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Abstract

The  evolution  of  bacterial  regulatory  networks  has  largely  been  explained  at
macroevolutionary scales through lateral  gene transfer and gene duplication.  Transcription
factors (TF) have been found to be less conserved across species than their target genes (TG).
This would be expected if  TFs accumulate  mutations  faster  than TGs. This hypothesis  is
supported by several lab evolution studies which found TFs, especially global regulators, to
be frequently mutated. Despite these studies, the contribution of point mutations in TFs to the
evolution of regulatory network is poorly understood. We tested if TFs show greater genetic
variation than their TGs using whole-genome sequencing data from a large collection of  E
coli isolates. We found TFs to be less diverse, across natural isolates, due to their regulatory
roles. TFs were enriched in mutations in multiple adaptive lab evolution studies but not in
mutation accumulation. However, over long-term evolution, relative frequency of mutations
in  TFs showed a gradual  decay after  a  rapid initial  burst.  Our results  suggest  that  point
mutations, conferring large-scale expression changes, may drive the early stages of adaptation
but gene regulation is subjected to stronger purifying selection post adaptation.
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Introduction

The dynamic environments colonized by bacteria demand optimal regulation of gene
expression  (1).  Transcription  initiation,  the  primary  checkpoint  in  this  regulation,  is
influenced by the activity of a set of DNA-binding proteins called Transcription Factors (TF).
TFs sense the cellular environment and respond by activating or suppressing the expression
of their target genes (TG). Different species of bacteria occupying diverse niches, thus differ
more in the set of their TFs than that of their TGs (2).

The set of transcriptional regulatory interactions in an organism is usually represented
as a transcriptional regulatory network (TRN). TRNs have been found to evolve faster than
other biological networks (3), based on detection of orthologs across species. Their evolution
has been explained largely by duplication  (4) and horizontal gene transfer (HGT) (5). Even
though both of these processes are accompanied/followed by DNA sequence level changes in
the TFs (6, 7), the contribution of point mutations to TRN evolution is poorly understood (8).
The significance of point mutations can be realized by the fact that, even where both a TF and
its TG are present, the regulatory interaction is often not conserved (9). 

Macroevolutionary changes in TRN can be explained, in principle, through mutations
at microevolutionary scales, i.e., mutations may accumulate faster in TFs than in TGs within
species, and this would be reflected as lower conservation of TFs across species. If selection
drives TFs evolution, populations adapting to different environments may select for different
mutations in TFs at a higher frequency than in TGs. Some of these may be loss-of-function
mutations, leading to complete loss of the TF over a long period of time. In contrast, if TFs
evolve through neutral processes, a population may have more standing genetic variation in
TFs than in TGs, presumably due to weaker selective constraints. For the same reason, the
loss of a TF at large evolutionary distance would be more likely than that of a TG. 

The adaptive evolution hypothesis seems to be supported by multiple lab evolution
experiments,  which found many beneficial  mutations to occur in TFs  (10). However, this
cannot  be  concluded  in  the  absence  of  a  statistical  analysis,  of  enrichment  of  beneficial
mutations in TFs over TGs, across multiple such studies. Often, these mutations were found
in the hubs of the TRN  (11),  generally  referred to as “global”  regulators  (GR). As TRN
follows a power-law distribution of edges per nodes  (12), only a few TFs act as GRs, and
influence gene expression on a global scale. In this regard, majority of the TFs are considered
as “fine-tuners”, and it is not evident if mutations in these TFs should also be more adaptive
than in TGs. 

The role of adaptation in shaping gene regulation across wild strains also has been
demonstrated by several studies (13–15). However, it’s still not clear to what extent mutations
in TFs drive regulatory diversification. Some studies suggest that few mutations in TFs may
be  sufficient  for  changes  in  regulation  (7,  16).  Therefore,  it  is  possible  that  even  if  the
evolution of TFs is shaped by adaptation, we may found TFs to be less diverse than their TGs
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within  a  species.  Additionally,  lower  diversity  of  TFs  would  be  indicative  of  stronger
selective constraints.  

Recent  advances  in  genome-scale  sequencing  and  analysis,  and  readily  available
large-scale  WGS  datasets  offer  an  exciting  opportunity  to  investigate  the  evolution  of
regulatory networks over short  time-scales  i.e.,  across strains or within species. Equipped
with tens of thousands of sequencing runs on  E. coli from various hosts and geographical
regions,  we set  out  to  estimate  the  sequence  diversity  of  a  thousand genes.  Using these
datasets, we tested if transcription factors of a bacterial species are indeed more diverse than
its target genes.

Results

I. Differences in nucleotide diversity can arise from differences in
gene's length

Previous  studies  have  shown  that  TFs  are  less  conserved  -  as  measured  by  the
presence/absence of orthologs - across bacteria (2, 9, 17). We hypothesized that this flexibility
of TRN may be reflected in greater sequence variation of TFs over shorter time scales,  i.e.
across strains or within a species. As a corollary, and under the assumption that the difference
in conservation across species between TFs and non-TFs is a reflection of positive selection,
TFs may acquire more non-synonymous variation than their target genes (TG) within E coli.
Also, under the assumption that TFs do not differ from their TGs in their underlying mutation
rate and synonymous changes are under relatively weaker selection, TFs should be similar to
TGs  in  their  synonymous  variation.  Towards  testing  these  ideas,  we  first  performed  a
preliminary study of sequence variation in TFs and their TGs using a library of completely
sequenced and assembled E coli reference genomes.

