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Abstract 

Prominin-1 (Prom1) is a major cell surface marker of cancer stem cells, but its physiological 

functions in the liver have not been elucidated. We analyzed the levels of mRNA transcripts in 

serum-starved primary Prom1
+/+

 and Prom1
-/-

 mouse hepatocytes using RNA-sequencing (RNA-seq) 

data, and found that CREB target genes were down-regulated. This initial observation led us to 

determine that the Prom1 deficiency inhibited cAMP response element binding protein (CREB) 

activation and gluconeogenesis, but not cyclic AMP (cAMP) accumulation, in glucagon-, 

epinephrine-, or forskolin-treated liver tissues and primary hepatocytes, and mitigated glucagon-

induced hyperglycemia. Because Prom1 interacted with radixin, the Prom1 deficiency prevented 

radixin from localizing to the plasma membrane. Moreover, systemic adenoviral knockdown of 

radixin inhibited CREB activation and gluconeogenesis in glucagon-treated liver tissues and primary 

hepatocytes, and mitigated glucagon-elicited hyperglycemia. Based on these results, we conclude 

that Prom1 regulates hepatic PKA signaling via radixin functioning as an A kinase-anchored protein 

(AKAP). 

 

Keywords: cAMP signaling/Prominin-1/gluconeogenesis/protein kinase A/radixin 
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Introduction 

 

In well understood glucagon-elicited signaling pathway glucagon binds to and stimulates 

glucagon receptor, a G-protein-coupled receptor, in the plasma membrane of hepatocytes. The 

stimulated glucagon receptor in turn activates Gs and adenylyl cyclase (AC). The cyclic AMP 

(cAMP) produced by the activated AC binds to the regulatory domain of protein kinase A (PKA) to 

liberate the catalytic domain of PKA from the regulatory domain and activate the protein. Not only 

does activated PKA induces glycogenolysis by consecutively phosphorylating and activating 

phosphorylase kinase and glycogen phosphorylase b, but also stimulates gluconeogenesis by 

phosphorylating and activating cAMP response element binding protein (CREB). Subsequently, 

activated CREB induces the transcriptional activation of gluconeogenesis-related genes such as 

phosphoenolpyruvate carboxykinase (Pck) and glucose-6-phosphatase (G6p) (Altarejos & 

Montminy, 2011, Meinkoth, Alberts et al., 1993). 

Detergent-resistant lipid rafts, which are composed of cholesterol and glycolipids and serve as 

a signaling center, facilitate the cascade of glucagon signaling by organizing glucagon receptor, Gs, 

AC, A kinase-anchored proteins (AKAPs), PKA and PKA substrates in close proximity (Delint-

Ramirez, Willoughby et al., 2011, Head, Patel et al., 2006, Kim, Lee et al., 2010). AKAPs are 

scaffolding proteins that bind PKA and its substrates. Thus, AKAPs allow PKA and its substrates to 

coexist in the same place, such as the plasma membrane, mitochondria or nucleus, enabling effective 

signal transduction by cAMP (Dema, Perets et al., 2015, Wong & Scott, 2004).  

The penta-transmembrane glycoprotein prominin-1, also called CD133, localizes in membrane 

protrusions such as microvilli, filopodia and primary cilia in epithelial cells, membrane expansions in 

the myelin sheath originating from oligodendrocytes, membrane invaginations in the outer segment 

of rod photoreceptor cells and the midbody in epithelial cells (Corbeil, Roper et al., 2001, Corbeil, 

Roper et al., 1999, Corbeil, Roper et al., 2000, Dubreuil, Marzesco et al., 2007, Zacchigna, Oh et al., 
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2009). Mice with a systemic deficiency in Prom1 exhibit disk dysmorphogenesis and photoreceptor 

degeneration along with a complete loss of vision, indicating that Prom1 might be necessary for the 

formation of membrane extrusions (Zacchigna et al., 2009). In addition, Prom1 has been extensively 

studied as a major cancer stem cell marker in human brain, colon, ovarian and liver tumors. The 

Prom1-positive cell population in these tumors has characteristics of self-renewal, differentiation 

potential and resistance to chemo- and/or radiotherapy as well as tumor development after xenograft 

transplantation in immunocompromised mice (Dalerba, Dylla et al., 2007, Krishnan, Ochoa-Alvarez 

et al., 2013, Li, Heidt et al., 2007). Because PI3K interacts with Prom1 and Akt is highly 

phosphorylated in Prom1-positive cell populations, the Prom1-PI3K-Akt signaling pathway may be 

required for the maintenance of cancer stem cells (Wei, Jiang et al., 2013). However, this pathway 

has not been verified in a Prom1-deficient animal model. 

Although Prom1 is expressed at high levels in various epithelial cells in the brain, kidney, 

digestive track and liver, the physiological functions of Prom1 are poorly understood. We analyzed 

glucagon-elicited gluconeogenesis in the livers of Prom1-deficient mice to understand Prom1 

function. Here, we report that Prom1 is required for glucagon-induced PKA activation and 

hyperglycemia through its interaction with radixin, which functions as an AKAP in the liver. 
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Results 

 

Prom1 is required for glucagon- and cAMP-elicited gluconeogenesis in mouse primary 

hepatocytes  

After confirming Prom1 expression in mouse liver as well as primary hepatocytes (Fig S1A), 

we analyzed the levels of mRNA transcripts in serum-starved primary Prom1
+/+

 and Prom1
-/-

 mouse 

hepatocytes using RNA-sequencing (RNA-seq) data to evaluate the transcriptional effects of Prom1 

deficiency in the liver. We focused on the genes that were induced (n = 55) or repressed (n = 63) 

more than 2-fold with p < 0.05 (Fig 1A). Singular enrichment analysis of those 118 differentially 

expressed genes (DEG) for KEGG pathways revealed that pathways such as 

glycolysis/gluconeogenesis, glucagon and cAMP signaling pathway were highly enriched in the 

DEGs by Prom1 deficiency (Fig EV1B). Because the liver plays a central role in the regulation of 

glucose homeostasis, we focused on glycolysis/gluconeogenesis. Identified genes in these pathways 

included G6pc (glucose-6-phosphatase catalytic subunit), Pck1 (phosphoenolpyruvate carboxykinase 

1), Pfkl (phosphofructokinase), and Pkm (pyruvate kinase), and were consistently downregulated by 

Prom1 deficiency (Fig 1A). These observations were further confirmed by qRT-PCR (Fig 1B), 

immunoblotting (Fig 1C) and glucose uptake assays (Fig 1D), and the results led us to suspect that 

Prom1 may be involved in hepatic gluconeogenesis.  

To confirm the initial observations in mouse primary hepatocytes, we examined livers of 

Prom1
+/+

 and Prom1
-/-

 mice in the fasting state. Expression of G6pc and Pck1 were decreased in 

Prom1
-/-

 mouse liver compared to the level in Prom1
+/+

 mouse liver in the fasting state (Fig 1E). 

Fasting-induced CREB phosphorylation was also decreased in Prom1
-/- 

mouse liver (Fig 1F). Prom1
-

/-
 mouse had lower blood glucose level without difference in blood glucagon levels (Fig 1G and H). 

Hepatic glycogen breakdown during fasting was reduced in Prom1
-/-

 mice (Fig 1I). Livers of two 
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groups did not show any histological difference (Fig S1C). These results suggested that loss of 

Prom1 interfered with the activation of hepatic gluconeogenesis. 

To further confirm the involvement of Prom1 in hepatic gluconeogenesis, we determined the 

expression levels of hepatic gluconeogenic genes in Prom1
+/+

 and Prom1
-/-

mice hepatocytes after 

glucagon stimulation. The Prom1 deficiency interfered with the upregulation of G6pc and Pck1 

expression in glucagon-stimulated primary hepatocytes (Fig 2A and Fig S1D). Because glucagon 

induces the upregulation of gluconeogenic genes by activation of CREB, we measured glucagon-

induced CREB phosphorylation. In Prom1-deficient hepatocyte, glucagon-induced CREB 

phosphorylation was significantly decreased (Fig 2B) and nuclear localization of CREB was also 

decreased as a result (Fig 2C and Fig S1E).  

