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Abstract: There is uncertainty regarding the timing and fossil species in which mammalian 5 

endothermy arose, with few studies of stem-mammals on key aspects of endothermy such as 

basal or maximum metabolic rates, or placing them in the context of living vertebrate metabolic 

ranges. Synchrotron X-ray imaging of incremental tooth cementum shows two Early Jurassic 

stem-mammals, Morganucodon and Kuehneotherium, had lifespans (a basal metabolic rate 

proxy) considerably longer than comparably sized living mammals, but similar to reptiles. 10 

Morganucodon also had femoral blood flow rates (a maximum metabolic rate proxy) 

intermediate between living mammals and reptiles. This shows maximum metabolic rates 

increased evolutionarily before basal rates, and that contrary to previous suggestions of a Triassic 

origin, Early Jurassic stem-mammals lacked the endothermic metabolism of living mammals. 

 15 

One Sentence Summary: Surprisingly long lifespans and low femoral blood flow suggest 

reptile-like physiology in key Early Jurassic stem-mammals. 

 

Main Text: Recent discoveries and analyses have revolutionized our knowledge of Mesozoic 

mammals, revealing novel aspects of their ecology (1, 2) development (3, 4) systematics (2, 4) 20 

and macroevolution (5, 6). However, details of physiology are more difficult to determine from 

fossils, and our knowledge of physiological evolution remains comparatively poor. Living 

mammals are endotherms, possessing the ability to control and maintain metabolically produced 
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heat, and have a substantially higher capacity for sustained aerobic activity than ectothermic 

animals (7-9). The origin of endothermy is an important event in mammalian evolution, often 

noted as key to their success (7-9). Several competing hypotheses seek to explain the selective 

pressures and adaptive pathways of endothermic evolution: (a) selection for higher maximum 

metabolic rates (MMR) enhanced sustained aerobic activity (7, 10, 11); (b) selection for higher 5 

basal metabolic rates (BMR) enhanced thermoregulatory control (12, 

13); or (c) MMR and BMR evolved in lockstep with each other (8, 9).  

Direct evidence from living mammals to support these hypotheses is equivocal (7). 

Recent analyses find no long-term evolutionary trend in BMR (14) contradicting earlier 

suggestions of increasing BMR throughout the Cenozoic (13), and so implying that the Middle 10 

Jurassic (~170 Ma) most recent common ancestor (MRCA) of living mammals (14) possessed a 

BMR within the range of present-day mammals. Several indirect indicators of metabolic 

physiology in fossil synapsids have been suggested but provide contradictory evidence for the 

timing of origin of endothermy and its evolutionary tempo. These include: the presence of 

fibrolamellar long-bone, first seen in the Early Permian (~300 Ma) synapsid Ophiacodon (15); 15 

the presence of an infraorbital canal and lack of parietal foramen, used to infer facial whiskers, 

fur, lactation and endothermy in Early Triassic (~245 Ma) cynodonts (16); inferred maxillary 

nasal turbinates in the Late Permian (~255 Ma) therapsid Glanosuchus, used to suggest that 

mammalian levels of endothermy evolved by the Late Triassic (~210 Ma) (17); a trend toward 

increased relative brain size initiated in Late Triassic non-mammaliaform cynodonts (18) and the 20 

mammaliaform stem-mammal Morganucodon (19, 20); and acquisition of a parasagittal gait in 

the Early Cretaceous (~125 Ma) therian mammal Eomaia (21). Several recent studies provide 

more quantitative links to physiological parameters. Oxygen isotopes were used to infer elevated 
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thermometabolism in Middle-Late Permian (~270-255 Ma) eucynodonts (22); red blood cell size 

diminution in Late Permian (~255 Ma) eutheriodontid therapsids was qualitatively linked via two 

proxies to increased MMR (23); and osteocyte lacuna shape correlations suggested ‘mammalian’ 

resting metabolic rates in Permo-Triassic (~250 Ma) dicynodonts (24). 

