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Abstract 23 

Primary sensory cortex has historically been studied as a low-level feature detector, but has more 24 

recently been implicated in many higher-level cognitive functions. For instance, after an animal 25 

learns that a light predicts water at a fixed delay, neurons in primary visual cortex (V1) can 26 

produce “reward timing activity” (i.e., spike modulation of various forms that relate the interval 27 

between the visual stimulus and expected reward). The manner by which V1 produces these 28 

representations is unknown. Here, we combine behavior, in vivo electrophysiology, and 29 

optogenetics to investigate the characteristics of and circuit mechanisms underlying V1 reward 30 

timing in the head-fixed mouse. We find that reward timing activity is present in mouse V1, that 31 

inhibitory interneurons participate in reward timing, and that these representations are consistent 32 

with a theorized network architecture. Together, these results deepen our understanding of V1 33 

reward timing and the manner by which it is produced. 34 

 35 

Introduction 36 

Primary sensory cortex is classically regarded as a low-level feature detector providing simple 37 

representations for higher-order areas. In the visual system, representations in early areas relate 38 

to simple features, and through the cortical hierarchy, these signals are transformed into complex 39 

representations of the external world (Hubel and Wiesel, 1959, 1965; Felleman and Van Essen, 40 

1991). Yet, it is becoming increasingly clear that representations in primary sensory areas are 41 

updated when stimuli gain meaning through associative learning (McGann, 2015). Specifically, 42 

this is seen in primary gustatory (Vincis and Fontanini, 2016), somatosensory (Wiest et al., 2010; 43 

Gdalyahu et al., 2012; Pais-Vieira et al., 2013), auditory (Polley et al., 2004; Rutkowski and 44 

Weinberger, 2005; Guo et al., 2019), and visual (Shuler and Bear, 2006; Gavornik and Bear, 45 

2014a, 2014b; Makino and Komiyama, 2015; Goard et al., 2016; Goltstein et al., 2018) cortices, 46 

and in the olfactory bulb (Kay and Laurent, 1999; Kass et al., 2013; Ross and Fletcher, 2018). 47 
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Previous work shows that individual neurons in rodent primary visual cortex (V1) express reward 48 

timing activity (Shuler and Bear, 2006; Chubykin et al., 2013; Liu et al., 2015; Zold and Hussain 49 

Shuler, 2015). Reward timing activity is a representation of time between a visual stimulus and a 50 

reward, expressed as one of three forms: 1) a sustained increase (SI) or 2) sustained decrease 51 

(SD) of activity until the time of expected reward, or 3) a peak (PK) of activity around the time of 52 

the expected reward. Prior studies advance V1 as a substrate in the learning of this timing activity 53 

and implicate acetylcholine as a reinforcing signal: lesions of cholinergic axons within V1 block 54 

the ability for V1 to learn reward timing activity (Chubykin et al., 2013); pairing visual stimuli with 55 

local activation of cholinergic fibers in V1 mimics behaviorally-conditioned reward timing (Liu et 56 

al., 2015); V1 timing activity correlates with timing behavior and perturbation of this activity lawfully 57 

shifts timing behavior (Namboodiri et al., 2015; Levy et al., 2017).  58 

 59 

These observations implicate V1 as a substrate for learning reward timing activity—thought to 60 

occur through a reinforcement learning process (Hussain Shuler, 2016)—but it remains unclear 61 

how V1 circuitry produces reward timing activity with its various response forms. A computational 62 

model proposes a solution with a specific connectivity motif within a network of excitatory and 63 

inhibitory cells (Huertas et al., 2015). This network architecture has two implications: (1) inhibitory 64 

interneurons represent time predominantly as the SI form and (2) neurons inhibited by 65 

interneurons represent time predominantly as the SD or PK form. In this network, interneurons 66 

are treated as one, monolithic group. However, V1 interneurons fall mainly into one of three 67 

subpopulations expressing either parvalbumin (PV), somatostatin (SOM), or vasoactive intestinal 68 

polypeptide (VIP) (Xu et al., 2010; Tremblay et al., 2016). Each are unique in their connectivity 69 

patterns (Pfeffer et al., 2013) and are functionally distinct during stimulus representation in V1 70 

(Atallah et al., 2012; Lee et al., 2012; Wilson et al., 2012). It is unknown if either of the model’s 71 

implications are borne out in vivo and, if so, how the diversity of interneuron subtypes intersects 72 

with these implications. 73 
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Here we enrich our understanding of V1 reward timing by investigating the manner by which 74 

mouse V1 neurons produce reward timing activity, how different interneuron populations express 75 

and aid in the production of this activity, and how well biological and computational data accord 76 

with one another. In doing so, we find that V1 neurons express reward timing in a manner 77 

consistent with a theorized network architecture and that PV+ interneurons fulfill the expectations 78 

of the theorized inhibitory population. 79 

 80 

Results 81 

The means by which the primary visual cortex produces the various forms of reward timing 82 

observed is unknown. We have investigated potential mechanisms through an in-depth 83 

characterization of reward timing in the mouse primary visual cortex and how this reward timing 84 

activity is expressed by inhibitory interneurons (Figure 1A for a recording schematic). Specifically, 85 

we use mice which selectively express channelrhodopsin-2 (ChR2) in interneuron subpopulations 86 

to determine how these different cell types produce and aid in the production of reward timing 87 

activity (Figure 1B). Finally, with these data we sought to compare the activity of interneuron 88 

populations with a proposed network architecture which replicates reward timing activity (Figure 89 

1C, (Huertas et al., 2015)). 90 

 91 
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Head-Fixed Mice Associate a Visual Stimulus with a Delayed Reward 94 

Prior to investigating the circuit mechanisms by which primary visual cortex (V1) produces reward 95 

timing, we first established its existence within the head-fixed mouse preparation. Mice were 96 

trained to associate a water reward with visual stimuli (see Methods). Briefly, head-restrained 97 

mice received a 100ms visual stimulus delivered to the left or right eye with equal probability (Cue 98 

1 and Cue 2, respectively) via head-mounted goggles and received water from a lick port placed 99 

within reach of the tongue. Trials were initiated after a lapse of time comprising a randomly 100 

selected interval and a second random interval less than the ITI during which the animal must not 101 

lick (a “lick lockout” interval).  If an animal licked during this lick lockout, the lockout timer would 102 

restart. Such an ITI encourages mice to cease licking and to wait for the onset of the next trial.  103 

