell monolayer where cells 315 
move slightly around their position, and begin with different sizes, don’t grow and don’t divide. By 316 
adjusting the signaling parameters to reflect strong inhibition (del Álamo et al., 2011; Sprinzak et al., 317 
2010, 2011), we obtained clean checkerboard patterning (Fig. S6b, model, bottom). Our model also 318 
accounted for fate bias due to cell size, a recently documented phenomenon of lateral inhibition (Shaya et 319 
al., 2017). We found that smaller cells were significantly more likely to be of the sender fate (high Delta) 320 
and large cells more likely to be of the receiver fate (high Notch) (n=10 lattices of ~400 cells each, Delta 321 
cells: 108.82±1.59 pixels2, Notch cells: 122.53±1.89 pixels2, two-tailed matched t-test, d.f.=9, t=14.90, 322 
P<0.0001). 323 

Finally, we added adhesion of our inhibition model to test whether it could recapitulate, in silico, 324 
the multicellular synthetic 3D structure demonstrated in vitro using lateral inhibition and adhesion. The in 325 
vitro network consists of red (A) cells expressing mCherry fused CD19 and αCD19 synNotch (Toda et 326 
al., 2018). When αCD19 synNotch is bound to mCherry fused CD19 on a neighboring cell, mCherry 327 
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fused CD19 expression is inhibited, while GFP and E-cadherin expression is activated. This yields green 328 
cells that adhere to other green cells, thereby forming a two-layer structure with a shell of red cells 329 
surrounding a green core (Toda et al., 2018) (Fig. 4b left and Fig. S6c left).  330 

To obtain this network in vitro, we modified the lateral inhibition network model such that green 331 
(A’) cells adhere to other green (A’) cells (Fig.4b, Model, Adhesion Matrix). When we run the simulation 332 
over time, starting from an aggregate of around 100 cells, we observe that first some of the red cells 333 
become green, and then that the green cells meet each-other in the center of the aggregate, similarly to 334 
what happens in vitro (Fig. 4b and S6c, In silico). Over time in the in silico system we observe that these 335 
green cells do sometime revert to red, leaving in the center an active dynamic of green cells turning red 336 
and being moved to the external layer (not shown).  337 
	338 
Synthetic Hollowing can be Achieved by Apoptosis 339 
 340 

With evidence of biological replicability of multiple structures, we then generated and tested a 341 
series of new programs for interesting morphologies. We started with hollow structures due to their 342 
developmental importance (e.g. the blastocyst (Watson, 1992), tubes (Nelson, 2003), and clinical 343 
relevance (e.g. polycystic kidney disease (Qian et al., 1996)). 344 

We reasoned that the two-layer structure could provide an ideal starting point for generating a 345 
hollowed structure, if we fate the cells in the core to apoptosis. A mixture of A and B cells would initially 346 
engage in communication so that B cells would convert to B’ adhesive cells and form a core. After the 347 
core is formed, the cells of the core would die to leave space for a cavity. Figure 5a shows our ideal target 348 
trajectory.  349 

We thought that the implementation could start from the two-layer network (Fig. 2) for the 350 
formation of 2 layers. For the simulation of cell death, we converted cells to “medium” type cells to 351 
physically conserve cavity volume. Otherwise, it would behave as a vacuum rather than a medium-filled 352 
void. When we tried the simple implementation where the green cells are fated to apoptosis, we 353 
encountered a number of problems: the cells committed apoptosis before forming a core, and if more time 354 
was allowed for apoptosis, then the inner core of B’ green cells would not receive the further signals for 355 
transitioning to media (not shown). To resolve these two issues, we introduced two modifications. (1) To 356 
have a controlled timing of response, with first increase of adhesion, and then commit to death, we 357 
introduced two thresholds for activation: one, lower, for activation of adhesion; a second, higher, for cell 358 
death. (2) To sustain signaling among B’ cells, we equipped B’ cells with signaling capacity on top of 359 
receiving capacity (Fig. 5b). Therefore, (B) cells with sufficient reporter activation become (B’) and then 360 
may, with further reporter activation, convert to medium. 361 

When we simulated this network, the formation of a hollow structure was at first incomplete, as 362 
the outer layer did not coat completely the inner core (not shown). In order to achieve complete coating of 363 
the cavity, we introduced a couple of variations: (B’) cells neither grow nor divide, and (A) cells grow 364 
and divide slightly faster (see STAR methods). This transformed the two-layer structure into a hollow 365 
structure with a simple hollowed shell of blue (A) cells 50% of the time in a total of 10 runs, when 366 
starting from a mixture of 121.6±7.28 blue (A) and 57.4±7.28 gray (B) cells (Fig. 5c).  367 

We propose that such network could be generated, in vitro, with an extension of the 2-layer 368 
network, where the response of B cells include: E-cadherin, ligand, G1 arrest; and, with lower efficiency, 369 
cell death (Fig. 5d). The in silico simulations use ISL929 (in silico L929) with slightly increased 370 
growth/division rates, which could be simulated by experimental conditions under low-dose mitogens 371 
insufficient to override (B’) G1 arrest from p21 (Fig. 5d).  372 
	373 
Elongation can be Achieved by Modulating Motility, Growth, and Activation Timescale 374 
 375 
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We next aimed to achieve elongated structures. Elongated structures have yet to be achieved 376 
synthetically in vitro but, like hollow structures, bear marked relevance in developmental processes. 377 
Inspired by the developmental processes of somitogenesis (Gossler and de Angelis, 1997; Hester et al., 378 
2011; McGrew and Pourquié, 1998), bone growth (Kobayashi et al., 2005; Li and Dudley, 2009), 379 
wavefront activation and fluid-to-solid transition (Mongera et al., 2018), we developed the goal trajectory 380 
in Fig. 6a. We planned to start from a mixture of two cell types, (A) and (B), which would first form two 381 
poles via adhesion-mediated sorting (step 1). A and B cells would then signal to each other to induce the 382 
activated cell types, (A’) and (B’) at the interface (step 2). Activated cells A’ and B’ would stop 383 
proliferating and acquire a more “solid-like” features that inhibit further movement and sorting. Activated 384 
cells A’ and B’ would acquire also a signaling capacity for cells of the same type (A’ towards A and A’, 385 
and B’ towards B and B’) that would induce activation. In this way, at the interface between blue cells 386 
and red cells, the activated red cells A’ are signaling to inactive A cells (blue) to become red. As the 387 
inactivated cells A and B keep proliferating, we reasoned that these areas on either end with reserve A 388 
and B cells could be poles able to provide an engine for growth.  389 

To implement this synthetic developmental trajectory, we thought of describing a symmetric 390 
system where two cell types A and B work symmetrically. In the inactive state, they have homotypic 391 
adhesion preference, and low heterotypic adhesion. They also signal to each-other to activate to A’ and B’ 392 
respectively. The active state, for example A’, gains different features: a signaling capacity towards same 393 
cell type (both A and A’ have the receptor for this new signal), reduced motility and inhibited growth and 394 
division (Fig. 6b). 395 

Seeding a mixture of approximately 30 (A) and 30 (B) cells with a first parameter set 396 
(Implementation 1 in Fig. 6c) led to the formation of short elongated structures in ~50% of the 397 
simulations. Elongation terminated between 20,000-50,000 mcs with 100% loss of both poles (only one 398 
run had (B) cells remaining as a small spheroid isolated from the elongated structure) (Fig. 6c). We 399 
wanted to see if we could optimize the growth to obtain continuous growth. We suspected that unreliable 400 
elongation was due to initial conditions that did not support pole formation (step 1 in Fig. 6a). We 401 
therefore hypothesized that robustness could be improved by seeding with separate spheroids of (A) and 402 
(B). This simple change in initial condition led to consistent, improved elongation overall (100% 403 
bidirectional elongation) and in both cell genotypes in all runs, even though only 40% of the structures 404 
retained both caps (Fig. 6d). This suggests that the incomplete elongation observed with Implementation 405 
1 was due to an incomplete interface formation. It also suggested a way to improve elongation: increasing 406 
time delay between sorting (step 1) and activation (step 2). We therefore generated an Implementation 2 407 
of the same network, where the activation threshold for A to A’ and B to B’ were higher, and so they took 408 
longer to happen. With this implementation we observed markedly improved elongation, both overall 409 
(Fig. 6f), and comparison to genotype from an initial mixture of cells, 68.67±9.27 pixels with 410 
Implementation 2 vs 48.95±8.28 pixels with Implementation 1 (significantly longer, two-tailed t-test, 411 
t=5.01, P<0.0001). Furthermore, 80% of the structures obtained with Implementation 2 retained the 412 
capability to elongate by retaining the (A) caps and (B) caps (Fig. 6e). 413 