However, the inconsistency of these characters, in time and with respect to phylogeny 5 

(25, 26), along with re-assessments of function in relation to endothermy (8, 27), limit their use 

as conclusive indicators of modern mammalian levels of endothermy in fossil taxa. Such 

temporal and phylogenetic heterogeneity suggests the evolution of mammalian endothermy 

followed a complex, mosaic pattern with different physiological aspects evolving independently, 

and at separate rates, towards current mammalian levels. Additionally, few of these physiological 10 

proxies are directly related to measurable aspects of metabolic rate.  

To address these issues, we used two proxies to improve understanding of physiology at 

one of the most important nodes along this transition by estimating BMR and calculating a 

known proxy for MMR for two of the earliest mammaliaforms, Morganucodon and 

Kuehneotherium (1, 28). 15 

 

Lifespan: a proxy for mammaliaform physiology 

We used maximum lifespan estimates for fossil mammaliaform taxa as a proxy for BMR (29). In 

extant tetrapods, negative correlations exist between lifespan and BMR (29) (and lifespan and 

growth rate (30), another indicator of metabolism - Supplementary Materials). In general, the 20 

longer a mammal’s lifespan, the lower its size-adjusted BMR, so an accurate assessment of 

mammaliaform lifespan can be used to estimate metabolic potential. To do so we used 

cementochronology, which counts annual growth increments in tooth root cementum, and has 
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been widely used to record lifespans in extant mammals (31, 32). Cementum is a mineralized 

dental tissue surrounding the tooth root (Fig 1A, B), attaching it to the periodontal ligament and 

anchoring the tooth within the alveolus (31). Cementum growth is continuous throughout life in 

extant mammals and seasonally appositional in nature, forming a series of increments of 

differing thickness and opacity when viewed in histological thin-sections under light microscopy. 5 

The correlation between increment count and chronological age is well documented, with one 

thick and one thin increment deposited every year (31), where the thin, hyper-mineralized 

opaque increments record growth rate reduction in less favourable seasons (33). 

Despite this potential, cementochronology has not previously been attempted for fossil 

mammals older than the Pleistocene (2.6 Ma) (34), because histological thin-sections destroy 10 

fossils and provide only a restricted field-of-view. We overcame these problems by using 

propagation phase-contrast X-ray synchrotron radiation microtomography (PPC-SRµCT) to non-

destructively image fossilized cementum increments (35, 36). The sub-micrometre resolution, 

fast-throughput and three-dimensional (3D) nature of PPC-SRµCT allows large sample sizes and 

volumetric datasets of increments along their entire transverse and longitudinal trajectories. 15 

Cementum increments are known for lensing and coalescence, creating errors in counts based on 

single, or limited numbers of, two-dimensional thin sections created for each tooth (31) (Fig S1). 

PPC-SRµCT imaging and 3D segmentation of individual cementum increments across extensive 

vertical distances allows principal annual increments to be distinguished from accessory 

increments created by lensing and coalescence (Materials and Methods).  20 

Morganucodon and Kuehneotherium are coexisting Early Jurassic (~200 Ma) shrew-

sized insectivores1, known from thousands of teeth and bones (Materials and Methods), 

providing a rare opportunity to analyse the population-sized samples needed for confident 
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maximum lifespan estimation. Importantly, these are the earliest diphyodont taxa (Fig S2), with a 

single replacement of non-molar teeth and no molar tooth replacement (28), and so estimates of 

lifespan are accurate to the time of the measured tooth root formation. We applied PPC-SRµCT 

to isolated teeth, and mandibles with multiple teeth or roots in-situ, totalling 87 Morganucodon 

specimens (52 isolated teeth, 35 dentaries), and 119 Kuehneotherium specimens (116 isolated 5 

teeth, 3 dentaries). From these, 34 Morganucodon and 27 Kuehneotherium specimens were 

sufficiently preserved for three observers to independently estimate lifespan from cementum 

increments and compare for accuracy and precision validation (Table S1). The remainder 

showed physical and/or diagenetic damage preventing increment counting (Fig S3).  