The decreased CREB phosphorylation and the reduced upregulation of gluconeogenic genes 

in glucagon-induced Prom1
-/-

 mouse hepatocytes led us to examine the effect of the Prom1 

deficiency on glucagon receptor signaling pathway. The Prom1 deficiency reduced glucagon-

induced phosphorylation of PKA substrates (Fig 2B and D). The PKA activity and cAMP level in the 

presence or absence of IBMX (3-isobutyl-1-methylxanthine), a phosphodiesterase (PDE) inhibitor, 

were measured in glucagon-stimulated Prom1
+/+

 and Prom1
-/- 

primary hepatocytes to investigate the 

abilities of the AC and PDE enzymes required to produce and degrade cAMP, respectively. Blocking 

cAMP degradation by IBMX failed to restore PKA activity in Prom1
-/-

 mouse hepatocytes (Fig 2D). 

The Prom1 deficiency did not change glucagon-induced cAMP production or degradation (Fig 2E). 

We also examined the effect of Prom1 overexpression on glucagon-induced CREB phosphorylation 

and cAMP production in Prom1
-/-

 primary hepatocytes. Adenoviral Prom1 overexpression restored 

glucagon-induced CREB phosphorylation (Fig S1F), but did not affect glucagon-elicited cAMP 

production (Fig S1G).  

To corroborate our observations, we tested two different PKA activators, forskolin (an AC 

activator) and 8-Br-cAMP (a non-degradable cAMP analogue) in Prom1
+/+

 and Prom1
-/-

 primary 
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hepatocytes. Consistent with the previous results, the Prom1 deficiency prevented forskolin- and 8-

Br-cAMP-induced CREB phosphorylation (Fig S2A and B) and reduced glucagon-induced 

phosphorylation of PKA substrates even in the presence of IBMX (Fig S2C) without changing 

glucagon-induced cAMP production (Fig S2D). Taken together, we concluded that Prom1 regulated 

cAMP-induced PKA activation in primary hepatocytes.  

 

Prom1 is necessary for glucagon-elicited hepatic gluconeogenesis in vivo  

The requirement for Prom1 in glucagon-elicited gluconeogenesis was further analyzed in 

vivo by treating Prom1
+/+

 and Prom1
-/-

 mice with glucagon. We conducted glucagon challenge tests 

in 12-week-old mice. Glucagon-elicited hyperglycemia was mitigated in Prom1
-/-

 mice compared to 

that in Prom1
+/+

 mice (Fig 2F). The livers of Prom1-deficient mice also exhibited reduced glucagon-

induced phosphorylation of CREB and PKA substrates (Fig 2G and H). However, Prom1-deficient 

mice did not display a change in glucagon-induced cAMP production in the liver (Fig S2E). 

Increased glucose internalization in Prom1
-/-

 mouse hepatocytes (Fig 1D) led us to hypothesize that 

Prom1-deficient mice would show decreased blood glucose level due to the reduced hepatic 

gluconeogenic capacity. To test this hypothesis, we performed glucose, pyruvate and insulin 

tolerance tests in Prom1
+/+

 and Prom1
-/- 

mice. Prom1-deficient mice displayed improved glucose and 

pyruvate tolerance (Fig 2I). Prom1 deficiency did not change insulin tolerance (Fig 2J), as insulin-

induced signaling was not affected (Fig 2K). These results demonstrated that the Prom1deficiency 

prevented hepatic gluconeogenesis but did not affect insulin signaling.  

 

Prom1 regulates β-adrenergic receptor signaling in vivo 

Because glucagon receptor is a member of the GPCR (G-protein coupled receptor) family, 

we hypothesized that Prom1 would also regulate other GPCR signaling that involves PKA activation. 

To test this hypothesis we investigated PKA signaling in Prom1
+/+

 and Prom1
-/-

 primary hepatocytes 
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treated with isoprenaline, a β-adrenergic receptor agonist. The Prom1 deficiency prevented 

phosphorylation of CREB and PKA substrates (Fig 3A and B), but not cAMP production (Fig 3C) in 

isoprenaline-treated primary hepatocytes. To further validate that Prom1 regulates β-adrenergic 

receptor signaling, we examined blood glucose level and PKA activation in Prom1
+/+

 and Prom1
-/-

 

mice after epinephrine injection. Epinephrine-induced hyperglycemia was mitigated (Fig 3D), and 

PKA activation was reduced (Fig 3E) in Prom1
-/-

 mice, when compared to that in Prom1
+/+

 mice. 

Because immobilization stress causes hyperglycemia via cholinergic muscarinic activation (Tajima, 

Endo et al., 1996), we performed immobilization test on Prom1
+/+

 and Prom1
-/-

 mice to test the effect 

of Prom1 deficiency on the signaling by endogenous epinephrine. We found that the immobilization 

stress-induced hyperglycemia and PKA activation were decreased in Prom1
-/-

, when
 
compared to

 

Prom1
+/+ 

mice (Fig 3F and G). However, the reduced responses of Prom1
-/-

 mice to immobilization 

stress was not due to the different epinephrine levels in the serum of Prom1
+/+ 

and Prom1
-/- 

mice (Fig 

3H).  

 

Radixin is the AKAP required for glucagon-induced PKA activation  

Because Prom1 deficiency decreased PKA activation in response to glucagon without 

changing cAMP production (Figs 1 and 2), we postulated that Prom1 might regulate an AKAP which 

binds to the regulatory subunit of PKA and confines the PKA holoenzyme to a specific cellular 

location. We identified several AKAPs that are expressed in the liver using an RNA-seq analysis 

(Fig S3A). Among these AKAPs, AKAP7, 8, 8I, 9, 10, 12 and 13 were selected because they are 

cytoplasmic or plasma membrane-bound proteins that may interact with Prom1. In addition, Radixin 

was also selected as the AKAP in question among ERM (ezrin, radixin and moesin) protein family, 

because radixin is dominantly expressed in hepatocytes (Fig S3B), links actin to the plasma 

membrane in the liver (Kikuchi, Hata et al., 2002), and is known to function as an AKAP (Gloerich, 

Ponsioen et al., 2010, Hochbaum, Barila et al., 2011). We knocked down AKAPs expressed in the 
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liver individually and examined their effects on glucagon-induced phosphorylation of PKA 

substrates in primary hepatocytes to identify which AKAP was regulated by Prom1. Glucagon-

induced phosphorylation of PKA substrates was inhibited most markedly by small interfering RNAs 

(siRNAs) targeting Prom1 or radixin, suggesting that radixin might be an AKAP regulated by Prom1 

(Fig 4A and Fig S3C and D). Because ezrin, a well-studied AKAP, was marginally expressed in the 

liver (Fig S3B), we tested the effect of ezrin knockdown by siRNA on glucagon-induced 

phosphorylation of PKA substrates as a control. Ezrin deficiency did not change the phosphorylation 

of PKA substrates (Fig S3E). Glucagon stimulation did not change the amount of radixin, PKA 

catalytic subunit or regulatory subunit (Fig S3F) as well. Similarly, adenoviral knockdown of radixin 

or Prom1 using short hairpin (sh) RNA in WT hepatocytes prevented glucagon-induced 

phosphorylation of CREB and other PKA substrates (Fig 4B, C, Fig S3G and Fig S4A). In contrast, 

radixin knockdown did not alter glucagon-induced cAMP production (Fig S4B). It has been reported 

that plasma membrane localization of Epac1, exchange factor directly activated by cAMP, and 

subsequent Rap1 activation is also mediated by radixin as an AKAP (Hochbaum et al., 2011). We 

determined Epac1 activity in Prom1
-/-

 primary hepatocytes treated with glucagon. Prom1 deficiency 

decreased Rap1 activation as well. (Fig S4C). These results suggested that radixin functions as the 

AKAP regulated by Prom1 in primary mouse hepatocytes. 

Next, to determine whether radixin functions as an AKAP during glucagon-induced 

gluconeogenesis in vivo, we knocked down radixin in mice using adenoviral shRNA, confirmed its 

transduction efficiency to be close to 100 % in hepatocytes (Fig S4D), and performed the glucagon 

challenge test. Glucagon-induced hyperglycemia was mitigated by radixin knockdown (Fig 4D). 

Moreover, radixin knockdown reduced the phosphorylation of CREB and PKA substrates (Fig 4E 

and Fig S4E), but did not alter cAMP production in the livers of glucagon-treated mice (Fig S4F). 

