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Abstract

Sparse-view CT has been widely studied as an effective strategy for reducing radiation
dose to patients. However, the conventional image reconstruction algorithms, such as
filtered back-projection method and classical algebraic reconstruction techniques, can no
longer be competent in the image reconstruction task of sparse-view CT. A new
principle, called compressed sensing (CS), has been therefore developed to provide an
effective solution for the ill-posed inverse problem of sparse-view CT image
reconstruction. Total variation (TV) minimization, which is most extensively studied
among the existing CS techniques, has been recognized as a powerful tool for dealing
with this difficult problem in image reconstruction community. However, in recent years,
the drawbacks of TV are being increasingly reported, which are appearance of patchy
artifacts, depict of incorrect object boundaries, and loss in image textures or smooth
intensity changes. These degradations appear especially in reconstructing actual CT
images with complicated intensity changes. In order to address these drawbacks, a series
of advanced algorithms using nonlinear sparsifying transform (NLST) have been
proposed very recently. The NLST-based CS is based on a different framework from the
TV, and it achieves an improvement in image quality. Since it is a relatively newly
proposed idea, within the scope of our knowledge, there exist few literatures that
discusses comprehensively how the image quality improvement occurs in comparison
with the conventional TV method. In this study, we investigated the image quality
differences between the conventional TV minimization and the NLST-based CS, as well
as image quality differences among different kinds of NLST-based CS algorithms in the
sparse-view CT image reconstruction. More specifically, image reconstructions of actual
CT images of different body parts were carried out to demonstrate the image quality
differences.

Introduction 1

Radiation exposure in X-ray Computed Tomography (CT) examinations has raising 2

growing concerns from patients, radiologists, and medical physics communities [1, 2]. 3

Many approaches have been taken to reduce radiation dose of CT scans, including 4

formulation of new hardware-based scanning protocols [3, 4] and development of 5

innovative software-based image reconstruction algorithms [5–8]. Sparse-view CT has 6
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been widely studied as an effective strategy for reducing radiation dose. Compared with 7

the existing CT systems where several hundred or over a thousand of projection views 8

are required per rotation, as shown in Fig. 1, the sparse-view CT has a potential to 9

reduce the number of projection views to 1/10 of the number employed in current 10

commercial CT scanners. Thanks to the reduction in projection views, patient radiation 11

dose is also significantly decreased. However, due to the insufficient sampling with 12

sparse-view measurements, neither conventional filtered back-projection (FBP) method 13

nor classical algebraic reconstruction technique (ART) method can achieve sufficient 14

diagnostic image quality any more. 15

Two old works in the mathematical literature demonstrated that the solution to the 16

image reconstruction from a small number of projection data is not unique [9, 10]. 17

Therefore, some prior knowledge on the object needs to be employed to achieve 18

satisfactory reconstructions. Actually, many researchers have investigated this problem 19

with a variety of reconstruction methods and prior knowledge [11,12], but no one 20

succeeded in discovering an excellent method which can be used in clinical routine. The 21

situation has changed dramatically during 2000’s thanks to the discovery of compressed 22

sensing (CS) theory. The CS was originally proposed by Donoho [13] and Candes et 23

al. [14], and now it has become the gold standard to solve a class of difficult inverse 24

problems including the sparse-view CT image reconstruction. The CS provides an 25

innovative framework to solve the underdetermined ill-posed inverse problems. 26

Generally, a cost function consisting of data fidelity term and penalty term called 27

regularization is designed. Then, an optimal solution is obtained by minimizing the cost 28

function based on convex optimization techniques. The data fidelity term of CS is 29

regarded as the fundamental part, and the least-squares error between estimated 30

projection data and actually measured projection data is commonly used. The 31

regularization plays an important role to compensate for missing information in the 32

incomplete sparse-view projection data, where different regularizations lead to different 33

solutions. 34

Total variation (TV) is attracting much attention as a kind of regularization used in 35

the CS, because it has achieved big success in producing high image quality in the task 36

of sparse-view CT reconstruction. The TV is defined as a measure to evaluate sum of 37

the intensity gradient at each pixel, and it was first proposed by Rudin, Osher and 38

Fatemi [15] in 1992. In early stages, the TV was used as a penalty term in iterative CT 39

image reconstruction algorithms [16–19], with significant success in smoothing out 40

statistical noise in the image while preserving sharp object boundaries. Subsequently, 41

Sidky et al. extended the application of TV to a constrained optimization approach, 42

where the TV was a cost function and data fidelity was a constraint [20,21]. In this 43

case, they found the solution minimizing the TV under the hard constraint 44

corresponding to the data fidelity. This extension made the TV approach to be more 45

robust in treating the underdetermined problem such as sparse-view and limited angle 46

reconstruction. Lately, a further modification of the TV, i.e. weighted-TV, has been 47

proposed in which they took the edge property of natural images into account [22,23]. 48