 The cementum of Morganucodon and Kuehneotherium (Fig 1A, B) is distinguished from 10 

dentine in our PPC-SRµCT data by a distinct boundary layer, which lies external to the dentine’s 

granular layer of Tomes and is interpreted as the hyaline layer of Hopewell-Smith (Fig 1C-G). 

Synchrotron nanotomographic imaging (30 nm isotropic voxel size) of several exceptionally 

preserved specimens highlights individual Sharpey’s fibre bundles (linking cementum to the 

periodontal ligament in extant mammals), extending radially through the cementum (Fig 1G). In 15 

transverse section, cementum is ~10-70 μm radially thick and displays contrasting light and dark 

circumferential increments representing different material densities (Figs 1E-G, 2A-D). Higher 

density increments (represented by greater greyscale values) average 2-3 μm radial thickness, 

and lower density increments 1-3 μm (Figs 1C-G, 2A-D). Individual increments can be followed 

continuously longitudinally and transversely through the entire tooth root (Fig 2E, F). 20 

 We tested the accuracy of cementum increment counts for predicting mammaliaform 

lifespan by additionally PPC-SRµCT imaging eight dentulous Morganucodon specimens with a 

range of teeth in-situ. We counted cementum increments for several teeth along the tooth rows, 
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and lines of arrested growth (LAGs) in the dentary bone periosteal region in two of these (Fig 3). 

Comparisons between counts of cementum increments are identical across all four premolars 

(p1-p4) and the anterior-most molars m1 and m2 in all specimens where they occur together 

(Table S2). Counts are also identical between dentary LAGs and cementum increments in the 

teeth present, p3-m2, of both specimens where LAGs were found (Fig 3). In three specimens 5 

with m1-3, m3 has one less increment than m1/m2. In one specimen i4 and the canine have one 

less increment than p1–3. This agreement between p1-m2 teeth and dentary increment counts 

indicates growth in both teeth and jaws was following the same, circum-annual rhythm 

previously reported for multiple extant mammal species (31). We consider this strong support for 

the accuracy of lifespan estimates based on these increment counts. Additionally, the differences 10 

in increment counts along toothrows show eruption of the adult dentition in Morganucodon 

occurred over more than one year, which is considerably slower than in extant small mammals 

(31) (Supplementary text). 

  

Long mammaliaform lifespans and low BMR 15 

Cementum increment counts provide a minimum estimate of maximum lifespan of 14 years for 

Morganucodon, and nine years for Kuehneotherium (Figs 2, 4A). These may underestimate true 

maximum lifespan, as any damage to outer cementum increments would reduce estimated 

maximum lifespan. One-way ANOVA comparisons of mean intra-observer coefficient of 

variation (CV) between our study and ten previous cementochronological studies of different 20 

extant mammal species (Table S3) with similar age ranges show values for PPC-SRµCT data of 

Morganucodon (CV = 9.32) and Kuehneotherium (CV = 4.89) are significantly lower (p < 0.01) 

than previous thin section-based studies (minimum extant CV = 14.2, mean CV = 21.8).  
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We estimated a body mass of 17.9 g for Morganucodon and 23.8 g for Kuehneotherium 

(Materials and Methods). Maximum lifespan and mean body mass for the mammaliaforms were 

compared with published data for large samples of terrestrial, non-volant wild extant mammal (n 

= 279) and non-avian reptile (n = 252) species (Table S4). Ordinary least squares (OLS) 

regression of log10 transformed values shows the fossil mammaliaforms fall within the range of 5 

extant reptiles and have longer maximum lifespans for their size, and are further above the 

mammal regression mean, than all extant mammals under 4 kg (the long-lived and secondarily 

dwarfed (37) mouse lemur Microcebus murinus is closest). Only the short-beaked echidna 

Tachyglossus aculeatus, a monotreme with long lifespan and low metabolic rate, exceeds the 

Kuehneotherium, but not Morganucodon, distance above the mammalian mean (Fig 4B). One-10 

way ANCOVA comparisons show that regression slopes for extant mammals and reptiles are 

statistically similar but their means are significantly separated (p <0.01), with reptiles on average 

living 12.2 years longer than mammals of the same body mass.  

