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Abstract  8 

Human microbiota plays a key role in human health and growing evidence supports the potential use of 9 

microbiome as a predictor of various diseases. However, the high-dimensionality of microbiome data, 10 

often in the order of hundreds of thousands, yet low sample sizes, poses great challenge for machine 11 

learning-based prediction algorithms. This imbalance induces the data to be highly sparse, preventing 12 

from learning a better prediction model. Also, there has been little work on deep learning applications to 13 

microbiome data with a rigorous evaluation scheme. To address these challenges, we propose DeepMicro, 14 

a deep representation learning framework allowing for an effective representation of microbiome profiles. 15 

DeepMicro successfully transforms high-dimensional microbiome data into a robust low-dimensional 16 

representation using various autoencoders and applies machine learning classification algorithms on the 17 

learned representation. In disease prediction, DeepMicro outperforms the current best approaches based 18 

on the strain-level marker profile in five different datasets. In addition, by significantly reducing the 19 

dimensionality of the marker profile, DeepMicro accelerates the model training and hyperparameter 20 

optimization procedure with 8X-30X speedup over the basic approach. DeepMicro is freely available at 21 

https://github.com/minoh0201/DeepMicro. 22 
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Introduction 25 

As our knowledge of microbiota grows, it becomes increasingly clear that the human microbiota plays a 26 

key role in human health and diseases 1. The microbial community, composed of trillions of microbes, is a 27 

complex and diverse ecosystem living on and inside a human. These commensal microorganisms benefit 28 

humans by allowing them to harvest inaccessible nutrients and maintain the integrity of mucosal barriers 29 

and homeostasis. Especially, the human microbiota contributes to the host immune system development, 30 

affecting multiple cellular processes such as metabolism and immune-related functions 1,2. They have 31 

been shown to be responsible for carcinogenesis of certain cancers and substantially affect therapeutic 32 

response 3. All these emerging evidences substantiate the potential use of microbiota as a predictor for 33 

various diseases 4. 34 

The development of high-throughput sequencing technologies has enabled researchers to capture a 35 

comprehensive snapshot of the microbial community of interest. The most common components of the 36 

human microbiome can be profiled with 16S rRNA gene sequencing technology in a cost-effective way 5. 37 

Comparatively, shotgun metagenomic sequencing technology can provide a deeper resolution profile of 38 

the microbial community at the strain level 6,7. As the cost of shotgun metagenomic sequencing keeps 39 

decreasing and the resolution increasing, it is likely that a growing role of the microbiome in human health 40 

will be uncovered from the mounting metagenomic datasets. 41 

Although novel technologies have dramatically increased our ability to characterize human microbiome 42 

and there is evidence suggesting the potential use of the human microbiome for predicting disease state, 43 

how to effectively utilize the human microbiome data faces several key challenges. Firstly, effective 44 

dimensionality reduction that preserves the intrinsic structure of the microbiome data is required to 45 

handle the high dimensional data with low sample sizes, especially the microbiome data with strain-level 46 

information that often contain hundreds of thousands of gene markers but for only some hundred or 47 

fewer samples. With a low number of samples, large number of features can cause the curse of 48 

dimensionality, usually inducing sparsity of the data in the feature space. Along with traditional 49 

dimensionality reduction algorithms, autoencoder that learns a low-dimensional representation by 50 

reconstructing the input 8 can be applied to exploit microbiome data. Secondly, given the fast amounting 51 

metagenomic data, there is an inadequate effort in adapting machine learning algorithms for predicting 52 

disease state based on microbiome data. In particular, deep learning is a class of machine learning 53 

algorithms that builds on large multi-layer neural networks, and that can potentially make effective use 54 
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of metagenomic data. With the rapidly growing attention from both academia and industry, deep learning 55 

has produced unprecedented performance in various fields, including not only image and speech 56 

recognition, natural language processing, and language translation but also biological and healthcare 57 

research 9. A few studies have applied deep learning approaches to abundance profiles of the human gut 58 

microbiome for disease prediction 10,11. However, there has been no research utilizing strain-level profiles 59 

for the purpose. Comparatively, strain level profiles, often containing hundreds of thousands of gene 60 

markers’ information, should be more informative for accurately classifying the samples into patient and 61 