Upon the initiation of a trial, animals received a monocular visual stimulus delivered to the left or 104 

right eye with equal probability, after which the animal was required to make at least one lick 105 

within the subsequent delay period so that reward could be delivered at the end of the delay. On 106 

half of these trials, if the animals met this behavioral requirement, they received a small water 107 

reward (~2µL) at the end of the conditioned interval (so-called “paired” trials). On the other half of 108 

these trials, regardless of lick behavior, reward was withheld (“catch” trials). On 20% of trials, 109 

neither a visual stimulus nor a reward were delivered although the intertrial interval and lick lockout 110 

periods expired successfully; these trials are referred to as “sham” trials and are used to verify 111 

that animals are using visual stimuli to guide licking behavior (as opposed to timing lick bouts from 112 

events other than a visual cue). The delay time used was the same for both visual stimuli within 113 

a recording session and varied across days, as follows: on short delay sessions the delay time 114 

was 1 second following visual stimulus offset, and on long delay sessions the delay time was 1.5 115 

seconds following visual stimulus offset. A task schematic is shown in Figure 2A and behavior 116 

from an example session is shown in Figure 2B. Regardless of trial type, trials in which the animal 117 

made a lick during the delay window are defined as Hit trials and trials in which the animal did not 118 

lick were referred to as Miss trials. All data presented here, unless otherwise noted, are from  119 
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Catch+Hit trials (i.e., trials in which the animal received a visual stimulus, licked during the delay, 121 

and did not receive a reward).  122 

 123 

As expected, animals showed a high probability of licking in the delay period on trials where a 124 

visual stimulus was delivered (“CS trials”) and a low probability of licking during the sham trials 125 

(70.67% and 14.04%, respectively, Figure 2B and 2C). There is a significant effect of trial type 126 

(i.e., CS trial vs sham trial, χ2(1, 286) = 464.11, p = 7.83 x 10-62, Kruskal-Wallis test) on the 127 

probability that an animal licks while there is neither a significant effect of session number nor a 128 

significant interaction (Session Number: χ2(8, 286) = 0.51, p = 0.85; Interaction: χ2 (8, 286) = 1.26, 129 

p = 0.26, Kruskal-Wallis test). These results demonstrate that animals lick in response to reward-130 

predicting visual stimulation and that their behavior had reached asymptotic performance at the 131 

time of recording. 132 

 133 

We next addressed whether the animals time their behavioral response.  To quantify the timing of 134 

the licking behavior, we made three measurements: the time of the first lick in a bout, the time of 135 

the last lick in a bout, and the mean time between the first and last lick in a bout (Bout Midpoint). 136 

The Bout Midpoint is derived from the initiation and cessation of licking, and so is not an 137 

independent measure. Rather, its inclusion is simply to determine whether the centering of lick 138 

bouts is in good accordance with the expected time of reward. These values were recorded across 139 

trials and an average of these values were calculated for a given trial type on a given day (Figure 140 

2D for example sessions). When we compare these values, we find that the lick initiation and 141 

cessation times (and, consequently, the Bout Midpoint) are significantly smaller for short delay 142 

sessions compared to long delay sessions (Figure 2E, Mean First Licks: Z = -6.09, p = 1.11 x 10-143 

9; Mean Bout Midpoints: Z = -6.71, p = 2.01 x 10-11; Mean Last Licks:  Z = -5.73, p = 9.89 x 10-9, 144 

Wilcoxon rank-sum test) indicating that animals adapt their licking behavior based on the 145 

expected time to reward.  146 
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Neurons in Primary Visual Cortex of the Head-Fixed Mouse Express Reward Timing Activity 147 

These behavioral data indicate that animals express an internal sense of the time interval between 148 

the visual stimulus and the water reward. To determine what, if any, neural representation of time 149 

was present in V1, we recorded single unit activity bilaterally during behavioral sessions. Previous 150 

work from our lab has shown that, in similar tasks, neurons in V1 of freely-moving rats and mice 151 

represent the time interval to an expected reward in one of three forms: a sustained increase (SI) 152 

or sustained decrease (SD) of activity until the time of reward, or as a peak (PK) of activity around 153 

the time of reward (Shuler and Bear, 2006; Chubykin et al., 2013; Liu et al., 2015). These 154 

response forms were also observed here in the head-fixed mouse (Figure 3A). Using these 155 

response forms, we manually classified in a blinded fashion the peristimulus time histograms 156 

(PSTHs) of neurons for both Cue 1 and Cue 2 Catch+Hit trials (i.e., trials in which the animal 157 

received a visual stimulus, licked during the delay window, and did not receive a water reward at 158 

the end of that delay; see Methods). PSTHs created from Sham+Hit trials (that is, trials in which 159 

neither CS nor US was delivered, but had licks within the delay window) were also blindly 160 

classified as a control. Neurons could be classified as responsive during any of these trial types; 161 

as such, we began our analyses by quantifying “neural records” (i.e., a given pattern of activity a 162 

neuron produced during a trial type).  163 
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 164 

 165 

We recorded from 996 neurons in the primary visual cortex which yielded 1,992 neural records 166 

from Catch+Hit trials (each neuron produced two neural records: one in response to Cue 1 and 167 

one in response to Cue 2). Of these 1,992 neural records from Catch+Hit trials, 410 (20.58%) 168 

were classified as expressing reward timing (i.e., were classified as SI, SD, or PK). These 410 169 
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records were expressed by 253 neurons (25.40% of the total recorded population). Among the 170 

410 records: 243 (59.27%) were classified as SI (47 neurons classified for one CS, 98 neurons 171 

classified for both CS’s), 105 (25.61%) were classified as SD (33 neurons classified for one CS, 172 

36 neurons classified for both CS’s), and 62 (15.12%) were classified as PK (30 neurons classified 173 

for one CS, 16 neurons classified for both CS’s). Only 11 of 996 (1.10%) of the neural records 174 

from Sham+Hit trials were classified as one of the forms described above. Figure 3B shows the 175 

proportions of neural records classified. We cross-validated these classifications using a k-176 

Nearest Neighbors (kNN) classifier that was trained on data from even trials to predict the reward 177 

timing expression of data from odd trials (see Methods). The classifier predictions matched well 178 

with the manual classification across a range of parameters (1 < k < 65, Figure 3C) arguing that 179 

neural activity within mouse V1 fall into distinct classes of reward timing activity, as previously 180 

reported (Shuler and Bear, 2006; Chubykin et al., 2013; Liu et al., 2015).  181 

 182 

Previous reward timing studies have shown that V1 reward timing corresponds to the delay to 183 

reward (Shuler and Bear, 2006; Chubykin et al., 2013). By ascribing to each neuron a “neural 184 

report of time” (NRT, the moment of time the neuron reports as the delay to expected reward, see 185 

Methods), we asked if timing activity to a given reward delay similarly emerges in the head-fixed 186 

mouse preparation. Should reward timing responses emerge to visual cues predicting a given 187 

delay, the central tendency of those cues’ NRT distributions should correspond to that delay. 188 

Indeed, we find that the central tendencies for the NRT distributions accord well with the 189 

conditioned intervals and are significantly different for short and long delay sessions (Z = -4.95, p 190 