Starting  from 614  reference  genomes,  we  removed  redundant  genomes  based  on
sequence  similarity  (see  Methods)  to  assemble  a  final  set  of  123 genomes  (Table  S1,
supplementary  file  1).  We obtained  the  experimentally  verified  TRN of  E coli from the
RegulonDB database (18). We excluded all interactions between TFs from this TRN to obtain
a set of 142 TFs and their 1119 TGs (Table S2, supplementary file 1). We measured sequence
variation  of  these  genes  across  isolates  in  terms  of  nucleotide  diversity  (π),  which  is
computed  as  the  average  pairwise  nucleotide  differences  per  base.  Contrary  to  our
expectation, we found no difference in nucleotide diversity of TFs and TGs ( PWilcoxon rank sum =
0.054) (Fig. 1A). Then, we estimated nucleotide diversity separately from synonymous (πS)
and non-synonymous (πN) sites. Again, both the estimates revealed no difference between TFs
and TGs ( PWilcoxon rank sum = 0.1065 for πS, 0.1099 for πN) (Fig. 1B,C).  In the above analyses,
we did not make use of the knowledge of regulatory interactions between these genes and
only checked for the overall difference in TFs diversity when compared to that of TGs, TGs
being representatives of average non-TF protein-coding genes. When we performed paired
comparisons, where a TF was only compared with its own TGs, we found all of the above
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estimates of diversity to be lower for TFs. Surprisingly, even synonymous diversity of TFs
was less than that of their TGs ( PWilcoxon signed rank = 0.0008 for π, 0.0049 for πS, 1.6 x 10-5 for
πN ) (Fig. 1D-F).

Fig. 1 Sequence diversity and gene length. A-C, Distributions of nucleotide, 
synonymous and non-synonymous diversity respectively, of TFs and TGs over 123 
assembled genomes. D-F, Distributions of difference between the diversity of TFs and
their own TGs for nucleotide, synonymous and non-synonymous diversity, 
respectively. Unpaired comparisons showed no significant difference but all paired 
comparisons did. G, Correlation between diversity difference (TF - TG) and TF’s 
length. Nucleotide (P = 0.0018) and Synonymous diversity (P = 0.0023) were 
positively correlated with gene length, whereas Non-synonymous diversity was not (P 
= 0.1016). Thick lines represent LOESS curves with a span of 0.5. Differences were 
Min-Max scaled for visualization. To improve resolution, outliers were excluded from 
box plots and y-axis for the scatter plot was restricted between 0.2 and 0.7 ( which 
covers ~93 % of data points). 
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Since the number of regulated TGs varies across TFs and ranges from a single TG to
over 100 TGs, and we compared the mean of all TGs of a TF against its own  diversity, TFs
may show less variation than their TGs due to this large variation in sample sizes from which
means  were  estimated.  We  addressed  this  issue  by  estimating  the  significance  of  our
observation using a randomization test. Briefly, we simulated random networks by removing
all TFs from the network and replacing original TFs with randomly selected TGs, keeping
regulon sizes constant. In essence, this procedure removes all TFs, and instead considers a
random set of non-TFs as TFs. We tested if non-synonymous diversity of TFs was lower than
that  of  their  TGs,  in  a  paired  comparison,  for  these  simulated  networks.  We  found that
random networks rarely generated a difference as extreme as that observed in the original
TRN (PRandomization test = 0.001, 1000 trials). 

TFs are generally shorter in length than non-TFs (Fig. S1, supplementary file 2). To
test  if  this  might  be a  factor  in  diversity  estimate,  despite  the fact  that  the estimates  are
reported per base, we checked for correlation between these diversity estimates’ difference of
a TF and its TG with TF’s length. Indeed, we observed a positive correlation for nucleotide
diversity, as well as synonymous diversity. However, non-synonymous diversity did not show
any correlation with gene length (PSpearman = 0.0018 for π, 0.0024 for πS, 0.1016 for πN) (Fig.
1G). Consequently, when we excluded all regulatory interactions where TG was longer than
the TF ( leaving 107 TFs and 471 TGs), we found no difference between TFs and their TGs in
nucleotide diversity and synonymous diversity, but a strong difference in non-synonymous
diversity ( Pwilcoxon signed rank = 0.2656 for π, 0.639 for πS, 2.62 x 10-5 for πN ). Therefore, to test
our hypothesis, we decided to estimate nucleotide diversity only in terms of non-synonymous
diversity since gene length had no significant effect on the difference in non-synonymous
variation of TFs and TGs.  

II. TFs are less diverse than their target genes within species

We expanded our analysis of nucleotide diversity across a limited set of 123 reference
E coli genomes to a larger collection of short-read based genomes. These were sourced from
publicly available sequencing projects covering clinical and environmental isolates of E coli.
Since  these  datasets  were  larger  than  the  earlier  set  and  were  expected  to  have  greater
redundancy, we used a different approach for filtering isolates (see Methods). We processed
~16,000 sequencing runs from 24 projects and finally selected 15 datasets comprising a total
of 2476 isolates (Table S3 and S4, supplementary file 1).

Nucleotide diversity is conventionally calculated from multiple sequence alignments
of  gene  sequences  extracted  from  assembled  and  annotated  genomes.  We  developed  a
methodology that enabled us to use reads from WGS datasets to estimate nucleotide diversity.
Briefly, we  performed variant calling using  SPANDx pipeline  (19), inferred gene presence
from the coverage, identified gaps and estimated diversity from SNP matrices generated by
the variant calling pipeline. We also validated our approach and results using a small set of
isolates for which both WGS data and assembled genomes were available (supplementary file
3). Since it is expected that the average nucleotide diversity would vary across samples, we
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standardized diversity estimates of all genes using the median and median absolute deviation
(MAD) of diversity of TGs. This treatment would scale the median for TGs to zero and any
difference in the diversity of TFs would appear as a shift in its median from zero, rendering
diversity estimates comparable across samples. 