Glucose, pyruvate, and insulin tolerance tests were performed on radixin-knockdown
 
mice to further 

investigate whether radixin regulates hepatic gluconeogenesis in vivo. Radixin knockdown improved 
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glucose and pyruvate tolerance but not insulin tolerance (Fig. 4F), suggesting that radixin 

knockdown prevented glucagon-induced hepatic gluconeogenesis without affecting insulin signaling.  

 

Prom1 is necessary to confine radixin to the plasma membrane  

To determine the mechanism by which Prom1 regulates the AKAP activity of radixin we 

first examined whether the two proteins were located in close proximity using a proximity ligation 

assay. Fluorescence signals were observed in Prom1
+/+

 but not in Prom1
-/-

 primary hepatocytes (Fig 

4G, two left panels) and adenoviral overexpression of Prom1 drove the proximity-based fluorescence 

to reappear in Prom1
-/-

 primary hepatocytes (Fig 4G, two right panels). PKA regulatory subunits 

were also in close proximity to Prom1 (Fig 4H) implying the formation of Prom1/radixin/PKA 

complex. Endogenous Prom1 was co-immunoprecipitated with radixin in primary mouse hepatocytes 

(Fig 4I), suggesting the molecular interaction between Prom1 and radixin. Reciprocal 

immunoprecipitations of exogenously expressed Prom1 and radixin showed similar results in 

HEK293 cells (Fig 4J). The molecular interaction between Prom1 and radixin prompted us to 

speculate that Prom1 is required to confine radixin to the plasma membrane and to link actin to the 

plasma membrane. We determined the cellular localization of radixin and actin in Prom1
+/+

 and 

Prom1
-/-

 primary hepatocytes to test this hypothesis. Radixin and actin were clearly observed in cell-

cell contact sites called the canalicular membranes in Prom1
+/+

 hepatocytes but not in Prom1
-/-

 

hepatocytes (Fig 4K). Moreover, the Prom1 deficiency prevented cortical actin from localizing to 

canalicular membranes, suggesting that Prom1 was required to confine radixin and actin to the 

plasma membrane. Because Prom1 and ERM proteins are present in detergent-resistant lipid rafts, 

we speculated that radixin enrichment in detergent-resistant lipid rafts may depend on Prom1 

expression. We examined the presence of radixin in detergent-resistant lipid rafts from Prom1
+/+

 and 

Prom1
-/-

 primary hepatocytes to test this hypothesis. Prom1-deficient cells exhibited a reduced 
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amount of radixin in the detergent-resistant lipid rafts (Fig 4L). These results demonstrated that 

Prom1 is required to confine radixin to plasma membrane lipid rafts.  

 

The FERM domain of radixin is necessary for Prom1-dependent gluconeogenesis  

To determine which domain in each protein is required for the interaction, we constructed 

various deletion mutants of both Prom1 and radixin (Fig S5A and B). Co-immunoprecipitation after 

transient expression of both genes in HEK293 cells showed that the carboxy-terminal tail of Prom1 

(IC3) interacted with the FERM domain (1-310) of radixin, because the full-length protein and 

carboxy-terminal tail of Prom1 co-immunoprecipitated the full-length protein and FERM domain of 

radixin (Fig 5A and B). Competitive co-immunoprecipitation showed a gradual decrease in the 

molecular interaction between Prom1 and radixin in proportion to the increasing expression level of 

the FERM domain in HEK293 cells (Fig 5C), indicating the specific interaction between two 

proteins through FERM domain. Indeed, the canalicular localization of endogenous radixin 

disappeared in cells overexpressing the FERM domain (Fig 5D). Next, we monitored glucagon-

induced PKA activation after adenoviral overexpression of the FERM domain in primary mouse 

hepatocytes. Overexpression of the FERM domain prevented glucagon-induced phosphorylation and 

nuclear localization of CREB (Fig 5E and Fig S5C). Overexpression of the FERM domain prevented 

glucagon-induced phosphorylation of PKA substrates (Fig 5F), but did not affect glucagon-elicited 

cAMP production (Fig S5D). We further analyzed the dominant negative effect of the FERM domain 

on glucagon-elicited gluconeogenesis in vivo. Systemic adenoviral overexpression of the FERM 

domain mitigated glucagon-elicited hyperglycemia (Fig 5G). In addition, overexpression of the 

FERM domain prevented the glucagon-induced phosphorylation of CREB and PKA substrates in the 

livers of glucagon-treated mice (Fig 5H), and improved glucose and pyruvate tolerance but not 

insulin tolerance (Fig. 5I). Taken together, we concluded that the FERM domain of radixin is 
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necessary for the interaction with Prom1 and its confinement to lipid rafts to facilitate radixin’s 

function as an AKAP during hepatic gluconeogenesis. 

 

AKAP activity of radixin in glucagon-elicited gluconeogenesis was further substantiated by 

knockdown-rescue experiment. We examined glucagon-induced PKA activation in primary mouse 

hepatocytes in which endogenous radixin was knocked down by adenoviral shRNA, and shRNA- 

resistant radixin
R
 or LPTD

R
 was re-introduced by adenoviral transduction. We used the LPTD 

mutant of radixin, because L421P mutation disrupts the ability of radixin to bind to PKA, therefore 

losing AKAP activity and T564D mutation is known to mimic phosphorylation in all ERM proteins 

in its open and active conformation (Deming, Campbell et al., 2015). Ectopic expression of shRNA-

resistant radixin
R
 rescued glucagon-induced phosphorylation of PKA substrates, while radixin 

mutant LPTD
R
 could not (Fig 6A). Overexpression of LPTD

R
 mutant alone in primary mouse 

hepatocytes decreased the glucagon-induced phosphorylation of CREB and PKA substrates (Fig 6B), 

which suggested the dominant negative effect of LPTD
R
 mutant as well.  

 

Because our results showed that Prom1-deficient mice displayed improved glucose and 

pyruvate tolerance but not insulin tolerance (Fig 2I and J), we examined glucagon-elicited 

gluconeogenesis in high-fat diet-induced obese (DIO) Prom1
+/+

 and Prom1
-/-

 mice. DIO Prom1
-/-

 

mice exhibited a mitigation of glucagon-elicited hyperglycemia (Fig 6C). The Prom1 deficiency also 

prevented glucagon-induced phosphorylation of CREB and other PKA substrates (Fig 6D). In DIO 

Prom1
-/-

 mice, glucose tolerance, but not insulin tolerance, was improved (Fig 6E). Moreover, 

systemic adenoviral overexpression of Prom1 in DIO Prom1
-/-

 mice enhanced glucagon- and 

pyruvate-induced hyperglycemia (Fig 6F). These in vivo results showed that the Prom1 deficiency 

protected mice from diet-induced glucose intolerance 

  

105 and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprint (whichthis version posted September 27, 2019. ; https://doi.org/10.1101/785154doi: bioRxiv preprint 

https://doi.org/10.1101/785154


Discussion 

 

Although Prom1 is a cancer stem cell marker located in plasma membrane detergent-

resistant lipid rafts, the cellular functions of Prom1 have remained elusive (Krishnan et al., 2013, 

Roper, Corbeil et al., 2000). For the first time, our study provides new insights into the physiological 

role of Prom1. We examined the mechanism by which Prom1 regulates hepatic gluconeogenesis 

using Prom1-deficient mice. The Prom1-radixin axis is a key signaling pathway that regulates 

cAMP-mediated PKA activation. We propose that Prom1 confines radixin to the plasma membrane 

and radixin recruits the PKA holoenzyme to the plasma membrane. Subsequently, glucagon-G 

protein-coupled receptor (GPCR)-Gs-AC signaling pathway produces cAMP, liberating and 

activating the PKA catalytic subunit from the PKA regulatory subunit attached to radixin. Because 

Prom1 deficiency interferes with the function of radixin as an AKAP, Prom1 deficiency prevents 

cAMP-mediated PKA activation. 