healthy control groups across different types of diseases than abundance profiles that usually contain only 62 

a few hundred bacteria’s abundance information 12. Lastly, to evaluate and compare the performance of 63 

machine learning models, it is necessary to introduce a rigorous validation framework to estimate their 64 

performance over unseen data. Pasolli et al., a study that built classification models based on microbiome 65 

data, utilized a 10-fold cross-validation scheme that tunes the hyper-parameters on the test set without 66 

using a validation set 12. This approach may overestimate model performance as it exposes the test set to 67 

the model in the training procedure 13,14. 68 

To address these issues, we propose DeepMicro, a deep representation learning framework that deploys 69 

various autoencoders to learn robust low-dimensional representations from high-dimensional 70 

microbiome profiles and trains classification models based on the learned representation. We applied a 71 

thorough validation scheme that excludes the test set from hyper-parameter optimization to ensure 72 

fairness of model comparison. Our model surpasses the current best methods in terms of disease state 73 

prediction of inflammatory bowel disease, type 2 diabetes in the Chinese cohort as well as European 74 

women cohort, liver cirrhosis, and obesity. DeepMicro is open-sourced and publicly available software to 75 

benefit future research, allowing researchers to obtain a robust low-dimensional representation of 76 

microbiome profiles with user-defined deep architecture and hyper-parameters. 77 

 78 

Methods 79 

Dataset and Extracting Microbiome Profiles 80 

We considered publicly available human gut metagenomic samples of six different disease cohorts: 81 

inflammatory bowel disease (IBD), type 2 diabetes in European women (EW-T2D), type 2 diabetes in 82 

Chinese (C-T2D) cohort, obesity (Obesity), liver cirrhosis (Cirrhosis), and colorectal cancer (Colorectal). All 83 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 10, 2020. ; https://doi.org/10.1101/785626doi: bioRxiv preprint 

https://doi.org/10.1101/785626
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

these samples were derived from whole-genome shotgun metagenomic studies that used Illumina paired-84 

end sequencing technology. Each cohort consists of healthy control and patient samples as shown in Table 85 

1. IBD cohort has 25 individuals with inflammatory bowel disease and 85 healthy controls 15. EW-T2D 86 

cohort has 53 European women with type 2 diabetes and 43 healthy European women 16. C-T2D cohort 87 

has 170 Chinese individuals with type 2 diabetes and 174 healthy Chinese controls 17. Obesity cohort has 88 

164 obese patients and 89 non-obese controls 18. Cirrhosis cohort has 118 patients with liver cirrhosis and 89 

114 healthy controls 19. Colorectal cohort has 48 colorectal cancer patients and 73 healthy controls 20. In 90 

total, 1,156 human gut metagenomic samples, obtained from MetAML repository 12, were used in our 91 

experiments.  92 

 93 

Table 1. Human gut microbiome datasets used for disease state prediction 94 

Disease 
Dataset 
name 

# total  
samples 

# of healthy 
controls 

# of patient 
samples 

Data source 
references 

Inflammatory Bowel Disease IBD 110 85 25 15 

Type 2 Diabetes 
EW-T2D 96 43 53 16 

C-T2D 344 174 170 17 

Obesity Obesity 253 89 164 18 

Liver Cirrhosis Cirrhosis 232 114 118 19 

Colorectal Cancer Colorectal 121 73 48 20 

 95 

Two types of microbiome profiles were extracted from the metagenomic samples: 1) strain-level marker 96 

profile and 2) species-level relative abundance profile. MetaPhlAn2 was utilized to extract these profiles 97 

with default parameters 7. We utilized MetAML to preprocess the abundance profile by selecting species-98 

level features and excluding sub-species-level features 12. The strain-level marker profile consists of binary 99 

values indicating the presence (1) or absence (0) of a certain strain. The species-level relative abundance 100 

profile consists of real values in [0,1] indicating the percentages of the species in the total observed 101 

species. The abundance profile has a few hundred dimensions, whereas the marker profile has a much 102 

larger number of dimensions, up to over a hundred thousand in the current data (Table 2). 103 

Table 2. The number of dimensions of the preprocessed microbiome profiles 104 

Profile type IBD EW-T2D C-T2D Obesity Cirrhosis Colorectal 

marker profile 91,756 83,456 119,792 99,568 120,553 108,034 

abundance profile 443 381 572 465 542 503 
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 105 