In vitro, this can be achieved by requiring higher amount of red and green reporter, relative to 414 
associated proteins, to achieve the phenotypic transition, a similar method to that employed in the 415 
hollowing network. This would allow to start from uniformly mixed cells, which is an easier to obtain 416 
initial condition.  417 

 418 
Strongly Inhibiting Receptor Expression Allows Morphological Oscillation In Silico 419 

 420 
The previous structures were inspired by existing biological structures, but synthetic biology can 421 

be expanded to potential structures as well (Elowitz and Lim, 2010). We wanted to see if we could 422 
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generate the networks for a “limit-cycle” attractor for the dynamic, i.e. a morphological oscillator. We 423 
tested our model’s capability to explore possible structures by focusing on a novel morphological 424 
oscillator, oscillating between a highly mixed (A) and (B) structure (low homogeneity) and a poorly 425 
mixed (A’) and (B’) structure (high homogeneity) (Fig. 7a). Previous studies suggest that the low 426 
homogeneity structure can be achieved via heterotypic adhesion (Brodland and Chen, 2000; Glazier and 427 
Graner, 1993; Togashi et al., 2011) and simulations performed in this study suggest the high homogeneity 428 
structure can be achieved via homotypic adhesion, but the network required to link the two is unknown. 429 
We reasoned that the two states could be implemented by a switch-like behavior in the adhesion 430 
repertoire of the A and B genotypes. In their inactivated state, A and B cells would have heterotypic 431 
adhesion molecules (e.g. ephrins, nectins (Togashi et al., 2011), Het.Ad.1a and Het.Ad.1b in Fig. S8a) 432 
that would favor the checkerboard pattern. In their activated state, heterotypic adhesion would be replaced 433 
by two different homotypic adhesion molecules that would favor the formation of two poles (e.g. N-434 
cadherin and P-cadherin, Homot.Ad.1 and Homot.Ad. 2 in Fig. S8a). The switch behavior relies on a 435 
receptor that can both inhibit and activate target genes. In vitro this could be achieved with expression of 436 
two synNotches with the same extracellular domain, and two different intracellular domain, one for 437 
activation one for repression (Morsut et al., 2016). We reasoned that some form of signaling could 438 
generate continuous oscillation between the two morphologies without reaching a stable endpoint. 439 

We started by testing a simple version of the network where (A) and (A’) cells and (B) and (B’) 440 
cells have the same signaling capacity. A cells signal to B cells to switch their adhesion repertoire and 441 
vice versa: in the basal state cells have high heterotypic adhesion; in the activated state both the cell types 442 
have high homotypic adhesion. Seeding a mixture of 30 (A) and 27 (B) cells led to a multistep trajectory 443 
as follows: initial formation of a highly mixed structure, activation of A and B cells to A’ and B’ 444 
respectively, formation of 2 poles. At this point, although the cells far from the interface reverted to the 445 
basal sates, the interface became interlocked as A’ cells are signaling to B’ cells to maintain them in an 446 
activated state, and vice versa (Fig. 7b, network 1). This structure was stable and demonstrated no clear 447 
oscillatory behavior, showing that morphological separation alone was not enough to induce the 448 
oscillatory behavior because (A’) and (B’) still signal to each other, stabilizing the interface.  449 

The above results suggest that morphological separation is not sufficient to bring the cells back to 450 
the initial state. We next tested the case where signaling capacity of the activated cell states is different 451 
from basal state. First, we tried ligand repression in the activated state in order to make the cells less 452 
capable of signaling to each other in the active state, thus favoring a return to ground state (Network 2). 453 
Seeding a mixture of 30 (A) and 27 (B) cells yielded overdamped morphological oscillation, with the 454 
endpoint being (B) cells locking (A) cells into the (A’) red fate (Fig. 7c).  455 

To prevent this locked endpoint, we adjusted the network such that the inhibition signal inhibited 456 
receptor expression instead of ligand expression. This led to quicker and sustained transition of the 457 
excited state to the ground state. In addition, this adjustment forced signaling coupling to generate robust 458 
morphological oscillations (Fig. 7b network 3) that lasted at least 13 cycles (Fig. S8b) with minimal 459 
dampening. This suggests that receptor expression can be used to generate stable intermediate states 460 
where sorting can be reverted.  461 

 462 
DISCUSSION 463 

Multicellular self-organization is a key facet of development and tissue formation. Numerous 464 
recent advances in synthetic biology(Baeumler et al., 2017; Barnea et al., 2008; Conklin et al., 2008; 465 
Daringer et al., 2014; Hartfield et al., 2017; Morsut et al., 2016; Qudrat and Truong, 2017, 2018; Scheller 466 
et al., 2018) have made it possible to control this process, facilitating synthetic reconstruction of native 467 
morphogenic processes and enabling custom tissue development. However, reconstruction and design 468 
often rely on a lengthy trial and error process. An initial design is implemented biologically and 469 
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subsequently modified for improvement in an iterative and lengthy process. Computational models can 470 
provide support by allowing rapid implementation of various designs in silico. In this way, robust 471 
formulas can be identified and selected before being implemented experimentally, effectively catalyzing 472 
reconstruction efforts and enabling rational design. Here we present the first of such models, focusing 473 
specifically on synthetic juxtacrine signaling, and demonstrate its ability to replicate synthetic 474 
morphogenesis and facilitate synthetic design. We began by recapitulating known synthetic structures 475 
along with their key features: morphology, self-organization, variability and dynamics. We then used the 476 
model to test, improve, and propose potential designs for yet to be achieved structures in synthetic 477 
biology: hollow, elongated, and oscillatory. 478 

Our model demonstrates biological faithfulness, replicating numerous facets of currently known 479 
high complexity mammalian synthetic structures: back-and-forth, symmetrical, asymmetrical, and lateral 480 
inhibition. Nevertheless, the model can still be further improved, as evidenced by the incomplete 481 
regeneration of the three-layer structure. Several reasons are possible for the lack of blue (A) cells at the 482 
bisected area in silico (Fig. 3b), with the first, but unlikely, consideration being the (A) adhesion 483 
parameters. In the simulations, (A) cells have minimal adhesion, preferentially adhering to cells rather 484 
than medium, but with no preference between cell types (see Fig. 3b matrix or Table S1). Therefore, a 485 
simple remedy is to alter (A) cells to bear differential adhesion to (A’) and (B’), driving them to the 486 
damaged area. However, this is unlikely as it contradicts other in vitro images of the same circuit; the lack 487 
of a smooth (A) layer, especially evident from the 3D reconstruction of a three-layer in the reference 488 
experiment, along with the retention of a rounded morphology even when contacting (B’) or (A’), 489 
strongly indicates that (A) lacks differential adhesion to other cell types (Toda et al., 2018). A more 490 
plausible explanation is that the computational model is an idealized version of the experiment, performed 491 
with machine-like precision difficult to achieve humanly. Immediate post-bisection structures in vitro 492 
have noticeable imperfections such as latching cells post bisection and prominent proximal cells in 493 
suspension (Toda et al., 2018); these cells can easily reattach to aid regeneration. With the model 494 
demonstrated to be capable of powerful biological replication under controlled conditions, the foundation 495 
is established. The next step is to deliberately introduce “imperfections” to further improve similarity to 496 
realistic experimental setups. More importantly, this improvement raises an interesting question; can these 497 
“imperfections” be used to our advantage in rational design, for example, improving robustness?  498 

Our model also generated interesting observations when we tried to design novel developmental 499 
trajectories that have not yet been implemented in vitro. Going through phases of design-test-learn-500 
redesign can elucidate which parameter sets confer robustness to various trajectories and which instead 501 
perform poorly.  502 