We found that the non-synonymous diversity of TFs was less than that of their own
TGs for all of the 15 datasets (  PWilcoxon signed rank = 0.0018 – 3.4 x 10-6 , after correcting for
multiple  testing)  (Fig.  2).  Therefore,  we  concluded  that  bacterial  TFs  acquire  less  non-

Fig. 2 Non-synonymous diversity of TFs relative to their TGs. For all 15 datasets, TFs 
showed less diversity than their own TGs, in a paired comparison. To make diverse datasets 
comparable, all values were rescaled using median & MAD of TGs, such that scaled median for 
TGs was zero. Y-axis represents the difference between scaled non-synonymous diversity of 
TFs and their TGs. P-values are based on Wilcoxon signed rank test of the hypothesis that TFs 
were less diverse than their TGs. To improve resolution, y-axis was restricted between -5 and 5 
( which covers ~ 96 % of data points).
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synonymous variation than their TGs, irrespective of the variables like host, source, virulence
and structure of a population.

III. Genetic variation of TFs is constrained by their regulatory
roles

Fig. 3 Regulatory constraints on diversity of TFs. A, Non-synonymous diversity of TFs was 
negatively correlated with the number of regulated TUs ( PSpearman = 1.64 x 10-10). B, Accordingly, 
general TFs were less diverse than the specific TFs ( PSpearman = 1.15 x 10-5). To improve 
resolution, outliers were excluded from the plot. Y-axis represents mean scaled non-
synonymous diversity of TFs. Scaling was done using median and MAD of TGs’ diversity for 
each of the 15 datasets and mean of the scaled diversity was taken over these datasets. 
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The organization of the regulatory network is such that a few TFs regulate a majority
of  genes  and  are  called  global  regulators  (GR).  In  E coli,  the  7  most  prolific  TFs  are
responsible for expression of 60% of the genes. These global regulators correspond to broad
cellular programs such as carbohydrate and amino acid metabolism, respiration and growth,
environmental sensing and stress responses (20). Since the targets of these global TFs belong
to multiple functional categories, as defined in COG, these can also be called general TFs.
Specific TFs, on the other hand, regulate target genes from a single pathway or at least from
the same functional category (21). 

The effect of mutations in a TF is expected to depend on its position within the TRN.
TFs  regulating  a  large  number  of  TGs  should  be  under  stronger  purifying  selection.
Consequently, we observed a negative correlation between TFs diversity (mean scaled non-
synonymous) and its regulon size (as measured by the number of Transcription Units (TUs))
(Fig.  3A)  (  = -0.5,  ⍴ PSpearman = 1.64 x 10-10).  The same observation was earlier  made on
variation across species  (5, 22). Accordingly, the diversity of general TFs was significantly
lower than that of specific TFs (Fig. 3B) (PWilcoxon rank sum = 1.15 x 10-5), tested with 8 general
and 45 specific TFs in our dataset. However, even for these specific TFs, we verified that
their diversity was lower than their TGs for all datasets ( PWilcoxon signed rank = 0.032 – 0.001, after
correcting for multiple testing) (Fig. S2, supplementary file 2). Therefore, we concluded that
the diversity of a TF is constrained by the extent to which any change in TF can disturb the
gene expression profile of the organism. 

IV. Conservation of TFs across species is also affected by their
specific regulatory function

Previous studies had found TFs to be less conserved – in terms of presence/absence –
than  TGs  (2,  17),  across  species  and  attributed  these  differences  to  duplication  (4) and
horizontal gene transfer (HGT) (5). However, the contribution of point mutations, if any, to
the above observation remains largely unknown. In general, excessive polymorphism in a
gene  is  indicative  of  weak  selective  constraints  and thus,  the  gene  is  more  likely  to  be
eventually  lost  over  long  evolutionary  distance.  Under  the  assumption  that  these  small,
sequence-level, changes observed over short time-scales can explain gene’s presence/absence
over  longer  time-scales,  we had expected  TFs to  be more  diverse in  sequence than  TGs
within species. Contrary to our hypothesis, we found that the sequence diversity of TFs was
lower  than  their  TGs  across  isolates  of  E coli.  We  sought  to  reconcile  these  seemingly
conflicting results by re-estimating conservation of  E coli’s TFs & TGs across hundreds of
bacterial species.  

We  performed  bi-directional  best  hit  based  ortholog  search  using  hidden  Markov
models of E coli TFs and their TGs across genomes of 246 species (Table S5, supplementary
file  1)  belonging  to  taxonomy  class  γ-proteobacteria  which  also  includes  E  coli and
Salmonella.  We restricted  our  analysis  to  this  class  to  increase  our  likelihood  of  finding
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orthologs for E coli genes. We defined “Conservation” of a gene as the fraction of species in
which our search method could report an ortholog. 

Fig. 4 Effect of sequence diversity on conservation of TFs across species. A, 
Conservation across species was negatively correlated with diversity within species. Y-axis 
represents fraction of 246 genomes with an ortholog for E coli TFs and TGs. X-axis represents 
scaled non-synonymous diversity averaged over 15 datasets. Scaling was done with median 
and MAD of diversity of TGs. Color scale represents count of data points in each bin. B, 
Conservation of all of the 142 TFs against that of their TGs. C, Conservation of TFs was 
positively correlated with the number of regulated TUs. D, Conservation of TFs, excluding GRs, 
was less than that of their TGs.   
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The underlying assumption of our hypothesis is intuitive and has not been formally
tested  in  our  knowledge.  It  is  based  on  a  postulate  of  the  neutral  theory  of  molecular
evolution  (23) that  the  same evolutionary  processes  govern  variation  within  species  and
across  species.  Therefore,  we  first  tested  the  validity  of  our  hypothesis  by  estimating
correlation between Diversity within species and Conservation across species, using all TFs
and TGs. In accordance with our expectation,  conservation was inversely correlated with
diversity (Fig. 4A) (  = -0.42,  ⍴ PSpearman < 2.2 x 10-16  ). However, it is evident from Fig. 4A
that, for very low diversity, variance in conservation is much higher than that for the higher
extreme. A possible explanation for this observation is that several genes, which are only
present in a few bacteria, are most-relevant in their common natural habitat. Conservation of
such genes  across  species  is  influenced  more  by HGT and duplication  than by mutation
accumulation.  Therefore,  in  principle,  TFs  may  be  less  conserved than  their  TGs  across
species  despite  being  more  conserved  than  their  TGs  within  species.  However,  unlike
previous reports, we did not find conservation of TFs to be significantly lower than that of
their TGs across species (PWilcoxon signed rank  = 0.116) (Fig. 4B). 