= 7.49 x 10-7, Wilcoxon rank-sum test – Figure 3D). Furthermore, the NRTs calculated from the 191 

cross-validated responses described above also show similar significant changes in distributions 192 

(i.e., shorter for the short delay) across the range of values for k (all Z’s < -3.43, all p’s < 5.97 x 193 

10-4, Wilcoxon rank-sum test). This shifting of the NRT distributions across conditioned intervals 194 

is not explained by differences in licking behavior as licking alone has no effect on recorded neural 195 
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activity (p = 0.198 Wilcoxon Sign Rank Test) and an animal’s within-session licking behavior did 196 

not influence the calculated NRT (χ2(2, 1120) = 1.91, p = 0.385, Kruskal-Wallis Test, Figure 3, 197 

Supplemental Figure 1). 198 

 199 

In previous reports of reward timing, neurons showed “cue dominance” (i.e., expressing reward 200 

timing activity to one, but not both cues) when the two cues are paired with different delays. Here 201 

we find that when the two cues predict a reward at the same delay that neurons can express such 202 

cue-specificity in reward timing, but that there is an increase in neurons with reward timing to both 203 

cues. Specifically, we find that of the 253 neurons that have reward timing, 157 (62%) express 204 

reward timing to both cues and do so with notable similarity across cues (Figure 3, Supplemental 205 

Figure 2). The remaining 38% express reward timing to one, but not the other cue, despite the 206 

cues foretelling of the same magnitude and delay to reward.  Additionally, we find that neurons 207 

have stable representations of time across days. Using a previously-described statistic based on 208 

waveform shape (the J3 statistic, (Moran and Katz, 2014)) we defined 100 pairs of putative 209 

repeatedly-recorded neurons across two consecutive sessions. Of the 77 pairs of reward timing 210 

responses across days, we find that 45 (58%) have notably similar reward timing responses 211 

across days (Figure 3, Supplemental Figure 3). 212 

 213 

Together, these data demonstrate that mouse V1 neurons are able to express reward timing 214 

activity following associative learning. Having established mouse V1 as a locus for such timing 215 

activity, we sought to investigate how inhibitory interneurons express and aid in the expression of 216 

this reward timing activity. Specifically, we turned to recent theoretical work which proposes a 217 

manner by which neurons in primary visual cortex could create such heterogeneous 218 

representations of time (Huertas et al., 2015). 219 

 220 
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V1 Neurons Represent Reward Timing in a Manner Consistent with a Theorized Network 221 

Architecture 222 

Recent computational work posits that a simple network motif can produce reward timing activity 223 

with the three known response forms (Huertas et al., 2015). This network motif is derived from a 224 

recurrent network of excitatory cells with broad and sparse inhibition; it contains one population 225 

of inhibitory cells and three populations of excitatory cells which differ based on levels of recurrent 226 

excitation, non-recurrent excitation, and inhibition (schematized in Figure 1C). Two experimentally 227 

tractable implications of this network motif are: (1) inhibitory interneurons should represent reward 228 

timing predominantly as the sustained increase form and (2) neurons that are inhibited by 229 

interneurons should represent time predominantly as sustained decrease or peak forms. Here we 230 

test these predictions using mice which selectively express channelrhodopsin (ChR2) exclusively 231 

in one of three major interneuron subtypes: those expressing parvalbumin (PV), those expressing 232 

somatostatin (SOM), and those expressing vasoactive intestinal polypeptide (VIP, see Methods). 233 

By investigating the ability of each interneuron subtype to fulfill the model’s implications, we are 234 

able to determine how known interneuron diversity intersects with the proposed network 235 

architecture. 236 

 237 

With selective ChR2 expression we are able to optogenetically identify interneurons within our 238 

recorded population (Figure 4A-4B, see Methods). We identified 35/185 (18.9%) PV+ neurons, 239 

15/361 (4.2%) SOM+ interneurons, and 0/203 (0%) VIP+ interneurons (example cells shown in 240 

Figure 4B). These proportions match the expected relative distribution given our recording depth 241 

(Tremblay et al., 2016). Additionally, a control cohort of animals (not expressing ChR2 in any cell 242 

population) resulted in 0/247 (0%) recordings returned as expressing ChR2 from these wildtype 243 

animals. 244 
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As we optogenetically identified PV+ and SOM+ interneurons, we were then able to ascertain 246 

their reward timing capabilities. We first determined their ability to produce representations of time 247 

and found that their NRTs shift across conditioned intervals (Z = -3.605, p = 3.117 x 10-4, Wilcoxon 248 

rank-sum test; Figure 4C). Again, we verified that these representations of time are unlikely to be 249 

explained by licking behavior as licking, by itself, had no significant effect on ongoing spiking 250 

activity (p = 0.355, Wilcoxon Sign Rank Test; Figure 4, Supplemental Figure 1). Having 251 

demonstrated that identified interneurons are expressing reward timing, we then asked what the 252 

distribution of reward timing forms are for the subpopulation of interneurons. We found that 1) 253 

PV+ interneurons are significantly more likely to represent the time interval than non-identified 254 

counterparts, and, that 2) they are significantly more likely to represent time as a sustained 255 

increase of activity (p = 8.10 x 10-12, p = 6.33 x 10-25, respectively, bootstrap – Figure 4D). We 256 

then asked the same of SOM+ interneurons and found that, again, they are more likely to express 257 

reward timing and are significantly more likely to represent time as a sustained increase of activity 258 

(p = 0.018, p = 3.61 x 10-4, respectively, bootstrap – Figure 4E). Additionally, although we did not 259 

optogenetically identify excitatory cells, we have identified a subpopulation of putative pyramidal 260 

cells using waveform shape. We did so, specifically, by using the spike width of a waveform to 261 

define a population of recorded cells as wide-spiking (Barthó et al., 2004). To determine the 262 

reward timing expression of putative pyramidal cells, we looked at neurons within the top quartile 263 

of the spike width distribution. As expected, we find that these neurons express reward timing in 264 

all forms (Figure 4, Supplemental Figure 2). These data are in accordance with the proposed 265 

network architecture which suggests that inhibitory interneurons should represent the time interval 266 

as the sustained increase form. 267 

 268 

An additional component of the theorized network architecture is that neurons whose spiking is 269 

inhibited by inhibitory neurons should express reward timing as either the sustained decrease or 270 

peak form. To investigate this prediction, we defined cells as “suppressed” by presenting 271 
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extended laser stimuli (100ms) and recording responses (see Methods). Consistent with this 272 

prediction, we found that neurons which are inhibited by PV+ activation are significantly more 273 

likely to represent the time interval as the sustained decrease form (p = 1.85 x 10-4, bootstrap; 274 