To estimate BMR, we used OLS and recovered significant correlations between log10 

transformed values of wild lifespan and mass-specific standard metabolic rate (msSMR; 15 

measured in mL.O2.hr-1.g-1 and analogous with BMR in extant mammals – SMR was used as 

BMR cannot be measured in reptiles (38)) from published data for 117 extant mammals and 55 

extant reptiles (Table S1; Fig S4A). Using the correlation between mammal lifespan and msSMR 

we estimated a msSMR of 0.38 mL.O2.hr-1.g-1 for Morganucodon and 0.51 mL.O2.hr-1.g-1 for 

Kuehneotherium. From the correlation between reptile lifespan and msSMR we estimated a 20 

msSMR of 0.10 mL.O2.hr-1.g-1 (Morganucodon) and 0.15 mL.O2.hr-1.g-1 (Kuehneotherium). 

When log10 OLS is used to regress these estimates against body mass, both mammaliaforms fall 

outside the 95% predictor interval (PI) of the mammalian data and within the reptile range of 
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msSMR, whether estimated from mammalian or reptilian data (Fig 4C). This suggests the 

mammaliaforms had significantly lower msSMR values compared to extant mammals of similar 

size. The comparably sized mammal (<100 g) of lowest msSMR is the marsupial Dasycercus 

cristicauda, with wild lifespan seven years and msSMR 0.63 mL.O2.hr-1.g-1 (Fig 4C).        

In summary, our estimates of maximum lifespan provided by tomographic imaging of 5 

cementum increments in Morganucodon and Kuehneotherium are significantly longer than the 

wild lifespan of any extant mammal of comparable body mass. These lifespans provide 

SMR/BMR estimates considerably lower than comparably sized extant mammals, instead 

corresponding to those of extant reptiles.   

 10 

Femoral blood-flow shows intermediate MMR 

To compare our fossil mammaliaform BMR estimates with MMR, we used a second proxy 

directly linked to MMR (39). The ratio between nutrient foramen area and femur length has been 

used as an index for relative blood flow (Qi) through the femur during and after metabolically 

demanding exercise (Qi = rf4/L; where rf = foramen radius and L = femur length), previously 15 

shown to correlate well with MMR (39). From micro-computed tomography (µCT) data of the 

six most complete Morganucodon femoral diaphyses available, we segmented all nutrient 

foramina (Fig 5A) and estimated their area by measuring their minimal radii (Materials and 

Methods). Kuehneotherium could not be included as no suitable femoral specimens are known.  

 We estimated a Qi of 3.829e-7 mm3 for Morganucodon and compared this with 20 

published and new data (Materials and Methods) for extant mammals (n = 69) and reptiles (n = 

30). The latter includes varanids (n = 8) which in the absence of mammalian predators fill an 

active hunting niche and tend to have mammalian MMR levels while retaining reptilian BMR 
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levels (39) (Table S4). One-way ANCOVA comparisons show that means of log10 OLS 

regression slopes of body mass against Qi for extant mammals and non-varanid reptiles are 

significantly different (p <0.01), while the slopes are similar (Materials and Methods). 

Morganucodon is further above (higher Qi for its mass) the non-varanid reptile mean than all 

non-varanid reptiles. However, Morganucodon is also slightly further from the mammalian mean 5 

than the non-varanid reptile mean, and considerably closer to small non-varanid reptile species 

than small mammalian species (Fig 5B). This intermediate Qi, and so inferred intermediate 

MMR, suggests that while retaining typical reptilian BMR, Morganucodon had an MMR above 

non-varanid reptiles, but not as high as mammals or actively foraging varanid reptiles.  