 106 

Deep Representation Learning  107 

An autoencoder is a neural network reconstructing its input 𝑥. Internally, its general form consists of an 108 

encoder function 𝑓𝜙(∙)  and a decoder function 𝑓′𝜃(∙) where 𝜙  and 𝜃  are parameters of encoder and 109 

decoder functions, respectively. An autoencoder is trained to minimize the difference between an input 110 

𝑥 and a reconstructed input 𝑥′, the reconstruction loss (e.g., squared error) that can be written as follows: 111 

𝐿(𝑥, 𝑥′) = ‖𝑥 − 𝑥′‖2 = ‖𝑥 − 𝑓′𝜃 (𝑓𝜙(𝑥))‖
2

. 112 

After training an autoencoder, we are interested in obtaining a latent representation 𝑧 = 𝑓𝜙(𝑥) of the 113 

input using the trained encoder. The latent representation, usually in a much lower-dimensional space 114 

than the original input, contains sufficient information for reconstructing the original input as close as 115 

possible. We utilized this representation to train classifiers for disease prediction. 116 

For the DeepMicro framework, we incorporated various deep representation learning techniques, 117 

including shallow autoencoder (SAE), deep autoencoder (DAE), variational autoencoder (VAE), and 118 

convolutional autoencoder (CAE), to learn a low-dimensional embedding for microbiome profiles. Note 119 

that the diverse combinations of hyper-parameters defining the structure of autoencoders (e.g., the 120 

number of units and layers) have been explored in a grid fashion as described below, however, users are 121 

not limited to the tested hyper-parameters and can use their own hyper-parameter grid fitted to their 122 

data.  123 

Firstly, we utilized SAE, the simplest autoencoder structure composed of the encoder part where the input 124 

layer is fully connected with the latent layer, and the decoder part where the output layer produces 125 

reconstructed input 𝑥′ by taking weighted sums of outputs of the latent layer. We introduced a linear 126 

activation function for the latent and output layer. Other options for the loss and activation functions are 127 

available for users (such as binary cross-entropy and sigmoid function). Initial values of the weights and 128 

bias were initialized with Glorot uniform initializer 21. We examined five different sizes of dimensions for 129 

the latent representation (32, 64, 128, 256, and 512).  130 

In addition to the SAE model, we implemented the DAE model by introducing hidden layers between the 131 

input and latent layers as well as between the latent and output layers. All of the additional hidden layers 132 
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were equipped with Rectified Linear Unit (ReLu) activation function and Glorot uniform initializer. The 133 

same number of hidden layers (one layer or two layers) were inserted into both encoder and decoder 134 

parts. Also, we gradually increased the number of hidden units. The number of hidden units in the added 135 

layers was set to the double of the successive layer in the encoder part and to the double of the preceding 136 

layer in the decoder part. With this setting, model complexity is controlled by both the number of hidden 137 

units and the number of hidden layers, maintaining structural symmetry of the model. For example, if the 138 

latent layer has 512 hidden units and if two layers are inserted to the encoder and decoder parts, then 139 

the resulting autoencoder has 5 hidden layers with 2048, 1024, 512, 1024, and 2048 hidden units, 140 

respectively. Similar to SAE, we varied the number of hidden units in the latent layer as follows: 32, 64, 141 

128, 256, 512, thus, in total, we tested 10 different DAE architectures (Table S2). 142 

A variational autoencoder (VAE) learns probabilistic representations 𝑧 given input 𝑥 and then use these 143 

representations to reconstruct input 𝑥′ 22. Using variational inference, the true posterior distribution of 144 

latent embeddings (i.e., 𝑝(𝑧|𝑥)) can be approximated by the introduced posterior 𝑞𝜙(𝑧|𝑥) where 𝜙 are 145 

parameters of an encoder network. Unlike the previous autoencoders learning an unconstrained 146 

representation, VAE learns a generalized latent representation under the assumption that the posterior 147 

approximation follows Gaussian distribution. The encoder network encodes the means and variances of 148 

the multivariate Gaussian distribution. The latent representation 𝑧  can be sampled from the learned 149 

