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ABSTRACT 

Objective: Neural interface technologies are more commonly used in people with neural injury. 

To achieve a symbiotic relationship between device and user, the control system of the device 

must augment remaining function and adapt to day-to-day changes. The goal of this study was to 

develop predictive control strategies to produce alternating, over-ground walking in a cat model 

of hemisection spinal cord injury (SCI) using intraspinal microstimulation (ISMS). 

Approach: Eight cats were anaesthetized and placed in a sling over a walkway. The residual 

function of a hemisection SCI was mimicked by manually moving one hind-limb through the 

walking cycle over the walkway. ISMS targeted motor networks in the lumbosacral enlargement 

to activate muscles in the other limb using low levels of current (< 130 µA). Four different 

people took turns to move the “intact” limb. Two control strategies, which used ground reaction 

force and angular velocity information about the manually moved limb to control the timing of 

the transitions of the other limb, were compared. The first strategy, reaction-based control, used 

thresholds on the sensor values to initiate state transitions. The other strategy used a 

reinforcement learning strategy, Pavlovian control, to learn predictions about the sensor values. 

Thresholds on the predictions were used to initiate transitions. 

Main Results: Both control strategies were able to produce alternating, over-ground walking. 

Reaction-based control required manual tuning of the thresholds for each person to produce 

walking, whereas Pavlovian control did not. We demonstrate that learning occurs quickly during 

walking. Predictions of the sensor signals were learned quickly, initiating transitions in no more 

than 4 steps. Pavlovian control was resilient to transitions between people walking the limb, 

between cat experiments, and recovered from mistakes during walking.  
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Significance: This work demonstrates that Pavlovian control can augment remaining function 

and allow for personalized walking with minimal tuning requirements.   
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INTRODUCTION 

After a spinal cord injury (SCI), people experience motor and sensory paralysis to varying 

degrees, depending on the severity and level of the injury. Two-thirds of all SCIs in the USA are 

incomplete (“Spinal Cord Injury (SCI) 2017 Facts and Figures at a Glance” 2017). For people 

with paraplegia, regaining the ability to walk is a high priority, ranking first or second nearly 

40% of the time (Anderson 2004). Currently, SCI has no cure; therefore, regaining the ability to 

walk has been pursued through other means such as rehabilitation (Musselman et al. 2009; Lam 

et al. 2015; Morrison et al. 2018), neural technologies (Kobetic et al., 1997; Hardin et al. 2007; 

Moritz et al., 2008; Holinski et al. 2016), or a combinatorial approach (Carhart et al. 2004; 

Angeli et al. 2018; Gill et al. 2018).  

The neural networks in the spinal cord below the SCI and their connections to the leg 

muscles remain intact (Hunter and Ashby 1994). These spinal networks can be targeted and 

activated using electrical stimulation (Mushahwar and Horch 2000; Saigal et al., 2004; 

Hofstoetter et al. 2015; Angeli et al. 2018; Wagner et al. 2018; Gill et al. 2018). One type of 

electrical stimulation technique is intraspinal microstimulation (ISMS), which entails implanting 

fine, hair-like microwires in the ventral horn of the lumbosacral enlargement. Interestingly, 

stimulation in this region through a single microwire produces large graded single joint 

movements as well as coordinated multi-joint synergies (Mushahwar and Horch 2000; Saigal et 

al., 2004; Mushahwar and Horch 1998; Holinski et al. 2011). Through targeted activation of 

hind-limb muscles, ISMS has been used to restore walking in anaesthetized (Holinski et al. 2016; 

2013) and spinalized cats (Saigal et al., 2004). Recently, ISMS was used in cats to produce 

nearly 1 km of over-ground, weight-bearing walking (Holinski et al. 2016). These distances were 

achieved immediately after implantation of the microdevice and without the need for extensive 
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rehabilitation. Responses produced by ISMS remain consistent throughout the use of the implant 

(Mushahwar et al., 2000), and long-term use of ISMS for walking will likely further improve 

walking distances achieved. Therefore, ISMS is poised to be a viable clinical approach to 

restoring walking after severe paralysis. An important and clinically-relevant aspect of a 

successful neural prosthesis is the control of the device and how users interact with the control 

strategy.  

Current commercially available devices for restoring walking after SCI, such as the 

Parastep, Praxis, and various exoskeletons, have limited control options. The Parastep and Praxis 

systems use surface and implanted functional electrical stimulation (FES) electrodes, 

respectively (Chaplin 1996; Johnston et al. 2005). Walking is accomplished using open loop 

alternation between stimulation of the quadriceps muscles and the peroneal nerve, with each step 

initiated using push-buttons on a walker. Powered exoskeletons initiate open-loop walking by the 

user leaning forward (Chang et al. 2015; Ekelem and Goldfarb 2018). The users are expected to 

adapt their walking to accommodate the control strategy in the device. To restore meaningful and 

functional walking, especially after an incomplete SCI, the control strategy needs to adapt to the 

user, utilize residual function, and deliver stimulation to compensate for the deficits as needed.  

Controllers developed for ISMS to date have primarily focused on restoring walking in 

models of complete SCI (Dalrymple and Mushahwar 2017). Feedback, such as ground reaction 

force, hip angle, or activity of sensory neurons from the dorsal root ganglia, were used to modify 

the inherent timing of the transitions between the phases of the gait cycle (Saigal et al. 2004; 

Holinski et al. 2011; Holinski et al. 2013, 2016). A recent paper depicted the first control 

strategies developed for ISMS in a model of incomplete SCI (Dalrymple et al. 2018). These 

strategies augmented the residual function in a model of hemisection SCI and, using supervised 
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machine learning, adapted the control strategy for different speeds of walking. However, as 

people with SCI experience varying levels of paralysis, each person would require their own 

custom stimulation settings to restore walking. Moreover, incomplete injuries evolve over time 

requiring further updating of stimulation settings. Manual tuning of settings is burdensome; it is 

time-consuming and based qualitatively on trial and error.  