   10 

Discussion  

We have used two quantitative proxies to determine the metabolic status of early 

mammaliaforms. Relatively long lifespans for both Morganucodon and Kuehneotherium result in 

BMR estimates equivalent to modern reptiles of comparable size, and indeed at the higher 

lifespan/lower BMR end of the reptile scale for Morganucodon. In contrast, femoral blood flow 15 

estimates (Qi) suggest that the MMR of Morganucodon was intermediate between extant non-

varanid reptiles and mammals. We therefore infer that in Morganucodon increased MMR (and so 

also absolute aerobic capacity, AAC = MMR - BMR) was initially selected for before BMR, and 

that the MMR-first hypothesis (7) is the best-supported model for the evolution of mammalian 

endothermy. We suggest that at least Morganucodon, if not also Kuehneotherium, occupied a 20 

metabolic grade approaching extant varanids; able to undergo longer bouts of aerobically 

demanding activity than non-varanid reptiles, but not capable of sustaining either mammalian 

levels of aerobic activity or the elevated thermometabolism exhibited by living endotherms.  
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Evidence from non-mammalian synapsids (including changes in gait (8), long bone 

histology (15), and development of secondary osteological features correlated with increased 

metabolic rate (18, 19)) indicate unquestionable changes in physiology from pelycosaur- to 

mammaliaform-grade taxa. Determinate growth (40) and reduction of dental replacement 

(diphyodonty) in basal mammaliaforms permitted more precise occlusion, which has been 5 

considered a key innovation in the development of mammalian endothermy through enabling 

increased assimilation and higher metabolism (41). However, determinate growth and 

diphyodonty appear to have preceded the appearance of modern mammalian levels of 

endothermy, at least in Morganucodon and Kuehneotherium. We therefore suggest that the 

development of precise occlusion in basal mammaliaforms may be more associated with dietary 10 

specialization and niche partitioning (1).  

 Comparison of our results to other recent studies of physiology in fossil synapsids 

supports the hypothesis of a complex, mosaic pattern of endothermic evolution with different 

characters being selected for at different rates through time and with respect to phylogeny. For 

example, the size diminution associated with the cynodont-mammaliaform transition (42) may 15 

have reversed the evolutionary trajectory of some previous histological proxies for endothermy 

(43), contributing to the complex, contradictory patterns observed. Our study also suggests more 

work is needed to directly compare fossil and extant ecto- and endothermic taxa, to better 

understand their relative metabolic properties. Many previous studies rely on simple binary 

divisions, such as the presence/absence of fibrolamellar bone and/or respiratory nasal turbinates. 20 

These proxies cannot represent accurately the complex series of physiological characteristics that 

range between ectothermy and endothermy, and are frequently distributed homoplastically across 

the synapsid phylogeny, individually and with respect to each other. Other studies with relative 
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data such as preserved apatite oxygen isotopes (22) allow comparisons with co-habiting 

ectothermic taxa but cannot be directly compared to extant data and cannot indicate where fossil 

taxa fall in the metabolic spectrum of extant vertebrates. However, our results are compatible 

with recent work on living mammals that the BMR of the Middle Jurassic (~170 Ma) 

mammalian MRCA was comparable to present-day values (14). This indicates evolution towards 5 

modern-day mammalian endothermy occurred during the 25 million year-long Early Jurassic and 

suggests the mammalian mid-Jurassic adaptive radiation (5, 6) was driven by this, or vice versa. 

 In conclusion, our data offer a direct link to measurable aspects of endothermy, BMR and 

MMR, at a key point in mammalian evolution. Further work applying these methods to younger 

Mesozoic mammaliaforms and mammals, and comparison with evidence from other 10 

physiological characteristics, will allow the evolutionary tempo and mode of multiple aspects of 

mammalian physiology to be determined. The early mammaliaforms Morganucodon and 

Kuehneotherium possessed surprisingly low, reptile-like metabolic rates, plus a mixture of 

plesiomorphic and derived characters (7) relating to life history and physiology. Ultimately, we 

can no longer assume that the endothermic metabolism of living mammals had evolved in the 15 

earliest mammaliaforms. 
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Fig. 1. 