GRs were earlier found to be more conserved across species than other TFs (5, 22).
Both of these studies were restricted to  γ-proteobacteria. However, previous studies which
reported  low  conservation of  TFs  estimated  conservation across  more  distant  groups  of
prokaryotes, and even eukaryotes, and did not find GRs to be highly conserved (2, 17, 24).
Evolution of GRs was mostly vertical and least affected by HGT, unlike other TFs (5). This
suggests that GRs might have evolved independently in distant lineages of prokaryotes (17).
Since  we  restricted  our  analysis  to  the  species  of  γ-proteobacteria,  we  also  found
conservation of GRs (NTU >= 10)  to be greater than that of other TFs (NGR = 26, NTF = 116
(Fig. S3, supplementary file 2) (PWilcoxon rank sum  = 1.28 x 10-4 ). In fact, we observed a positive
correlation between conservation of a TF and its regulon size (  = 0.38, ⍴ PSpearman = 1.4 x 10-6)
(Fig.  4C).  Consequently,  excluding GRs,  E coli  TFs were less  conserved than their  TGs
across species (PWilcoxon  signed  rank = 0.006) (Fig. 4D). However, these “local” regulators (LR)
were also less diverse than their TGs within species, suggesting their relevance specifically to
the natural habitat of bacteria. 

These results, taken together, emphasize that even though TFs are generally thought to
be less conserved than other genes, conservation of a TF seems to be affected by evolutionary
distance between lineages, its position in TRN and its relevance to organism’s lifestyle  (2),
and a single statistical relationship is inadequate in capturing these complex interactions.

V. TFs are enriched in mutations during adaptive lab evolution

In  Lenski’s  Long  Term  Evolution  Experiment  (LTEE)  (25) and  in  several  other
adaptive  lab  evolution  (ALE)  studies,  regulatory  genes  were  reported  to  be  mutated
frequently  (10). We had reported a higher frequency of mutations in regulatory genes in a
prolonged stationary phase experiment compared to that observed in a mutation accumulation
(MA) study (26). These results suggested that regulatory mutations contribute more towards
adaptation  than  other  mutations.  Different  runs  of  adaptation  are  expected  to  select  for
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different mutations given the variability and complexity of natural environments. Therefore,
we expected sequence diversity of TFs to be greater than that of other genes. However, as
described above, we observed the opposite from our analysis using natural isolates. Since the

Fig. 5 Relative frequency of mutations in TFs in lab evolution experiments. Each bar 
represents a lab evolution study. Bars for adaptive lab evolution (LE) studies other than those 
selecting for antibiotic resistance are colored orange, the antibiotic resistance (AR) ones being 
shown in sky blue; Lenski’s LTEE is in yellow and reddish purple bars represent mutation 
accumulation (MA) studies. Height of bars represents transformed p-values of one-sided 
Fisher’s exact test of the hypothesis that the frequency of mutations in TFs relative to TGs is 
greater than expected from the ratio of sites. LTEE showed an enrichment for TF mutations. 
Majority of antibiotic resistance experiment didn’t show the same effect. Nevertheless, Odds 
Ratios for TF mutation enrichment were greater for ALE than for MA studies ( PWilcoxon = 0.024). 
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above claim regarding regulatory mutations and adaptation was based on a few lab evolution
studies, we decided to re-analyze these and other such studies using our methodology to test
if TFs’ mutations during ALE are indeed more frequent than mutations in the other genes. 

First, we identified 17 lab evolution projects with published (27–43) information about
the experimental design, 4 of which were MA studies (40–43). For each study, we counted the
number  of  non-synonymous  mutations  in  TFs  and  TGs  relative  to  the  number  of
corresponding sites. 4  (29, 34, 35, 39) out of 13 ALE studies  (27–39) had a significantly
higher number of mutations in TFs than expected whereas none of the MA studies passed the
significance test (Fig. 5) (POne-sided Fisher’s exact  < 0.05 ). Overall, ALE studies had greater odds of
TF mutations’ enrichment than MA studies ( Pwilcoxon rank sum = 0.024).

Since our approach uses all  of the observed mutation data and cannot consistently
identify  beneficial  mutations  across  lab  evolution  studies  due  to  differences  in  their
experimental  designs,  we  also  tried  a  different  approach  based  on  literature  survey.  We
identified those mutated proteins which the authors considered to have fitness benefits and
counted  the  number  of  mutated  TFs  among  304  known and  predicted  TFs  out  of  4140
proteins in the reference genome.  Here, we did not account for the site-count differences
between TFs and TGs because the information on the actual number of mutations in a gene
was  not  always  available  from  the  publication.  In  only  5  ALE studies  (29,  33–35,  39),
significantly more than expected  (~ 7%) mutated TFs were reported,  4 of which we had
already identified ( PFisher’s exact < 0.05) (Table S6, supplementary file 1). 