posterior distribution 𝑞𝜙(𝑧|𝑥) ~ Ν(𝜇, Σ). Then the sampled latent representation is passed into the 150 

decoder network to generate the reconstructed input 𝑥′ ~ 𝑔𝜃(𝑥|𝑧) where 𝜃 are the parameters of the 151 

decoder. 152 

To approximate the true posterior, we need to minimize the Kullback-Leibler (KL) divergence between the 153 

introduced posterior and the true posterior,  154 

𝐾𝐿 (𝑞𝜙(𝑧|𝑥)||𝑝(𝑧|𝑥)) = −𝐸𝐿𝐵𝑂(𝜙, 𝜃; 𝑥) + log(𝑝(𝑥)), 155 

rewritten as 156 

log(𝑝(𝑥)) = 𝐸𝐿𝐵𝑂(𝜙, 𝜃; 𝑥) + 𝐾𝐿 (𝑞𝜙(𝑧|𝑥)||𝑝(𝑧|𝑥)), 157 

where 𝐸𝐿𝐵𝑂(𝜙, 𝜃; 𝑥) is an evidence lower bound on the log probability of the data because the KL term 158 

must be greater than or equal to zero. It is intractable to compute the KL term directly but minimizing the 159 

KL divergence is equivalent to maximizing the lower bound, decomposed as follows: 160 
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𝐸𝐿𝐵𝑂(𝜙, 𝜃; 𝑥) = 𝔼𝑞𝜙(𝑧|𝑥)[log(𝑔𝜃(𝑥|𝑧))] − 𝐾𝐿 (𝑞𝜙(𝑧|𝑥)||𝑝(𝑧)). 161 

The final objective function can be induced by converting the maximization problem to the minimization 162 

problem. 163 

𝐿(𝜙, 𝜃; 𝑥) = −𝔼𝑞𝜙(𝑧|𝑥)[log(𝑔𝜃(𝑥|𝑧))] + 𝐾𝐿 (𝑞𝜙(𝑧|𝑥)||𝑝(𝑧)) 164 

The first term can be viewed as a reconstruction term as it forces the inferred latent representation to 165 

recover its corresponding input and the second KL term can be considered as a regularization term to 166 

modulate the posterior of the learned representation to be Gaussian distribution. We used ReLu 167 

activation and Glorot uniform initializer for intermediate hidden layers in encoder and decoder. One 168 

intermediate hidden layer was used and the number of hidden units in it varied from 32, 64, 128, 256, to 169 

512. The latent layer was set to 4, 8, or 16 units. Thus, altogether we tested 15 different model structures. 170 

Instead of fully connected layers, a convolutional autoencoder (CAE) is equipped with convolutional layers 171 

in which each unit is connected to only local regions of the previous layer 23. A convolutional layer consists 172 

of multiple filters (kernels) and each filter has a set of weights used to perform convolution operation that 173 

computes dot products between a filter and a local region 24. We used ReLu activation and Glorot uniform 174 

initializer for convolutional layers. We did not use any pooling layer as it may generalize too much to 175 

reconstruct an input. The 𝑛-dimensional input vector was reshaped like a squared image with a size of 176 

𝑑 × 𝑑 × 1 where 𝑑 = ⌊√𝑛⌋ + 1. As 𝑑2 ≥ 𝑛, we padded the rest part of the reshaped input with zeros. To 177 

be flexible to an input size, the filter size of the first convolutional layer was set to 10% of the input width 178 

and height, respectively (i.e. ⌊0.1𝑑⌋ × ⌊0.1𝑑⌋). For the first convolutional layer, we used 25% of the filter 179 

size as the size of stride which configures how much we slide the filter. For the following convolutional 180 

layers in the encoder part, we used 10% of the output size of the preceding layer as the filter size and 50% 181 

of this filter size as the stride size. All units in the last convolutional layer of the encoder part have been 182 

flattened in the following flatten layer which is designated as a latent layer. We utilized convolutional 183 

transpose layers (deconvolutional layers) to make the decoder symmetry to the encoder. In our 184 

experiment, the number of filters in a convolutional layer was set to half of that of the preceding layer for 185 

the encoder part. For example, if the first convolutional layer has 64 filters and there are three 186 