This proposal has a potential to avoid the excessive smoothing boundaries occurred in 49

the TV to some extent. The TV is becoming the most standard approach of CS in CT 50

image reconstruction. In recent years, however, the drawbacks of TV, such as depict of 51

incorrect object boundaries, and loss in image textures or smooth intensity changes, are 52

being increasingly reported [24–26], which accelerates comprehensive understanding 53

about the limitations of TV. Additionally, a decade ago, Herman and Davidi claimed 54

that the TV favors no intensity changes in images and has limitations in exactly 55

reconstructing images with complicated structures [27]. Furthermore, they reasonably 56

demonstrated the mechanism of TV limitation. Therefore, a strong demand has been 57

raised towards developing a more powerful CS framework for the sparse-view CT image 58
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reconstruction. 59

Recently, several works have launched a new direction in formulating the 60

regularization term [28–31]. It is known that the key process of designing the 61

regularization term is a concept called “sparsity”. A sparsifying transform to the object 62

image is routinely carried out, which enforces the majority of pixel values to be 63

approximately zeros. The conventional TV achieves “sparsity” by using a linear 64

sparsifying transform (LST), i.e. evaluating intensity gradient of each pixel. However, 65

the new idea focuses on achieving “sparsity” by using a nonlinear sparsifying transform 66

(NLST). A class of nonlinear filters, such as median filter, bilateral filter or nonlocal 67

means (NLM) filter, is combined with the regularization term. Based on the results of 68

these new works, it has been gradually concluded that the NLST has superiority in 69

improving image quality in the task of image reconstruction compared with the 70

conventional TV approach. The mechanism is briefly outlined below. The TV approach 71

performs a same degree of smoothing in the sparsifying transform to the whole image by 72

computing the difference between adjacent pixels. On the contrary, NLST such as 73

Nonlocal Means (NLM) and bilateral filters are selecting the spatially-variant filter to 74

be used in the sparsifying transform by taking image properties, i.e. intensity change 75

around each pixel, into account. A strong smoothing is applied when there exist many 76

similar intensities in the neighboring pixels, and a weak smoothing is applied when 77

similar intensities are few in the neighborhood. Therefore, the NLST can be regarded as 78

a kind of spatially-varying processing, which should contribute to improving image 79

quality. 80

Based on the aforementioned analysis, superiority of the NLST compared with the 81

TV is gradually becoming clear so that the NLST-based CS is a powerful evolved 82

algorithm. However, to the best of our knowledge, no works have shown a significant 83

image quality difference between the TV and the NLST-based CS. In this paper, we 84

investigated how image quality differs between the conventional TV approach and the 85

NLST-based CS. Furthermore, we investigated how image quality changes when using 86

various kinds of NLSTs. To demonstrate these issues, actual CT images from different 87

body parts were reconstructed from rather small number of projection data. 88

Material and methods 89

Problem definition 90

The aim of CT image reconstruction is to recover an object from measured projection 91

data. When iterative methods are used for image reconstruction, the problem can be 92

formulated as solving a linear equation A~x = ~b, where ~b = (b1, b2, · · · , bI)
T

denotes 93

the measured projection data, ~x = (x1, x2, · · · , xJ)
T

represents the attenuation 94

coefficients of object to be reconstructed, and A = {aij} is the I × J system matrix. 95

When the dimension of ~b is smaller than the dimension of ~x (i.e. I < J), the problem 96

becomes underdetermined so that reconstructing an accurate image becomes 97

challenging, which is the standard mathematical setup of sparse-view CT reconstruction. 98

In such situation, CS is usually utilized to obtain a feasible image, in which a cost 99

function consisting of a data fidelity term L(~x) and a regularization term U(~x) in 100

Eq. (1) is minimized. 101

fβ (~x) = L (~x) + βU(~x) (1)
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where L (~x) is defined by the least-squares error
∥∥∥A~x−~b∥∥∥2, U (~x) is defined by Eq. (2) 102

below, and β is the hyperparameter to control the strength of regularization. 103

U (~x) = ‖W~x‖11 =
T∑
t=1

|(W~x)t| , (2)

where W represents the sparsifying transform which converts ~x into a sparse vector, and 104

T denotes the dimension of sparsifying transformed coefficients vector W~x. In Eq. (2), 105

the norm ‖~z‖11 =
∑T
t=1 |zt| is called L1 norm which is known to have superior ability in 106

picking up sparse solutions [6, 32]. The sparsifying transform W is usually designed as a 107

high-pass filter which extracts high frequency components of object (i.e. object 108

boundaries and textures). In this paper, for the purpose of this study, which is to 109

compare image quality of the TV and the NLST, we design W with two different forms, 110

which correspond to the TV and the NLST, respectively. The detailed formulas are 111

given by Eqs. (3) and (4), where Eq. (3) is the expression of TV case and Eq. (4) is the 112

expression of NLST case. 113

TV (~x) =

J∑
j=1

√
(~hTj ~x)