2 of these studies  (29, 39) had bacteria  growing on minimal glucose, wherein the
selection was for fast growth and presumably multiple adaptive paths were possible. 7 of the
12 ALE studies aimed to understand some aspects of antibiotic resistance (32–38), 3 of which
(33–35) also showed an enrichment for TFs’ mutations. Depending on the mode of action of
the targeted drug(s) in a study, mutations may only be selected in a specific enzyme, in which
case,  an excess of TF’s mutations  would not be observed. This also holds for studies on
auxotrophs (30). Often though, when a study focused on cross-resistance or on a drug with
multiple  mechanisms,  selected  mutations  were  more  frequently  among  TFs  (33,  34,  37)
(Table S7, supplementary file 1). Other than the targeted enzyme, the resistance-conferring
mutations often occurred in marR, acrR, soxR & ompR. These genes have an established role
in conferring resistance,  via a non-specific  increased efflux activity,  as a result  of which,
these are also common targets in selecting for cross-resistance (44). In (35), where bacteria
were grown on a surface with regions of increasing concentration of a specific antibiotic, the
selection might actually have been for fast growth since the chance of success dependent
more on the timing of arrival to a higher concentration field than on the degree of resistance
at that concentration. 

In this section, we established that TF mutations are often enriched in ALE studies.
The possible reasons for the lack of evidence for this effect in several other lab evolution
studies  are  enzyme-specific  selection  pressure,  small  sample  sizes  and  short  duration.
Lenski’s LTEE does not suffer from the above issues (25) and provides evidence for a high
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relative frequency of mutations  in TFs over TGs. Another major issue with other studies
analyzed  here,  in  contrast  to  LTEE,  was  that  they  could  only  be  used  to  test  if  TFs
accumulated more mutations than TGs by the end of experiment. Due to their short duration
and  sequencing  at  limited  time  points,  they  could  reveal  nothing about  if,  and how,  the
relative  strength  of  positive  selection  on  TFs  change  over  time.  Therefore,  we  further
explored mutation data from LTEE to derive an understanding of mutant frequency dynamics
in natural populations.

VI. Frequency of mutation accumulation in TFs declines over
long-term evolution

A recent population-level study on LTEE  (45) revealed the dynamics of molecular
evolution over 60,000 generations with a 500-generation interval. This dataset enabled us to
go  beyond  relative  frequency  estimation  at  a  single  time  point  and  instead,  observe  the
trajectory  of  these  frequency  changes  over  thousands  of  generations.  It  thus  offered  the
possibility  of  reconciling  our  contradictory  observations  on  TF  vs.  TG  variation  in
experimental evolution and natural populations.

As reported earlier  (46) and also in the above mentioned study, the rate of molecular
evolution in LTEE is rapid and almost steady despite a decline in the rate of fitness gain. This

rate was measured in terms of total derived allele frequency (DAF), “ M p(t)=∑ f p , m(t)

for all mutations m in population p at time t” and f is the frequency of a particular mutation.
Using this metric, we first tested if TFs accumulated more mutations than TGs. We averaged
DAF of non-synonymous mutations for all TFs and TGs separately, assigning zero to non-
mutated genes. For six non-mutator populations,  we observed that DAF was significantly
higher for TFs at all time points and a substantial increase was achieved in about first 10,000
generations (Fig. 6A). 

The change in DAF can be brought about either by a change in the rate at which de
novo mutations appear or by a change in the frequency these variants attain in the population.
First, we plotted distributions of de novo mutations per site over 10K generation intervals for
both classes (Fig. 6B). We chose this interval size since the smaller intervals didn’t capture
mutations  in  all  populations  for  all  categories  (TG,  LR,  GR).  TFs  accumulated  more
mutations than TGs only up to 20K generations. Then, over the same intervals, we pooled
frequencies of all variants – existing and de novo – from all six non-mutator populations (Fig.
6C). Overall, TF variants didn’t reach significantly higher frequencies than TG variants. This
may suggest that, on average, regulatory mutations were not any more beneficial than the
mutations in target genes. 

A majority of TF mutations in the first 10K generations were in fact in GRs instead of
LRs  (Fig.  6B).  The  significance  of  global  regulatory  changes  in  ALE  has  been  noted
previously  (10, 11, 47). Global scale changes in gene expression pattern are required for a
cell to achieve an optimal metabolic flux state, on which its relative fitness depends, since
transcription  is  costly  due  to  limited  availability  of  RNA polymerase  (48).  Even  single
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mutations  in  the  hubs  of  regulatory  networks  can  achieve  this  goal,  by  simultaneously

increasing  the  expression  of  genes  required  for  success  in  the  testing  environment  and

Fig. 6 Distinct dynamics of molecular evolution for TFs and TGs in LTEE, for six non-
mutator populations: A-C and for four mutator populations: D-F. A & D, Average derived allele 
frequency of TFs and TGs over 60,000 generations. Thick curves represent averages over 
populations and broken curves show transformed p-values of three hypothesis: TG < LR , LR < 
GR, GR > TG. B & E, Distributions of count of de novo mutations appearing over intervals of 
10,000 generations, normalized by number of sites. C & F, Distributions of maximum frequency 
attained by a variant within each interval. Variants were pooled from all populations. Blue dots 
show transformed p-values. Blue horizontal line marks the significance threshold (α = 0.05). 
Dots are in triplets, as are the boxes, such that they represent comparisons in the same order 
as above. P-values are based on Wilcoxon test.  
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“switching off” the parts of network irrelevant in the present context. What is interesting to
note here is that the frequency of de novo mutations in GR showed a much faster decay than
that for other genes. Moreover, the early stage GR mutations did not attain high frequencies
within the first 10K generations, presumably due to clonal interference (Fig. 6C). However,
at least a few of these mutations reached fixation by the end of 60K generations. 