convolutional layers in the encoder, then the following two convolutional layers have 32 and 16 filters, 187 

respectively. We varied the number of convolutional layers from 2 to 3 and tried five different numbers 188 
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of filters in the first convolutional layer (4, 8, 16, 32, and 64). In total, we tested 10 different CAE model 189 

structures. 190 

To train deep representation models, we split each dataset into a training set, a validation set, and a test 191 

set (64% training set, 16% validation set, and 20% test set; Figure S1). Note that the test set was withheld 192 

from training the model. We used the early-stopping strategy, that is, trained the models on the training 193 

set, computed the reconstruction loss for the validation set after each epoch, stopped the training if there 194 

was no improvement in validation loss during 20 epochs, and then selected the model with the least 195 

validation loss as the best model. We used mean squared error for reconstruction loss and applied 196 

adaptive moment estimation (Adam) optimizer for gradient descent with default parameters (learning 197 

rate: 0.001, epsilon: 1e-07) as provided in the original paper 25. We utilized the encoder part of the best 198 

model to produce a low-dimensional representation of the microbiome data for downstream disease 199 

prediction. 200 

 201 

Prediction of disease states based on the learned representation 202 

We built classification models based on the encoded low-dimensional representations of microbiome 203 

profiles (Figure 1). Three machine learning algorithms, support vector machine (SVM), random forest (RF), 204 

and Multi-Layer Perceptron (MLP), were used. We explored hyper-parameter space with grid search. SVM 205 

maximizes the margin between the supporting hyperplanes to optimize a decision boundary separating 206 

data points of different classes 26. In this study, we utilized both radial basis function (RBF) kernel and a 207 

linear kernel function to compute decision margins in the transformed space to which the original data 208 

was mapped. We varied penalty parameter C (2-5, 2-3, …, 25) for both kernels as well as kernel coefficient 209 

gamma (2-15, 2-13, …, 23) for RBF kernel. In total, 60 different combinations of hyper-parameters were 210 

examined to optimize SVM (Table S2). 211 

 212 
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 213 

Figure 1. DeepMicro framework. An autoencoder is trained to map the input X to the low-dimensional 214 

latent space with the encoder and to reconstruct X with the decoder. The encoder part is reused to 215 

produce a latent representation of any new input X that is in turn fed into a classification algorithm to 216 

determine whether the input is the positive or negative class. 217 

 218 

RF builds multiple decision trees based on various sub-samples of the training data and merges them to 219 

improve the prediction accuracy. The size of sub-samples is the same as that of training data but the 220 

samples are drawn randomly with replacement from the training data. For the hyper-parameter grid of 221 

RF classifier, the number of trees (estimators) was set to 100, 300, 500, 700, and 900, and the minimum 222 

number of samples in a leaf node was altered from 1 to 5. Also, we tested two criteria, Gini impurity and 223 

information gain, for selecting features to split a node in a decision tree. For the maximum number of 224 

features considered to find the best split at each split, we used a square root of 𝑛 and a logarithm to base 225 

2 of 𝑛 (𝑛 is the sample size). In total, we tested 100 combinations of hyper-parameters of RF. 226 

MLP is an artificial neural network classifier that consists of an input layer, hidden layers, and an output 227 

layer. All of the layers are fully connected to their successive layer. We used ReLu activations for all hidden 228 

layers and sigmoid activation for the output layer that has a single unit. The number of units in the hidden 229 
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layers was set to half of that of the preceding layer except the first hidden layer. We varied the number 230 

of hidden layers (1, 2, and 3), the number of epochs (30, 50, 100, 200, and 300), the number of units in 231 

the first hidden layer (10, 30, 50, 100), and dropout rate (0.1 and 0.3). In total, 120 hyper-parameter 232 

combinations were tested in our experiment. 233 

We implemented DeepMicro in Python 3.5.2 using machine learning and data analytics libraries, including 234 

Numpy 1.16.2, Pandas 0.24.2, Scipy 1.2.1, Scikt-learn 0.20.3, Keras 2.2.4, and Tensorflow 1.13.1. Source 235 

code is publicly available at the git repository (https://github.com/minoh0201/DeepMicro). 236 