ERM family proteins (ezrin, radixin and moesin) act as AKAPs because they interact with the 

PKA regulatory subunit and various plasma membrane-associated PKA substrates (Neisch & Fehon, 

2011). Indeed, ERM proteins are required for PKA-mediated phosphorylation of different 

membrane-associated proteins, such as -adrenergic receptor, cystic fibrosis transmembrane 

conductance regulator (CFTR), Na
+
-H

+
 exchanger 3 (NHE3), connexin 43 (Cx43) and exchange 

protein directly activated by cAMP (EPAC) (Bretscher, Edwards et al., 2002, Fouassier, Duan et al., 

2001, Hochbaum et al., 2011, Pidoux, Gerbaud et al., 2014, Sun, Hug et al., 2000, Weinman, 

Steplock et al., 2003). We focused on the Prom1-radixin complex because among these ERM 

proteins radixin is the dominant ERM protein in hepatocytes (Kikuchi et al., 2002, Tsukita, Hieda et 

al., 1989). Radixin knockout mice show hyperbilirubinemia due to loss of multidrug resistance 

protein 2 (MRP2) from canalicular membranes in the liver (Kikuchi et al., 2002), deafness associated 

with progressive degeneration of cochlear stereocilia in the inner ear (Kitajiri, Fukumoto et al., 
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2004), and impaired reversal learning and short-term memory by modulating inhibitory synapse 

transmission (Loebrich, Bähring et al., 2006). Our study provides the first evidence to show that 

radixin is also involved in glucagon/-adrenergic receptor-mediated gluconeogenesis via Prom1-

radixin axis. Prom1 deficiency disrupts the localization of radixin in canalicular membranes, 

prevents the formation of cortical actin (Fig 4K) and inhibits glucagon-, isoprenaline- or cAMP-

induced PKA activation (Fig 2, Fig 3, and Fig S2) without changing the amount of PKA catalytic 

subunit (Fig S3F). These results demonstrate that Prom1 deficiency abrogates the function of radixin 

as an AKAP which allows the PKA holoenzyme and PKA substrates to assemble in the same place. 

Failing to confine the PKA holoenzyme and PKA substrates in close proximity due to Prom1 

deficiency may explain the reduced phosphorylation level of PKA substrates even at the supra-

physiological concentration of activators used in our study. In addition, because PKA has generous 

substrate specificity (Dalerba et al., 2007), it is crucial to tightly regulate PKA localization through 

its interaction with AKAPs (Beene & Scott, 2007) and activation through confined cAMP 

concentration (Rich, Fagan et al., 2001, Zaccolo & Pozzan, 2002). Recently, Smith et al. (Smith, 

Esseltine et al., 2017) have demonstrated that local PKA activation is regulated by the 

conformational change of holoenzyme, not by the complete dissociation of catalytic subunit at the 

physiological concentration of cAMP. In accordance with these reports our findings also 

demonstrated that local confinement of PKA to which cAMP is readily available by the interaction 

with radixin, hepatocyte specific AKAP, and Prom1 complex is an important process that provides 

the specificity in the regulation of glucagon-induced gluconeogenesis. This may explain the lack of 

action from other AKAP proteins in the presence of glucagon or 8-Br-cAMP. More interestingly, we 

demonstrated that the importance of Prom1-radixin axis not only in glucagon-elicited 

gluconeogenesis, but also in β-adrenergic receptor-mediated gluconeogenesis (Fig. 3). These results 

suggest that Prom1-AKAP interaction may participate in regulating GPCR signaling in other 

phenotypes or organs. 

105 and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprint (whichthis version posted September 27, 2019. ; https://doi.org/10.1101/785154doi: bioRxiv preprint 

https://doi.org/10.1101/785154


Membrane-associated AKAPs are known to be involved in cAMP-induced phosphorylation 

and the activation of nuclear CREB. Although membrane-bound AKAP5 interacts with E-cadherin, 

-adrenergic receptor, adenylyl cyclase and the cytoskeleton, cAMP-induced phosphorylation of 

nuclear CREB is increased by its overexpression but is reduced by its knockdown (Altier, Dubel et 

al., 2002, Fraser, Cong et al., 2000, Gorski, Gomez et al., 2005). The cAMP-induced 

phosphorylation of nuclear CREB is also reduced with a cell-permeable peptide treatment that 

inhibits the molecular interaction between PKA and AKAP (Friedrich, Aramuni et al., 2010, 

Godbole, Lyga et al., 2017). Similar to the observations in the above examples, the Prom1-radixin 

complex in the plasma membrane regulates cAMP-induced phosphorylation of nuclear CREB. 

However, the molecular mechanism by which radixin regulates the phosphorylation of nuclear 

CREB still remains elusive. 

Using Prom1-deficient or radixin-knockdown mice, we show that the Prom1-radixin 

complex is required for hepatic gluconeogenesis. Because both lean and high-fat diet-fed mice 

lacking Prom1 or radixin exhibited a decreased blood glucose level after a 4-h fast and improved 

glucose and pyruvate tolerance without changing insulin sensitivity, Prom1 and radixin may be 

excellent target proteins for lowering the blood glucose level in patients with diabetes. Therefore, a 

chemical drug that interferes with the molecular interaction between Prom1 and radixin might thus 

be useful as a treatment for hyperglycemia by inhibiting gluconeogenic signaling pathway. 
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Materials and Methods 

 

Animal studies  

Prom1 knockout mice were purchased from The Jackson Laboratory (Stock NO. 017743, 

Bar Harbor, ME, USA). The Prom1
-/-

 mice were backcrossed with C57BL/6N mice for five 

generations. All animal studies were conducted with the approval of the Korea University 

Institutional Animal Care and Use Committee and the Korean Animal Protection Law (KUIACUC-

2017-14 and -2018-6).  

For glucagon stimulation tests, glucagon (200 μg/kg body weight for mice fed a normal 

chow diet, 100 μg/kg body weight for mice fed a high-fat diet (Sigma-Aldrich, St Louis, MO, USA) 

was intraperitoneally injected into male mice that had fasted for 4 h. For glucose tolerance tests, D-

glucose (2 g/kg body weight) (Sigma-Aldrich, St Louis, MO, USA) was intraperitoneally injected 

into male mice that had fasted overnight. For insulin tolerance test, insulin (0.75 U/kg body weight 

for mice fed a normal chow diet, 1.5 U/kg body weight for mice fed a high-fat diet) (Sigma-Aldrich, 

St Louis, MO, USA) was intraperitoneally injected into male mice that had fasted for 4 h. For 

pyruvate tolerance test, pyruvate (2 g/kg body weight) (Sigma-Aldrich, St Louis, MO, USA) was 

intraperitoneally injected into male mice that had fasted overnight. For epinephrine stimulation test, 

epinephrine (3µg/10g) (Sigma-Aldrich, St Louis, MO, USA) was intraperitoneally injected into male 

mice that had fasted for 4h. For immobilization stress, male mice were restrained in a ventilated 

acrylic restrainer fit to allow the animal to breathe but not to move otherwise. 

 

Preparation of mouse primary hepatocytes 

Primary hepatocytes were isolated from 8-week-old C57BL/6 male mice as previously 

described (Koo, Flechner et al., 2005). Briefly, mice were anesthetized with avertin (intraperitoneal 

injection of 250 mg/kg body weight), and livers were perfused with a pre-perfusion buffer (140 mM 
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NaCl, 6 mM KCl, 10 mM HEPES, and 0.08 mg/mL EGTA, pH 7.4) at a rate of 7 mL/min for 5 min, 

followed by a continuous perfusion with collagenase-containing buffer (66.7 mM NaCl, 6.7 mM 

KCl, 5 mM HEPES, 0.48 mM CaCl2, and 3 g/mL collagenase type IV, pH 7.4) for 8 min. Viable 

hepatocytes were harvested and purified with a Percoll cushion. Then, hepatocytes were re-

suspended in complete growth medium, 199 medium containing 10% FBS, 23 mM HEPES and 10 

nM dexamethasone, and seeded on collagen-coated plates at a density of 300,000 cells/mL. After a 

4-h attachment period, the medium was replaced with complete growth medium before use in any 

experiments and changed daily.   

 

Measurement of cAMP concentrations 

Levels of cAMP were quantified using a cAMP ELISA kit (Applied Biosystems, Waltham, 

MA, USA) according to the manufacturer’s protocol. For mouse primary hepatocytes, cells growing 

in 6-well plates were lysed with IBMX, and cAMP concentrations were quantified. Concentrations 

of cAMP in mouse liver samples were measured using an ELISA and normalized to the wet liver 

weight.  

 

Measurement of PKA activity 

PKA activity was measured using a PKA kinase activity assay kit (Abcam, Cambridge, UK), 

according to the manufacturer’s protocol. Briefly, whole-cell lysates were incubated with a specific 

synthetic peptide as a substrate for PKA and a polyclonal antibody that recognizes the 

phosphorylated form of the substrate. Relative PKA activity was measured by determining the 

optical density. 