The above analysis was on mutations per site basis, without taking into account the
differences in mutation propensity of individual genes. In the extreme case where all of the
GR mutations targeted a single gene, the observed trend cannot be generalized. Therefore, we
performed the above analysis after removing the extreme outliers gene (one which had many
mutations with a large fraction reaching fixation) from each category (TG: pykF = 7/10, LR:
iclR = 5/8, GR:  arcA = 4/6) (Fig. 7). TG mutations other than in  pykF only reached low
frequencies in the first 10K period, even slightly lower than those in GR. Excluding arcA, GR
were not different from LR in their mutation frequency. Moreover, most of the GR mutations
reaching fixation were in arcA. The frequency distribution of LR was least affected and was
in fact, higher than that of GR for the greater part of 60K generations.

Since we didn’t have information on the linkage of variants, we could not use this
data to directly estimate nucleotide diversity at non-synonymous sites. However, estimates of
de novo  mutations frequency and the distribution of population frequency of the variants,
when taken together, offers a qualitative approximation of the relative diversity of the two
classes.  In  the  first  10K generations,  we  expect  TF  diversity  to  be  greater  due  to  high
frequency of de novo mutations. From 10-20K generations, diversity of TGs was likely to be
lower than that of TFs,   since many of these variants were present at frequencies close to
zero. By the end of 60K generations, population frequencies of variants of both classes were
similar but only TGs were still accumulating de novo mutations. At this point and beyond, TG
diversity may be equal to or even higher than the TF diversity. 

Above results  were  based  on six  non-mutator  populations  (  Ara-5,  Ara-6,  Ara+1,
Ara+2, Ara+4, Ara+5). We did not find these results to hold for four mutator populations
( Ara-2, Ara-4, Ara+3, Ara+6) (Fig. 6, D-F). In contrast to the non-mutator populations, a
majority  of  mutations  in  mutator  populations  are  non-beneficial.  In  such  a  regime,  the
patterns of mutation accumulation are expected to be governed by the differences in selective
constraints on various genes. By the end of 60K generations, TGs in mutator populations
appeared to have accumulated as many mutations, if not more, than in TFs (Fig. 6D), unlike
in  non-mutator  populations.  Besides,  towards  the  end,  TF  and  TG  variants  in  mutator
populations differed less in their frequencies than in non-mutator populations (Fig. 6F). A
majority of variants in both classes were likely neutral to slightly deleterious such that their
trajectories were governed by genetic drift.

To further test that the high frequency of TF mutations in non-mutator populations
were  due  to  positive  selection,  we  analyzed  one  of  the  very  few  MA studies  to  have
sequenced isolates at multiple time points (49). ~36 clones were sequenced at 6 time points
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spanning ~8,000 generations. At all time points, the fraction of sites mutated was higher for
TGs than TFs, contrary to our observation in LTEE (Fig. S4, supplementary file 2).    

Unlike other lab evolution experiments which only offered a snapshot of molecular
evolution processes, LTEE provided us a record of the dynamics of variation within TFs and
TGs  spanning  60,000  generations.  Even  so,  nature’s  evolution  experiment  has  traversed
millions of generations and has likely passed through multiple fitness peaks unlike LTEE,
which is yet to reach one. It is remarkable then, that even in the relatively short duration of
this lab experiment, we could already observe TFs mutational frequency falling to the level of
that of TGs. Especially in the mutator populations, where most mutations were likely to be
neutral  to  slightly  deleterious,   this  suggests  a  relatively  faster  deceleration  of  mutation
accumulation in TFs over TGs. Besides, variants did not significantly differ in the frequencies
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E
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F

Fig. 7 Differential dynamics of molecular evolution for TF and TG in LTEE, same as in 
Figure 6, except that an extreme outlier gene ( one with many mutations and a large fraction
of mutations reaching fixation) was removed from each class of proteins. 
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they reached in the population. We extrapolate from these trends that TFs would acquire less
mutations than TGs, as the experiment continues, and in principle, after millions of years, one
would find TFs to be less diverse than their TGs.

Discussion

We showed that  bacterial  TFs are less  diverse in  sequence than  their  TGs within
species,  i.e.,  across short time-scales, and that their diversity is a function of their regulon
size. It has been reported previously that global regulators (GR) are more conserved across
species than other TFs (5, 22). However, even after excluding GRs, we found that TFs were
more  conserved -  in  sequence -  than  their  TGs within  species.  This  was contrary  to  the
conservation of these “local” regulators (LR) – in terms of presence/absence – across species.

If two bacterial species have widely different environments, then their set of TFs are
also expected to be different.  However,  within species,  the niche differences  may not  be
drastic enough to warrant diverse TF alleles. Under this scenario, the low sequence diversity
of  TFs  within  species  is  indicative  of  stronger  selective  constraints,  imposed  by  the
requirement of their optimal activity in a given environment. As a corollary, adaptation to a
new  environment  may  demand  a  new  optimum  of  gene  expression  which  is  conferred
through mutations in TFs. Indeed, multiple adaptive lab evolution (ALE) studies were found
to be enriched with regulatory mutations  (10). We performed a statistical analysis on many
experimental evolution studies to verify this observation. Indeed, we found that TF mutations
were enriched in ALEs under those selection pressures which can be satisfied by changes in
multiple pathways. In contrast, none of the mutation accumulation (MA) experiments showed
an excess of mutations in TFs. 

To observe the long-term dynamics of the above trend, we analyzed whole-population
data  from an  evolution  experiment  spanning  60,000 generations  (45).  We found that  the
frequency of mutations in TFs rapidly rose above that of TGs in first 10,000 generations and
then  declined  over  time.  This  trend  was  stronger  for  GRs  and  the  decline  was  faster.
However, only mutations in a few specific GRs conferred an advantage whereas multiple LRs
were found to have beneficial mutations. In mutator populations, TFs and TGs accumulated
mutations  at  similar  rates and towards the end, any difference  in  trends seemed to be in
accordance with selective constraints. 