 

Fig. 1. Cementum of Morganucodon and Kuehneotherium. A, B. 3D reconstructions of A, 

Morganucodon right lower molar tooth NHMUK PV M 104134 (voxel size 2 μm, μCT) and B, 

Kuehneotherium right lower molar tooth NHMUK PV M 21095 (voxel size 1.2 μm, PPC-5 

SRµCT). Green = cementum. C, D. Transverse PPC-SRµCT virtual thin-sections (0.33 μm voxel 

size) of roots of C, NHMUK PV M 104134 and D, NHMUK PV M 27436 (Kuehneotherium). 

Red bracketed line highlights cementum surrounding dentine. E, F. Close-ups of boxes in C, D, 
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with five and four circumferential light/dark increment pairs highlighted by red arrows, 

respectively. G. Synchrotron nanotomographic virtual thin-section of Morganucodon (30 nm 

voxel size) - close-up of region near box in E. Vertical red arrows = cementum increments; 

horizontal blue arrows, dashed blue lines and Sf = radial bands of Sharpey’s fibres; yellow 

dashed line and glT = granular layer of Tomes; green dashed line and hlH-S = hyaline layer of 5 

Hopewell-Smith. 
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Fig. 2. 

 

Fig. 2. Three-dimensional segmentation of Morganucodon and Kuehneotherium specimens 

with the highest cementum increment counts. A, B. Transverse virtual thin-sections of PPC-

SRµCT reconstructions (0.33 μm3 voxel size). A, Morganucodon specimen NHMUK PV M 5 

104127 showing 55 μm thick cementum layer around root dentine. B, Kuehneotherium specimen 

UMZC Sy 141 showing 32 μm thick cementum. C, D. Detail of cementum of C, Morganucodon 

and D, Kuehneotherium. Cementum increments highlighted by 14 and nine multi-

colouredarrows, respectively. E, F. 3D segmentations of cementum increments of E, 

Morganucodon, and F, Kuehneotherium. The colour of each increment corresponds to arrow 10 

colour in C, D. 
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Fig. 3. 

 

Fig. 3. Shared increment patterns between m1 and m2 tooth-root cementum and the 

dentary of Morganucodon specimen NHMUK PV M 96413. A. Four lines of arrested growth 

and a fifth incipient one are visible within the dentary periosteal region, each highlighted by 3D 5 

segmented bands of differing colour corresponding to coloured arrows in accompanying 

transverse PPC-SRµCT slice. Only LAGs persisting through the volume are 

segmented/highlighted. This pattern is mirrored in B, the anterior root of the m1 tooth; C, the 

posterior root of the same m1; and D, the anterior root of the m2 tooth. 
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Fig. 4. 

 

Fig. 4. Lifespan and metabolic estimates of Morganucodon and Kuehneotherium. A. 

Histogram of lifespan estimates from cementum increment counts. B. Log10 biplot of mean body 

mass (g) against maximum wild lifespan (years) for extant mammals (n = 279), extant non-avian 5 

reptiles (n = 252), and fossil mammaliaforms. C. Log10 biplot of mean body mass (g) against 

mass specific standard metabolic rate (msSMR; mL.O2.hr-1.g-1) for extant mammals (n = 117) 

and extant reptiles (n = 55), and estimates for fossil mammaliaforms. OLS regression lines in B, 

C, show extant mammals (black) and extant reptiles (blue), 95% confidence intervals shown 

with dashed lines, 95% predictor intervals by dotted lines. 10 
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Fig. 5. 

 

 

Fig. 5. Femoral foramina and estimates of relative femoral bloodflow for Morganucodon. A. 

3D µCT reconstruction of Morganucodon femur (specimen UMZC Eo PC 19_6, voxel size 4 

μm), with all identifiable foramina segmented/highlighted with colour. B. log10 biplot of mean 

body mass (g) against estimated blood flow index (Qi; mm3) for extant non-varanid reptiles (n = 

22), extant varanid reptiles (n=8), extant mammals (n=69), and Morganucodon. OLS regression 

lines in B are extant mammals (black), extant non-varanid reptiles (blue) and extant varanids 

(purple), with 95% confidence intervals represented by dashed lines. 
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