In particular, when designing the elongating trajectories, we realized that without a fluid-to-solid 503 
transition we could not achieve directional elongation in our simulations. These types of transitions are 504 
shown to be at work during embryogenesis (Mongera et al., 2018). It would be powerful to understand the 505 
molecular underpinnings of these transitions and begin to control them in vitro in synthetic systems. We 506 
also observed that our first elongation network (network 1) was not very efficient in generating elongated 507 
structures; however, when we changed the initial conditions, the same genetic network did generate 508 
robust elongating structures. In and of themselves, boundary conditions could generate diversity, even 509 
without changes in the genetic program. During embryogenesis, initial conditions for a phase of 510 
morphogenesis are often dictated by a preceding phase of morphogenesis. For instance, the formation of 511 
two poles is the initial condition for subsequent elongation. By changing the dynamic of a previous phase 512 
of morphogenesis, we could affect a second phase without altering genetic program and the dynamic of 513 
the second phase directly.  514 

 515 
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As we attempted to create a trajectory leading to a stable oscillatory structure (Fig. 7), we learned 516 
valuable lessons from trajectory iterations that failed. We first thought that the strong homotypic adhesion 517 
within A’ and B’ cells by would be sufficient to separate the two group of cells so that they would not 518 
signal to each other. However, in the simulations we saw that the presence of an interface where A’ cells 519 
and B’ cells are still touching and signaling to each other prevented them from reverting back to the basal 520 
A and B states. We were able to overcome this when we had the communication between A and B cells 521 
change the network itself, so that A’ and B’ cells would have a reduction in signaling capacities. We 522 
made minimal progress when we removed the ligands from activated cells but saw more dramatic effects 523 
when we removed the receptors from activated A’ and B’ cells. This type of regulation seemed important 524 
to generate states that are basis for subsequent morphogenesis, and, together with the dynamics explored 525 
for the elongating structure, point to the need to pay attention to how the multistep developmental 526 
trajectories are linked together, and the dynamics of that as an engine of diversity, that might have been 527 
used during evolutionary times.  528 

The model presented here enables rapid design development and testing for synthetic 529 
development, and is the first step in facilitating synthetic reconstruction (Santorelli et al., 2019). Further 530 
efficiency can be achieved by combining computational frameworks such as ours with machine learning 531 
algorithms (Briers et al., 2019). Algorithms could not only be trained to optimize parameters such as cell 532 
line, signaling network, and behavioral response, but could also incorporate subparameters such as: 533 
motility, proliferation, differentiability, juxtacrine and soluble morphogen signaling, 534 
mechanotransduction, adhesion, chemotaxis, and differentiation, to list a few. Such a framework would 535 
accelerate advances in synthetic biology on multiple fronts by expanding the breadth of testable designs, 536 
indicating directions for expansion within the current tool repertoire (e.g. lack of synthetic 537 
mechanotransduction), and revealing programs for targeted structures.  538 

These frameworks and models will likely be employed as designed: for efficient rational design 539 
of a desired morphology. Therefore, “off-target’ programs, programs that fail to yield a desired 540 
morphology, will inherently be viewed as less relevant compared to successful programs. Nonetheless, 541 
such “off-target” programs can still reveal unimagined structures alongside fundamental developmental 542 
rules. An interesting direction would be to utilize computational models to explore structures that can, but 543 
have yet to, exist. This was previously not possible due to the efforts required biologically, but is now 544 
feasible with computational models that can rapidly test programs and accurately reveal structures. In 545 
light of this possibility, we propose that computational models are not only methods for identifying 546 
potential programs for morphogenesis, but also methods for proposing programs for novel/unidentified 547 
structures. 548 

We hope this is the first of many modular computational models and trust that with continued 549 
technological and biological advances each generation of model will improve computational performance. 550 
 551 
MOVIES 552 
 553 
 554 
FIGURE LEGENDS 555 