2
+ (~vTj ~x)

2
, (3)

114

NLST (~x) = ‖~x−N~x‖11 =
J∑
j=1

∣∣∣xj − (N~x)j

∣∣∣ . (4)

In Eq. (3), ~hTj ~x and ~vTj ~x are inner product representations of finite difference operations 115

around the j-th pixel along the horizontal and vertical directions, respectively. See 116

Fig. 2 for the detailed definitions of ~hj and ~vj . The meaning of Eq. (3) can be 117

interpreted as ‖∇~x‖11 , which is the L1 norm of the magnitude of intensity gradient for a 118

given image. In Eq. 4, N denotes an arbitrary nonlinear low-pass filter. It is known that 119

nonlinear filters can frequently show satisfactory performance in the task of image 120

processing such as denoising. In this study, we investigate the potential effectiveness of 121

nonlinear filters in the task of image reconstruction, to compare the result of the NLST 122

with that of the TV approach. We utilized median filter, bilateral filter and nonlocal 123

means (NLM) filter as the non-linear filter N to perform the sparsifying transform. 124

Mathematical tools 125

Once the cost function is determined, the crucial subsequent step is to derive an 126

iterative algorithm to find the optimal solution by minimizing the cost function. We 127

utilize techniques of convex optimization to achieve this task. Before going into the 128

concrete derivation, it is indispensable to introduce two mathematical tools together 129

with some related basic pieces of prior knowledge. Let us consider a convex 130

minimization problem formulated as 131

min
~x
f(~x), (5)

where we assume that f(~x) is a possibly non-differentiable lower semi-continuous (lsc) 132

convex function. 133

[Proximity Operator and Proximal Algorithm] [33] The proximity (prox ) 134

operator corresponding to f(~x) is defined by 135

~x = proxαf (~z) ≡ argmin~x(f (~x) +
1

2α
‖~x− ~z‖22), (6)

September 23, 2019 4/16

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2019. ; https://doi.org/10.1101/785261doi: bioRxiv preprint 

https://doi.org/10.1101/785261
http://creativecommons.org/licenses/by/4.0/


where the parameter α is called the step-size parameter. There exist two convenient 136

properties in the prox operator, which facilitated us to use this operator in the design of 137

iterative algorithm. One property is that it can be defined for any lsc convex function 138

even if it is non-differentiable like the L1 norm. The other property is that its fixed 139

points, i.e. ~x satisfying ~x = proxαf (~x), coincide with minimizers of f (~x) for any α > 0. 140

Furthermore, the prox operator is necessarily a non-expansive mapping. These 141

properties allow us to use the following iteration formula to find a minimizer of f (~x). 142

~x(k+1) = proxαf (~x(k)), (7)

where k denotes the iteration number. This iterative algorithm is called the proximal 143

minimization algorithm, which provides a powerful framework for non-differentiable 144

convex minimizations. 145

[Proximal Gradient Method] Let us consider a convex minimization problem 146

expressed as 147

min
~x
f (~x) ≡ g (~x) +h (~x) , (8)

where g (~x) is a smooth convex function and h (~x) is a possibly non-differentiable 148

convex function. We consider the situation where the prox operator proxαf (~z) 149

corresponding to f (~x) is intensive to compute, but proxαg (~z) and proxαh (~z) 150

corresponding to the sub-cost functions g (~x) and h (~x) can be easily computed. The 151

proximal gradient method is a framework for constructing an iterative algorithm to 152

minimize f (~x) under such situations [34]. Basically, the algorithm is constructed by 153

first computing an intermediate variable ~c(~x(k)) = ~x(k) − α(k)∇g(~x(k)) by implementing 154

gradient descent processing to the smooth function g (~x). And then achieve the updated 155

vector ~x(k+1) by computing the prox operator proxαh(~c(~x(k))) corresponding to h(~x). 156

The processing procedure can be summarized as 157{
~c(~x(k)) = ~x(k) − α(k)∇g(~x(k))
~x(k+1) = proxα(k)h(~c(~x(k)))

, (9)

where k denotes the iteration number, and α(k) is the step-size parameter dependent on 158

k. With respect to the convergence property of Eq. (9), Passty proved the following 159

theorem [35], where a more general situation of multiple, i.e. more than two, sub-cost 160

functions were considered. Then the following theorem holds. 161

Theorem We consider an ergodic average of the iterates ~x(k
′
) (k

′
= 0, 1, 2, . . . , k) 162

defined by 163

~x
(k)

=

∑k
k′=0 α

(k
′
)~x(k

′
)∑k

k′=0 α
(k′ )

. (10)