Control strategies utilizing machine learning are needed for automatic adaptation of 

stimulation settings to restore walking. Supervised machine learning has been used to control 

surface functional electrical stimulation (FES) systems in persons with SCI to track joint angles 

(Abbas and Triolo 1997; Popović et al. 1999; Qi et al. 1999), initiate the swing phase (Kirkwood 

and Andrews 1989; Kostov et al. 1992, 1995; Tong and Granat 1999; Sepulveda et al. 1997), 

control FES over multiple joints (Fisekovic and Popovic 2001), predict different phases of the 

gait cycle in able-bodied subjects (Kirkwood and Andrews 1989; Williamson and Andrews 

2000), and in finite control of FES walking after complete SCI (Popović 1993). However, 

supervised learning requires manual labelling of data and is limited by the data set used for 

training. Many examples with sufficient variability are needed in the training data set to obtain 

an accurate generalization. Ideally, stimulation settings would be tuned once during the initial 

set-up for each person, and thereafter automatically adjust to any changes in daily gait patterns. 

A recent machine learning approach demonstrated the feasibility of adaptive tuning of 

impedance parameters in a prosthetic knee (Wen et al. 2019); however, to date, machine learning 

approaches have not been utilized in implanted neural prosthetic approaches for restoring over-

ground walking. 

Intuitive control of a neural prosthesis requires the device to know what the user wants to 

do pre-emptively with automatic adaptation to changes in the environment. Learning predictions 
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of walking-relevant sensor signals for initiating control outputs may be a more reliable method to 

produce walking. Predictions allow for a timely response that can be modified with experience. 

In this study, we compared more traditional control methods with a new prediction-based 

machine learning control method, called Pavlovian control, to produce over-ground, alternating 

walking in a model of hemisection SCI. Specifically, we assessed the need for manual tuning of 

control settings between reaction-based control and Pavlovian control over several cat 

experiments and with different people participating to move one limb through the walking cycle 

and after perturbations. This presents the first application of Pavlovian control to produce 

walking. It is also the first known application of RL techniques in a spinal neural interface. Using 

Pavlovian control, we demonstrate that alternating over-ground walking can be achieved quickly 

using predictions of walking-relevant sensor signals, and that the thresholds for Pavlovian 

control do not require re-tuning across different conditions.  

 

METHODS 

All experimental procedures were approved by the University of Alberta Animal Care and Use 

Committee under protocol AUP301. Eight adult male cats (3.96 to 5.22 kg) were individually 

housed in large cages and were provided with daily enrichment that included a larger play pen, 

toys, human interaction, and soothing music.   

 

Implant Procedure 

Investigations were conducted in acute, non-recovery experiments. Anaesthesia was initially 

induced with isoflurane (5%), while all surgical procedures and data collections were performed 

under sodium pentobarbital anesthesia administered intravenously (induction: 25mg/kg; 
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maintenance: 1 in 10 dilutions in saline). A laminectomy was performed to expose the 

lumbosacral enlargement. An array of 12 microwire electrodes made of Pt-Ir (80/20), 50 µm in 

diameter, insulated with 4 µm polyimide except for approximately 400 µm exposure at the tip, 

was implanted in one side of the spinal cord  according to established procedures (Mushahwar et 

al. 2000; Bamford et al. 2016). The microwire tips targeted lamina IX in the ventral horn based 

on functional maps of the motoneuron pools (Mushahwar and Horch 2000; 1998; Vanderhorst 

and Holstege 1997). In addition to motoneuronal pools, this region contains neural networks that, 

when stimulated, produce coordinated multi-joint synergistic movements of the leg (Holinski et 

al. 2016; Mushahwar and Horch 2000; Saigal et al., 2004; Bhumbra and Beato 2018; Engberg 

and Lundberg 1969).  

 

Stimulation Protocol 

Trains of stimuli were delivered using a customized current-controlled stimulator (Sigenics Inc., 

Chicago, IL, USA) and consisted of a trapezoidal waveform that ramped from threshold to 

chosen amplitude over 3 time-steps (time-step = 40 ms). The stimulus pulses in the trains were 

290 µs in duration, biphasic, charge-balanced and delivered at a rate of 50 Hz. Stimulation 

amplitudes ranged from threshold (< 20 µA) to amplitudes that produced weight-bearing 

movements (60 to 80 µA) and did not exceed 130 µA through any electrode.  

The movements elicited by stimulation through single electrodes were hip flexion, hip 

extension, knee extension, ankle dorsiflexion, ankle plantarflexion, and a backward extensor 

synergy, which were combined to construct a full walking cycle. Of the 12 electrodes implanted 

unilaterally, between 5 and 9 were needed to produce the desired walking movements and 

included redundancy in the functional targets. Stimulation channels were combined to construct 
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the four phases of the walking cycle: F (early swing), E1 (late swing to paw-touch), E2 (mid-

stance), and E3 (propulsion) (Goslow et al. 1973; Engberg and Lundberg 1969). The phases F - 

E2 and E1 - E3 were defined to be opposite phases of the walking cycle. 

 

Experimental Setup 

Following the implantation of the ISMS array, cats were transferred to a custom-built 

instrumented walkway and placed in a sling that supported their trunk, head and forelimbs. The 

hind-limbs where left to move freely over the walkway (Figure 1). The cats remained 

anesthetized for the duration of the experiment. The sling was fixed on a cart that moved with the 

cat over the walkway. The cart was partially unloaded to offset the weight of the recording and 

stimulating equipment as well as mobile vital signs monitors that were placed on it.  

Gyroscopes were placed on the tarsals of each hind-limb to measure angular velocity in 

real time. Three-dimensional force plates were mounted underneath the walkway and used to 

measure vertical ground reaction forces of each limb. The sensor signals were filtered using a 

Butterworth filter (fC = 3 Hz, 2nd order) and digitized at 1 kHz using the Grapevine Neural 

Interface Processor (Ripple, Salt Lake City, UT, USA) and streamed into Matlab (MathWorks, 

Inc., Natick, MA, USA) during walking. 

Reflective markers were positioned on the iliac crest, hip, knee, ankle, and 

metatarsophalangeal (MTP) joints of the right hind-limb. Kinematics of this limb were recorded 

using a camera (120fps, JVC Americas Corp., Wayne, NJ, USA) positioned 4.5 m away from the 

center of the walkway. Marker positions were tracked post-hoc using MotionTracker2D, a 

custom Matlab program written by Dr. Douglas Weber (University of Pittsburgh, Pittsburgh, PA, 

USA).  
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A hemisection SCI was modeled in anaesthetized cats with an intact spinal cord. A 

person (naïve experimenter) manually moved the left hind-limb through the walking cycle 

(person-moved limb; PML) to represent the intact leg, while the right hind-limb was moved 

using ISMS (stimulation-controlled limb; SCL) and represented the paralyzed leg (Figure 1). 