 556 
Fig. 1. Concepts underlying the computational model (See STAR Methods for details and 557 
generalized model). 558 
(a) On the left, representation of biological communication between cell pairs A and B. (A) cells express 559 
ligand (purple) and (B) cell express receptor (black). With contact (pink arrow), (B) cells receive signal 560 
(green) that triggers expression of the target gene. In the lower pair, the amount of ligands in cells A is 561 
higher, hence the signaling (green arrow) towards the target gene is stronger. On the right, the in silico 562 
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model shows a simplified representation of this process with parameters: ligand amount (L, purple 563 
boundary of in silico cells), surface area of contact (Φ, pink), and net signal (S, green arrow). In the 564 
schematic, in silico cells are multi-pixel objects with different levels of ligand and shared surface area. 565 
The cell pair at the bottom has a higher level of communication compared to the upper pair due to both a 566 
higher ligand level (L2>L1, shown as thicker border) and smaller surface area of contact (Φ2>Φ1, 2 567 
pixels compared to 1). (b) Time evolution of target gene level in the receiving cell; cells A and B are first 568 
placed in contact for 100,000 steps of simulation to follow induction of target gene expression, and then 569 
moved far apart to stop signaling and follow decay of target gene. Two plots are shown for two different 570 
values of shared surface area Φ,  with Φ2>Φ1; all other parameters are constant.  571 
(c) Model representation of cell behavior state change. On the left, a sender cell (A) (purple) activates a 572 
receiver cell (B) (gray) to induce a target gene (green) that encodes for an effector protein. Over time, cell 573 
(B) accumulates target genes products, and at a certain threshold the effector gene product causes a cell 574 
state transition from (B) to (B’). To the right in silico representation of the state transition and 575 
communication relationship between cells (A), (B), and (B’). Orange curved arrows indicate state 576 
transitions. Corresponding ligand/receptor pairs indicate a communication channel from (A) to (B) that 577 
promotes the state change of (B) to (B’). (d) The graph shows the progression of target gene level over 578 
time for a (B) cell that is initially in contact with an (A) cell and is then isolated at 100,000 steps. 579 
Example thresholds for the excited state (5000 AU) and ground state transitions (2500AU) are shown as 580 
dotted horizontal lines. At the start, the (B) cell is in the basal state (black solid line), but when the target 581 
gene level passes the excited state threshold, (B) cell becomes a (B’) cell. The (B’) cell remains in the 582 
active state (green solid line) until target gene levels drop below the ground state threshold and reverts to 583 
(B) (line goes back to solid black). 584 
	585 
Fig. 2. The in silico two-layer is similar to the in vitro two-layer. 586 
(a) Biological implementation of two-layer circuit: diagram of (A) and (B) where (B) cells express GFP 587 
and E-cadherin in response to contact with (A). A cells constitutively express a blue fluorescent protein 588 
(BFP). Confocal fluorescent microscopy images, overlayed for green, blue and brightfield channels, at 1h 589 
after seeding of 100 (A) cells and 100 (B) cells and after 24h; images reproduced from (Toda et al., 2018). 590 
(b) In silico implementation of the two-layer circuit. (A) cells, when physically contacting (B) or (B’) 591 
cells, send activation signal to (B) and (B’) cells, which induces target gene. In (B) cells, accumulation of 592 
sufficient target gene excites them to the (B’) state. Adhesion matrix defines pair-wise adhesion 593 
preference on a scale 0-3 (0 minimal adhesion preference, 3 high adhesion preference); with this adhesion 594 
matrix indicated that (B’) cells are strongly adhesive to other (B’) cells but weakly to other (B) or (A) 595 
cells. On the right, shown are simulation renderings of a typical temporal evolution from t=1,000mcs to 596 
t=24,000mc. For this instance, initial conditions are a mixture of 92 (A) and 87 (B) cells. Still images of a 597 
midpoint cross section of the aggregate at t=1,000 and t=24,000mcs of representative simulation run are 598 
shown on the right. Scale bar is 17.5 pixels, approximately 100um. (c) Cell type homogeneity over time, 599 
as a measure of sorting. In green, homogeneity index for cell type B (both B and B’), and in blue for cell 600 
type A. Solid lines are the mean, shaded areas represent standard deviation (n=3). At around 7,000mcs the 601 
B cells accumulated enough target gene that allowed them to transition to B’. Time scale equivalence, 602 
1,000 monte carlo steps (mcs) to 1 hour, and size equivalence, 17.5 pixels to ~100um, were obtained from 603 
images and movies of the in vitro three-layer structure (see Fig.3). 604 
	605 
Fig. 3. The computational model captures qualitative and quantitative features of the synthetic 606 
developmental trajectory for formation of three-layered spheroids.  607 
(a) Biological implementation of the back-and-forth network: cell A express constitutive BFP and CD19 608 
ligand (round ligand), and conditional to anti-GFP synNotch also mCherry and low levels of E-cadherin. 609 
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Cell B express anti-CD19 synNotch that triggers expression of high levels of E-cadherin and GFP-ligand. 610 
The two inductions happen sequentially over time when A cells and B cells are mixed together, such that 611 
CD19-antiCD19 interaction happens first (Step 1), and GFPlig-antiGFP happens second (Step 2), only 612 
after GFP ligand is produced in Step 1. 613 
For synthetic developmental trajectory, the time evolution of a mixture of 200 (A) cells and 40 (B) cells is 614 
shown with overlay pictures of bright field, blue green and red channel from confocal microscopy 615 
imaging, reproduced from (Toda et al., 2018). For the Regeneration, initial seeding is with 160 (A) with 616 
80 (B); bisection was done with microguillotine, reproduced from (Toda et al., 2018). 617 
(b) Computational implementation of back-and-forth network. (A) cells, when physically contacting (B) 618 
cells, send a signal (round ligand) to (B), which induces target gene. In (B) cells, accumulation of 619 
sufficient target gene excites them to (B’) state. (B’) cells become able to send a signal to cells (A) 620 
(square ligand), which initiate transition towards state A’. Adhesion matrix is shown on the right; it 621 
specifies that (A’) cells are moderately adhesive to (B’) green and weakly to other (A’) red cells. All cells 622 
prefer binding to other cells than to media (black). Representative cross section of aggregates of an in 623 
silico synthetic developmental trajectory is shown below at the indicated time points; initial conditions 624 
are 200A cells and 50B cells. For the regeneration simulation, the initial condition is 24h timepoint of a 625 
synthetic development run started from 160A and 91B cells. Then, half of the cells were manually 626 
removed. Scale bar is 17.5 pixels (around 100um). Number of cells is approximate in vitro, and in silico 627 
is a feature that is not completely under control of the programming.  628 
(c) Quantification of A’ (red) and B’ (green) activation in silico and in vitro followed over time for the 629 
duration of development of the three-layered structure. In silico, the activation index for A’ cells is the 630 
number of activated cells over the total of A+A’ cells normalized to be 100 at endpoint; similarly for 631 
activation index for B’ cells. In vitro (solid lines), the activation index for A’ cells is defined as the 632 
amount of green pixels, normalized to be 100 at the endpoint; similar for (see STAR methods, Video 633 
Analysis for details on thresholding) (n=30 simulations, n=1 for in vitro). We present mean±s.d. for the in 634 
silico results (dotted lines with standard deviations in the graph).  635 
(d) Quantification of sphericity/circularity measures over the time development of synthetic and in vitro 636 
systems. In blue, all the cells are considered; in green only the activated (A’) and (B’) cells. Solid line is 637 
from in vitro measures; solid lines with shaded contours are from in silico measurements and represent 638 
mean and standard deviation interval respectively. In silico sphericity was rescaled to account for the 639 
cubic nature of the voxels (See STAR methods, Simulation quantifications for in silico, and Video 640 
Analysis for in vitro details). Vertical dashed line indicates time of (B’) cells activation (n=30 641 
simulations, n=1 for in vitro).  642 
(e)  Quantification of the number of cores formed over repeated simulations (n=30 simulations, n=28 for 643 
in vitro). Cores in silico are defined as contiguous assemblages of at least 5 cells.   644 
	645 
Fig. 4. The model captures the formation of various synthetic structures. 646 
(a) Gallery of different structures obtained in vitro (Toda et al., 2018) and the corresponding simulations. 647 
On top, the biological base framework (left) and the simulation network (right). They are the same for all 648 
4 structures shown below. For the in vitro, con.gene # denotes a constitutively expressed transgene; 649 
tar.gene # are the target genes, induced upon signaling. For each structure shown are (from left to right): 650 
biological gene matrix that explains the specific genes present in the cells; biological confocal picture at 651 
endpoint reproduced from (Toda et al., 2018); model simulation section of the spheroid at the same 652 
endpoint; model adhesion matrix. Scale bar is 100um for in vitro and 17.5 pixles (approx. 100um) for in 653 
silico. The colors red and blue of the last row in the in vitro system have been switched when compared to 654 
the image published in (Toda et al., 2018), for keeping the color consistent with the in silico and the other 655 
trajectories. See Fig. S4 and S5 for more examples. 656 
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(b) Lateral inhibition with adhesion. On the left are the biological diagrams and cell behaviors over time, 657 
reproduced from (Toda et al., 2018). Starting from uniform population of red cells, a two-layered 658 
structure is obtained with the lateral-inhibition differentiation into red cells and green cells, plus adhesion-659 
mediated sorting due to green cells expressing high Ecadherin.  660 
On the right is the in silico version. (A) cells receive signal from neighboring (A) cells and send signal to 661 
neighboring (A) and (A’) cells. The signals inhibit red color and activate green reporter. (A) cells, with 662 
sufficient red inhibition/green activation, excite to (A’). Schematics and adhesion matrix are shown 663 
above. Below, selected time points of a representative simulation run are shown. Scale bar is 17.5pixles 664 
=100um for in silico. See Fig. S6 for more details on lateral inhibition network.  665 
	666 
Fig. 5. In silico, hollow structures can be achieved via two layers + apoptosis. 667 
(a) Goal trajectory: start from an initial configuration of randomly mixed (B) gray and (A) blue cells, 668 
induction of (B) cells to (B’) green, two-layer formation, and then cavitation.  669 
(b) In silico network: the two-layer network is modified so that (B’) cells can signal to (B) and (B’) cells, 670 
facilitating the transition of (B) to (B’) and (B’) to medium M. Signal activates green color, representing 671 
green reporter associated to inducted ligand. A first threshold defines transition to (B’), a second, higher 672 
reporter threshold defines transition to medium M (see STAR methods for details). (B’) cells neither grow 673 
nor divide. Adhesion matrix is shown on the right. 674 
(c) Evolution over time of a representative simulation at the indicated time steps; shown are tilted cross 675 
section slices of the 3D aggregates.  676 
(d) Proposed biological implementation of the in silico network. Compared to adhesion, ligand and 677 
growth arrest effectors, death effectors have a lower number of reporter sites (depicted as half-circles in 678 
the promoter cassette) and as such require higher threshold for induction.  679 
	680 
Fig. 6. The in silico model identifies strategies for elongated structures. 681 
(a) Goal trajectory: starting from a random mix of (A) gray and (B) blue cells, step 1 is formation of two 682 
poles, step 2 is activation of (A’) red and (B’) green cells at the interface, and step 3 is bidirectional 683 
elongation.  684 
(b) In silico network. Signaling: (A) signals to (B) and vice versa via two independent channels (pointed 685 
and rounded ligands respectively); the signaling activates (A) to (A’) red and (B) to (B’) green after a 686 
threshold is reached. (A’) red cells gain a new signaling capacity (triangular ligand) that can signal to 687 
other (A) cells as well. The same happens with (B’) cells, which gain a squared ligand signaling capacity.   688 
Adhesion: (A) and (B) cells are homotypically adhesive and therefore do not adhere to each-other. (A’) 689 
and (B’) are highly adhesive both homotypically and to each-other, as expressed in the adhesion matrix. 690 
Other effector changes in cells (A’) and (B’) are: stopping cell division and growth, and decreasing 691 
motility, to simulate fluid-to-solid transition.  692 
(c) Simulation result when starting from 40 A cells and 40 B cells with Implementation 1 (see text for 693 
details); representative image of endpoint result from a total of 10 runs (see (f) for quantification);  694 
(d) Results of simulations with same parameters as Implementation 1, but controlled initial conditions. 695 
Initial conditions are as shown on the left: (A) and (B) cells are initialized as two separate spheroids of 36 696 
inactivated cells each. Endpoint result of a simulation with the same parameters as Implementation 1, 697 
repeated n=10, average length=62.56±8.77 pixels 698 
 (e) Simulation results with Implementation 2 parameters, where activation threshold for transition AàA’ 699 
and BàB’ are higher. The elongation is slower but more robust. 700 
(f) Quantification of length of simulated aggregates at 100,000 steps for Implementation 1 and 701 
Implementation 2. We present mean±s.d. (n=10). See Fig. S7 for details on how the length is measured.  702 
	703 
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Fig. 7. Oscillating morphologies can be achieved in silico by inhibiting receptor expression. 704 
(a) Goal trajectory. Starting from randomly mixed A blue and B grey cells, a “limit cycle” is initiated: A 705 
and B cells are heterotypically adhesive, so they tend to maximize A-B contacts and form a checkerboard 706 
pattern; then (1), signaling between neighboring A and B cells induce them reciprocally to A’ and B’; 707 
since A’ and B’ cells are homotypically adhesive, they sort to form two poles (2); at this point, signaling 708 
between A’ and B’ is minimized so they revert back to their basal states A and B (3); since basal states 709 
are heterotypically adhesive they should favor formation of a checkerboard pattern (4), thus re-initiating 710 
the cycle. 711 
(b) Adhesion matrix common to all the attempted simulations. A and B are heterotypically adhesive 712 
whereas A’ and B’ are homotypically adhesive. Numerical parameters are set equal for the (A) genotype 713 
compared to (B) genotype. Cells neither grow nor divide here, and  λSur and λVol are slightly increased 714 
compared to other simulations (see STAR methods, for details). 715 
Network 1. (A) cells signal to (B) cells to induce them to B’; reciprocally, B signals to A to induce a 716 
transition to A’. Induced states A’ and B’ maintain all the signaling and receiving capacity of the basal 717 
states. Induced states change their adhesion repertoire (see adhesion matrix) to switch from heterotypic to 718 
homotypic adhesion. 719 
Network 2, Signaling network is same as Network 1 but now activated states lose signaling capacity;  720 
Network 3, Signaling network is same as Network 1 but now activated states lose signal reception 721 
capacity.  722 
(c) Morphological evolution over time. Starting from 30 A cells and 27 B cells, the development is 723 
followed for 100,000mcs. Overall structure is followed by measuring the mean of the homogeneity 724 
indexes ΨB,B’ and ΨA,A’ over time; it reflects the quality of both separated structures and mixed structures 725 
when the total number of cells is kept relatively constant (n=1 for each attempt). Inserts are images from 726 
the simulated development at the corresponding timepoints.  727 
 728 
	729 
STAR METHODS 730 
 731 
KEY RESOURCES TABLE 732 
	733 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Software and Algorithms   
CompuCell3D (CC3D) v3.7.8 (Swat et al., 2012) RRID:SCR_003052 
Mathematica v11.3.0.0 Wolfram Research RRID:SCR_014448 
ImageJ v1.52a (Schneider et al., 

