Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Mutational load and the functional fraction of the human genome

Benjamin Galeota-Sprung, Paul Sniegowski, Warren Ewens
doi: https://doi.org/10.1101/785865
Benjamin Galeota-Sprung
1Department of Biology, University of Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: bsprung@gmail.com
Paul Sniegowski
1Department of Biology, University of Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Warren Ewens
1Department of Biology, University of Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

The fraction of the human genome that is functional is a question of both evolutionary and practical importance. Studies of sequence divergence have suggested that the functional fraction of the human genome is likely to be no more than ∼15%. In contrast, the ENCODE project, a systematic effort to map regions of transcription, transcription factor association, chromatin structure, and histone modification, assigned function to 80% of the human genome. In this paper we examine whether and how an analysis based on mutational load might set a limit on the functional fraction. In order to do so, we characterize the distribution of fitness of a large, finite, diploid population at mutation-selection equilibrium. In particular, if mean fitness is ∼1, the fitness of the fittest individual likely to occur cannot be unreasonably high. We find that at equilibrium, the distribution of log fitness has variance nus, where u is the per-base deleterious mutation rate, n is the number of functional sites (and hence incorporates the functional fraction f), and s is the selection coefficient of deleterious mutations. In a large (N = 109) reproducing population, the fitness of the fittest individual likely to exist is Embedded Image. These results apply to both additive and recessive fitness schemes. Our approach is different from previous work that compared mean fitness at mutation-selection equilibrium to the fitness of an individual who has no deleterious mutations; we show that such an individual is exceedingly unlikely to exist. We find that the functional fraction is not very likely to be limited substantially by mutational load, and that any such limit, if it exists, depends strongly on the selection coefficients of new deleterious mutations.

Footnotes

  • Post-revision version

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted March 16, 2020.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Mutational load and the functional fraction of the human genome
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Mutational load and the functional fraction of the human genome
Benjamin Galeota-Sprung, Paul Sniegowski, Warren Ewens
bioRxiv 785865; doi: https://doi.org/10.1101/785865
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Mutational load and the functional fraction of the human genome
Benjamin Galeota-Sprung, Paul Sniegowski, Warren Ewens
bioRxiv 785865; doi: https://doi.org/10.1101/785865

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4394)
  • Biochemistry (9612)
  • Bioengineering (7109)
  • Bioinformatics (24911)
  • Biophysics (12640)
  • Cancer Biology (9977)
  • Cell Biology (14375)
  • Clinical Trials (138)
  • Developmental Biology (7966)
  • Ecology (12130)
  • Epidemiology (2067)
  • Evolutionary Biology (16006)
  • Genetics (10937)
  • Genomics (14761)
  • Immunology (9885)
  • Microbiology (23700)
  • Molecular Biology (9490)
  • Neuroscience (50956)
  • Paleontology (370)
  • Pathology (1544)
  • Pharmacology and Toxicology (2688)
  • Physiology (4030)
  • Plant Biology (8676)
  • Scientific Communication and Education (1512)
  • Synthetic Biology (2402)
  • Systems Biology (6446)
  • Zoology (1346)