 237 

Performance Evaluation 238 

To avoid an overestimation of prediction performance, we designed a thorough performance evaluation 239 

scheme (Figure S1). For a given dataset (e.g. Cirrhosis), we split it into training and test set in the ratio of 240 

8:2 with a given random partition seed, keeping a ratio between classes in both training and test set to be 241 

the same as that of the given dataset. Using only the training set, a representation learning model was 242 

trained. Then, the learned representation model was applied to the training set and test set to obtain 243 

dimensionality-reduced training and test set. After the dimensionality has been reduced, we conducted 244 

5-fold cross-validation on the training set by varying hyper-parameters of classifiers. The best hyper-245 

parameter combination for each classifier was selected by averaging an accuracy metric of the five 246 

different results. The area under the receiver operating characteristics curve (AUC) was used for 247 

performance evaluation. We trained a final classification model using the whole training set with the best 248 

combination of hyper-parameters and tested it on the test set. This procedure was repeated five times by 249 

changing the random partition seed at the beginning of the procedure. The resulting AUC scores were 250 

averaged and the average was used to compare model performance. 251 

 252 

 253 

Results 254 

We developed DeepMicro, a deep representation learning framework for predicting individual phenotype 255 

based on microbiome profiles. Various autoencoders (SAE, DAE, VAE, and CAE) have been utilized to learn 256 

a low-dimensional representation of the microbiome profiles. Then three classification models including 257 
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SVM, RF, and MLP were trained on the learned representation to discriminate between disease and 258 

control sample groups. We tested our framework on six disease datasets (Table 1), including inflammatory 259 

bowel disease (IBD), type 2 diabetes in European women (EW-T2D), type 2 diabetes in Chinese (C-T2D), 260 

obesity (Obesity), liver cirrhosis (Cirrhosis), and colorectal cancer (Colorectal). For all the datasets, two 261 

types of microbiome profiles, strain-level marker profile and species-level relative abundance profile, have 262 

been extracted and tested (Table 2). Also, we devised a thorough performance evaluation scheme that 263 

isolates the test set from the training and validation sets in the hyper-parameter optimization phase to 264 

compare various models (See Methods and Figure S1). 265 

We compared our method to the current best approach (MetAML) that directly trained classifiers, such 266 

as SVM and RF, on the original microbiome profile 12. We utilized the same hyper-parameters grid used in 267 

MetAML for each classification algorithm. In addition, we tested Principal Component Analysis (PCA) and 268 

Gaussian Random Projection (RP), using them as the replacement of the representation learning to 269 

observe how traditional dimensionality reduction algorithms behave. For PCA, we selected the principal 270 

components explaining 99% of the variance in the data 27. For RP, we set the number of components to 271 

be automatically adjusted according to Johnson-Lindenstrauss lemma (eps parameter was set to 0.5) 28-30. 272 

We picked the best model for each approach in terms of prediction performance and compared the 273 

approaches across the datasets. Figure 2 shows the results of DeepMicro and the other approaches for 274 

the strain-level marker profile. DeepMicro outperforms the other approaches for five datasets, including 275 

IBD (AUC = 0.955), EW-T2D (AUC = 0.899), C-T2D (AUC = 0.763), Obesity (AUC = 0.659), and Cirrhosis (AUC 276 

= 0.940). For Colorectal dataset, DeepMicro has slightly lower performance than the best approach 277 

(DeepMicro’s AUC = 0.803 vs. MetAML’s AUC = 0.811). The marker profile-based models generally 278 

perform better than the abundance profile-based models (Figure S8 and S2). The only exception is Obesity 279 

dataset for which the abundance-based DeepMicro model shows better performance (AUC = 0.674). Note 280 

that as AUC could be misleading in an imbalanced classification scenario 31, we also evaluated the area 281 

under the precision-recall curve (AUPRC) for the imbalanced data set IBD and observed the same trend 282 

between AUC and AUPRC (Table S3). 283 

 284 
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 285 

Figure 2. Disease prediction performance for marker profile-based models. Prediction performance of 286 

various methods built on marker profile has been assessed with AUC. MetAML utilizes support vector 287 

machine (SVM) and random forest (RF), and the superior model is presented (green).  Principal component 288 

analysis (PCA; blue) and gaussian random projection (RP; yellow) have been applied to reduce dimensions 289 

of datasets before classification. DeepMicro (red) applies shallow autoencoder (SAE), deep autoencoder 290 