Based on our observations on diversity of TFs across time-scales, and the existing
body of literature, we put forward the following model of TRN evolution in prokaryotes (Fig.
8). As a population first encounters an environment, it experiences global expression changes,
brought  about  by  mutations  to  regulatory  hubs  (11).  Since  these  changes  may also  have
adverse pleiotropic effects, as evolution proceeds, more mutations accumulate in LRs  (47).
As a consequence of these mutations, specific pathways of TRN, which are irrelevant to the
present  selection  pressure,  are  inactivated  (50).  However,  the  fitness  benefit  of  these  TF
mutations decline over time, likely as a consequence of diminishing returns epistasis  (51),
and  as  adaptation  decelerates,  selective  constraints  play  a  bigger  role  in  the  mutation
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frequency.  In  a  well  adapted  population,  the  optimal  variants  of  TFs  are  maintained  by
purifying selection.  Across environments,  different segments of the TRN are targeted and

inactivated, such that over millions of years, species adapted to different environments have
few TFs in common (2). 

The above model does not underestimate the significance of HGT and duplication in
the growth of regulatory networks. However, it emphasizes the role of small-scale changes,
observed  over  short  time-scales,  in  its  modification.  Specifically,  in  the  early  stages  of
adaptation, these changes set the path for long-term evolution of the network and facilitates
pruning of branches irrelevant to the new environment. A major concern with this proposition
might  be  extendability  of  results  observed  in  LTEE,  which  is  unrealistically  simple  as
opposed to natural environments. Rampant HGT in nature is likely to have a strong effect on
diversity of genes. Besides, the known range of selection pressures which lead to TF mutation
enrichment  is  limited  due  to  a  prevailing  bias  towards  studying  evolution  to  antibiotic
resistance.  Large-scale  evolution  experiments,  with  more  complex  environments  and
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Fig. 8 A graphical representation of the proposed model of TRN evolution in Bacteria. A 
population exposed to an environment X rapidly accumulates mutations in TFs, especially GRs. 
Some of these mutants reach fixation while also accumulating mutations in other TFs and TGs. 
In long-term, mutations in local TFs are more beneficial than in global TFs. Farther out in time, 
when the population is well adapted, mutants of greater fitness rarely appear and hence, TFs 
show low sequence diversity. Also, irrelevant TRN modules are eventually lost. In a different 
environment Y, adaptation may proceed through integration of or substitution by xenologs in the 
native network. Thus, across species comparisons show low conservation of TFs relative to 
their TGs.
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employing diverse selection pressures, would be the true tests of importance and dynamics of
mutations in TFs in the course of adaptation. 
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  Materials and Methods

I. Data acquisition

The meta-data table for E coli WGS reads datasets, generated on Illumina platforms,
was  acquired  from  NCBI  SRA database  (  http://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi
Accessed July 2017 ). This table included 49680 sequencing runs from 2114 bioprojects. The
projects were analyzed in the descending order of the number of runs. For any given project,
the  meta-data  table  was  downloaded  from  EMBL-EBI  European  Nucleotide  Archive  (
https://www.ebi.ac.uk/ena ). The runs were selected based on the following criteria:- library
layout: “Paired”, library source: “Genomics”, library selection: “Random/ unspecified/ size
fractionation/ random PCR/ PCR”, Coverage:- “>= 50X” and were downloaded from their
respective  FTP  addresses  mentioned  in  the  ENA  meta-data  table  using  aria2  (
https://aria2.github.io/ ). Variant calling was performed on 24 projects with 16116 clinical and
environmental isolates in total. 15 of these projects, which had at least 50 sequencing runs
left after declustering [ see IV], were selected for further analysis. 

The information on regulatory interactions among E coli proteins was acquired from
the RegulonDB database (v9.4) (18). A set of 146 experimentally verified TFs and 1,119 TGs
regulated by these TFs was extracted for the analysis, after excluding those genes for which
multiple sequence alignment, based on the selected Refseq genomes  (52) [ see  V], showed
gaps in the sequence corresponding to the reference genome ( E coli K-12 MG1655), arguing
that these gaps can represent additional domains which may result in a  different  protein
function.  All  regulatory  interactions  among  TFs  were  excluded  from the  network  which
reduced the set of TFs to 142. 

II. Variant Calling

SPANDx v3.2 pipeline  (19) was used for variant calling with default settings. The
original script was slightly modified for ease of integration into our custom pipeline.  E coli
K-12 MG1655 genome ( NCBI nucleotide database accession = NC_000913.3) was used as a
reference for read alignment. The output SNP matrix was processed to remove low quality
variants,  variants  for  which  base  call  was  ambiguous  in  >  10% runs,  and  those  outside
protein-coding regions. Remaining ambiguous bases were replaced with the most-frequent
base at the position, following which if the position had no variation, than it was excluded. 

III. Coverage-based gene detection

Presence of genes were detected separately from the variant calling pipeline based on
the breadth and depth of sequencing coverage. “Breadth” implies the fraction of gene length
which was covered by at least one sequencing read and “Depth” implies the average number
of reads that mapped to each position of the gene. These quantities were estimated using
bedtools coverage (v2.25.0) (53) and samtools bedcov (v1.3.1) (54) ( with mapping quality >
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50) respectively. First, genes above a minimum breadth of 0.6 were selected. Then, per base
depth was calculated by dividing the total read base count by gene length. Genes with zero
average base depth were excluded. A mean over all remaining genes,  x̄ , was calculated
and values >=  2 x̄ were excluded to obtain a Gaussian-like distribution of depth coverage
with  mean,  ȳ ,  and standard  deviation,  s .  Genes  with depth  ȳ−3 s  were considered
present  in  the  isolate.  The  runs  with  <  3000  genes  were  excluded.  Only  the  variants
corresponding to the detected genes were retained. 