Then, ~x
(k)

converges to a minimizer of f (~x) when the diminishing step-size who 164

satisfies the following rules is used. 165

α(k) → 0 (k →∞) ,
∞∑
k=0

α(k) = ∞,
∞∑
k=0

(α(k))
2
< ∞. (11)

We note that the above convergence is called the ergodic convergence, in which the 166

ergodic average converges to a minimizer of f (~x) more easily than the sequence ~x(k) 167

itself. In practice, however, we have never observed a situation in which the ergodic 168

convergence occurs with the sequence ~x(k) itself being not convergent. Therefore, we 169

conjecture that the proposed algorithm expressed by Eq. (9) can be practically used 170

without being anxious about the non-convergence. 171
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Iterative algorithm for total variation reconstruction 172

In this section, we explain how to construct the iterative algorithm for the TV 173

minimization by using the proximal gradient framework. The cost function of TV can 174

be expressed in detail by 175

fβ (~x) =
∥∥∥A~x−~b∥∥∥2 + βTV (~x) ,

TV (~x) =
J∑
j=1

√
(~hTj ~x)

2
+ (~vTj ~x)

2
.

(12)

We first split the cost function in Eq. (12) into the sum of sub-cost functions as 176

fβ (~x) = f1 (~x) + f2 (~x) ,

f1 (~x) =
∥∥∥A~x−~b∥∥∥2 ,

f2 (~x) = βTV (~x) .

(13)

Then the gradient descent processing and prox operator can be applied to each 177

sub-cost function alternately, which leads to the two-step iterative algorithm as 178
~c(~x(k)) = ~x(k) − α(k)∇f1(~x(k))
~x(k+1) = proxα(k)f2(~c(~x(k)))

= argmin~x

(
βTV(~x) + 1

2α(k)

∥∥~x− ~c(~x(k))∥∥2
2

) , (14)

where k denotes the iterative number. The algorithm expressed by Eq. (14) still does 179

not have a concrete implementable form. Thus, we make further simplification. To 180

achieve the intermediate image ~c(~x(k)) from the first equation in Eq. (14), a differential 181

operation to the smooth function f1(~x) is usually carried out. It is clear that 182

∇f1(~x)=2AT (A~x−~b). We can obtain the iterative formula expressed as 183

~c(~x(k)) = ~x(k) − 2α(k)AT (A~x(k) −~b), (15)

where AT indicates the transpose matrix of system matrix A. The iteration formula in 184

Eq. (15) possesses a well-known structure which is the same as that in the steepest 185

descent method applied to the minimization of
∥∥∥A~x−~b∥∥∥2. 186

Next, we deal with the computation of prox operator corresponding to the TV term 187

(i.e. solving the second equation of Eq. (14)). This minimization problem is the same as 188

that appearing in the so-called TV denoising (ROF model), so that we can use a 189

standard algorithm such as Chambolle’s projection algorithm [15,36]. In our 190

implementation of image reconstruction, we used Chambolle’s projection algorithm. We 191

give a detail explanation about this algorithm in Appendix A. 192

In order to guarantee the convergence of the proposed algorithm, we take a 193

commonly used way to set the step-size parameter α(k) as 194

α(k) =
α0

1 + ε · k
, (16)

where α0 > 0 and ε > 0 are pre-specified parameters, and k denotes the iteration 195

number. 196

So far, the iterative algorithm for the TV reconstruction can be summarized in 197

Algorithm 1. 198
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Algorithm 1 Iterative TV reconstruction algorithm

Input: A measured sparse-view projection data ~b, step-size control parameters (α0, ε),
a hyperparameter β > 0, and an algorithm tolerance tol > 0.
Output: The reconstructed image ~x.

1: ~x(k) ← 0 , k ← 0
2: while fβ(~x(k))− fβ(~x(k+1)) > tol do
3: α(k) = α0

1+ε·k
4: Achieve the intermediate vector: ~c(~x(k)) = ~x(k) − 2α(k)AT (A~x(k) −~b)
5: Compute the prox operator for the TV term (See Appendix A)

~x(k+1) = proxα(k)βTV(~x)(~c~x
(k)))

= argmin~x

(
βTV(~x) +

1

2α(k)

∥∥∥~x− ~c(~x(k))∥∥∥2
2

)
6: return ~x(k+1)