 

Proximity ligation assay 
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An in situ proximity ligation assay was used to detect protein-protein interactions in cells. 

Briefly, cells were cultured on collagen-coated confocal dishes and fixed with 4% paraformaldehyde. 

Then, cells were permeabilized with 0.1% Triton X-100 in phosphate buffer and incubated with 

blocking buffer for 30 min to prevent nonspecific binding. Samples were sequentially incubated with 

a primary antibody, PLA probe, ligase, and polymerase, according to the manufacturer’s instructions. 

PLA-positive cells exhibited red fluorescent signals. The fluorescent signal was observed using a 

confocal laser scanning microscope (Carl Zeiss 700, 40 X water objectives).  

 

Quantitative real-time PCR 

RNA (2 μg) was reverse transcribed to cDNAs using random hexamer primers, oligo dT and 

Reverse Transcription Master Premix (ELPIS Biotech, Daejeon, Korea). Quantitative real-time PCR 

analyses were performed using the cDNAs from the reverse transcription reactions and gene-specific 

oligonucleotides (Appendix Table S2) in the presence of TOPreal qPCR 2X premix (Enzynomics, 

Daejeon, Korea). The following PCR conditions were used: an initial denaturation step at 95°C for 

10 min, followed by 45 cycles of denaturation at 95°C for 10 s, annealing at 58°C for 15 s and 

elongation at 72°C for 20 s. The melting curve for each PCR product was assessed for quality 

control. Supplementary Table 2 shows the sequences of the primers used for qPCR. 

 

Measurement of hepatic glucose output 

Glucose production was determined using the glucose assay kit from Sigma-Aldrich 

according to the manufacturer’s instructions. Primary hepatocytes were seeded on collagen-coated 6-

well plates (0.8 x 10
6
 cells per well). After 3 h, cells were infected with a virus overnight. After 24 h, 

the medium containing the virus was removed and replaced with fresh 199 medium. After 18 h, the 

medium was removed, and the cells were rinsed twice with PBS. Then, glucose production buffer 

(consisting of glucose-free DMEM lacking phenol red, pH 7.4, 20 mM sodium pyruvate, 2 mM l-
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glutamine and 15 mM HEPES) was added to the cells. After 4 h, the medium was collected and the 

amount of glucose in the medium was determined using the glucose assay kit (Sigma-Aldrich, St 

Louis, MO, USA). 

 

siRNA interference 

All siRNAs (Appendix Table S3) were synthesized by Bioneer Inc. (Daejeon, Korea). Cells 

were transfected with 100 nM siRNA using Lipofectamine RNAiMAX reagent (Invitrogen, 

Carlsbad, USA). 

 

Adenovirus preparation and infection  

Adenoviruses harboring sh-Con, sh-Rdx (radixin), sh-Prom1, GFP and FERM were 

produced as previously described (Yi, Park et al., 2013). AD293 cells were re-infected with viral 

stocks to amplify the viruses, and viruses were purified by double cesium chloride-gradient 

ultracentrifugation. Infectious viral particles in the cesium chloride gradient (density = ~1.345) were 

collected, dialyzed against a 10 mM Tris (pH 8.0), 2 mM MgCl2 and 5% sucrose solution and stored 

at -80°C. Recombinant adenovirus (0.5 × 10
9
 pfu) was injected into the tail veins of mice. Four days 

after the injection, the mice were subjected to blood glucose metabolism tests. 

 

Isolation of detergent-resistant lipid rafts  

Livers from wild type and Prom1 knockout mice were lysed in 1 mL of lysis buffer (1% Brij 

35, 25 mM HEPES, pH 6.5, 150 mM NaCl, protease and protease inhibitor cocktail) and subjected to 

discontinuous sucrose gradient ultracentrifugation (40%, 30%, and 5%) using a SW41 Ti rotor 

(39,000 rpm) for 18 h at 4°C. After centrifugation, the sucrose solutions were fractionated into 12 

fractions. An opaque buoyant band corresponding to the lipid rafts was collected at the interface 

between the 30% and 5% sucrose solutions. 
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Plasmid construction and transient transfection  

Deletion mutants of Prom1-Flag and Myc-radixin (Appendix Table S4) were generated by 

reverse PCR using the primer sets (Appendix Table S5). mTagBFP2-Farnesyl-5 was a gift from 

Michael Davidson (Addgene plasmid # 55295). The Myr-BFP-IC3 construct of Prom1 was 

generated as follows: first, the myristoylation sequence was added at the N-terminus of pmTagBFP2 

using reverse PCR; second, Prom1-tail-3xFlag was added at the C-terminus of pmTagBFP2 using the 

DNA assembly method. Myr-BFP was generated by removing the Prom1-tail from Myr-BFP-IC3 by 

reverse PCR. DNA transfection was performed using Lipofectamine 3000 reagent (Invitrogen, 

Carlsbad, USA), according to the manufacturer’s protocol. 

 

Immunoblotting and immunofluorescence staining 

Cells were lysed with the following lysis buffer: 50 mM Tris-Cl, pH 8.0, 150 mM NaCl, 1% 

NP-40, 0.5% sodium deoxycholate, 0.1% SDS, protease inhibitor mixture and phosphatase inhibitor 

mixture (Sigma-Aldrich, St Louis, MO, USA). Whole cell lysates obtained from the supernatant after 

microcentrifugation at 14,000 rpm for 15 min at 4°C were subjected to sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE). The separated proteins were transferred to a 

nitrocellulose membrane and incubated with specific primary antibodies and horseradish peroxidase 

(HRP)-conjugated secondary antibodies. Antigens were visualized using an enhanced 

chemiluminescence substrate kit (Thermo Fisher Scientific, Waltham, MA, USA). For 

immunoprecipitation, cells were lysed in buffer containing 20 mM Tris-HCl (pH 7.4), 137 mM 

NaCl, 1 mM MgCl2, 1 mM CaCl2 and a protease inhibitor cocktail (Sigma-Aldrich, St Louis, MO, 

USA). Whole-cell lysates (500 μg of protein) were incubated with specific antibodies overnight and 

then with 60 μL of a slurry of Protein A- or Protein G-agarose beads (Roche, Mannheim, Germany) 
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for 3 h. Immunoprecipitates were analyzed by immunoblotting. For immunofluorescence staining, 

cells were fixed with PFA and stained with antibodies against the indicated protein. 

 

Immunohistochemistry  

Each paraformaldehyde-fixed samples were either embedded in paraffin or frozen in OCT 

compound and cut into 5um-thick sections. Tissue samples were then stained with hematoxylin-eosin 

(HE) or periodic acid-schiff (PAS) according to standard protocol, and the images were captured on 

light microscope (Leica). For Prom1 immunohistochemistry, fresh-frozen tissues post-fixed in 4% 

paraformaldehyde. Tissue sections were immunostained with antibody directed against prominin-1 

(Thermo Fisher Scientific, Waltham, MA, USA). The samples were pretreated with 2.5% horse 

serum for 20min to block nonspecific antibody binding and incubated with the antibodies of interest 

for overnight at 4°C. The slides were then treated with Rhodamine-conjugated secondary antibody. 

After mounting with fluorescence mounting medium (Agilent, Santa Clara, CA, USA), the samples 

were captured on an LSM 800 META confocal microscope (Zeiss, Oberkochen, DE). 

 

Rap activation assay 

Rap activity assays were performed as manufacture’s protocol (Abcam; ab212011, 

Cambridge, UK). Briefly, primary mouse hepatocytes were lysed at 4℃ in a buffer containing 50 

mM Tris-Cl, pH 8.0, 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, protease 

inhibitor mixture and phosphatase inhibitor mixture. Cells lysates were incubated for 30 min with 

agarose beads coupled to the Rap-binding domain (RBD) of RalGDS (Ral Guanine Nucleotide 

Dissociation Stimulator), which bind specifically to the active form of Rap. Subsequently, the 

precipitated GTP-Rap was detected by western blot analysis using anti-Rap1 antibody. 