IV. Selection of runs from WGS datasets

Sequencing projects,  especially  the ones with thousands of runs, were expected to
contain many highly similar isolates. The redundancy in these datasets could bias our results.
Therefore, a declustering step was employed. From the processed SNP matrix, lists of codon
variants were generated for ea ch run.  Codon distances  (  fraction  of  variant  codons)
from the reference genome were calculated for 125 genes which were present in all of the
15840 analyzed sequencing runs. These genes were selected from a set of 1710 core genes of
123 Refseq strains [ see V], excluding genes with gaps in multiple sequence alignment of
these strains, keeping only the genes with nucleotide diversity ( based on 123 strains ) > 75th
percentile and <= IQR + 75th percentile. Codon distances were used to map a set of runs onto
a 125-dimensional euclidean space, the corresponding distance matrix was generated and  a
subset was selected such that the minimum distance between any two runs was greater than
0.1.  

V. Selection of assembled genomes

Completed genome assemblies were downloaded for 614 E coli genomes from NCBI
Refseq database (Accessed Oct, 2018).  Since there was redundancy in this dataset as well,
strains were selected using Mark Achtman’s MLST scheme as follows. The 7 gene fragments
( mdh, gyrB, recA, icd, purA, fumC, adk) corresponding to E coli K-12 MG1655 were used in
BLASTn (55) as queries against the above target genomes and the best hits with max E = 10-5

, at least 70 % identity and 90 % overlap were identified. Strains with any fragment missing
were removed. A sequence of whole number percentages of identity and overlap was created
for each strain and only 1 randomly selected representative of each sequence was retained.
This procedure ensured that the 123 selected strains differed by at least 1 % from others in
their identity and overlap on at least 1 of the 7 gene sequences. 

VI. Nucleotide diversity estimation from WGS reads

Using the lists of codon variants from selected runs, “pseudo-codon” alignments were
generated by initializing each row of the alignment with the reference gene sequence and then
substituting  reference  codons  with  variant  codons.  Only  those  runs  where  the  gene  was
detected were included in the alignment and the runs with an intermediate stop codon or with
any mutation at the reference stop position to a non-stop codon were removed. Any variant
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codon with missing site(s) was considered  entirely missing and all columns with gaps were
removed  from the  alignment.  From these  alignments,  nucleotide  diversity  was  estimated
conventionally, as the average pairwise nucleotide difference per unit length of the gene.  

VII. Nucleotide diversity estimation from assembled sequences

Protein orthologs were identified across strains with a custom-script using BLASTp
(  v2.2.29+) with  minimum percent  identity  and query  coverage  of  50%,  E <  1x10-5  and
BLOSUM80 as the substitution matrix. Bi-directional Best hit criterion (56) was applied and
ortho-groups were classified as strict core - members of which were found in all of the 123
genomes, closed group - every member of which could identify all other members, and open
group - some members were not identified by other members. In case of open groups, only
the  "closed'  part  was  retained.  Corresponding  protein  and  nucleotide  sequences  were
extracted  and  multiple  sequence  alignments  of  protein  sequences  were  generated  using
CLUSTAL  OMEGA (v1.2.1)  (57).  These  protein  alignments  were  converted  to  codon
alignments using PAL2NAL (v14)  (58). All gapped-columns were removed and nucleotide
diversity was estimated in the conventional way as the average pairwise difference per site. 

VIII. Regulon diversity estimation

For  a  paired  comparison  of  TF  and  TG  diversity,  the  diversity  of  the  regulon
corresponding to the TF was estimated in the following manner. First, mean diversity of each
transcription  unit  (TU)  regulated  by  the  TF  was  calculated.  One  or  more  genes  when
transcribed together on a single mRNA under a single promoter represent a transcription unit
(TU). A single operon may have multiple fully or partially overlapping TUs. For the fully
overlapping TUs, only the largest one was considered. Since the length of operon ( and TU) is
a function of the length of the corresponding metabolic pathway and we wanted to eliminate
the effect of pathway lengths on diversity estimates, the grand mean diversity of TUs, instead
of the weighted mean, was calculated for each TF. 

IX. Ortholog detection across species

For the analysis  of conservation of proteins  across species,  246 Uniprot reference
proteomes  (Accessed  in  Sep.  2016)  from  class  γ-proteobacteria  were  used.  Phmmer
( HMMER 3.1b2 ) ( http://hmmer.org/ ) with max E = 10-6 along-with Bidirectional Best Hit
criterion was used to identify orthologs of reference’s TFs and TGs across these proteomes.
Pairwise  global  alignment  of  hits  with  reference  proteins  was  done  using  needle
( EMBOSS:6.5.7.0) (59) and hits with > 10% alignment gaps were rejected. For a typical TF
which is about 250 amino acids long and has a DNA-binding domain (DBD) of about 20
residues, this threshold improved the odds that it  had the same DBD as the reference and
likely performed an analogous function.

X. Statistical Analysis
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Distributions  of  Diversity  and  Conservation  for  TFs  were  compared  against
corresponding distributions for TGs using one-sided Wilcoxon rank sum test and Wilcoxon
signed rank test for unpaired and paired comparisons respectively. Non-parametric tests were
used  because  the  underlying  distributions  were  unknown and skewed.  Correlations  were
tested using Spearman correlation test since a linear relationship was not assumed  a priori
and the interest was in assessing if the relationships were monotonously positive or negative.
Mutation enrichment  in TFs in lab-evolution projects  was tested using one-sided Fisher’s
exact test. P-values were corrected for multiple testing with Holm-Bonferroni correction. All
statistical tests were performed using the statistical programming language R (v3.4.4).

Availability

In-house scripts for analyses done in this study along with required input files are available at
GitHub (https://github.com/A-Farhan/sequence_diversity_ecoli_TFs).
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