2012) 
RRID:SCR_003070 

JMP Pro v14.0.0 SAS Institute RRID:SCR_014242 
Excel v1808 Microsoft RRID:SCR_016137 
General Juxtacrine Signaling Model (GJSM) in CC3D This paper N/A 
	734 
CONTACT FOR REAGENT AND RESOURCE SHARING 735 
 736 
Further information and requests for resources or code should be directed to and will be fulfilled by the 737 
Lead Contact, Leonardo Morsut (Leonardo.Morsut@med.usc.edu). 738 
	739 
COMPUTATIONAL METHOD DETAILS  740 
 741 
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CompuCell3D and the cellular Potts Formalism 742 
 743 

We implemented our model in CompuCell3D (CC3D) v.3.7.8 (Swat et al., 2012), a modeling 744 
software that allows simulation of cells and their behaviors using the cellular Potts formalism. By itself, 745 
CC3D contains numerous built-in features for replicating in vitro cell behavior, several of which we 746 
utilized either directly or adjusted via CC3D Python v.2.7.13 scripting according to manual v3.7.9. In our 747 
model, we incorporated default features from CC3D such as surface area constraint, volume constraint, 748 
cell division, adhesion, cell-cell surface contact, and cell types. We implemented custom cell motility, cell 749 
growth, and cell signaling, as described below and in subsequent sections. 750 

We defined cells as multi-pixel entities in 3D that physically act by performing “pixel copy 751 
attempts” over simulation time steps (monte carlo steps, mcs). Performing “pixel copy attempts” 752 
effectively moves and changes both cell geometry and position over time. These pixel copy attempts 753 
succeed probabilistically, determined by the Boltzmann acceptance function, P=e-∆H/T, where P is 754 
probability of attempt success, ∆H is change in total effective energy of the system from all attempted 755 
pixel copy attempts at the mcs t, and T is the cell motility (Swat et al., 2012).  756 

Effective energy (H). Because we incorporated surface area constraint, volume constraint, and 757 
adhesion, our total effective energy H at a given mcs t therefore takes the form,  758 

 𝐻 =  𝐽!(!),!(!)
!,! 

1 − 𝛿!(!),!(!) + (𝜆!"#
!

𝜎 𝑆𝑢𝑟 𝜎 − 𝑆𝑢𝑟!"# 𝜎
!

+ 𝜆!"# 𝜎 𝑉𝑜𝑙 𝜎 − 𝑉𝑜𝑙!"# 𝜎
!) 

as described in (Hester et al., 2011). The terms σ(i) and σ(j) denote the identity of the cells occupying 759 
pixel sites i and j separately, with the Kronecker Delta limiting inclusion to only the cell interface. J is a 760 
matrix that contains the contact energy per pixel of the boundaries while λSur and λVol constrain deviations 761 
of a cell from the ideal surface area SurTar and VolTar, hereafter referred to as target surface area and target 762 
volume, respectively. 763 

J controls adhesion in cellular Potts. J represents a stability index: lower J makes for a more stable 764 
state, which is then how you achieve stronger adhesion. Conversely, a higher J leads to weaker adhesion. 765 
Throughout the manuscript (mainly in the figures), we use a grouped representation of the adhesion for 766 
presentation simplicity; the exact values of J are shown in Table S2.  767 

Cell motility (T) 768 
Cell adhesion to environment is complexly linked to cell motility, and adhesion effects on 769 

motility vary widely between different adhesion proteins and cell types (Gumbiner, 1996; Nieman et al., 770 
1999; Takeichi, 2011). In general, although clearly not all-encompassing, the adhesion abstraction is that 771 
strong cell adhesion to environment tends to decrease cell motility (Alberts et al., 2002; Gumbiner, 1996; 772 
Takeichi, 2011). We therefore defined motility as a function of a cell’s environment (neighboring cells 773 
and medium); so different cells can have different motiliy. Each cell’s individual motility Tσ is: 774 

  775 

 𝑇! = 𝑇! + 𝜁 
 𝐽! ! ,! !!(!)!,! 1 − 𝛿! ! ,! !

𝑆𝑢𝑟 𝜎
 

This formula iterates over each neighboring cell pixel and medium uniquely, but ultimately only the focal 776 
cell type, neighboring cell types, and total contact with medium determine motility because J differs only 777 
between types and is constant to medium. Categorizing environment by cell types and medium instead, 778 
accomplished in CC3D via cell-cell surface contact feature and cell type index, we obtained a 779 
computationally simpler approximate formula,  780 

𝑇! = 𝑇! + 𝜁
𝐽!"#$ ! ,! ∗ 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑤𝑖𝑡ℎ  𝑘

𝑆𝑢𝑟 𝜎
!
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T0 is a constant representing basal cell motility, ζ a constant representing how effectual adhesion is at 781 
attenuating, and k denotes cell type (including medium here). This T allows each cell to sense its local 782 
environmental adhesiveness, decreasing motility if adhesive to neighbors and restoring motility when 783 
exposed to non-adhesive conditions. 784 
	785 
In Silico L929 Cell Line Properties 786 

 787 
In our model, each in silico L929 (ISL929) cell consists of multiple pixels and starts with a target 788 

radius (TR) randomly chosen using a Gaussian distribution (µ=3.0 pixels, σ=0.5 pixels). This TR is then 789 
used to calculate the target surface area (4πr2) and target volume (4πr3/3) for each cell, as in vitro L929 790 
cells adopt a spherical shape when in suspension (Toda et al., 2018). Each cell then undergoes growth by 791 
experiencing net positive increase in TR from small positively skewed uniformly distributed fluctuations 792 
in TR. Target surface area and target volume thus increase slowly over time. Upon reaching a threshold 793 
volume, 2*4πµ3/3, the cell then undergoes division, resulting in the original cell and a new cell. The 794 
original cell is subsequently reassigned a new TR from the above Gaussian distribution and both target 795 
surface area and target volume are recalculated. The new cell is assigned the same post-division 796 
parameters as the original cell.  797 