Iterative algorithm for nonlinear sparsifying transform 199

reconstruction 200

In this section, we explain how to construct the iterative algorithm for the NLST by 201

using the proximal gradient framework. Based on the derivation in Section 2.1, the cost 202

function of NLST can be expressed as 203

fβ (~x) =
∥∥∥A~x−~b∥∥∥2 + β

J∑
j=1

∣∣∣xj − (N~x)j

∣∣∣ , (17)

where N denotes a kind of nonlinear low-pass filter. In this study, we utilize three 204

typical nonlinear filters, which are median, bilateral and NLM filters. The relatively 205

simple median filter first sorts pixel intensities inside neighboring window and replaces 206

the central pixel intensity by the median value of the pixel intensities. Both the 207

bilateral filter and the NLM filter replace the central pixel intensity by the weighted 208

average of pixel intensities inside the neighboring search window. The bilateral filter 209

computes the weights by evaluating distance and intensity similarities between a single 210

pixel located within search window and the central pixel, while NLM filter computes the 211

weights based on the evaluation of specific patch widows. Eq. (18) shows the common 212

computation formula corresponding to the two filters. Eqs. (19) and (20) show the 213

specific weight computation method for the bilateral and the NLM filter, respectively. 214

xi, j =

∑
m

∑
n wi+m, j+n(~x) · xi+m, j+n∑
m

∑
n wi+m, j+n(~x)

, (18)

215

wi+m, j+n (~x) = exp(−
(
m2 + n2

)
(2δ21)

) exp(− (xi, j − xi+m, j+n)
2

(2δ22)
), (19)

216

wi+m, j+n (~x) = exp(−(‖p (xi, j)− p (xi+m, j+n)‖2 − h2)/(2δ22)). (20)

Note that, to simplify the expressions in Eqs. (18)-(20), we used two-dimensional 217

representation style for each pixel, where (i, j) denotes the coordinates of the central 218

pixel, and (m, n) denotes the coordinates of the search window. The δ1 controls the 219

weight of Gaussian distance, δ2 controls the weight of intensity similarity, h denotes the 220

constant to take the statistical noise into account, and ‖p (xi, j)− p (xi+m, j+n)‖2 is 221
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the Euclidean intensity distance between two different patches which are centered at 222

pixel xi, j and xi+m, j+n, respectively. 223

Similarly to the derivation in Section 2.3, we split the cost function into the sum of 224

two sub-cost functions as 225

fβ (~x) = f1 (~x) + f2 (~x) ,

f1 (~x) =
∥∥∥A~x−~b∥∥∥2 ,

f2 (~x) = β
J∑
j=1

∣∣∣xj − (N~x)j

∣∣∣ .
(21)

Then, the gradient descent processing and prox operator can be applied to the 226

sub-cost functions alternately, and we can obtain the two-step iterative algorithm as 227
~c(~x(k)) = ~x(k) − α(k)∇f1(~x(k))
~x(k+1) = proxα(k)f2(~c(~x(k)))

= argmin~x

(
β
∑J
j=1

∣∣∣xj − (N~x)j

∣∣∣ + 1
2α(k)

∥∥~x− ~c(~x(k))∥∥2
2

) (22)

where k denotes the iteration number. We observe that the first equation in Eq. (22) is 228

exactly the same as that in Eq. (14), thus we can use the same iteration formula as in 229

Eq. (15). Next, we explain the solution of the prox operator corresponding to the NLST 230

term (the second equation in Eq. (22)). It is a function consisting of an absolute value 231

term and a quadratic term. The minimization of this function can be approximately 232

performed in a closed form by using the so-called the soft-thresholding operation as 233

follows. First, we note that there exists an obstacle to apply the soft-thresholding 234

operation in this minimization, because the term N~x is dependent on the variable ~x. 235

Here, we use a trick called ”constant approximation”. When the step-size α(k) is set to 236

a sufficiently small value , the unknown ~x approximates infinitely close to the 237

intermediate image ~c(~x(k)), and it is expected that N~x is approximated well by N~c(~x(k)), 238

which succeeds in converting the absolute value term into a separable form. Thanks to 239

this approximation, an iterative formula expressed by Eq. (23) can be obtained by 240

applying the soft-thresholding operation. 241

x
(k+1)
j =


cj(~x

(k))− α(k)β if cj(~x
(k))− (N~c(~x(k)))j > α(k)β

cj(~x
(k)) + α(k)β if (cj(~x

(k))− (N~c(~x(k)))j < −α(k)β)
(N~c(~x(k)))j otherwise

(23)

With respect to the control of step-size parameter α(k), we use the same method as 242

in the TV approach, i.e. α(k) is decreased toward zero according to the diminishing 243

step-size rule in Eq. (16). 244

In addition, we make the following modification into the algorithm to further 245

improve the performance. For the NLST algorithm, some literatures have shown that, 246

when it is used in image reconstruction or image recovery [28,37], the NLSM can cause 247

isolated points in the image. The reason is explained as follows. The nonlinear filters, 248

such as the NLM and bilateral filters, determine the spatially-dependent degree of 249

smoothing based on the image characteristic at the current iteration. A strong 250

smoothing is applied when there exist many similar intensities in the neighboring pixels. 251