 

Statistical analysis  
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Values are presented as means ± SEM. A two-tailed Student’s t-test was used to calculate 

the P values 
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AKAP (A kinase-anchored protein), AC (adenylyl cyclase). cAMP (cyclic adenosine 

monophosphate), PKA (protein kinase A), CREB (cAMP response element binding protein), pck 

(phosphoenol pyruvate carboxykinase), g6p (glucose-6-phosphatase), G6pc (g6p catalytic subunit), 

PI3K (phosphatidylinositide 3-kinases), Fbp1 (fructose 1,6-bisphosphatase 1), GPCR (G protein–

coupled receptor), PDE (phosphodiesterase), IBMX (3-isobutyl-1-methylxanthine), 8-Br-cAMP (8-

Bromo-cAMP), DIO (diet-induced obese), shRNA (short hairpin RNA), FERM (F for 4.1 protein, E 

for ezrin, R for radixin and M for moesin), CFTR (fibrosis transmembrane conductance regulator), 

NHE3 (Na
+
-H

+
 exchanger 3), Cx43 (connexin 43) and EPAC (exchange protein directrly activated 

by cAMP). 
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Figure Legends 

 

Figure 1 - Prom1 deficiency prevents glucagon-induced gluconeogenesis  

A-D Primary hepatocytes were isolated from 12-week-old male Prom1
+/+

 (WT) or Prom1
-/-

 (KO) 

mice, serum-starved and / or stimulated with glucagon. A Differentially expressed genes more than 

2-fold with p < 0.05 (118 DEGs) induced (n=55) or repressed (n=63) by Prom1 knockout (n = 

2/group). G6pc, glucose-6-phosphatase catalytic subunit; Pck1, phosphoenolpyruvate carboxykinase 

1. B Relative expression levels of G6pc and Pck1 mRNAs were determined by RT-qPCR (n = 

3/group) after serum starvation for 16 hours. *p < 0.05. C Levels of the Prom1, Pck, G6pc and 

Gapdh proteins were determined by immunoblotting. D The 8 hours serum-starved Prom1
+/+

 or 

Prom1
-/-

 hepatocytes were incubated with 2-[
3
H]deoxyglucose for 10 min. Glucose uptake was 

assessed by calculating the amount of cell-associated radioactivity normalized to the amount of 

protein. n = 3 mice per group. ***p < 0.001. 

E-I Livers were isolated from fasted mice. E Levels of the G6pc and Pck1 mRNAs in the liver of 

mice after 18 hours fasting were determined by quantitative PCR (qPCR). The level of each mRNA 

was normalized to the level of the 18s rRNA. n = 3/fed, 7 or 8/fasted. **p < 0.01. F Levels of 

phospho-PKA substrates (p-PKA substrates), phospho-CREB (p-CREB), CREB, G6pc Pck, Prom1 

and Gapdh were determined after 18 hours fasting. G Blood glucose levels (mg/dL) were measured 

after 24 hours fasting. n = 12 or 14/group. *p < 0.05. H Serum glucagon level in the fed or fasted 

mice was determined. n = 3/fed, 7 or 8/fasted. NS = not significant. I Glycogen contents in the liver 

of mouse in each condition was shown by PAS (periodic acid schiff) staining. 

Data information: Data are presented as mean values ± SEM. Two-tailed Student’s t-test 

was used for statistical analysis. Scale bar (I) = 500 m. 

 

Figure 2 - Prom1 deficiency prevents glucagon-induced hyperglycemia in vivo.  
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A-E Primary hepatocytes were isolated from 12-week-old male Prom1
+/+

 (WT) or Prom1
-/-

 (KO) 

mice, serum-starved and stimulated with glucagon. A Levels of the G6pc and Pck1 mRNAs were 

determined by quantitative PCR (qPCR) 2 hours after glucagon stimulation (10 nM). The level of 

each mRNA was normalized to the level of the 18S rRNA. For these experiments, primary 

hepatocytes were cultured under 3D conditions using a Matrigel matrix. n = 3 mice per group. *p < 

0.05; ***p < 0.001. B Levels of phospho-PKA substrates (p-PKA substrates), phospho-CREB (p-

CREB), CREB, phospho-Inositol trisphosphate receptor (p-IP3R), IP3R, phospho-Hormone-

Sensitive Lipase (p-HSL), HSL, Prom1 and Gapdh were determined after a 10-min glucagon 

stimulation (10 nM). C The nuclear localization of p-CREB was determined by immunofluorescence 

staining after 10 min glucagon stimulation (10 nM). D Relative PKA activities after 10 min glucagon 

stimulation (10 nM) were determined using the PKA assay kit in the absence or presence of 10 M 

IBMX. n = 3 mice per group. **p < 0.01; ***p < 0.001. E The cAMP concentration after 10 min 

glucagon stimulation (10 nM) was determined using the cAMP assay kit in the absence or presence 

of 10 M IBMX. n = 3 mice per group. NS = not significant 

F-H 12-week-old male Prom1
+/+

 (WT) and Prom1
-/-

 (KO) mice were fasted for 4 hours and 

intraperitoneally injected with glucagon. F Blood glucose levels (mg/dL) were measured 0, 15, 30, 

60 and 120 min after glucagon stimulation (200 µg/kg body weight). n = 10/group. *p < 0.05; **p < 

0.01; ***p < 0.001. G Levels of p-PKA substrates, p-CREB, CREB and Gapdh in the liver were 

determined by immunoblotting after a 5 min glucagon treatment (2 mg/kg body weight). H Relative 

PKA activities in the liver were determined using the PKA assay kit after a 5 min glucagon treatment 

(2 mg/kg body weight). n = 3/group. *p < 0.05.  

I, J Glucose disposal rates were measured in 12-week-old male mice using glucose, pyruvate (I) and 

insulin (J) tolerance tests. n = 10 mice per group. *p < 0.05; **p < 0.01; ***p < 0.001.  

K Levels of p-Akt, Akt, p-Erk, Erk, IR and Gapdh were determined by immunoblotting after 

insulin stimulation (10 nM). 
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Data information: Data are presented as mean values ± SEM. Two-tailed Student’s t-test 

was used for statistical analysis. 

 

Figure 3 - Prom1 deficiency prevents β-adrenergic receptor-mediated PKA activation.  

A-C Primary hepatocytes were isolated from 12-week-old male Prom1
+/+

 (WT) or Prom1
-/-

 (KO) 

mice, serum-starved for 16 h and stimulated with isoprenaline. A The nuclear localization of p-

CREB was determined by immunofluorescence staining 10 min after isoprenaline stimulation (10 

μM). B Levels of p-PKA substrates, p-CREB, CREB, Prom1 and Gapdh were determined by 

immunoblotting 0, 10 and 20 min after isoprenaline stimulation (10 μM). C The cAMP concentration 

was determined using the cAMP assay kit 10 min after isoprenaline stimulation (10 μM) in the 

presence of 10 μM IBMX. n = 3/group. NS = not significant. 

D, E Prom1
+/+

 (WT) and Prom1
-/-

 (KO) mice were fasted for 4 h and intraperitoneally injected with 

epinephrine. (3µg/10g). D Blood glucose levels (mg/dL) were measured 0, 15, 30, 60 and 120 min 

after epinephrine stimulation. n = 13 or 14/group. **p < 0.01. E Levels of p-PKA substrates, p-

CREB, CREB and Gapdh in the liver were determined by immunoblotting after a 15 min epinephrine 

treatment. 

F-H Prom1
+/+

 (WT) and Prom1
-/-

 (KO) mice were fasted for 4 h and subjected to immobilization 

test. F Blood glucose levels (mg/dL) were measured 0, 60 and 120 min after immobilization. n = 

10/group. *p < 0.05; **p < 0.01. G Levels of p-PKA substrates, p-CREB, CREB and Gapdh in the 

liver were determined by immunoblotting after a 30 min immobilization. H Serum epinephrine level 

of mice after 30min immobilization was determined. n = 3/control group, 7 or 8/immobilized group. 

NS = not significant. 

Data information: Data are presented as mean values ± SEM. Two-tailed Student’s t-test 

was used for statistical analysis. 
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Figure 4 - Radixin is the AKAP required for glucagon-induced PKA activation and 

hyperglycemia in vivo and Prom1 is required to confine radixin and actin. 

A The expression of Prom1, radixin, AKAP7, AKAP8, AKAP8I, AKAP9, AKAP10, AKAP12 or 

AKAP13 was silenced in WT hepatocytes using siRNAs. Hepatocytes were then serum-starved for 

18 hours and stimulated with glucagon (10 nM) for 10 min. The phosphorylation of PKA substrates 

was determined by immunoblotting.  