In vitro L929 mouse fibroblasts weakly adhere to one another under ultra-low attachment 798 
suspension conditions (Toda et al., 2018) thus we designate our ISL929 cells to have a relatively high J to 799 
one another and a slightly higher J to the medium, resulting in the formation of weak aggregates in 800 
medium. As a result, these ISL929 cells also bear high motility, again similar to in vitro L929 (Persson et 801 
al., 2010; Toda et al., 2018). 802 

With the Potts model and growth model, we generated ISL929 cells with reasonable resemblance 803 
to in vitro L929 cells, favoring a rounded morphology, growing, roughly doubling in 24000 mcs (24 804 
hours as estimated in (Toda et al., 2018)) being highly motile, and, when non-adhesive, forming non-805 
compact aggregates with one another in suspension (Toda et al., 2018). Additionally, due to our stochastic 806 
implementation of growth, cell death occurs as well, incorporating yet another behavior of in vitro L929 807 
cells. We also observed from the reference experiments that strongly adhesive L929 cells tightly cluster, 808 
deform markedly, and lose their rounded morphology (Toda et al., 2018). To roughly mimic this 809 
characteristic of adhesive L929 cells in our simulations, we relaxed the spherical morphology constraint 810 
such that for cells with an adhesion matrix value of at least 2 (see Table S2), λSur and λVol were set to 1.0. 811 
Other cells had λSur and λVol set to 2.2. 812 

In our hollowing, elongation, and oscillation simulations, we modify some of these basic 813 
parameters to incorporate new behaviors and if so, give the changes in the respective sections.  814 
	815 
Generalized Juxtacrine Signaling Model (GJSM) 816 
 817 

Juxtacrine signaling is the method employed to achieve the known synthetic structures. For a 818 
generic signaling ligand whose expression was constitutive, constant, and unaffected by signaling, we 819 
describe the total ligand level, L, on a cell’s surface by the equation 820 

𝐺𝑒𝑛𝑒𝑟𝑎𝑙: 𝐿 = !
!!!!(!!!)/!

 (1a) 821 

 𝑀𝑜𝑑𝑒𝑙 𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑: 𝐿 = !
!!!!!/!

 1𝑏  822 
where t is the given time in mcs, while γ, η, θ, and ξ are constants. We chose this equation because of its 823 
generalizability. It can represent steady state ligand level on a cell’s surface, recovery of surface ligand 824 
level from trypsinization, and experimental conditions such as ligand induction via tetracycline from a 825 
drug-controlled promoter (e.g. Tet On). Here we also give the simplified form used in our simulations. 826 
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Then, a receiver cell in contact with the sender cell would change its reporter level, R, by the 827 
differential equation  828 

𝐺𝑒𝑛𝑒𝑟𝑎𝑙: !"
!"
=  !

!!!!(!!!)/!
−  !

!
 2𝑎  829 

 𝑀𝑜𝑑𝑒𝑙 𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑: !"
!"
=  !

!!!!(!!!)/!
−  !

!
 2𝑏  830 

where τ, α, β, ε, and κ are constants and S is signal strength. We chose this form for several reasons. First, 831 
parameters have intuitive interpretations: τ and α control maximal reporter synthesis due to S, β controls 832 
sensitivity to S, ε modulates magnitude of S and β, and κ represents the standard linear protein decay rate 833 
constant commonly employed in biological models. Secondly, these parameters have kinetic/biological 834 
interpretations, due to the logistic function’s intrinsic relation to the Hill function (Reeve and Turner, 835 
2013). Lastly, the logistic function is easily tunable and well behaved, due to its monotonicity from 836 
negative infinity to positive infinity and bound between 0 and τ. This tunability is not as easily achievable 837 
with the Hill function, where odd or fractional hill constants lead to the existence of singularities. 838 

Signal strength S is affected by four primary factors in juxtacrine signaling: the number of 839 
receptors on the receiver cell, the number of ligands on each sender cell, the surface contact area between 840 
the sender and receiver cell, and the number of sender cells in contact. For a receiver cell σ with receptor 841 
level Ω and signaling neighbors SN this allows S to be defined as, 842 

𝐺𝑒𝑛𝑒𝑟𝑎𝑙: 𝑆! = 𝑀𝑖𝑛[𝛷!" ∗ 𝐿 ,𝛷!!" ∗ 𝛺] 3  843 
where Φ and L/Ω are the separate components reflecting surface contact fraction and ligand/receptor 844 
level, respectively. The Min function takes the minimum of the two values. Then, we define  845 

𝛷!" =
!"#$%!$ !"#$%&' !"#! !"#! !"

!"# !"
  4𝑎  846 

𝛷 ! =
!"#$%!$ !"#$%&' !"#! !"#! !"

!"# (!)
  4𝑏  847 

The receiver cell thus receives a signal strength S as a function of both the ligand amount (L) present on a 848 
sender cell, the number of receptors (Ω) present on the receiver cell, and the surface area shared Φ with 849 
each sender cell, iterated over all neighboring sender cells. The model assumes homogeneity of ligand 850 
and receptor on the cell’s surface. 851 

In our biological replication simulations, we assumed the receptors are non-limiting (i.e. ligand 852 
induction or signaling mediated ligand inhibition), and in our exploration simulations, we utilized the case 853 
where receptor is limiting (i.e. signaling mediated receptor inhibition). We thus obtain 854 

𝐿𝑖𝑔𝑎𝑛𝑑 𝐿𝑖𝑚𝑖𝑡𝑖𝑛𝑔 𝑀𝑜𝑑𝑒𝑙 𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑: 𝑆! = 𝛷!" ∗ 𝐿!"  5𝑎  855 
 𝑅𝑒𝑐𝑒𝑝𝑡𝑜𝑟 𝐿𝑖𝑚𝑖𝑡𝑖𝑛𝑔 𝑀𝑜𝑑𝑒𝑙 𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑: 𝑆! =  𝛷!!" ∗ 𝛺 5𝑏  856 

Because these factors evolve over time, S is therefore a morphological dependent and time dependent 857 
function that evolves according to structure’s spatial organization. 858 

Some cell types send and receive signals. These cells have reporters that also function as, or are 859 
associated with, signaling ligands. For these cells, we set  860 

𝐺𝑒𝑛𝑒𝑟𝑎𝑙 𝑎𝑛𝑑 𝑀𝑜𝑑𝑒𝑙 𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑: 𝐿 = 𝑅 (6) 861 
By assigning different combinations of these equations to in silico cells, we can generate different 862 

genotypes of cells. In CC3D, these different genotypes are coded as different cell types. To match the 863 
biological ligand receptor pair specificity, we set different types of cells to receive signal only from 864 
designated types of cells, reflecting the lack of cross-activation by synNotch (Toda et al., 2018). Thus, a 865 
neighboring cell that expresses a ligand L on its surface sends signal only to a neighboring cell with the 866 
cognate receptor. Likewise, a cell with receptor Ω can only receive signal from a cognate ligand 867 
expressing cell. 868 
	869 
Quantized Signaling Inducible Output 870 
 871 
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To implement signaling inducible behavioral response, we further classify our cell signaling 872 
genotypes into states. We borrow notation from physics; cells of each genotype, if excitable, bear a 873 
ground state and an excited state or even multiple higher order excited states. Cells that pass the threshold 874 
would enter the excited state, with the excited state bearing different properties, such as color change, 875 
being adhesive, capacity to deform, or even different signaling/reception capacity (Fig. 1b). This 876 
quantized representation of cell behavior has been applied to great effect, though not with this notation, in 877 
other models (Anderson, 2005; Hester et al., 2011; Hutson et al., 2017). 878 

Because the reference experiments primarily focus on signaling inducible adhesion with reporter, 879 
we utilize two states per genotype, ground and excited, in the biological replication simulations. The 880 
excited state bears a different color from the ground state, reflecting signaling induced reporter 881 
expression. J changes depending on adhesive strength and binding specificity that the cadherin types in 882 
the in vitro counterpart express upon sufficient signaling (see Table S1). It is also possible for a cell to fall 883 
from the excited state to the ground state due to loss of signaling, leading to the existence of a reversion 884 
threshold, in contrast to the activation threshold. Falling under the reversion threshold transitions an 885 
excited state cell to the ground state, reverting color and excited properties. It is of interest to note that for 886 
the reference experiments, the activation threshold need not necessarily equal the reversion threshold, as 887 
the adhesion protein and reporter can have different degradation rates since they are not fused. We tested 888 
both cases where the reversion threshold is zero and activation threshold equals the reversion threshold. 889 
We did not detect a clear difference between the two methods (See Results, Fig. 3, and Fig. S3). We 890 
therefore based our decision on the reference results, where no notable deactivation and loss of adhesion 891 
occurred (Toda et al., 2018) and thus set our reversion threshold to be zero in our replication simulations. 892 
In our hollowing, elongation, and oscillation simulations, we conjugated signaling to other types of 893 
output, such as changes in motility, growth, and tested the effect of different thresholds. This led to 894 
additional behavior differences between genotypes, their ground states, and their excited states. We give 895 
these changes in the respective sections. 896 
	897 
Simulation Conditions 898 