On the contrary, a weak smoothing is applied when similar intensities are few in the 252

neighboring pixels. Thanks to the spatially dependent nature of sparsifying transform, 253

the NLST strengthens its ability to improve image quality compared with the TV 254

approach. However, the filter is determined by using the intermediate images containing 255

heavy streak artifacts during iterations. The choice of inaccurate smoothing filter or 256
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fairly weak smoothing filter often causes to generate isolated points in the image. On 257

the other hand, the TV approach performs the same degree of smoothing by computing 258

the differences between adjacent pixels at every pixel location. As this procedure is not 259

spatially-dependent, the TV does not cause the isolated points. Therefore, in order to 260

prevent the NLST algorithm from suffering from the isolated points, we add the TV 261

regularization with a tiny weight working only on eliminating the isolated points to the 262

NLST regularization term. 263

Finally, we can summarize the iterative algorithm of NLST approach as in 264

Algorithm 2. 265

Algorithm 2 Iterative algorithm for NLST reconstruction

Input: A measured sparse-view projection data ~b, step-size control parameters (α0, ε),
a hyperparameter β > 0, and an algorithm tolerance tol > 0.
Output: The reconstructed image ~x.

1: ~x(k) ← 0 , k ← 0
2: while fβ(~x(k))− fβ(~x(k+1)) > tol do
3: αk = α0

1+ε·k
4: Achieve the intermediate vector: ~c(~x(k)) = ~x(k) − 2α(k)AT (A~x(k) −~b)
5: A tiny TV smoothing: ~c(~x(k))← ~c(~x(k))− 2γα(k)∇TV(~c(~x(k)))
6: for all the pixels j in the image do

7: x
(k+1)
j =


cj(~x

(k))− α(k)β if cj(~x
(k))− (N~c(~x(k)))j > α(k)β

cj(~x
(k)) + α(k)β if cj(~x

(k))− (N~c(~x(k)))j < −α(k)β
(N~c(~x(k)))j otherwise

8: return ~x(k+1)

Experimental results 266

In this section, we investigated effectiveness of the conventional TV method and the 267

NLST method for the task of image reconstruction in sparse-view CT. In this study, we 268

carried out image acquisition from medical image library of The Japanese Society of 269

Medical Imaging Technology. The images in this library are provided for medical image 270

processing. The image data format was DICOM (Digital Imaging and Communications 271

in Medicine), but the patient content was removed in advance. Thus our study did not 272

involve human participants. Before the study began, we obtained the approval from 273

ethics committee of School of Automation and Electrical Engineering, Tianjin 274

University of Technology and Education. Since CT examinations of upper abdominal 275

part are routinely carried out in clinical diagnosis, we first applied the methods to the 276

reconstruction of a CT trans-axial slice containing liver and spleen. The original CT 277

image used in the simulation consists of 512 × 512 pixels, i.e. pixel size is 320 (mm) × 278

320 (mm). As a comparison, in Fig. 3, we show a reconstructed image from 1000 279

projection views (over the angular range of 180 degrees) by the conventional FBP 280

method. In Fig. 4, we show reconstructed images from only 72 projection views (over 281

the angular range of 180 degrees) by the TV and NLST methods. Fig. 4(a) is the 282

reconstructed image with 1000 iterations by the TV method. The used implementation 283

parameters are summarized as follows: α0=100, ε=100 and the hyperparameter β = 50. 284

Fig. 4(b-d) show reconstructed images by the NLST method. In this method, we set the 285

hyperparameter as β = 35, and the step-size control parameters were α0=100 and 286

ε=1000. Fig. 4(b) is the reconstructed image with 1000 iterations by the NLST method 287

using the median filter. We set the window size of median filter to 3×3 pixels. Fig. 4(c) 288

is the reconstructed image with 1000 iterations by the NLST method using the bilateral 289

September 23, 2019 9/16

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2019. ; https://doi.org/10.1101/785261doi: bioRxiv preprint 

https://doi.org/10.1101/785261
http://creativecommons.org/licenses/by/4.0/


filter. The implementation parameters to obtain this image were summarized as follows: 290

window size is 11×11 pixels, δ1=10000, and δ2=120. Fig. 4(d) is the reconstructed 291

image with 1000 iterations by the NLST method using the NLM filter. The parameters 292

of the NLM filter were set as follows: search window size is 7×7 pixels, patch window 293

size is 5×5 pixels, δ1=15, and δ2=15. In Fig. 4, the small parts of the images were 294

zoomed-in and displayed on the left or right side. Significant image degradations can be 295

obviously confirmed on the reconstructed image of Fig. 4(a) by the TV method. In 296

particular, severe patchy artifacts can be clearly observed, and the hepatic veins were 297

partly lost. Experimental results of Figs. 4(b-d) demonstrate that the NLST method 298

can undoubtedly improve image quality with respect to reducing the patchy artifacts, 299