B, C Prom1 and radixin expression were silenced in Prom1
+/+

 (WT) and Prom1
-/- 

hepatocytes (KO) 

by infection with an adenovirus harboring sh-control (sh-Con), sh-radixin (sh-Rdx) or sh-Prom1 for 

24 h. Hepatocytes were further serum-starved for 18 h and stimulated with glucagon (10 nM) for 10 

min. B The nuclear localization of p-CREB was determined by immunofluorescence staining after 

stimulation with glucagon. Blue; DAPI, Red; p-CREB. The percentage of cells with nuclear p-CREB 

staining among more than 300 cells in each group was also statistically analyzed (Supplementary 

Fig. 3g). C Levels of p-PKA substrates, p-CREB, CREB, p-IP3R, IP3R, Prom1, radixin and Gapdh 

were determined by immunoblotting after a 10-min glucagon stimulation.  

D-F 12-week-old male wild type mice were infected with an adenovirus harboring sh-control (sh-

Con) or sh-radixin (sh-Rdx) for 3 days, fasted for 4 h and intraperitoneally injected with glucagon. D 

Blood glucose levels (mg/dL) were measured 0, 15, 30, 60 and 120 min after glucagon (200 µg/kg 

body weight) administration. n = 10 mice per group. *p < 0.05; ***p < 0.001. E Levels of p-PKA, p-

CREB, CREB, radixin and Gapdh in the liver were determined by immunoblotting after a 10-min 

glucagon (2 mg/kg body weight) stimulation for 10 min. F Glucose disposal rates in sh-Con or sh-

Rdx (radixin) mice were measured using glucose, insulin and pyruvate tolerance tests. n = 10 mice 

per group. *p < 0.05; **p < 0.01; ***p < 0.001.  

G, H Primary hepatocytes were obtained from 12-week-old male Prom1
+/+

 (WT) and Prom1
-/-

 (KO) 

mice or Prom1
-/-

 hepatocytes were infected with an adenovirus harboring LacZ (Ad-LacZ) or Prom1 

(Ad-Prom1) for 24 h. The molecular interaction between Prom1 and radixin G or Prom1 and PKA 
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regulatory subunits H in these hepatocytes was determined by a proximity ligation assay using anti-

Prom1 and anti-radixin antibodies (G) or anti-Prom1 and anti-PKA regulatory subunits (H), 

respectively.  

I The molecular interaction between Prom1 and radixin in Prom1
+/+

 hepatocytes was determined by 

co-immunoprecipitation with an anti-Prom1 antibody or isotype control IgG.  

J HEK293 cells were transiently transfected with the combination of Prom1-Flag and Myc-radixin 

plasmids for 24 h. The molecular interaction between Prom1-Flag and Myc-radixin was determined 

by co-immunoprecipitation using isotype control IgG, anti-Flag or anti-Myc antibodies.  

K The cellular localization of radixin and actin in Prom1
+/+

 and Prom1
-/-

 hepatocytes was determined 

by immunofluorescence staining for radixin and phalloidin staining.  

L Detergent-resistant lipid rafts were isolated from Prom1
+/+

 and Prom1
-/-

 hepatocytes. Levels of the 

Prom1, radixin and flotillin proteins were determined in each fraction after sucrose gradient 

ultracentrifugation using immunoblotting.  

Data information: Data are presented as mean values ± SEM. Two-tailed Student’s t-test 

was used for statistical analysis. Scale bar (b) = 20 m. 

 

Figure 5 - Overexpression of radixin mutant mitigates glucagon-elicited hyperglycemia. 

A, B The molecular interaction was determined by co-immunoprecipitation with an anti-FLAG 

antibody. HEK293 cells were co-transfected with plasmids expressing Myc-radixin and various 

deletion mutants of Prom1-Flag (A) or with plasmids expressing Prom1-Flag and various deletion 

mutants of Myc-radixin (B) for 24 h.  

C The molecular interaction between Prom1-Flag and Myc-radixin in the presence of increasing 

amounts of Myc-FERM was determined by co-immunoprecipitation with an anti-Flag antibody. 

D-F Prom1
+/+

 primary hepatocytes were infected with an adenovirus harboring FERM-Myc (Ad-

FERM-Myc) or LacZ (Ad-LacZ) for 48 h. D The cellular localization of radixin was determined by 
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immunofluorescence staining. E The nuclear localization of p-CREB was determined by 

immunofluorescence staining after glucagon stimulation for 10 min. F Ad-FERM-Myc- or Ad-LacZ-

expressing Prom1
+/+

 hepatocytes were serum-starved for 16 h and stimulated with 10 nM glucagon 

for 10 min. Levels of p-PKA substrates, p-CREB, CREB, FERM-Myc and GAPDH were determined 

by immunoblotting.  

G-I Twelve-week-old male wild type mice were infected with an adenovirus harboring GFP or 

FERM for 3 days, fasted for 4 h and intraperitoneally injected with glucagon. G Blood glucose levels 

(mg/dL) were measured 0, 15, 30, 60 and 120 min after glucagon stimulation (0.2 mg/kg body 

weight). n = 10 mice per group. *p < 0.05; **p < 0.01; ***p < 0.001. H Levels of p-CREB, CREB, 

p-PKA substrates, and FERM in the liver 10 min after glucagon stimulation (2 mg/kg body weight) 

were determined by immunoblotting. n = 3 mice per group. I Glucose disposal rates in GFP- or 

FERM-overexpressing mice were measured using glucose, pyruvate, and insulin tolerance tests. n = 

10 per group. *p < 0.05; **p < 0.01.  

Data information: Data are presented as mean values ± SEM. Two-tailed Student’s t-test 

was used for statistical analysis. Scale bar = 20 m. 

 

Figure 6 - Prom1 disruption ameliorates glucagon-induced hyperglycemia in DIO mice.  

A, B Prom1
+/+

 primary hepatocytes were infected with an adenovirus harboring sh-control (sh-Con), 

sh-radixin (sh-Rdx), GFP (Ad-GFP), and/or sh-resistant wildtype radixin (Ad-Rdx
R
) or AKAP-dead 

LPTD mutant of radixin (Ad-LPTD
R
) for 24 h. Hepatocytes were further serum-starved for 18 hours 

and stimulated with glucagon (10 nM) for 10 min. Levels of p-PKA substrates, p-CREB, CREB, 

radixin, Myc-radixin and Gapdh were determined by immunoblotting 

C-F Four-week-old male Prom1
+/+

 and Prom1
-/-

 mice fed a high-fat diet for 8 weeks, were fasted for 

4 h. C DIO Prom1
+/+

 and Prom1
-/-

 mice were intraperitoneally injected with glucagon. Blood glucose 

levels (mg/dL) were measured 0, 15, 30, 60 and 120 min after glucagon (100 µg/kg body weight) 
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stimulation. n = 10 mice per group. *p < 0.05; **p < 0.01; ***p < 0.001. D Levels of p-PKA 

substrates, p-CREB, CREB, Prom1 and Gapdh were determined by immunoblotting 10 min after 

glucagon (2 mg/kg body weight) stimulation. n = 3 mice per group. E Glucose disposal rates in DIO 

Prom1
+/+

 and Prom1
-/-

 mice were measured using glucose and insulin tolerance tests. n = 10 mice per 

group. **p < 0.01; ***p < 0.001. F DIO Prom1
-/-

 mice were infected with an adenovirus harboring 

LacZ or Prom1 for 24 h, fasted for 4 h and intraperitoneally injected with glucagon (100 µg/kg body 

weight). Blood glucose levels (mg/dL) were measured 0, 15, 30, 60 and 120 min after glucagon 

stimulation (GST). Glucose disposal rates were measured using the pyruvate tolerance test (PTT). n 

= 10 mice per group. *p < 0.05; **p < 0.01; ***p < 0.001.  

Data information: Data are presented as mean values ± SEM. Two-tailed Student’s t-test 

was used for statistical analysis 
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 Supplementary Figure Legends 

 

Figure S1 - Prom1 disruption prevents glucagon-induced gluconeogenesis in primary mouse 

hepatocytes. 

A Immunofluorescence staining for Prom1 in the liver and non-permeabilized primary hepatocytes. 

B Enriched KEGG pathway terms for differentially expressed genes.  

C H&E stain (Hematoxylin and eosin stain) of the liver of mouse in each condition.  