Figure 5A). However, neurons that are inhibited by SOM+ activation were less likely to express 275 

reward timing (i.e., were more likely to be not 276 

classified, p = 1.61 x 10-5, bootstrap) and, contrary to 277 

the model’s prediction, were significantly less likely to 278 

be classified as sustained decrease or peak (p = 7.49 279 

x 10-5 and p = 0.02, respectively, bootstrap; Figure 280 

5B). Additionally, we find that neurons that are 281 

inhibited by VIP+ activation are significantly more 282 

likely to express reward timing (p = 0.018, bootstrap) 283 

and have a significant enrichment of the sustained 284 

increase form (p = 0.014, bootstrap; Figure 5C). 285 

Together, these results show that PV+ interneurons 286 

fulfill the expectations of the theorized interneuron 287 

population and provide evidence in favor of the 288 

proposed network architecture wherein the reward 289 

timing forms arise due to the connectivity among 290 

excitatory and inhibitory neurons within V1. In 291 

addition, these results also point to functional 292 

distinctions of interneuron subtypes in the production 293 

of reward timing activity. 294 

 295 

 296 

 297 
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Discussion 298 

Reward timing in the primary visual cortex is a network phenomenon that requires coordinated 299 

activity of various cell types. Here we have shown that reward timing exists in three forms in V1 300 

of head-fixed mice; that reward timing activity is expressed within identified interneuron 301 

subpopulations; and, that neurons that are inhibited by different interneuron subpopulations differ 302 

in their expression of reward timing. These findings are consistent with a theorized network 303 

architecture.  304 

 305 

Reward Timing in the Primary Visual Cortex of Head-Fixed Mice 306 

Head-fixed mice were trained to associate a visual stimulus with a delayed reward (Figure 2) and 307 

V1 neurons reflected this learned association in one of three forms (Figure 3). These results 308 

replicate previous reward timing reports in the primary visual cortex of freely-moving rats (Shuler 309 

and Bear, 2006; Chubykin et al., 2013) and mice (Liu et al., 2015), extend these reports to the 310 

head-fixed preparation, and add to reports of non-sensory representations within V1 (Ji and 311 

Wilson, 2007; Poort et al., 2015; Fiser et al., 2016; Pakan et al., 2018). As other sensory areas 312 

express altered representations following associative learning (McGann, 2015), our 313 

understanding of V1 reward timing allows for greater insight into how cortical circuits, generally, 314 

can create predictions of future events. 315 

 316 

Though we contend that the production of reward timing in V1 is the result of interactions among 317 

cells within it, might it be that V1 is reflecting some non-specific global input signal (e.g., arousal 318 

or attention)? Our data argue that this alternate explanation is unlikely to be the case. First, a 319 

substantial fraction of neurons with reward timing show “cue dominance” (i.e., express reward 320 

timing to one, but not both cues, Figure 3 Supplemental Figure 2). Such specificity in reward 321 

timing is difficult to explain if V1 neurons were reflecting some non-specific, global signal. Second, 322 

we find that the expression of reward timing is unaffected by how engaged an animal is in our 323 
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task, as indicated by its licking behavior (a measure known to co-vary with other measures of 324 

arousal (Lee and Margolis, 2016)). The dissociation between licking and reward timing, then, is 325 

not consistent with a global signal being the cause of V1 reward timing activity.  326 

 327 

V1 Neurons Express Reward Timing in a Manner Consistent with the Core Network Architecture 328 

Recent computational work has theorized a manner by which a network of cells can produce 329 

reward timing activity in the various forms observed (Huertas et al., 2015). The results of this 330 

formal model suggest that the heterogeneity of reward timing forms can be captured by a “core 331 

network architecture” where the relative amount of inhibition, recurrent excitation, and non-332 

recurrent excitation differs according to a simple motif (Figure 1C). Here we sought to address 333 

two key implications of this model to determine potential biological validity of the proposed 334 

network architecture: 1) inhibitory interneurons should reflect reward timing predominantly as the 335 

sustained increase form and 2) neurons inhibited by interneurons should express reward timing 336 

predominantly as the sustained decrease or peak forms. Using selective expression of 337 

channelrhodopsin-2 (ChR2) in interneuron subpopulations, we are able to define these two 338 

populations (interneuron and suppressed) outside of behavioral conditioning and probe the 339 

reward timing expression in such populations. A simplifying assumption of the model is that all 340 

interneurons behave in a similar manner; however, it is known that there are various different 341 

interneuron subpopulations within V1 and that they have been shown to have different functional 342 

roles when the network represents sensory information (Atallah et al., 2012; Lee et al., 2012; 343 

Wilson et al., 2012; Kvitsiani et al., 2013). By selectively expressing ChR2 in specific interneuron 344 

subpopulations, we are able to address the model’s implications and determine how these activity 345 

patterns intersect with the various interneuron subtypes.  346 

 347 

Here we identify putative PV+ and SOM+ interneurons (Figure 7B-D) and find that PV+ 348 

interneurons adhere to the model implications. They produce reward timing predominantly as the 349 
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sustained increase form (Figure 4D), and neurons that they inhibit produce reward timing with an 350 

enrichment of the sustained decrease form (Figure 5A). These results can be contrasted with 351 

SOM+ interneurons which, while expressing reward timing predominantly with the sustained 352 

increase form (Figure 4E), largely do not inhibit neurons which express reward timing (Figure 5B). 353 

Finally, the manner by which VIP+ interneurons express reward timing is unknown, but we have 354 

shown that those neurons inhibited by VIP+ activation express reward timing predominantly with 355 

the sustained increase form (Figure 5C). These results can be understood when known 356 

connectivity is incorporated into the network architecture, as discussed below. 357 

 358 

Inhibitory interneurons are known to have distinct connectivity among other interneurons and 359 

pyramidal cells (Pfeffer et al., 2013; Tremblay et al., 2016). For example, it is known that VIP+ 360 

interneurons predominantly innervate other inhibitory interneurons (Pfeffer et al., 2013; Tremblay 361 

et al., 2016). As such, it follows that the neurons we defined as inhibited by VIP+ interneurons 362 

express reward timing in a manner similar to PV+ and SOM+ interneurons (i.e., with an 363 

enrichment of the sustained increase form). Additionally, the finding that PV+ and SOM+ 364 

interneurons produce reward timing in a similar manner may be surprising as they are thought to 365 

perform different functions in stimulus representation (Atallah et al., 2012; Lee et al., 2012; Wilson 366 

et al., 2012). However, according to the theorized network architecture, interneurons express 367 

reward timing as the sustained increase form because they receive input from the excitatory 368 

population of sustained increase neurons (Figure 1C). Cortical interneurons are known to receive 369 

convergent input from local excitatory cells (Bock et al., 2011; Fino and Yuste, 2011; Hofer et al., 370 