preserving object boundaries accurately and image textures. Also, we can observe that 300

using different nonlinear filters in the regularization term of the NLST method can lead 301

to different image quality. The NLST method using the median filter produced the 302

images with still remaining patchy artifacts, the NLST method using the bilateral filter 303

depicted image textures with somewhat serrated boundaries, and the NLST method 304

using the NLM filter achieved the best image quality. 305

In Fig. 5, we show reconstructed images by the conventional TV method with 306

different hyperparameter values β. Since β controls the strength of regularization, the 307

different values of β can lead to images with different degree of smoothing. Thus, we 308

investigated effectiveness of the TV method with different β values. Similarly to the 309

experiments in Fig. 4, 72 projection views were used for image reconstruction, and the 310

step-size control parameters were set to α0=100 and ε=100. Also, 1000 iterations were 311

carried out in this experiment. When a small hyperparameter value of β=1.0 was used, 312

the strength of TV was so light that the streak artifacts (the part pointed by the arrow) 313

could not be completely removed. On the contrary, when the too large hyperparameter 314

value of β=100.0 was used, the reconstructed image was forced to be close to be 315

piecewise constant, which excessively smoothed the image textures (the part pointed by 316

the arrow) and some of the textures were lost. As observed from this result, the TV 317

method has limitations when applied to this severely ill-posed inverse problem. 318

Considering that image characteristics of CT images differ significantly dependent 319

on parts of human body, we applied the described methods to reconstruct CT images 320

for four other body parts, which were dental area, cardiac area, liver area, and 321

abdominal area. The pixel size of each original image was 512 × 512. We displayed the 322

experimental results in Figs. 6-9. More specifically, Fig. 6 shows reconstruction results 323

of dental part from only 32 projection views, Fig. 7 shows reconstruction results of 324

cardiac part from only 32 projection views, Fig. 8 shows reconstruction results of liver 325

part from only 32 projection views, and Fig. 9 shows reconstruction results of 326

abdominal part from only 48 projection views. For comparison, on the left of each 327

figure, we also provided an image reconstructed by the standard FBP method with 1000 328

projection views. Then, we compared image quality difference between the TV method 329

and the NLST method. In the implementation of NLST method, we employed the NLM 330

filter, because the above-mentioned experimental result demonstrated that it is the most 331

successful nonlinear filter in producing a high-quality image. With respect to the 332

parameter settings in implementing the TV method and the NLST method, we show a 333

detailed summary of the used parameter values in Table 1. The reconstruction results 334

for the four body parts indicated the same tendency as the first study of abdominal CT 335

image case, i.e. the NLST method could improve image quality significantly compared 336

with the TV method. The reconstruction results of each body part by the TV method 337

suffered from heavy patchy artifacts, but they were successfully reduced by the NLST 338

method. Besides, the reconstructed images by the NLST method preserved image 339

textures and object boundaries accurately. 340
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Discussion and conclusion 341

In this paper, we implemented the conventional TV minimization algorithm and the 342

NLST-based CS algorithm. The implementations were carried out for image 343

reconstruction in sparse-view CT. The TV minimization was achieved by the 344

Chambolle’s projection algorithm. The nonlinear filters including median filter, bilateral 345

filter and NLM filter were respectively embedded into the NLST-based CS algorithm. 346

Actual trans-axial CT slices from different body parts, such as dental area, cardiac area, 347

abdominal area, and hepatic region, were reconstructed for comparison between the two 348

methods. We investigated the resulting image quality differences between the TV and 349

NLST methods, as well as image quality differences induced by different nonlinear 350

filters used in the NLST method. 351

As observed from the experimental results, the TV method produced degraded 352

images under the same sparse-view CT measurement conditions. When the 353

hyperparameter β, which controls the strength of TV term, is too small, the image 354

degradations induced by the TV method include patchy artifacts, streak artifacts, and 355

inaccurate object boundaries. On the contrary, when β is too large, the image 356

degradations occur by producing regions having piecewise constant intensity changes 357

and losing image textures and smooth intensity changes. On the other hand, however, 358

the TV method sometimes plays a crucial role in removing isolated points in the 359

reconstructed images, and we used this favorable property of the TV in Algorithm II of 360

this paper. It became clear that the NLST-based CS method can overcome the image 361

degradations of the TV method well. It can produce images which are closer to images 362

obtained by the FBP method with sufficient projection views. Additionally, the 363

NLST-based CS method possesses a potential to embed an arbitrary nonlinear filter 364

into the algorithm. It means that we can extend its application to a specific imaging 365

task. For example, if we are successful in developing a new nonlinear filter which can 366

selectively remove streak artifacts, the NLST-based CS method would contribute to 367

further reducing the number of projection views. In summary, we conclude that the 368