D Primary mouse hepatocytes were prepared from 12-week-old male Prom1
+/+

 and Prom1
-/-

 mice 

and serum-starved for 16 h. Relative expression levels of Prom1 mRNAs were determined using RT-

PCR. n = 3/group. ***p < 0.001. 

E The percentage of cells with nuclear p-CREB staining among more than 300 cells from each group 

was statistically determined after stimulation with the indicated concentrations of glucagon for 10 

min (left panel) or stimulation with 10 nM glucagon for the indicated times (right panel). n = 3/group. 

***p < 0.001. 

F, G Prom1 overexpression in Prom1
-/-

 hepatocytes restores glucagon-induced CREB 

phosphorylation. Primary hepatocytes were isolated from 12-week-old male Prom1
-/- 

mice, infected 

with an adenovirus harboring Prom1 for 24 h, serum-starved for 18 h, and then stimulated with 

glucagon (10 nM). (F) Levels of p-CREB and CREB were determined by immunoblotting 0, 10 and 

20 min after glucagon (10 nM) stimulation. (G) The cAMP concentration was determined using the 

cAMP assay kit 10 min after glucagon stimulation (10 nM) in the presence of 10 M IBMX. n = 3 

mice per group. 

Data information: Data are presented as mean values ± SEM. Two-tailed Student’s t-test 

was used for statistical analysis. Scale bar; A (top panel, bottom panel) = 50, 20 m and B 

= 500 m. 
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Figure S2 - Prom1 disruption prevents glucagon-, forskolin- or 8-Br-cAMP-induced PKA 

activation in primary mouse hepatocytes.  

Primary mouse hepatocytes were prepared from 12-week-old male Prom1
+/+

 and Prom1
-/-

 mice and 

serum-starved for 16 h.  

A Top panel, the nuclear localization of p-CREB was determined by immunofluorescence staining 

after a 10-min forskolin (10 M) or 8-Br-cAMP stimulation (10 M). Bottom panel, the percentage 

of cells with nuclear p-CREB staining among more than 300 cells in each group was statistically 

determined in the images of immunofluorescence staining shown above. **p < 0.01, ***p < 0.001. 

B Levels of p-PKA substrates, p-CREB, CREB, p-IP3R, IP3R, p-HSL, HSL and Prom1 were 

determined by immunoblotting after stimulation with forskolin (10 M) or 8-Br-cAMP (10 M) for 

the indicated times. 

C Relative PKA activities were determined using the PKA assay kit after 10-min stimulation with 8-

Br-cAMP (10 M) or forskolin (10 M) in the presence of 10 M IBMX. n = 3/group. **p < 0.01, 

***p < 0.001. 

D The cAMP concentration was determined using the cAMP assay kit after a 10-min stimulation 

with 8-Br-cAMP (10 M) or forskolin (10 M) in the presence of 10 M IBMX. n = 3/group.  

E The cAMP concentration in the liver was determined using the cAMP assay kit after a 5 min 

glucagon treatment (2 mg/kg body weight). n = 3/group. 

Data information: Data are presented as mean values ± SEM. Two-tailed Student’s t-test 

was used for statistical analysis. Scale bar (A) = 20 m. 

 

Figure S3 - Radixin functions as an AKAP in primary hepatocytes.  

A The relative expression levels of Akap1, Akap10, Akap11, Akap12, Akap13, Akap14, Akap17b, 

Akap2, Akap3, Akap4, Akap5, Akap6, Akap7, Akap8, Akap9, ezrin, radixin, and moesin mRNAs in 
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hepatocytes isolated from 12-week-old male Prom1
+/+

 (WT) or Prom1
-/-

 (KO) mice and serum-

starved for 16 hours were determined using RNA-seq. AKAP, A-kinase-anchored protein.  

B The expression of ezrin, radixin, and moesin in mouse primary hepatocyte, liver and kidney were 

determined by immunoblotting. Lv, liver; Kd, kidney; HC, hepatocyte; W, wildtype; K, knockout. 

C The expression of Prom1, radixin, AKAP7, AKAP8, AKAP8I, AKAP9, AKAP10, AKAP12 or 

AKAP13 was silenced in WT hepatocytes using siRNAs. Hepatocytes were then serum-starved for 

18 h and stimulated with glucagon (10 nM) for 10 min. Levels of the Prom1, radixin, Akap7, Akap8, 

Akap8I, Akap9, Akap10, Akap12 and Akap13 mRNA were determined using qPCR. n = 3/group. 

***p < 0.001. 

D Prom1 or radixin expression was silenced in Prom1
+/+

 hepatocytes and radixin expression was 

silenced in Prom1
-/-

 hepatocytes. Hepatocytes were serum-starved for 18 h and stimulated with 

glucagon (10 nM) for 10 min. Levels of p-PKA substrates, p-CREB, CREB, radixin, Prom1 and 

Gapdh were determined by immunoblotting. 

E Levels of p-PKA substrates, Ezrin and Gapdh in siRNA-treated primary hepatocytes were 

determined by immunoblotting after stimulation with glucagon (10 nM) for 10 min. 

F Levels of radixin, PKA catalytic subunit, regulatory subunit, p-CREB and CREB were determined 

by immunoblotting after glucagon stimulation (10 nM). 

G The percentage of cells with nuclear p-CREB staining among more than 300 cells in each group 

was also statistically analyzed. ***p < 0.001. 

Data information: Data are presented as mean values ± SEM. Two-tailed Student’s t-test 

was used for statistical analysis 

 

Figure S4 - Radixin functions as an AKAP required for glucagon-induced PKA activation in 

primary hepatocytes and hyperglycemia in vivo.  
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A, B Prom1 and radixin expression were silenced in Prom1
+/+

 (WT) and Prom1
-/-

 hepatocytes (KO) 

by infection with an adenovirus harboring sh-control (sh-Con), sh-radixin (sh-Rdx) or sh-Prom1 for 

24 h. Hepatocytes were further serum-starved for 18 h and stimulated with glucagon (10 nM) for 10 

min. A Relative PKA activities were determined using the PKA assay kit after stimulation with 

glucagon for 10 min. n = 3/group. ***p < 0.001. B The cAMP concentration was determined using 

the cAMP assay kit after a 10-min glucagon stimulation in the presence of 10 M IBMX. n = 

3/group.  

C Pull-down of activated Rap1 with GST-RalGDS-RBD from Prom1
+/+

 or Prom1
-/-

 primary mouse 

hepatocytes stimulated with glucagon (10 nM) for 10 min.  

D Confocal microscope images of Prom1
-/-

 livers infected with adenovirus harboring sh-Control or 

sh-Radixin linked with IRES-GFP.  

E, F 12-week-old male wild type mice were infected with an adenovirus harboring sh-control (sh-

Con) or sh-radixin (sh-Rdx) for 3 days, fasted for 4 h and intraperitoneally injected with glucagon.  

E Relative PKA activities in the liver were determined using the PKA assay kit 10 min after 

glucagon (2 mg/kg body weight) stimulation. n = 3/group. *p < 0.05. F The cAMP concentration in 

the liver 10 min after glucagon (2 mg/kg body weight) stimulation was determined using the cAMP 

assay kit. n = 3 per group. 

Data information: Data are presented as mean values ± SEM. Two-tailed Student’s t-test 

was used for statistical analysis. Scale bar (D) = 100 m 

 

Figure S5 - Prom1 and radixin interact via C-terminal cytoplasmic domain of Prom1 and N-

terminal FERM domain of radixin.  

A, B Domain structures of deletion mutants of human Prom1 (A) and human radixin (B). EX, 

extracellular domain; TM, transmembrane domain; IC, intracellular domain; BFP, blue fluorescence 
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protein; Myr, myristoylation site; FERM, 4.1 protein-ezrin-radixin-moesin domain; ABD, actin-

binding domain.  

C, D Overexpression of the FERM domain prevents glucagon-induced PKA activation. Prom1
+/+

 

primary hepatocytes were infected with an adenovirus harboring the FERM domain for 48 h, serum-

starved for 18 h and stimulated with glucagon (10 nM). C The percentage of cells displaying nuclear 

p-CREB staining among more than 300 cells from each group was statistically determined by 

analyzing the images of immunofluorescence staining shown in Fig 5E. D The cAMP concentration 

was determined using the cAMP assay kit 10 min after stimulation with glucagon. n = 3 per group. 

***p < 0.001.  

Data information: Data are presented as mean values ± SEM. Two-tailed Student’s t-test 

was used for statistical analysis 
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