This hemisection SCI model is similar to Brown-Sequard syndrome in humans, where one leg is 

paralyzed and the other is motor-intact (Kunam et al. 2018). 

 

Control Strategies 

The goal of the control strategies was to transition the SCL through the walking cycle such that 

the phase of the SCL was opposite to the phase of the PML and that the force produced by the 

SCL was enough to propel the animal across the walkway to produce over-ground walking. Each 

control strategy determined when the SCL transitioned from one phase to the next based on 

sensor information from the PML.  

 

Reaction-based Control Strategy 

For reaction-based control, thresholds were placed on the sensor signals recorded from the PML 

during walking to trigger transitions between the phases of the walking cycle in the SCL. The 

sensor signals used for defining the transitions between phases of the walking cycle were ground 

reaction force and angular velocity of the PML (Figure 2A). The transitions were controlled by 

rules involving the current phase in the walking cycle, comparing the sensor values with 

threshold values, and the direction of the slope of the sensor values. Thresholds were placed on 

the sensor signals such that they anticipated when the transitions would normally occur to 

account for the electromechanical delay of approximately 200 ms (Dalrymple et al. 2018). 
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Pavlovian Control Strategy 

Automatic adaptation of the control output is required to produce personalized walking that 

augments remaining function after a SCI. We used novel reinforcement learning methods to 

predict three walking-relevant signals in real time: the ground reaction force, angular velocity, 

and unloading.  

Pavlovian control borrows concepts from Pavlovian conditioning to use learned 

predictions to trigger fixed or pre-defined outputs, such as a stimulation output (Modayil and 

Sutton 2014). When applied to a control problem, first, predictions of sensory stimuli must be 

learned. Then the learned predictions trigger a fixed output response. Reinforcement learning 

(RL) was used to learn the predictions of three walking-relevant signals of the PML. The signals 

of interest were the ground reaction force, angular velocity, and unloading of the PML. 

Unloading was defined as the weight-bearing threshold (equal to 12.5% of the cat’s body weight 

in this setup (Lau et al. 2007)) minus the ground reaction force. Unloading differs from ground 

reaction force as it informs when the PML is below or above a weight-bearing threshold. 

Thresholds were placed on the predictions of these signals, which in addition to the slope of the 

predictions and knowledge of the current phase were used to transition the SCL to the opposite 

phase of the PML (Figure 2B).  

 

Learning Methods 

State Representation of Sensor Signals 

Sensor signals are complex with a wide range of possible values. Learning requires a 

combination of sensor values to be repeated multiple times. With highly sampled, broad ranges 

of values for multiple sensors, exact duplicates of overlapping sensor values are unlikely to 
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occur, making learning slow. Therefore, it is necessary to generalize the state space of sensor 

signals by function approximation. This process converts the complex, high-dimensional sensor 

data into a binary vector representation of the state space, named the feature vector, x.  

Six sensors were chosen to form the state space: left ground reaction force, right ground 

reaction force, the sum of left and right ground reaction forces, left angular velocity, right 

angular velocity, and the exponential moving average of the left ground reaction force. The 

exponential moving average gives a long-term history of the force signal and helps differentiate 

between the periodic increasing and decreasing of the other sensor signals. First, the sensor 

values were normalized from their usable range to values between 0 and 1. Selective Kanerva 

coding was used to represent the normalized sensor values as a binary vector (Travnik and 

Pilarski 2017). 

To perform selective Kanerva coding, K = 5000 specific states, also referred to as 

prototypes, were randomly distributed over the entire normalized, 6-dimensional state space (6 

sensors; Figure 3). The prototype locations were held constant for all experiments. Hoare’s 

quickselect was used to find the c closest prototypes to the current state according to their 

Euclidean distance. Three values of c, determined by choosing small ratios, η, such that c = Kη 

were used. These values of c equaled to 500, 125, and 25, corresponding to η values of 0.1, 

0.025, and 0.005, respectively. Using multiple c values is similar to the use of overlapping tilings 

in tile coding (Sutton and Barto 2018); it allows for coarse and fine representation of the state in 

the feature vector. When a combination of sensors values occurred, defining the current state in 

the state space, the c-closest features were activated in the feature vector (set equal to 1), while 

the rest equal 0. The total number of features in x was 3K, where 650 (c1 + c2 + c3) features were 

active at all times. The pseudocode for selective Kanerva coding used in this work is provided in 
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Algorithm 1. Bolded variables refer to vectors or matrices; italicized variables refer to constants 

with values that pertain to this work.  

 

True Online Temporal Difference Learning 

True online temporal difference learning (TOTD), which is a reinforcement learning method, 

was used to learn the predictions of the sensor signals in real time during walking. Similar to 

operant conditioning, RL is an area of machine learning that accomplishes a goal by maximizing 

future reward (Skinner 1963; Staddon and Cerutti 2003; Sutton and Barto 2018). RL can also 

estimate, or predict, the future values of signals other than reward. General value functions 

(GVFs) can be learned to predict arbitrary signals of interest, called cumulants (Z) (White 2015). 

Many GVFs can be learned simultaneously to produce predictions of many cumulants. Temporal 

difference (TD) learning is a method that can be used to estimate the future values of cumulants 

using previously obtained estimates, called bootstrapping (Sutton 1988; van Seijen et al. 2015; 

Sutton and Barto 2018). TOTD is a newer method that matches the forward view of temporal 

difference learning online exactly by adding terms to the eligibility trace and weight update 

equations (van Seijen and Sutton 2014; van Seijen et al. 2015). 

 During walking, TOTD predicted the future values of three signals recorded from the 

PML: unloading, ground reaction force, and angular velocity. Specifically, the returns of the 

cumulants were estimated in real time through the inner product of the weight vector (updated 

during TOTD) and the feature vector from function approximation (selective Kanerva coding), to 

produce the GVF for that cumulant (Algorithm 2). The learning step-size (α), which determines 

the magnitude of the update, was set to 0.001, which was determined empirically. The 

bootstrapping parameter for the eligibility trace (λ) was set to 0.9 as is often standard. Different 
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termination signals (γ) were determined for each cumulant empirically: 0.9 for unloading, 0.71 

for ground reaction force, and 0.75 for the angular velocity. As γ = 1 - 
1

𝑇
 , where T = 40 ms (one 

time-step), these values corresponded to timescales of 400 ms, 138 ms, and 160 ms, respectively.  