2011; Packer and Yuste, 2011). Specifically, a population of deep layer pyramidal cells has been 371 

shown to target both PV+ and SOM+ interneurons (West et al., 2006). Perhaps the similarity in 372 

reward timing expression in PV+ and SOM+ populations arises from similar pyramidal cell input 373 

to these interneurons. Additionally, if this input is shared with VIP+ interneurons, it would posit 374 

that VIP+ interneurons could also express reward timing as the sustained increase form. Thus, 375 
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functional differences would be borne out in downstream neurons (e.g., those neurons whose 376 

activity is suppressed by interneurons, Figure 5). Finally, when comparing between PV+ and 377 

SOM+ interneurons, PV+ interneurons act in a manner more consistent with the inhibitory 378 

population proposed in the core network architecture. This also can be understood when one 379 

considers that PV+ interneurons are the most abundant type of interneuron and provide the 380 

majority of inhibition to pyramidal cells (Markram et al., 2004; Tremblay et al., 2016). Taken 381 

together, we are able to overlay known connectivity patterns with the data shown here to 382 

hypothesize amendments to the core network architecture (Figure 6). 383 

 384 

 385 

 386 

 387 
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Concluding Remarks 388 

Reward timing in the primary visual cortex, like many complex responses in the brain, requires 389 

the coordinated activity of many cells. Here we have enriched the phenomenological 390 

characterization of reward timing, extended that work to incorporate the heterogeneity of cell types 391 

within V1, and provided a greater comprehension of how V1 produces reward timing activity 392 

through its circuitry. We now better understand how the various cell types come together to 393 

produce such a representation of time between a cue and a reward. 394 

 395 

Materials and Methods 396 

Experimental Design and Statistical Analyses 397 

All procedures performed on animals were in accordance with the US NIH Guide for the Care and 398 

Use of Laboratory Animals and were approved by the Animal Care and Use Committee at the 399 

Johns Hopkins University School of Medicine. Male mice (N = 14, between 2 and 6 months old) 400 

were used in this study. For this study, we used four genetic backgrounds which differ in their 401 

expression of the light-activated cation channel, channelrhodopsin-2 (ChR2). One cohort 402 

expressed no ChR2 (wildtype or WT, n = 3 animals), one cohort expressed ChR2 in parvalbumin-403 

positive interneurons (PV-ChR2, n = 4 animals), one cohort expressed ChR2 in somatostatin-404 

positive interneurons (SOM-ChR2, n = 4 animals), and one cohort expressed ChR2 in vasoactive-405 

intestinal-polypeptide-positive interneurons (VIP-ChR2, n = 3 animals). The WT cohort was 406 

composed of C57BL/6 mice (Strain Code: 027, Charles River Laboratories). ChR2-expressing 407 

mice were derived by selectively breeding the following genetic lines: a parvalbumin-Cre 408 

recombinase line (PV-Cre; 008069, Jackson Laboratory, (Hippenmeyer et al., 2005)), a 409 

somatostatin-Cre recombinase line (SOM-Cre; 013044, Jackson Laboratory, (Taniguchi et al., 410 

2011)), a vasoactive-intestinal-polypeptide-Cre recombinase line (VIP-Cre; 010908, Jackson 411 

Laboratory, (Taniguchi et al., 2011)), and a loxP-STOP-loxP-channelrhodopsin-2-eYFP Cre-412 

dependent line (ChR2-eYFP, Ai32; 012569, Jackson Laboratory, (Madisen et al., 2010)). The 413 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 30, 2019. ; https://doi.org/10.1101/785824doi: bioRxiv preprint 

https://doi.org/10.1101/785824
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

mice of these crosses were on mixed backgrounds composed primarily of C57BL/6 and CD-1. All 414 

mice from all cohorts underwent identical training and training occurred in the light cycle during a 415 

12h light/dark schedule (lights provided between 0700 and 1900). 416 

 417 

Non-parametric tests (e.g., Kruskal-Wallis test and Wilcoxon Rank-Sum test) are used throughout 418 

the text with an alpha of 0.05 unless otherwise noted. Other statistical analyses include the use 419 

of the Stimulus Associated Latency Test (SALT) as described previously (Kvitsiani et al., 2013) 420 

and bootstrap analyses; both methods are described in more detail below. 421 

 422 

Surgical Procedures 423 

Surgical procedures were performed under aseptic conditions and were in accordance with the 424 

Animal Care and Use Committee at the Johns Hopkins University School of Medicine. Animals 425 

underwent two surgeries spaced at least two weeks apart from one another. Prior to either 426 

surgery, mice were anesthetized using a cocktail of ketamine (Ketaset, 80mg/kg) and xylazine 427 

(Anased, 10 mg/kg) and eyes were covered with ophthalmic ointment (Puralube). The first surgery 428 

was performed to affix a head-restraint bar to the animal’s skull for training purposes and to mark 429 

sites for future craniotomies. In the first surgery, the hair covering the skull was removed (Nair), 430 

the skin cleaned with alternating 70% ethanol and iodine, then the skin was cut away. Following 431 

this, the periosteum was removed and the skull cleaned with alternating 70% ethanol and 432 

hydrogen peroxide, then the skull was dried with canned air. A total of four sites were marked for 433 

future craniotomies: two for ground screws (arbitrarily marked over the anterior parietal bone) and 434 

two for primary visual cortex (measured as 3mm lateral to lambda, bilaterally). Sites for future 435 

craniotomies were covered in a silicone elastiomer (Smooth-On Body Double) and a head-post 436 

was affixed to the anterior portion of the mouse’s skull with super glue (Loctite 454). The remaining 437 

bone was covered in super glue. A second surgery was performed to implant recording 438 

electrodes. Briefly, small craniotomies were performed using a dental drill for ground screws and 439 
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screws were implanted into sites. Next, craniotomies were performed over V1, the dura cleaned 440 

with sterile paper points, and electrodes were brought to the surface of the brain, then implanted 441 

500μm below the cortical surface in accordance with stereotaxic measurements of V1 (Franklin 442 

and Paxinos, 2008). Wires were covered in sterile ophthalmic ointment (Puralube) and encased 443 

in dental cement (Orthojet). Ground screws and ground wires were connected and a headcap 444 

was built of dental cement.  445 

 446 

Behavioral Task Design 447 

Prior to electrode implantation (between the first and second surgeries), animals were habituated 448 

to head-fixation over the course of 2-3 days, and then were trained that a visual stimulus predicted 449 

a water reward at a fixed delay for 2-3 weeks. Visual stimuli were full-field retinal flashes delivered 450 

monocularly to the left (Cue 1) or right eye (Cue 2) via head-mounted goggles. These goggles 451 

are custom made and consist of a miniature LED glued to the back of a translucent, plastic 452 

hemidome. Licks were recorded on a lickometer via an infrared beam break (IslandMotion); 453 

experiments were controlled through an Arduino Mega microcontroller board (Arduino) and events 454 

were recorded with Neuralynx. In every session, trials were separated by an inter-trial interval 455 