NLST-based CS method is superior to the TV method in the task of image 369

reconstruction for sparse-view CT. 370

Appendix A 371

Here, we give a detailed explanation on how to solve the minimization problem 372

expressed in Eq. (A.1). This minimization problem is the same as the so-called TV 373

denoising (ROF model), and the classical algorithm to solve this problem is Chambolle’s 374

projection algorithm which we describe below. 375

min
~x

TV (~x) +
1

2α

∥∥∥~x− ~x′
∥∥∥2
2
, (A.1)

where the vector ~x denotes an unknown image with N ×N , and the vector ~x
′

denotes 376

an input image with N ×N contaminated with noise. We use the symbol ∇ to 377

represent the intensity gradient operator, which is defined by 378

∇~x(i, j) =
(
∂h~x(i, j), ∂v~x(i, j)

)
∀1 ≤ i, j ≤ N,

∂h~x(i, j) =

{
x(i+1, j) − x(i, j) if i < N
0 if i = N

,

∂v~x(i, j) =

{
x(i, j+1) − x(i, j) if j < N
0 if j = N

,

(A.2)

where ∂h~x(i, j) and ∂v~x(i, j) denote the intensity gradient of horizontal and vertical 379

direction, respectively. We introduce two dual variables ~p1 and ~p2, both of which are 380
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image vectors with N ×N pixels. Then, we define the divergence operator div by 381

div ~p(i, j) =

 p1(i, j) if i = 1
−p1(i−1, j) if i = N
p1(i, j) − p1(i−1, j) otherwise

+

 p2(i, j) if j = 1
−p2(i, j−1) if j = N
p2(i, j) − p2(i, j−1) otherwise

.

(A.3)
Then, the solution to (A.1) can be obtained by Chambolle’s projection algorithm 382

summarized in Algorithm 3 below. 383

Algorithm 3 Chambolle’s projection algorithm for TV-denoising

Input: An N ×N pixel input image ~x
′

with noise, a step-size control parameter δt > 0
and an algorithm tolerance tol > 0.
Output: An N ×N pixel denoised image ~x.

1: ~p1 ← 0, ~p2 ← 0,

2: while max1≤i,j≤N

{∣∣∣p(k+1)
(i, j) − p

(k)
(i, j)

∣∣∣} > tol do

3: for all pixel (i, j) in the image do

4: p
(k+1)
(i, j) ←

p
(k)

(i, j)
+δt∇(div ~p(k)− 1

α~x
′
)
(i, j)

1+δt

∣∣∣∇(div ~p(k)− 1
α~x

′ )
(i, j)

∣∣∣
5: return ~x = ~x

′ − α · div ~p.

With respect to the convergence of the above algorithm, it was proved that the 384

convergence to the optimum solution is guaranteed when the step-size control parameter 385

δt is set to a value smaller than 1/4 [24]. 386
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Tables

Table 1. Parameter values in respective reconstruction of practical CT image instances
in TV and NLST methods.

Dental CT Cardiac CT Hepatic CT Abdominal CT

TV

α0 100 100 100 100

ε 100 100 100 100

β 65 100 100 100

NLST

α0 100 100 100 100

ε 1000 1000 1000 1000

β 70 100 170 80

γ 1.3 1.3 5.0 4.3

δ1 5.0 25 20 20

δ2 5.0 25 10 20

Window Size 5×5 5×5 5×5 5×5
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Figure captions

Figure 1: SConfigurations corresponding to two CT imaging situations, i.e. (left) the
conventional full-scan CT and (right) sparse-view CT.

Figure 2: Definitions of the horizontal difference ~hTj ~x and the vertical difference ~vTj ~x
used in the TV.

Figure 3: Reconstructed image by the standard FBP method with 1000 projection
views (over the angular range of 180 degrees).

Figure 4: Reconstructed images by the conventional TV method (a) and the NLST
methods (b: median filter, c: bilateral filter, d: NLM filter) from 72 projection
views (over the 180 angular range of 180 degrees).

Figure 5: Reconstructed images by the TV method with three different values of
hyperparameter β.

Figure 6: Reconstructed images for the dental CT image by (a) the FBP method with
1000 projection views, (b) the conventional TV method with 32 projection views,
and (c) the NLST method using the NLM filter with 32 projection views.

Figure 7: Reconstructed images for the cardiac CT image (a) by the FBP method
with 1000 projection views, (b) the conventional TV method with 32 projection
views, and (c) the NLST method using the NLM filter with 32 projection views.

Figure 8: Reconstructed images for the hepatic CT image (a) by the FBP method
with 1000 projection views, (b) the conventional TV method with 32 projection
views, and (c) the NLST method using the NLM filter with 32 projection views.

Figure 9: Reconstructed images for the abdominal CT image (a) by the FBP method
with 1000 projection views, (b) the conventional TV method with 48 projection
views, and (c) the NLST method using the NLM filter with 48 projection views.
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