 Thresholds were placed on the GVFs, which in addition to the direction of the slope of 

the GVF and the current phase of the walking cycle of the PML, triggered transitions between 

the phases of the walking cycle of the SCL to be in the opposite state of the PML (Figure 2B). 

The prediction of a sensor value produced a fixed stimulation response (the stimulation 

parameters did not vary during walking), thus utilizing Pavlovian control to produce over-ground 

walking. The phase transitions were triggered by the raw sensor values crossing a threshold 

(unconditioned stimulus) if the predicted value (conditioned stimulus) did not elicit a response. 

These are referred to as back-up reactions. The thresholds for the back-up reactions were held 

constant throughout all walking trials.  

Of the 8 cat experiments conducted in this study, the first 3 had one set of thresholds on 

the GVFs, while the remaining 5 had a different set of thresholds. The learning parameters and 

methods remained constant throughout the study. The initial thresholds for Pavlovian control 

were chosen based on testing on previously collected data from treadmill stepping (Dalrymple et 

al. 2018) and bench testing on the walkway without a cat. These thresholds resulted in 55.4% of 

the steps triggered by back-up reactions and 2.0% of steps having missed phase transitions. 

Therefore, the thresholds were revised along with a change in which signal was used to predict 

some of the phases and held constant for the following 5 experiments. The back-up reaction 

thresholds were unchanged. 
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Experimental Protocol 

A walking trial consisted of one trip across the walkway (~ 3 m). A naïve experimenter manually 

moved the PML through the walking cycle. The SCL pushed the anaesthetized cat and cart 

across the walkway. Up to four different naïve experimenters moved the limb through the 

walking cycle in each experiment. The control method (reaction-based or Pavlovian) used for 

each walking trial was determined randomly by a different person than the one walking the PML, 

or by a random number generator. The person moving the limb was blinded to the control 

method driving ISMS for each trial. 

For some trials, experimenters were told to purposefully make a mistake while walking 

the PML. A mistake was not explicitly defined; it was left to the discretion of the person walking 

the PML. Intentional mistakes included elongating the stance or the swing phase, shaking the 

limb in the air, or slipping forward or backward.  

 

Reaction-based Control Trials 

The phase transition thresholds for each naïve experimenter moving the PML were based on 

sensor values they produced during 2 consecutive walking trials. The person-specific thresholds 

remained constant throughout all cat experiments. Each person performed walking trials using 

the customized thresholds from the three other naïve experimenters walking the PML in addition 

to trials with their own thresholds. 

 

Pavlovian Control Trials 

Several different trial types were conducted to investigate early learning, continued learning, and 

how the learning adapted or recovered after changes between cat experiments and people 
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walking the PML. Early learning was evaluated by initializing the learning weights, eligibility 

trace, and GVFs to 0 at the beginning of a walking trial. In these trials, learning began anew with 

no prior knowledge. These early learning trials were repeated in every cat experiment with 

different naïve experimenters walking the PML.  

 Learning also continued across several walking trials within each cat experiment. 

Throughout these trials within the experiment, multiple naïve experimenters took turns to walk 

the PML through the walking cycle. Furthermore, the carry-over of learning from one cat 

experiment to the next was tested over 5 cats. Repeating these carry-over trials in a new cat 

experiment allowed repeated investigation of the transfer of learning between experiments with 

different cats and experimenters walking the PML. A set of trials were also conducted whereby 

learning continued throughout 5 cat experiments, where multiple experimenters took turns to 

walk the PML within each experiment. These trials investigated the long-term learning and the 

adaptation to changes in cats and people walking the PML.  

 

Statistics 

A one-sample t-test was used to compare the alternation phase differences with the target of 

180°. A p-value ≤ 0.05 was considered to indicate significance. The effect size was determined 

using Cohen’s d. 

Χ2 tests were conducted to compare the proportion of prediction-triggered phase 

transitions between different Pavlovian control walking trial types (early, within one cat, carry-

over, and continued learning), as well as for comparing the proportion of missed phase 

transitions across control methods. Cross-tabulations were generated for all pair-wise 
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combinations. The Χ2 with the continuity correction for 2 × 2 contingency tables were reported, 

with the α-level adjusted using the modified Bonferroni correction for multiple comparisons. 

 

Data Processing and Analysis 

Calculating Alternation 

The alternation of the two hind-limbs was calculated from the ground reaction forces using 

previously described methods (Dalrymple et al. 2018). Briefly, the time spent in loading per leg 

was converted into the degrees of a circle, with the onset of loading of the PML defining the 

points of 0º and 360º. The half-way time of loading for each limb was converted to degrees 

according to the step period. The difference of the phase for each limb should equal 180º for 

perfect alternation.  

 

Defining Transitions as Triggered by a Prediction or a Reaction 

A step was considered to be entirely under Pavlovian control if all 4 phases of the gait cycle were 

transitioned using the prediction crossing the threshold. If any of the phases required a back-up 

reaction to transition, then that entire step was counted as such.  

 

Learning Curves 

The online prediction of the return (predicted discounted future values of the sensor signals) with 

the ideal return (actual discounted sum of future values of the sensor signals) was compared for 

each sensor value (Sutton and Barto 2018). During walking, TOTD estimated the return based on 

previous interaction and current sensor values. The ideal return was calculated post-hoc by 

summating the future raw sensor values discounted by the discount factor (γ) used for each 
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sensor signal. The mean squared error between the online return and the ideal return for each 

sensor signal was calculated for early learning trials and averaged the errors over the trial time. 

 

RESULTS 

A total of 7943 steps from 770 trials were recorded from eight cats. On average, the step period 

was 1.32 s (SD = 0.26 s) and ranged from 0.44 s to 2.82 s.  

 

Walking with Reaction-Based Control 

The translatability of the tuned parameters was tested from one walking pattern (by one naïve 

experimenter) to another and the need for retuning of parameters for reaction-based control of 

over-ground walking was. Reaction-based control was tested in all eight cats, resulting in 264 

walking trials. There was high variability in the force production and movements produced by 

the 4 naïve experimenters walking the PML (Figure 4A); therefore, customized thresholds for 

transitions between the phases of the walking cycle for each person were needed. One naïve 

experimenter’s thresholds were not translatable to the other naïve experimenters. The best 

performance of customized thresholds was 89.6% of steps successfully transitioning through the 

phases of the walking cycle. Overall, 18.7% (680/3645) of the total number of steps in all 

walking trials under reaction-based control had missed phase transitions due to the inability of 

the sensor values to cross the thresholds (Table 1).  