(ITI, between 3 and 8 seconds, uniformly distributed). In order to initiate the next trial (and exit the 456 

ITI), animals had to cease licking for a random interval during the later portion of the ITI (deemed 457 

a “lick lockout”). This lick lockout period was the same across conditioned delays and was used 458 

to discourage non-stimulus-evoked licking, as licks within this period caused the timer to restart 459 

and, thus, a longer ITI. Upon trial initiation, a monocular visual stimulus was either delivered (CS 460 

trials) or withheld (Sham trials), followed by a delay window. CS’s were visual stimuli which lasted 461 

100ms and were delivered, with equal probability, to the left or right eye. The delay to reward was 462 

the same for both CS’s within a session and was held constant for several consecutive sessions 463 

as either the short (1s) or the long (1.5s) delay. Sessions conditioned with the short delay 464 

constitute the “short delay sessions”; those with the long delay, the “long delay sessions”. CS 465 
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trials were further divided into “paired” and “catch” trials; paired trials being trials in which a small 466 

water reward (~2μL) became available following the delay period, provided that the animal made 467 

at least one lick on the lick port within the delay. Catch trials, however, were trials in which the 468 

reward was withheld regardless of behavior. Licks were never rewarded during Sham trials. At 469 

the conclusion of the delay window on both CS and Sham trials, the animal re-entered the ITI. 470 

Trials in which the animal licked during the delay window are defined as “Hit” trials and trials in 471 

which the animal did not lick during the delay window are defined as “Miss” trials. Unless otherwise 472 

noted, data presented here are from Catch+Hit trials (i.e., trials in which the animal received a 473 

visual stimulus, licked during the delay window, and did not receive a water reward at the end of 474 

that delay). 475 

 476 

The relative proportion of paired/catch trials and sham trials was systematically varied across 477 

behavioral shaping as well as the requirement to lick within the delay window. In the final form of 478 

the task (and in all sessions reported here), 80% of trials were CS trials (with equal probability of 479 

being paired or catch), with the remaining trials being Sham trials. 480 

 481 

Behavioral Measurements 482 

The timing of individual licks was recorded using a lickometer (IslandMotion) and were recorded 483 

simultaneously with neural data. During the task, animals tended to make one lick bout following 484 

delivery of the CS; the timing of this bout is quantified as the time of the first lick within the bout, 485 

the time of the last lick within the bout, and the mean time between these two licks (“Bout 486 

Midpoint”).   487 

 488 

Electrophysiology 489 

Neural activity was recorded bilaterally from primary visual cortex using custom-built recording 490 

electrodes. Per recording electrode, 16 channels of neural data were recorded at a sampling rate 491 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 30, 2019. ; https://doi.org/10.1101/785824doi: bioRxiv preprint 

https://doi.org/10.1101/785824
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

of 32,556 Hz through commercial hardware (Neuralynx). Neurons were offline identified through 492 

manual, 3D cluster-cutting methods through commercial software (Offline Sorter, Plexon). 493 

Electrodes were composed of a connector with 16 recording channels and two ground wires 494 

(Omnetics). Bundles were cut at a ~45° bias to allow for sampling across a depth of approximately 495 

250µm. In order to optogenetically identify interneuron subtypes, an optic fiber—composed of a 496 

200µm core diameter glass multimode fiber (ThorLabs) and a 1.25mm ceramic stick ferrule 497 

(Precision Fiber Products)—was glued next to the wire bundle such that the tip of the optic fiber 498 

was abutted next to the majority of the electrode tips of the bundle (<200µm tip-to-tip distance 499 

with some wires above optic fiber tip, some next to, and some below optic fiber tip). A schematic 500 

showing the recording strategy can be found in Figure 1A. 501 

 502 

Neural Data Analysis  503 

The following neural data analyses were performed using custom scripts and functions in 504 

MATLAB (Mathworks). 505 

  506 

 Reward Timing Classification. The form with which a neuron expressed reward timing was 507 

determined using manual classification in a blinded fashion. Specifically, a neuron was randomly 508 

selected from a random session. Then, a peri-stimulus time histogram (PSTH) calculated from 509 

trials that were either Cue 1 Catch+Hit trials, Cue 2 Catch+Hit trials, or Sham+Hit trials was 510 

randomly presented to an experimenter (KJM). This PSTH was then classified as “Not Classified” 511 

(NC), “Sustained Increase” (SI), “Sustained Decrease” (SD), or “Peak” (PK). The remaining 512 

PSTH’s were presented, followed by the remaining neurons. These classifications were 513 

performed without knowledge of animal identity, recording session, or delay time.  514 

  515 

k-Nearest Neighbors Classification. We sought to cross-validate the human classification 516 

of reward timing neurons. To do so, we implemented a k-Nearest Neighbors (kNN) classifier. 517 
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Briefly, kNN takes classified data as a “training example” to then determine the identity of 518 

unclassified “query points” based on the proximity of query points to classified training example 519 

points. Identity of the query point is defined as a plurality vote of its k nearest neighbors in the 520 

training example. In our case, we first split data from reward timing neurons into two halves: neural 521 

activity from even trials and neural activity from odd trials. Then, we normalized neural activity 522 

using the area under the ROC curve (AUC, see below) and used principal components analysis 523 

(PCA) for dimensionality reduction. Specifically, we reduced the normalized firing activity from 524 

even trials to the first eight principal components which explained >85% of the variance within the 525 

neural activity; the projection in eight dimensions and human-classified identity of the responses 526 

recorded in even trials served as the training example for the kNN classifier. Then, data from the 527 

odd trials were projected into the 8-dimension subspace (acting as the query points) and were 528 

classified across a range of k. Specifically, we varied the number of neighbors between 1 and 65; 529 

to avoid ties, we only used an odd number of neighbors in our classification. 530 

  531 

 Neural Report of Time Classification. To attribute a time in which neurons with reward 532 

timing activity reported the expected delay to reward, we calculated the Neural Report of Time 533 