 899 
Our simulations employed two genotypes, usually both excitable, with the following notation: (A) 900 

as ground state of the first genotype, (A’) as excited state of the first genotype, (B) as ground state of the 901 
second genotype, and (B’) as excited state of the second genotype. We generated these genotypes in our 902 
replication simulations by programming ISL929 with the appropriate signaling network and behavioral 903 
response when excited (adhesion and/or color change), reflecting that of the in vitro counterpart. At the 904 
center of a 100x100x100 lattice, we seeded a mixture of (A) and (B) cells as a radially symmetric blob to 905 
maintain a consistent initial cell aggregate shape while also maintaining a similar cell total and ratio to 906 
that of the reference experiment. We then ran the simulation according to the timescale, 1000 monte carlo 907 
steps (mcs) per one hour of experiment time. Our timescale was determined by comparing the qualitative 908 
and quantitative space-time morphological evolution, and (A’) and (B’) activation rate, to that of the 909 
reference three-layer experiment (Fig. 3d-e). 910 

We ran lateral inhibition patterning on a 100x100x5 pixel cell monolayer (~400 cells) for 20,000 911 
mcs. Cells in inhibition networks (Fig. 4b, Fig.7, Fig. S6, and Fig. S8) began with a nonzero reporter as 912 
per reference experiment or as stipulated according to designed circuit. 913 
	914 
QUANTIFICATION AND STATISTICAL ANALYSES 915 

 916 
Simulation Quantifications 917 

 918 
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To determine how our simulations quantitatively compared to experimental runs for the three-919 
layer structure, we quantified three measurements: core distribution, sphericity, and activation timescale. 920 
(B’) green cells were visualized in 3D to determine core amounts and counted for each simulation at the 921 
endpoint. Sphericity was measured over time, both for excited states and over all states (Fig. 3d), using 922 
the formula (Cruz-Matías et al., 2019; Wadell, 1932) 923 

𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 = !
!
! (!∗!"#$%"$#& !"#$%&)

!
!

!"#$%"$#& !"#$%&' !"#$
  924 

We roughly rescaled the sphericity by dividing by 0.48 to compensate for the cubic nature of the voxels. 925 
We measured activation timescale by measuring the number of (B’) and (A’) cells present per timestep 926 
and normalized each to 1 maximum. 927 

We were also interested in the detailed spatial morphogenesis of these structures over time, thus 928 
we developed and quantified homogeneity degree Ψ per cell type x, calculated according to the formula 929 
below 930 

Ψ! =
!"#$%!$ !"#$%&' !"#! !"#! !

!"# !!!

!"!#$ !"##$ !" ! !" !"#$%!$ !"#! !
  931 

This measure ranges from 0 to 1, with 1 indicating maximal homogeneity, and is similar to sorting 932 
measurements employed in other studies (Flenner et al., 2008; Olimpio et al., 2018; Sun and Wang, 933 
2013). Our measure has several additional desirable properties, the first being the ability to generalize 934 
beyond two cell types. In our simulations, we separate over each genotype (A vs B) and measure ΨA,A’ 935 
and ΨB,B’ to distinguish quality of structural homogeneity due to each genotype. If desired, this measure 936 
can be simply extended to the ground and excited states of each genotype as well, ΨA, ΨB, ΨA’, ΨB’, or 937 
condensed as desired, ΨA,A’,B,B’, making it possible to distinguish the effects of different behaviors on 938 
morphogenesis. Second, our measure can be applied to many different morphologies, beyond fixed 939 
lattices (Olimpio et al., 2018) and spherical, their spatial organization over time, and is insensitive to 940 
single cells isolated from the focal structure.  941 

Finally, to compare our elongated structures, we additionally measured the elongation length by 942 
estimating each length of the linear segments comprising the structure. Each length was calculated as the 943 
distance between the endpoints of each linear segments. Then, the sum of all linear segments per structure 944 
represents the elongation of each structure (Fig. S7). 945 

 946 
Video Analysis 947 
 948 

In vitro data was either provided in the reference paper or obtained by analyzing the 949 
supplementary video for the counterpart structure from the reference experiments (Toda et al., 2018). The 950 
video was split into constituent frames using Mathematica v11.3.0.0, then circularity analyzed by drawing 951 
a region of interest around the structure using ImageJ v1.52a, both in bright field (all cells) and merged 952 
color field (activated cells only), and data collated in Microsoft Excel v1808. Circularity was then 953 
calculated using the classic equation  954 

𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =
4 𝜋 𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟!
 

To estimate how fast cells activated over time, we color separated the green, red, and black 955 
merged image portion of each frame by green and red to generate two sets of frames, one for green and 956 
one for red, representing respectively the activated cells of (B) and (A). We then converted these frames 957 
into binary images using the MorphologicalBinarize function in Mathematica, replacing pixels with an 958 
intensity above 0.1 with pixels of intensity 1. This threshold value was minimally low to remove non-959 
cellular background fluorescence and prevent biasing activated cell detection. Binarization additionally 960 
facilitated comparison by splitting in vitro cells into discrete states. Totaling the pixel intensity for each 961 
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frame of each set estimates activation per timepoint for (B) and (A). Cellular background fluorescence, 962 
due to a few cells beginning with some green/red (Toda et al., 2018) was removed by subtracting the 963 
minimum background fluorescence of the time series. Using the minimum helped negate cellular 964 
background fluorescence with again minimal biasing of activated cell detection. This yielded two 965 
estimated activation curves over time, one for green and one for red, and each was then normalized to 1 966 
maximum. 967 
 968 
Statistical Analyses 969 
 970 

Sample sizes are given in the text and/or figure caption. Statistical tests were performed in JMP 971 
PRO v14.0.0 with a significance level of 0.05. We performed a chi-squared analysis for our core 972 
distribution analyses (Fig. 3c and Fig. S3b). We performed a matched t-test between average (A) cell 973 
surface area and average (A’) cell surface area per lattice, with 10 lattice replicates, for our inhibition 974 
signaling cell monolayer patterning (Fig. S6b bottom right). We performed a standard two-tailed t-test for 975 
comparing the lengths of elongation for Fig. 6f. Appropriate test was chosen according to data type and 976 
assumptions tested by residuals analysis. We report and show mean ±s.d. for all measures. 977 
	978 