The alternation between the PML and the SCL was assessed using their phase difference, 

where a phase difference of 180° indicated perfect alternation (Dalrymple et al. 2018). Both 

hind-limb alternation and successful transitions through the phases of the walking cycle must 

occur for walking to be considered functionally effective. Overall, reaction-based control 
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achieved a phase difference of 179.6° (SD = 19.0°). There were instances where the parameter 

settings for one naïve experimenter (person C) walking the PML resulted in fewer missed phase 

transitions when utilized for another experimenter walking the PML (persons A and D; Table 1). 

However, poor PML-SCL alternation was encountered due to large variability in the walking 

patterns produced by the different experimenters (Figure 4B). This was because persons A and D 

made larger movements with larger sensor values than required for the settings tuned for person 

C, triggering phase transitions between the phases of the gait cycle earlier than needed to 

produce alternating walking. This produced a phase difference significantly less than 180° with 

very large effect sizes (phase difference for A = 155.0°; phase difference for D = 155.9°; p < 

0.0001; df = 173, 46; one-sample t-test; Cohen’s d = 0.64, 1.97). The inconsistent alternation and 

unsuccessful phase transitions across different people walking the PML (i.e., different walking 

patterns) highlight the need for an automatically adapting control system. 

 

Walking with Pavlovian Control 

Learning to predict sensor signals occurs quickly to produce over-ground walking 

The Pavlovian controller learned predictions in real time during over-ground walking. Without 

prior learning, predictions became the only signals that initiated proper phase transitions within a 

maximum of 4 steps, which corresponded to approximately 4 s. Back-up reactions for phase 

transitions most commonly occurred within the first step compared to later steps, indicating that 

learning the predicted signals occurred quickly to initiate phase transitions (Table 2). Fast 

learning is also demonstrated by the learning curves, where the mean squared error between the 

online and ideal returns decreases exponentially as learning continues within the trial (Figure 5). 

Throughout all 1036 steps in the early learning trials, only 3 had failed phase transitions 
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throughout the walking cycle. In 87.2% of the steps taken, the phase transitions were initiated by 

the predictions crossing the thresholds. Early learning trials had an average phase difference of 

181.9° ± 7.8°. Therefore, the naïve learning algorithm was able to quickly learn accurate 

predictions of walking-relevant sensor signals to produce over-ground walking using ISMS.  

 

Learning that continued within a cat experiment produced better Pavlovian control 

As learning continued past one walking trial within a cat experiment, the predictions of the 

walking-relevant signals became smoother and more reliable as they accumulated more 

experience (Figure 6A-B). The proportion of steps initiated by predictions crossing the 

thresholds significantly increased compared to trials without prior learning (initialized to zero: 

87.4% predictions; continued within one cat: 95.6% predictions; p < 0.0001, Χ2 test; Figure 6D). 

The phase difference achieved in these trials was 181.1° and was not significantly different from 

the target of 180° ± 5.9° (p = 0.077; df = 98; one-sample t-test), demonstrating the ability to 

maintain alternation of the hind-limbs as online learning continued within a cat experiment for 

all experimenters walking the PML (Figure 6E).  

 

Learning continued to initiate prediction-based transitions across several cats and people to 

produce over-ground walking 

The ability of the Pavlovian control to adapt to sudden changes in walking pattern was examined 

by evaluating the walking trials at the transition between different naïve experimenters walking 

the PML. As different naïve experimenters took turns to move the PML through the walking 

cycle, learning quickly acclimated to the new person and their style of walking. Of the 84 

transition points between people, 64 did not require a back-up reaction to transition the SCL 
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through the phases of the walking cycle (Figure 7A). Only 5 trials required more than 1 step to 

adjust to the new naïve experimenter walking the PML before only prediction-triggered 

transitions occurred. This demonstrated impressively fast adaptations to new environments, 

resulting in the first personalized and automatically predictive control strategy for a neural 

prosthesis. The next point of interest was to determine if the settings learned in for Pavlovian 

control in one animal could transfer and adapt to the next animal. This is analogous to having a 

new user of a clinical system have their initial settings mirror those of previous users instead of 

fine tuning the settings from scratch for the new user. Very interestingly, the learned predictions 

from previous experiments translated well to new cat experiments. In the first walking trial in the 

new animal, 83.3% of the steps taken did not require a back-up reaction for phase transitions, 

and 10.0% of steps requiring a back-up reaction were the first step in the trial. The steps in these 

walking trials were alternating, with an average phase difference of 179.1°±3.2°, which was 

significantly different from 180° but with a small Cohen’s d effect size (p = 0.026; df = 60; one-

sample t-test; Cohen’s d = 0.29; Figure 7B). 

 

Learning continued to improve across several cats and people to produce over-ground walking 

Long-term learning during walking was possible by continuing the learning over several cat 

experiments with different naïve experimenters taking turns to walk the PML. This provided an 

excellent representation of day-to-day changes that may occur in the walking patterns produced 

by the users. The learned predictions triggered phase transitions in more than 91% of the steps 

taken for all naïve experimenters walking the PML, which was significantly higher than the 

proportion of prediction initiated transitions in early learning trials (p < 0.0001; Χ2 test Figure 

8A). Up to 98.7% of steps were transitioned using predictions (Person B; Figure 8B). On 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 30, 2019. ; https://doi.org/10.1101/785741doi: bioRxiv preprint 

https://doi.org/10.1101/785741


 

22 

average, these continuing walking trials had a phase difference of 180.8° ± 5.5° (p = 0.113; df = 

114; one-sample t-test; Figure 8C). Importantly, there were no missing phase transitions for 

walking in any trials where learning continued beyond the first learning trial.  

 

Pavlovian control recovered from mistakes 

Finally, we tested how the learning recovered from perturbations during walking. This is 

important because the end users of a neural prosthesis may have instances of instability. 