(DAE), variational autoencoder (VAE), and convolutional autoencoder (CAE) for dimensionality reduction. 291 

Then SVM, RF, and multi-layer perceptron (MLP) classification algorithms have been used. 292 

 293 

For marker profile, none of the autoencoders dominate across the datasets in terms of getting the best 294 

representation for classification. Also, the best classification algorithm varied according to the learned 295 

representation and to the dataset (Figure 3). For abundance profile, CAE dominates over the other 296 

autoencoders with RF classifier across all the datasets (Figure S3). 297 
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 298 

Figure 3. Disease prediction performance for different autoencoders based on marker profile (assessed 299 

with AUC). Classifiers used: support vector machine (SVM), random forest (RF), and multi-layer perceptron 300 

(MLP); Autoencoders used: shallow autoencoder (SAE), deep autoencoder (DAE), variational autoencoder 301 

(VAE), and convolutional autoencoder (CAE) 302 

 303 

We also directly trained MLP on the dataset without representation learning and compared the prediction 304 

performance with that of the traditional approach (the best between SVM and RF). It is shown that MLP 305 

performs better than MetAML in three datasets, EW-T2D, C-T2D, and Obesity, when marker profile is used 306 

(Figure S4). However, when abundance profile is used, the performance of MLP was worse than that of 307 

the traditional approach across all the datasets (Figures S5). 308 

Furthermore, we compared running time of DeepMicro on marker profiles with a basic approach not using 309 

representation learning. For comparison, we tracked both training time and representation learning time. 310 

For each dataset, we tested the best performing representation learning model producing the highest 311 

AUC score (i.e. SAE for IBD and EW-T2D, DAE for Obesity and Colorectal, and CAE for C-T2D and Cirrhosis; 312 

Table S1). We fixed the seed for random partitioning of the data, and applied the formerly used 313 

performance evaluation procedure where 5-fold cross-validation is conducted on the training set to 314 

obtain the best hyper-parameter with which the best model is trained on the whole training set and is 315 

evaluated on the test set (See Methods). The computing machine we used for timestamping is running on 316 

Ubuntu 18.04 and equipped with an Intel Core i9-9820X CPU (10 cores), 64 GB Memory, and a GPU of 317 
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NVIDIA GTX 1080 Ti. We note that our implementation utilizes GPU when it learns representations and 318 

switches to CPU mode to exhaustively use multiple cores in a parallel way to find best hyper-parameters 319 

of the classifiers. Table 3 shows the benchmarking result on marker profile. It is worth noting that 320 

DeepMicro is 8X to 30X times faster than the basic approach (17X times faster on average). Even if MLP is 321 

excluded from the benchmarking because it requires heavy computation, DeepMicro is up to 5X times 322 

faster than the basic (2X times faster on average). 323 

 324 

Table 3. Time benchmark for DeepMicro and basic approaches without representation learning (in sec) 325 

Method IBD EW-T2D C-T2D Obesity Cirrhosis Colorectal 

Basic 
approach 

SVM* 126 85 1705 711 777 187 

RF 42 41 99 79 72 50 

MLP 3,776 2,449 12,057 8,186 8,593 4,508 

Total elapsed 3,943 2,575 13,861 8,976 9,442 4,745 

DeepMicro 

RL 74 194 554 113 521 215 

SVM 2 2 8 8 17 2 

RF 28 28 47 33 40 30 

MLP 103 93 188 137 287 105 

Total elapsed 207 317 798 291 864 352 
*RL: Representation Learning; SVM: Support Vector Machine; RF: Random Forest; MLP: Multi-layer Perceptron  326 