(NRT). The NRT is the moment taken as the time which neurons return to a baseline level of 534 

activity, for SI and SD response forms, or the time of maximum firing rate from baseline (after the 535 

visual-evoked response), for the PK response form.  536 

  537 

To calculate such a time, neural activity was normalized to the baseline firing rate by calculating 538 

the area under the ROC curve (AUC) using a sliding 100ms window (Cohen et al., 2015; Sadacca 539 

et al., 2018). An AUC value of 0.5 means that the ideal observer would be at chance level to tell 540 

apart two distributions and values above or below 0.5 reflect greater dissimilarity among two 541 

distributions. For our purposes, we found the AUC value between the distribution of spike counts 542 

from a 100ms window of baseline pre-stimulus activity, and a given 100ms of spiking activity 543 
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across all trials of the same type (e.g., Paired, Cue 1 trials; Catch, Cue 1 trials; etc.). In this way, 544 

we do not rely on the averaging of spike counts in the same way that a PSTH does and thus the 545 

resultant value is more robust against a small subset of trials with many spikes or other forms of 546 

inter-trial spiking variability. Furthermore, this method normalizes the firing rate to a value 547 

bounded by 0 and 1 for every set of trials. As the AUC-normalized firing rate is the magnitude of 548 

difference and not the sign of the difference between an AUC value and 0.5 (which determines 549 

how dissimilar two distributions are), we found the absolute value of the difference between the 550 

AUC vector and a value of 0.5. In doing so, neurons with sustained activation or suppression (SI 551 

or SD neurons, respectively) could be treated with the same algorithm to calculate an NRT. We 552 

operationally defined a difference threshold of 0.15 (true AUC value of 0.35 or 0.65), and, using 553 

this threshold, we then defined the NRT as the first moment in time when the AUC difference 554 

vector fell below the threshold for at least 100ms. For classified PK neurons, the NRT was defined 555 

as the time of the maximum of this AUC difference vector. To avoid conflating reward timing 556 

responses with general visual responses, we set a minimum value for valid NRTs as 0.5s after 557 

stimulus offset. Though only Catch+Hit and Sham+Hit trials were classified, we were able to use 558 

the Catch classifications to calculate a response’s NRT in two other trial types: Paired+Hit and 559 

CS+Miss. The algorithm for calculating these NRTs was identical across trial types. 560 

  561 

Calculation of ΔSpikes. This value is used to determine the average change in spike rate 562 

based on an animal’s first lick in Sham+Hit trials. It is defined as follows: 563 

∆𝑆𝑝𝑖𝑘𝑒𝑠 =  
𝑆𝑝𝑖𝑘𝑒𝑠𝑃𝑟𝑒 − 𝑆𝑝𝑖𝑘𝑒𝑠𝑃𝑜𝑠𝑡

𝑁
 564 

Where 𝑆𝑝𝑖𝑘𝑒𝑠𝑃𝑟𝑒 is the number of spikes in the 100ms preceding the first lick within a Sham+Hit 565 

trial, 𝑆𝑝𝑖𝑘𝑒𝑠𝑃𝑜𝑠𝑡 is the number of spikes in the 100ms following the first lick within a Sham+Hit trial, 566 

and 𝑁 is the number of trials of Sham+Hit trials within the session. 567 

  568 
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 Calculation of the J3 Statistic. This statistic was developed to determine whether neurons 569 

are the same from one recording session to the next (Moran and Katz, 2014). First the waveforms 570 

of all spikes recorded from two recordings are projected onto reduced dimensions using PCA. 571 

Then, values are calculated as follows: 572 

𝐽1 =  ∑ ∑ ‖𝑠𝑘𝑖
−  𝑚𝑘‖

2

𝑘𝑖𝑘
 573 

𝐽2 =  ∑ 𝑁𝑘  ‖𝑚𝑘 − 𝑚‖2

𝑘
 574 

𝐽3 =  𝐽2/𝐽1 575 

Where 𝑠𝑘𝑖
 is the projection in two dimensions of spike 𝑖 in session 𝑘, 𝑚𝑘 is the mean vector of all 576 

spikes (𝑁𝑘) from the 𝑘𝑡ℎ session, 𝑚 is the overall point mean of the projection, and ‖∙‖ represents 577 

the Euclidean Distance. In essence, the J3 value is a ratio between the Euclidean distance 578 

between each spike’s waveform and the center of the cluster of all other spikes’ waveforms from 579 

that neuron to the distance between the two clusters (i.e., a ratio of the inter- and intra-cluster 580 

distance). J3 is maximal when two recordings are tightly packed and far away from one another 581 

in PC space; this reflects that two recordings are unique from one another. However, we utilized 582 

this statistic to determine whether a neuron recorded on one day was the same as a recording 583 

made on the same channel the subsequent day. To do so, we defined a J3 threshold by finding 584 

all “within” J3 values (that is, the J3 value between the first third of the recording’s spikes and the 585 

last third of the recording’s spikes). The threshold was defined as the 95th percentile of this 586 

distribution. That is to say, any neurons which were recorded from the same animal and on the 587 

same channel which had a J3 value that was less than this threshold was deemed the same. 588 

  589 

 Similarity Measurements of Reward Timing Responses. We sought to assess the similarity 590 

of reward timing responses of a given neuron across the two CS’s to assess the consistency of 591 

reward timing responses when different cues predicted the same reward occurring at the same 592 
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delay. Furthermore, where possible, we sought to assess the stability of a neuron’s reward timing 593 

response to the same stimulus across sessions. Reward timing responses of a neuron could differ 594 

(or persist) between cues or across sessions in their presence, form, timing, and shape.  For 595 

instance, within a session, reward timing responses may be present within a given neuron to both 596 

cues, exhibit the same response form (e.g., SI) with an overall similar response shape, and report 597 

nominally similar NRT’s. Additionally, neurons can express similar responses to the same 598 

stimulus across days. To determine how similar these responses are, we first calculated the 599 

concordance of reward timing forms (for example, how often a SI cell expresses reward timing as 600 

SI for the opposite CS or on a following day). Among the responses which are concordant, we 601 

then determined the similarity in the neuron’s report of time by calculating the absolute difference 602 

in NRT’s. Finally, within these responses, we quantified the similarity in shape by calculating the 603 

Euclidean distance between the evoked responses. These values were compared with a shuffled 604 

control distribution. Shuffling distributions were calculated by shuffling across neurons that 605 

expressed reward timing in the same form for the same conditioned interval. 606 

 607 

Neuron Identification 608 

Mice in this study (with the exception of the WT cohort) expressed channelrhodopsin-2 in one of 609 

three interneuron populations: PV+, SOM+, and VIP+ interneurons (Figure 1B). This selective 610 

expression allows us to determine how the diversity of V1 inhibitory interneurons intersects with 611 

the theorized network architecture (as schematized in Figure 1C). 612 

 613 

 Optogenetic Interneuron Identification. Outside of conditioning, brief (1 or 3ms) laser 614 

stimuli were randomly delivered to V1 with an inter-pulse interval randomly drawn from a 615 

distribution (between 5 and 10 seconds, uniformly distributed) while recording from neurons. To 616 

identify putative neurons expressing ChR2, we used the latency to the first spike and the 617 

probability that a laser evoked a spike. To determine significant latencies to the first spike, we 618 
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used the calculated p-value from the Stimulus Associated Latency Test (SALT). This test has 619 

been previously described (Kvitsiani et al., 2013); briefly, this test compares the latencies to a first 620 

spike after a laser stimulus to the latencies to a first spike after arbitrary moments in time without 621 

a laser presentation. Specifically, a raster of spiking activity is divided into N 10ms bins and the 622 

time to a first spike within each bin is recorded. Of the N bins created, one bin is the “test bin” and 623 

begins with the laser stimulus onset and one other bin is the “baseline bin” (a bin from the pre-624 

laser time period). For all N bins, a histogram of first-spike latency is created and a modified 625 