Different types of intentional mistakes were made by the naïve experimenters walking the PML 

throughout various stages of learning. The predictions exhibited adaptation to the new and 

unexpected values of the sensor signals when walking interrupted. Following a mistake, 94.4% 

(51/54) of the steps that followed had phase transitions triggered by the predicted sensor values 

(Figure 9). Therefore, not only was the Pavlovian controller able to accommodate multiple users 

(i.e., cats) and multiple patterns of walking (i.e., different people walking the PML), but it also 

was able to recover from mistakes made during walking.  

 

DISCUSSION 

The goal of this study was to produce, for the first time, predictive, versatile, alternating, 

over-ground walking in a model of hemisection SCI using ISMS. The control strategy took 

advantage of “residual function” and restore over-ground walking in anaesthetized cats. 

Reinforcement learning was used to learn predictions of walking-relevant sensor values. 

Pavlovian control used the predicted sensor values and threshold crossings on these predictions 

to control ISMS such that the “affected limb” is moved to the opposite phase of the walking 

cycle as the “unaffected limb” in the walking cycle. Pavlovian control can be used across 
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different people walking the “unaffected limb” and throughout different cat experiments without 

requiring adjustments to the threshold settings. Learning occurred very quickly and consistently 

produced prediction-driven transitions between the phases of the gait cycle. The learned 

predictions were also resilient enough to recover quickly following a mistake during walking.  

Personalized walking was possible for the first time because reinforcement learning acclimated 

to different people moving the “unaffected limb” and different and cats. This comes in contrast 

to other approaches where the pattern of walking by the user is dictated by the control algorithm.  

 

Learning Methods 

This study used TOTD to learn GVFs for three cumulants during walking that were used for 

Pavlovian control. When a GVF crossed a pre-defined threshold, a stimulation response was 

delivered to move the SCL to the opposite phase of the walking cycle as the PML. The selective 

Kanerva function approximation method, predictions using GVFs, learning through TOTD, and 

Pavlovian control are relatively recent advancements made in the field of computing science 

(Travnik and Pilarski 2017; Sutton et al. 2011; van Seijen et al. 2015; Modayil and Sutton 2014). 

Selective Kanerva coding was chosen as it has proven to perform well online with a large 

number of sensors (Travnik and Pilarski 2017). It is also simple to implement and conceptualize. 

GVFs have proven to be a valuable tool in RL. GVFs allow the prediction of arbitrary signals, 

which makes RL more powerful and applicable to more problems. In the field of rehabilitation, 

TD(λ) has been used to produce GVFs for upper-limb prostheses (Pilarski et al. 2012; Pilarski et 

al. 2013a; 2013b; Sherstan and Pilarski 2014; Edwards et al. 2016). TOTD offers an equivalence 

to the theoretical forward view of TD learning with negligible increase in computational cost 

(van Seijen et al. 2015) and has been used to predict the shoulder angle of an upper-limb 
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prosthesis (Travnik and Pilarski 2017). Pavlovian control has successively been used to control 

switching events of an upper-limb prosthesis in able-bodied study participants (Edwards et al. 

2013) and participants with an amputations (Edwards et al. 2016). It has also been used to 

control the turning off and spinning of a mobile robot (Modayil and Sutton 2014).  

Pavlovian control is an appropriate approach to restoring walking in a SCI model because 

learning the GVFs can occur very rapidly. Since the control strategy only requires the prediction 

to cross a threshold, online control can be initiated quickly. The learned predictions do not 

fluctuate nor are largely affected by sudden changes in the raw data, making them more reliable 

for placing thresholds on for control than the raw signals. Additionally, Pavlovian control does 

not require exploration of the state space, which is necessary in traditional RL control methods. 

This is beneficial during walking because exploration of the state space could pose a danger to 

the user. For example, exploration may produce unsafe movement combinations such as double 

limb unloading. The state space could be restricted to avoid these dangerous situations, but this 

would limit the capacity of RL and negate its usefulness. Therefore, Pavlovian control, which 

uses predictions to drive a fixed stimulation response, is suitable for a repetitive task such as 

walking.  

Pavlovian control also allows for the knowledge of the expert designer to be incorporated 

into the rules that define the uses of the predictions and the output. This study, for the first time, 

combined all of these methods and used them to control a neural interface to produce over-

ground walking in vivo.  
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Biological Parallels 

Making predictions during a functional task is very useful and is commonly done naturally. For 

example, during walking, the central nervous system is continuously integrating sensory input 

from cutaneous receptors on the feet, stretch and loading sensors in the muscles and tendons, as 

well as visual and vestibular information to maneuver through the environment effectively and 

safely (Zehr et al. 1997; Zehr and Stein 1999; Donelan and Pearson 2004; Marigold 2008; 

Mathews et al. 2017). These sensory streams can be used to form short-term predictions that can 

be used in turn to adapt the gait pattern. Unexpected sensory stimuli result in reflexive changes, 

and with repetition, adaptation to the sensory stimuli occurs. For example, if an obstacle is 

placed in front of a cat’s hind-limb during the swing phase causing activation of cutaneous 

receptors on the dorsum of the paw, the knee will flex further to clear the obstacle (McVea and 

Pearson 2007). This is a reflexive, or automatic response to the sensory stimulus, which is 

mediated by the spinal cord. If the obstacle is present for 20 stimuli, the foot will lift higher 

during swing in anticipation of the obstacle. These effects last over 24 hours in some cases. This 

long-term adaptation of the gait pattern may be mediated by the cerebellum (Xu et al. 2006). 

Although this is not exactly an example of Pavlovian control, it demonstrates the usefulness of 

predictions and how they can be utilized by the nervous system.  

Pavlovian control is modelled after classical conditioning. An earlier example described 

Pavlov’s experiments in dogs where the dogs would salivate when a bell is rung because the 

ringing became associated with the presentation of food (Pavlov 1883). Another example of 

classical conditioning is the eye-blink reflex, which has been characterized extensively in rabbits 

(Kehoe and Macrae 2002; Lepora et al. 2007). In response to a noxious stimulus, such as a puff 

of air (US), the eye blinks (R). If the puff of air is preceded by a tone (CS), the rabbit blinks just 
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prior to the arrival of the air, protecting the eye. This work is somewhat different from these 

examples of Pavlovian control because natural movements of one limb do not always dictate the 

movements of the other limb. However, this concept has similarities to the half-center concept 

from central pattern generators (Brown 1914). The half-center model of the central pattern 

generator proposed that the left and right limbs mutually inhibit each other such that when one 

limb is in flexion, the other must be in extension, and vice versa. The current work incorporated 

concepts from classical conditioning by also utilizing the sensor information for back-up 

reactions in the event that the prediction did not reach the threshold in time.  