DATA AND SOFTWARE AVAILABILITY 979 
 980 

All simulations were performed in CompuCell3D v3.7.8 with custom scripts coded in Python 981 
v2.7.13.  982 
 983 
SUPPLEMENTAL INFORMATION 984 
 985 
Fig. S1. Additional three-layer structures and their sorting dynamics. 986 
(a)  Biological back-and-forth network that leads to the formation of the three-layer structures and model 987 
implementation.  988 
(b) In vitro structure from 200 (A) and 40 (B) as reference (Toda et al., 2018). Two additional structures 989 
from replicate simulations starting from a mixture of 202.2±4.33 (A) and 48.8±4.33 (B) are given. ΨB,B’ 990 
and ΨA,A’  are used to measure system sorting. We present mean±s.d.. (n=30 simulations).  991 
(c) In vitro structure from 160 (A) and 80 (B) as reference (Toda et al., 2018). Two additional structures 992 
from replicate simulations starting from a mixture of 162.8±7.54 (A) and 87.2±7.54 (B) is given. ΨB,B’ 993 
and ΨA,A’  are used to measure system sorting. We present mean±s.d.. (n=10 simulations). 994 
 995 
Fig. S2. Activation from signaling is required for three-layer formation. 996 
(a) Network is disrupted so that (A) and (B) cells no longer signal and thus cannot excite one another to 997 
their respective activated state. Adhesion matrix remains unchanged, only signaling is disrupted, and is 998 
analogous to treatment with DAPT, which inhibits synNotch mediated signaling (Toda et al., 2018).  999 
(b) Lack of structure formation starting from 201.33±6.02 (A) and 49.67±6.02 (B) due to loss of signaling 1000 
that drives cadherin mediated sorting. Quantitatively, no cores form, no activation dynamics occur, no 1001 
sorting occurs, but the structure still adopts an overall spherical shape, similar to the spheroids obtained in 1002 
vitro under DAPT treatment (Toda et al., 2018). We present mean±s.d.. Two structures from replicate 1003 
simulations shown. (n=30 simulations, n=1 in vitro experiment). 1004 
 1005 
Fig. S3. There is no detectable difference in setting the ground state/deactivation threshold equal to the 1006 
excited state/activation threshold and zero. 1007 
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A and B cells initial communicate via ligand-receptor binding. They communicate back and forth until a 1008 
threshold (same for both A and B?) is reached and they become either A’ or B’ cells, respectively. In the 1009 
absence of ligand-receptor binding, A’ and/or B’ cells can revert to their previous state. 1010 
(a)  Same code to obtain the three-layer structure in Fig. S1b and Fig. 3a. The only change is the 1011 
deactivation/ground state threshold is set equal to the activation/excited state threshold.  1012 
(b) No detectable quantitative difference. We obtain a nonsignificant difference in core distribution from 1013 
the in vitro core distribution (Toda et al., 2018) and obtain dynamics similar to in vitro dynamics as well. 1014 
Structures are also qualitatively indistinguishable from simulated structures using the primary parameter 1015 
set. We present mean±s.d.. Two structures from replicate simulations shown alongside reference (Toda et 1016 
al., 2018) (n=30 simulations with initial mixture of 201.9±4.95 (A) and 49.1±4.95 (B), n=1 in vitro 1017 
experiment). 1018 
 1019 
Fig. S4. Additional structures for the symmetric structures (first two) in Fig. 4 gallery.  1020 
(a) Biological base framework and the simulation network common to the structures below. 1021 
(b) Two additional structures from replicate simulations of the first structure in Fig. 4 gallery. We also 1022 
give the sorting dynamics as well as the time development. We present mean±s.d.. (n=10 simulations with 1023 
initial mixture of 89.7±10.78 (A) and 89.3±10.78 (B), in vitro 100 (A) and 100 (B) (Toda et al., 2018)). 1024 
(c) Two additional structures from replicate simulations of the second structure in Fig. 4 gallery. We also 1025 
give the sorting dynamics as well as the time development. We present mean±s.d.. (n=10 simulations with 1026 
initial mixture of 202.2±4.49 (A) and 48.8±4.49 (B), in vitro 200 (A) and 40 (B) (Toda et al., 2018)). 1027 
 1028 
Fig. S5. Additional structures for the asymmetrical structures (last two) in Fig. 4 gallery.  1029 
(a) Biological base framework and the simulation network common to the structures below. 1030 
(b) Two additional structures from replicate simulations of the third structure from 100 (A) and 100 (B) in 1031 
Fig. 4 gallery (Toda et al., 2018). We also give the sorting dynamics as well as the time development. We 1032 
present mean±s.d.. (n=10 simulations with initial mixture of 89.7±10.78 (A) and 89.3±10.78 (B)). 1033 
(c) Smaller biological structures from the third structure of Fig. 4 gallery, but with 30 (A) and 30 (B) 1034 
(Toda et al., 2018), and the analogous simulated structures starting from 27.1±3.07 (A) and 29.9±3.07 1035 
(B). Our model captures variability in structure formation in more than just the three-layer structure. We 1036 
present mean±s.d.. (n=10 simulations).  1037 
(d) Two additional structures from replicate simulations of the fourth structure in Fig. 4 gallery. We also 1038 
give the sorting dynamics as well as the time development. We present mean±s.d.. (n=10 simulations with 1039 
initial mixture of 163.4±7.63 (A) and 87.6±7.63 (B), in vitro 160 (A) and 80 (B) (Toda et al., 2018). 1040 
 1041 
Fig. S6. The model captures inhibitory signaling to recapitulate well known patterns. 1042 
(a) Synthetic implementation of lateral inhibition (Toda et al., 2018). 1043 
(b) Checkerboard patterning. The model can capture the classic checkerboard patterning resulting from 1044 
lateral inhibition, resulting in a typical red interspersed with green pattern (left drawing). Beginning with 1045 
a fixed (A) cell monolayer (no differential adhesion, cells are constant in morphology, no growth, 1046 
division, and motion), fates bifurcate to yield the classic checkerboard patterning (top right). On a 1047 
disorganized cell (A) monolayer, no differential adhesion, cells still do not grow nor divide, but can 1048 
slightly move and vary in size naturally (before fate bifurcation occurs). We found that smaller cells are 1049 
more likely to take the red (Notch) fate while larger cells tend to be (Delta) green fate. (n=10 cell 1050 
monolayers, one shown on bottom right).  1051 
(c) Two additional structures from replicate simulations of the lateral inhibition structure in Fig. 4b. We 1052 
give the sorting dynamics and in vitro structure from 100 (A) as reference (Toda et al., 2018). We present 1053 
mean±s.d.. (n=10 simulations with initial mixture of 93 (A)). 1054 
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 1055 
Fig. S7. Measuring length of structure for various elongation programs. We measured the length of the 1056 
elongated structure by dissecting the structure into multiple linear portions, then estimated coordinates of 1057 
the endpoints of the line traversing through the center of each portion. In this example, we split the 1058 
structure into two linear portions with a line each. The coordinates of the endpoints of the line can be 1059 
found via the cross-sectional slices, requiring 3 slices (a,b,c) in this example. Summing the length of each 1060 
line estimates the overall length of the elongated structure. We focused only on the elongation from 1061 
activated (A’) and (B’) cells. 1062 
 1063 
Fig. S8. Potential biological versions of the oscillation structures. 1064 
(a) Possible biological implementation for each network.  1065 
(b) Sorting dynamics. Measuring mean of ΨB,B’ and ΨA,A’ indicates the oscillation consists of high mixing 1066 
and low mixing structural switching as designed and remains stable for at least 300,000 simulation steps. 1067 
 1068 
 1069 
 1070 
 1071 
 1072 
 1073 
 1074 
 1075 
 1076 
 1077 
 1078 
 1079 
 1080 
 1081 
 1082 
 1083 
 1084 
 1085 
  1086 
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Table S1: Adhesion parameters utilized in the model. Due to the definition of contact energy in CC3D, 1087 
the larger the value, the lower the adhesion interaction. Adhesion parameters are related to the type of 1088 
cadherin the cell expresses and two parameters exist per cadherin due to the step-wise approximation 1089 
(ground state and excited state) in the model. Notation AC denotes increased cadherin levels due to 1090 
activation and BL denotes baseline cadherin levels due to basal promoter activity. Hi. denote high 1091 
expression, Lo. denotes low expression, and C. denotes constitutive expression per (Toda et al., 2018). 1092 
 1093 

 1094 
 1095 
 1096 
 1097 
 1098 
 1099 
 1100 
 1101 
 1102 
 1103 
 1104 

Table S2: Representation of adhesion values in the adhesion matrix. Adhesion values are grouped 1105 
according the range above to simplify representation. 0 is the lowest, representing lack of cadherin 1106 
mediated adhesion and 5 is the highest, representing very strong adhesion. 1107 
 1108 
 1109 
 1110 
 1111 
 1112 
 1113 

 AC 
Hi.Ecad 

BL 
Hi.Ecad AC Ecad BL Ecad AC 

Lo.Ecad 
BL 
Lo.Ecad AC Ncad BL Ncad AC Pcad BL Pcad C.Pcad 

AC 
Hi.Ecad 20 40   35 49     40 

BL 
Hi.Ecad  45   40 49     42 

AC Ecad   25 42     33 45  
BL Ecad    47     45 49  
AC 
Lo.Ecad     40 49      

BL 
Lo.Ecad      49      

AC Ncad       35 42 49 49 49 
BL Ncad        47 49 49 49 
AC Pcad         35 42  
BL Pcad          47  
C.Pcad           43 

Adhesion Value 
(appears in matrix J) Adhesion value (appers in Figures)  

49 0 Lowest adhesion 

48-40 1  

39-30 2  

29-20 3  

19-10 4  

9-0 5 Highest adhesion 
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