Jensen-Shannon divergence is calculated between pairs of these distributions. The divergence 626 

between the “baseline bin” and all other non-test bins creates a null distribution against which the 627 

divergence between the “baseline” and “test” bin is compared. The resultant p-value represents 628 

the probability that the divergence between the baseline and test bins falls within the null 629 

distribution; we have set a conservative alpha of 0.01 as was used in the first description of the 630 

method (Kvitsiani et al., 2013). In this way, neurons which have fast and consistent spikes (i.e., 631 

fire quickly and with low jitter) after a laser stimulus will be deemed significant. A caveat to this 632 

statistical measure occurs when a neuron has a relatively low baseline firing rate. In such a 633 

neuron, due to very low firing rates, random, spontaneous activity occurring within the test window 634 

may result in a highly-significant p-value. For this reason, we also required a neuron to have an 635 

action potential in the window immediately following the laser at least 20% of all laser stimulus 636 

presentations. 637 

 638 

 Identification of Pyramidal Cells via Spike Width. In addition to interneuron identification 639 

we sought to define a population of putative pyramidal cells. We did so by calculating a neuron’s 640 

spike width where the spike width is defined as time difference when the average waveform first 641 

crosses 20% of its peak amplitude and last crosses 20% of its valley amplitude. We then set a 642 

threshold at the 75th percentile of non-identified interneurons to define a population of putative 643 

pyramidal cells. 644 
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Optogenetic Identification of Suppressed Neurons. Additionally, we were interested in 645 

classifying neurons whose responses were inhibited by activating ChR2-expressing interneurons 646 

(“suppressed neurons”). Specifically, we sought to classify those neurons that putatively do not 647 

express ChR2 (i.e., did not pass one or both of the thresholds set to define interneurons, see 648 

above). To determine this, we also presented 100ms laser pulses after the brief laser 649 

presentations (with the same inter-pulse interval parameters). We then compared the distribution 650 

of spike counts in the 100ms immediately prior to and during laser stimulation with the Wilcoxon 651 

signed-rank test (WSRT). If a significant difference was found, we then compared the total number 652 

of spikes between these two windows across all presentations. Significantly inhibited neurons are 653 

those neurons which passed the WSRT and had fewer spikes during laser presentation than 654 

before laser presentation. Although we cannot resolve the exact nature of this inhibition (either 655 

mono- or polysynaptic), we are able to assess whether populations affected by inhibitory subtype 656 

activation follow predictions of the computational model and whether they reveal functional 657 

specialization of various interneurons. Additionally, we have limited our analysis to only those 658 

neurons which are inhibited by interneuron activation as neurons which are activated during this 659 

stimulation could be activated for one of at least two reasons: (1) they become disinhibited upon 660 

activation of interneurons or (2) they express ChR2 but do not pass our statistical thresholds to 661 

be defined as expressing ChR2.  662 

 663 

Bootstrap Procedures. To determine significant changes in the proportion of neurons 664 

expressing reward timing in the various forms, we used bootstrap analyses. Specifically, for a 665 

given population of “test” neurons (e.g., interneurons or suppressed neurons), we randomly 666 

selected a sample of neurons of the same size (with replacement) from all other neurons recorded 667 

from animals of the same genotype. We then determined the expression of reward timing in this 668 

subsampled distribution and created a bootstrap distribution by repeating the process 1,000 669 
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times. P-values are the probability that values found in the “test” sample would fall in the bootstrap 670 

distribution. 671 

 672 

Histology 673 

Animals were deeply anesthetized using sodium pentobarbital (200mg/kg, Vedco). After which, 674 

animals were transcardially perfused with ice cold phosphate-buffered saline (PBS) followed by 675 

ice cold 4% paraformaldehyde (PFA). Brains were immersion fixed overnight in 4% PFA and were 676 

transferred to 30% sucrose until sectioning. Brains were sectioned on a cryostat into 60μm slices. 677 

Electrode location was verified using Nissl staining, as follows. Sections containing V1 were 678 

selected and mounted on gelatin subbed slides and air dried. These slides were then immersed 679 

in a solution containing 0.1% Cresyl violet and 1% glacial acetic acid dissolved in water for 5 680 

minutes, followed by a 2-minute wash in distilled water, then by 2 minutes in 50% ethanol, then 2 681 

minutes in 70% ethanol. Stained and washed sections were air dried, immersed in xylenes then 682 

coverslipped with Permount Mounting Medium (Electron Microscopy Sciences).  683 

 684 

Expression of ChR2 in interneuron subpopulations was verified with immunohistochemistry, as 685 

follows. Brain sections containing V1 were selected for immunohistochemistry. On day 1 the 686 

sections were washed three times for ten minutes each (3x10 minutes) with PBS then were 687 

blocked in 10% normal goat serum (NGS) in PBS + Triton 0.1% to permeabilize and reduce 688 

background binding to antibodies for 1h. Sections were then incubated with two primary 689 

antibodies overnight at 4°C. Sections for all animals were incubated with a primary GFP antibody 690 

to recognize the eYFP tag of the ChR2 (Chicken polyclonal, 1:2000, Aves Labs (Catalog Number: 691 

GFP-1020)) and one primary antibody to recognize one of three interneuron markers: PV (rabbit 692 

polyclonal, 1:2000, Swant (Catalog Number: PV27)), SOM (rat monoclonal, 1:800, EMD Millipore 693 

(Catalog Number: MAB354)), or VIP (rabbit polyclonal, 1:2000, Immunostar (Catalog Number: 694 

20077)). Sections were then washed 3x10 minutes with PBS, then incubated overnight at 4°C 695 
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with secondary antibodies: Alexa 488 Goat Anti-Chicken (1:500, Jackson ImmunoResearch 696 

(Catalog Number: 103-545-155)) and Alexa 568 Goat anti Rabbit (PV and VIP) or Rat (SOM) 697 

(1:500, Jackson ImmunoResearch (Catalog Numbers: 111-065-144 and 112-585-143)). Sections 698 

were washed with PBS, mounted on glass slides, and coverslipped with Fluoromount-G mounting 699 

medium (Electron Microscopy Sciences). To control for unspecific staining, sections were stained 700 

in an identical manner except primary antibodies were omitted. Co-expression was as expected 701 

given animal’s genotype (Figure 1B).  702 
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