 

Relation to Other Control Strategies 

Once the thresholds for Pavlovian control were modified after the initial cat experiments, they 

did not require further modification. Pavlovian control performed significantly better than 

reaction-based control, providing fewer missed steps and requiring no tuning between transitions 

different people walking the PML or different cats.  

Both the Pavlovian and reaction-based controllers were finite state controllers, which is a 

concept that has been used previously to produce walking in models of SCI. Finite state control 

has the advantage of incorporating expert knowledge in a straight-forward manner to define the 

rules for walking (Popović 1993; Sweeney et al. 2000). Finite state control of surface (Andrews 

et al. 1988) and intramuscular (Guevremont et al. 2007) FES of the leg muscles used information 

from ground reaction forces and hip angle to control the transition between the phases of the gait 

cycle. Previous controllers for ISMS in a model of complete SCI used ground reaction forces and 

hip angle (Saigal et al. 2004; Holinski et al. 2011; Holinski et al. 2016) or recordings from the 

dorsal root ganglia (Holinski et al. 2013) to transition the hind-limbs through the different phases 
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(Dalrymple and Mushahwar 2017). Control of epidural stimulation of the spinal cord also 

utilized electroencephalography recordings from the motor cortex to deliver regional stimulation 

to the spinal cord to assist with flexion and extension movements in hemisected monkeys 

(Capogrosso et al. 2016) and people with incomplete SCI (Wagner et al. 2018).  

The current study demonstrated that predictions can be learned to initiate transitions 

between the phases of the gait cycle using only two sensor signals: ground reaction force and 

angular velocity. These sensors can easily be integrated into a wearable system, as gyroscopes 

are small microchips and force sensitive resistors can be placed in the soles of shoes (Kirkwood 

et al. 1989; Kostov et al. 1992). Recent work has demonstrated that kinematic data can be used to 

identify the phases of the gait cycle during walking (Drnach et al. 2018). They used switched 

linear dynamical systems (SLDS) to model the joint angle kinematics in healthy people walking 

on a treadmill. The offline SLDS models were able to label the correct phase of the gait cycle 

with 84% precision. Future work may incorporate more portable sensors such as goniometers 

along with online models to build predictions of gait phases.  

 

Experimental Limitations 

The model of a hemisection SCI used in this study enabled thorough testing of the control 

strategies while avoiding the need for inducing SCIs. It allowed testing of the ability of the 

control strategies to augment residual function in a controlled manner. This necessitated 

voluntary control of one hind-limb to be mimicked by a person moving the limb through the 

walking cycle. This was the first testing of these control strategies, and the outcomes served as a 

proof-of-concept implementation. Further work may test these control strategies in chronically 

injured cats, either decerebrate or awake.  
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A hemisection SCI has more stereotypic functional deficits compared to other injuries 

such as bilateral contusion SCIs. Although these SCIs are rare, e.g., Brown-Sequard syndrome 

(Roth et al. 1991; Wirz et al. 2010), the control strategies may be extended to hemiplegia in 

general, which includes stroke and traumatic brain injury.  

The thresholds for Pavlovian control were finalized after initial testing in early 

experiments. They were chosen based on testing on previously collected data from treadmill 

stepping (Dalrymple et al 2018) and bench testing on the walkway without a cat. Moderate 

performance of walking was achieved; however, transitions were improved with changes to the 

thresholds and the signals on which the thresholds were placed. It is important to note that the 

learning parameters of the predictions were never changed as they were consistently accurate. 

Additionally, once the new thresholds were set, they were never again modified. This 

demonstrates that the initial design decision of where to place the thresholds was important, but 

once it was finalized no further changes were necessary. The thresholds for Pavlovian control did 

not require tuning for different people and cats, because the learned predictions acclimated to the 

changes. However, it may be beneficial to introduce adaptive thresholds in the future, especially 

if these strategies were to be employed in more variable injury models. Furthermore, the 

stimulation amplitudes and channels that produced the functional responses remained constant 

during a walking trial. Future work may introduce a learning strategy that aims to optimize and 

adapt the stimulation channels and amplitudes in addition to a strategy that controls the timing.  

 

Future Considerations 

Pavlovian control learned predictions for ground reaction force and angular velocity signals; 

however, other sensor signals could also be used to provide more information about the 
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environment. For example, muscle activity recorded using EMG, joint angles provided by 

goniometers, or visual information through cameras or infrared sensors could all be recorded and 

used to acquire more predictions. The addition of sensors (e.g. EMG, goniometers) could be 

useful to restore walking after variable injuries or to provide information regarding the walking 

terrain (visual, infrared) to adapt the control strategy. Additional sensors could also be used to 

provide stability information such as loss of balance, fatigue, and the reliance on the upper body 

for support. More control rules could be incorporated to predict and correct these safe situations. 

Furthermore, the addition of sensors is feasible if a state representation method such as selective 

Kanerva coding is used, as was the case in this work, because it is not affected by the increase in 

dimensions that plagues traditional tile coding (Travnik and Pilarski 2017).  

Pavlovian control can easily be expanded to neuromodulation systems such as deep brain 

stimulation for various conditions including Parkinson’s disease and depression, neuroprosthetic 

systems for restoring function after stroke or traumatic brain injury, and exoskeletons and 

artificial limbs.  

 

CONCLUSION  

Pavlovian control of walking augmented function in a hemisection SCI model. Using predictions 

of sensor signals during walking, Pavlovian control was resilient to transitions between people 

walking the limb, between cat experiments, and recovered from mistakes made during walking.  

Pavlovian control of ISMS has the potential to enhance ambulation capacity greatly, generating 

alternating, over-ground walking. Very importantly, we have demonstrated, for the first time, 

that control strategies using intelligent machine learning approaches such as Pavlovian control 
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can reduce the burden of tuning stimulation parameters for controlling a neuroprosthesis. This 

increases the ease of translation of innovative neural technologies to clinical settings. 