 327 

Discussion 328 

We developed a deep learning framework transforming a high-dimensional microbiome profile into a low-329 

dimensional representation and building classification models based on the learned representation. At 330 

the beginning of this study, the main goal was to reduce dimensions as strain-level marker profile has too 331 

many dimensions to handle, expecting that noisy and unnecessary information fades out and the refined 332 

representation becomes tractable for downstream prediction. Firstly, we tested PCA on marker profile 333 

and it showed a slight improvement in prediction performance for C-T2D and Obesity but not for the 334 

others. The preliminary result indicates that either some of the meaningful information was dropped or 335 

noisy information still remains. To learn meaningful feature representations, we trained various 336 

autoencoders on microbiome profiles. Our intuition behind the autoencoders was that the learned 337 

representation should keep essential information in a condensed way because autoencoders are forced 338 

to prioritize which properties of the input should be encoded during the learning process. We found that 339 

although the most appropriate autoencoder usually allows for better representation that in turn results 340 
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in better prediction performance, what kind of autoencoder is appropriate highly depends on problem 341 

complexity and intrinsic properties of the data. 342 

In the previous study, it has been shown that adding healthy controls of the other datasets could improve 343 

prediction performance assessed by AUC 12. To check if this finding can be reproduced, for each dataset, 344 

we added control samples of the other datasets only into the training set and kept the test set the same 345 

as before. Figure S6 shows the difference between the best performing models built with and without 346 

additional controls. In general, prediction performance dropped (on average by 0.037) once negative 347 

(control) samples are introduced to the training set across the datasets in almost all approaches except 348 

only a few cases (Figure S6). In contrast to the previous study, the result indicates that the insertion of 349 

only negative samples into the training set may not help to improve the classification models, and a 350 

possible explanation might be that changes in the models rarely contribute to improving the classification 351 

of positive samples 32. Interestingly, if we added negative samples into the whole data set before split it 352 

into training and test set, we usually observed improvements in prediction performance. However, we 353 

found that these improvements are trivial because introducing negative samples into the test set easily 354 

reduces false positive rate (as the denominator of false positive rate formula is increased), resulting in 355 

higher AUC scores. 356 

Even though adding negative samples might not be helpful for a better model, it does not mean that 357 

additional samples are meaningless. We argue that more samples can improve prediction performance, 358 

especially when a well-balanced set of samples is augmented. To test this argument, we gradually 359 

increased the proportion of the training set and observed how prediction performance changed over the 360 

training sets of different sizes. Generally, improved prediction performance has been observed as more 361 

data of both positive and negative samples are included (Figure S7). With the continued availability of 362 

large samples of microbiome data, the deep representation learning framework is expected to become 363 

increasingly effective for both condensed representation of the original data and also downstream 364 

prediction based on the deep representation.   365 

DeepMicro is publicly available software which offers cutting-edge deep learning techniques for learning 366 

meaningful representations from the given data. Researchers can apply DeepMicro to their high-367 

dimensional microbiome data to obtain a robust low-dimensional representation for the subsequent 368 

supervised or unsupervised learning. For predictive problems increasingly studied with microbiome data 369 

such as drug response prediction, forensic human identification, and food allergy prediction, deep 370 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 10, 2020. ; https://doi.org/10.1101/785626doi: bioRxiv preprint 

https://doi.org/10.1101/785626
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

representation learning might be useful in terms of boosting the model performance. Moreover, it might 371 

be worthwhile to use the learned representation for clustering analysis. The distance between data points 372 

in the latent space can be a basis for clustering microbiome samples and it could help capture the shared 373 

characteristics within a group which are difficult to be identified in the original data space. DeepMicro has 374 

been used to deal with microbiome data but it is not limited to a specific type of data and its application 375 

can be extended to various omics data, such as genome and proteome data.  376 

 377 

 378 

Data availability 379 

All data and codes are available at https://github.com/minoh0201/DeepMicro.380 
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List of abbreviations 448 

- IBD: inflammatory bowel disease 449 

- EW-T2D: type 2 diabetes in European women 450 

- C-T2D: type 2 diabetes in Chinese 451 

- Obesity: obesity  452 

- Cirrhosis: liver cirrhosis  453 

- Colorectal: colorectal cancer 454 

- SAE: shallow autoencoder  455 

- DAE: deep autoencoder 456 

- VAE: variational autoencoder 457 

- CAE: convolutional autoencoder 458 

- ReLu: rectified linear unit 459 

- KL: Kullback-Leibler 460 

- SVM: support vector machine 461 

- RF: random forest 462 

- MLP: multi-layer perceptron 463 

- RBF: radial basis function 464 

- AUC: area under the receiver operating characteristics curve 465 

- PCA: Principal Component Analysis 466 

- RP: Gaussian Random Projection 467 
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