This control strategy can also be extended to other injury models and other interventions such as 

peripheral FES, lower-limb prostheses, and exoskeletons.  
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FIGURE LEGENDS 

 

Figure 1. Experimental setup for over-ground walking. A naïve experimenter moved the left 

hind-limb through the walking cycle. Sensor signals from force plates under the walkway and a 

gyroscope on the tarsals from both hind-limbs were converted to digital signals by the DAQ 

(data acquisition device) and streamed into Matlab. In Matlab, a custom control algorithm was 

used to control the stimulation to the spinal cord to move the right hind-limb to the opposite 

phase of the walking cycle.  
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Figure 2. (A) Phases of the walking cycle aligned with phases (E2, E3, F, E1) and thresholds on 

predictions of sensor signals from the PML (person-moved limb) for rule-based control (RBS). 

(B) Threshold settings for one naïve experimenter (person A) on raw data from the PML using 

Pavlovian control (PC). AU = arbitrary units due to normalization during acquisition. Shaded 

regions indicate the phase of the walking cycle detected on the PML, divided by vertical lines 

indicating timing of transitions. Horizontal lines mark the threshold values for corresponding 

phase. Arrows indicate the direction of the slope of the signal required by the algorithm.  
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Figure 3. A depiction of selective Kanerva coding (SKC). Prototypes closest to the current state 

within the state space are activated. 
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Figure 4. Walking using reaction-based control (n = 264 trials). (A) Ground reaction forces and 

angular velocities produced by each of the 4 naïve experimenters walking the PML (person-

moved limb). (B) Alternation phase differences of the hind-limbs for each person walking the 

PML with threshold settings tuned for each person. Target alternation is 180°. * p < 0.0001. 
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Figure 5. Characterizing speed of early learning (n = 88 trials). (A) Learning curve depicting the 

average (solid line) and standard deviation (shaded region) of the mean squared error of the 

unloading signal over time. (B) Learning curve for ground reaction force. (C) Learning curve for 

angular velocity. (D) Example of the actual sensor signals, online estimated return (prediction), 

and the ideal return (actual discounted sum of future values of the sensor signals). 
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Figure 6. Comparing early learning with later learning. (A) Raw sensor signals and learned 

predictions of unloading, ground reaction force, and angular velocity of the PML (person-moved 

limb) when learning continued between trials within a single cat experiment. The trigger times 

for the phases of the walking cycle are marked on their corresponding signal. (B) Representative 

examples of raw and predicted values of the unloading signal during early learning (initialized at 

0) and continued learning (after several walking trials). Transitions for the F (early swing) phase 

made by back-up reactions (dashed vertical) and predictions (solid vertical) are marked. The 

solid horizontal line indicates the threshold value for predictions of unloading for Pavlovian 

control. (C) Movements produced by the SCL (stimulation-controlled limb) during a trial where 

learning continued within a single cat experiment. (D) Proportion of transitions initiated by 

predictions and reactions for early learning and continued learning walking trials. (E) Average 

(arrow) and standard deviation (shaded) alternation for trials where learning continued within a 

cat experiment.  
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Figure 7. Learning adapts to different subjects during walking. (A) Proportion of steps with a 

back-up reaction following a transition to a new person walking the PML (person-moved limb; n 

= 84 transitions). (B) Alternation and proportion of transitions initiated by predictions and 

reactions when learning carried over between different cat experiments (n = 61 trials). #p = 

0.026.  
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Figure 8. (A) Proportion of steps with phase transitions initiated by the learned predictions 

crossing the threshold or by the back-up reaction at various stages of learning. *p < 0.0001. (B) 

Proportion of steps with phase transitions initiated by the learned predictions or back-up 

reactions crossing the thresholds for all people walking the PML when learning continued across 

5 cat experiments (n = 115 trials). (D)  Average (arrow) and standard deviation (shaded) of the 

alternation phase difference of the hind-limbs when walking continued across 5 cat experiments 

and 4 people walking the PML. 
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Figure 9. Example of an intentional mistake. (A) Raw signals for unloading, ground reaction 

force, and angular velocity of the PML (person-moved limb) and their corresponding learned 

predictions. Prediction-initiated transitions are indicated by solid vertical lines. The mistake 

begins at approximately 5 s and ends near 7.5 s. (B) Ground reaction forces produced by the 

PML (dashed trace) and SCL (stimulation-controlled limb; solid trace). (C) Proportion of steps 

with phase transitions initiated by the learned predictions crossing the threshold or by the back-

up reaction following a mistake (n = 54 steps).  
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Selective Kanerva Coding 
Parameters provided: K, n, c

1
, c

2
, c

3 

Initialize prototypes P randomly once ever  
Input new state S  
Reset D = zeros(K,1)  
For i = 1 to K  

For j = 1 to n   

D
i
 ← d(P

i,j
, S

j
) d = Euclidean distance 

I ← Quickselect(D) indices of sorted distances 

For m = 1 to 3  
ind

m
← I(1 to c

m
)  

x
indm

 ← 1 offset by (m-1) x K 

Output x 
 

Algorithm 1. Selective Kanerva Coding as used in this work. Function approximation method to 

convert the sensor state space into a binary feature vector for use in reinforcement learning.  
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True Online TD(λ) 

initialize w,
 
e, V

old
,
 
S, x 

 
Repeat every timestep:  

Generate next state S' and cumulant Z'  
x' ← SKC(S')  
V ← w

T
 x  

V' ← w
T
 x'  

δ ← Z + γV' – V   
e ← γλe + x – αγλ(e

T
x)x  dutch trace 

w ← w + α(δ + V – V
old

)e - α(V – V
old

)x  

V
old

 ← V', x ← x' 
 

 

Algorithm 2. True online temporal difference learning. Reinforcement learning algorithm to 

estimate the discounted future values of sensor signals during walking.  
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Table 1. Proportion of missed steps for combinations of people walking the PML (person-moved 

limb) using customized threshold settings for each person during reaction-based control. 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 30, 2019. ; https://doi.org/10.1101/785741doi: bioRxiv preprint 

https://doi.org/10.1101/785741


 

44 

 Reactions in Early Learning Trials 
 1 Step 2 Steps 3 Steps More 

A 92.3% 3.8% 3.8% 0.0% 
B 97.1% 2.9% 0.0% 0.0% 
C 69.6% 8.7% 17.4% 4.3% 
D 20.0% 0.0% 40.0% 40.0% 

All 84.1% 4.5% 8.0% 3.4% 
 

Table 2. Back-up reactions in early learning trials using Pavlovian control. Within how many 

steps at the beginning of a walking trial was a back-up reaction triggered for each person walking 

the PML (person-moved limb).   
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