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Abstract: 
Rare genetic variation is abundant in the human genome, yet identifying functional rare variants 
and their impact on traits remains challenging. Measuring aberrant gene expression has aided 
in identifying functional, large-effect rare variants. Here, we expand detection of genetically 
driven transcriptome abnormalities by evaluating and integrating gene expression, allele-specific 
expression, and alternative splicing from multi-tissue RNA-sequencing data. We demonstrate 
that each signal informs unique classes of rare variants. We further develop Watershed, a 
probabilistic model that integrates multiple genomic and transcriptomic signals to predict variant 
function. Assessing rare variants prioritized by Watershed in the UK Biobank and Million 
Veterans Program, we identify large effects across 34 traits, and 33 rare variant-trait 
combinations with both high Watershed scores and large trait effect sizes. Together, we provide 
a comprehensive analysis of the transcriptomic impact of rare variation and a framework to 
prioritize functional rare variants and assess their trait relevance. 

Main Text: 

Background 
Any given human genome contains tens of thousands of rare variants (1, 2 ) and rare variation 
contributes to both rare and common disease risk (3, 4 ). However, identifying high-impact rare 
variants, especially in the noncoding genome, remains difficult due to their low frequency and 
the lack of a regulatory genetic code. Previous work has shown that abnormal gene expression 
aids in identifying functional, large-effect rare variants (5– 9). However, transcriptome 
sequencing provides diverse measurements beyond gene expression level including 
allele-specific expression and alternative splicing that have yet to be systematically evaluated 
and integrated into variant effect prediction (10– 12). Furthermore, ongoing expansion of 
population-scale datasets with both whole genome and transcriptome data provides new 
opportunities to study the molecular impact of rarer variants. 
  
With the substantial number of both whole genome and transcriptome samples (n=838) in the 
Genotype Tissue Expression (GTEx) project v8, we assess variants deeper into the frequency 
spectrum to analyze how novel and rare genetic variants contribute to outlier patterns in total 
expression (termed “expression”), allelic expression, and alternative splicing. We integrate these 
three transcriptomic signals across 49 tissues along with diverse genomic annotations to 
prioritize high impact rare variants, and assess their relationship to complex traits in the UK 
Biobank (13) and the Million Veterans Program (14). 
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Results 
Detection of aberrant gene expression across multiple transcriptomic phenotypes 
We quantified three transcriptional phenotypes for each gene to capture a wide range of 
functional effects caused by regulatory genetic variants. Briefly, to identify expression outliers 
(eOutliers), we corrected expression measurements for age, sex, genetic ancestry, hidden 
factors and the strongest cis-eQTL per gene (see Supplementary Methods, Fig S1) across the 
population and generated Z-scores to determine whether a gene in an individual has an 
extremely high or low expression (15). Splicing outliers (sOutliers) were detected using SPOT 
(SPlicing Outlier deTection), a novel approach which fits a Dirichlet-Multinomial distribution 
directly to counts of reads split across alternatively spliced exon-exon junctions for each gene. 
SPOT then identifies individuals that deviate significantly from the expectation based on this 
fitted distribution (see Supplementary Methods, Figs S2, S3). Finally, to identify genes with 
excessive allelic imbalance (aseOutliers) we used ANEVA-DOT (see Supplementary Methods, 
Fig S4, S5). This method uses estimates of genetic variation in dosage of each gene in a 
population to identify genes where an individual has a heterozygous variant with an unusually 
strong effect on gene regulation (16). Each of the three methods was applied across all GTEx 
samples; an individual is called an “outlier” for a method if their median value across measured 
tissues exceeds thresholds for a given gene (Fig 1A). 
 
Aberrant expression, ASE and splicing genes are enriched for distinct rare 
variants 
We observed that outlier individuals for any of the three transcriptomic phenotypes are 
significantly more likely to carry a rare variant (MAF < 1%) in the gene body or +/- 10kb than 
individuals without outliers, assessed among 714 individuals with European ancestry. While we 
saw enrichments for all variant classes and outliers up to a 1% allele frequency, the strongest 
enrichments are for variants of the lowest frequencies. Rare structural variants seen only once 
within GTEx are most strongly enriched, with 103-fold (eOutliers), 42.6 (aseOutliers), and 
17.6-fold (sOutliers) enrichments respectively over non-outlier individuals (Fig 1B). Overall, 
structural variants and ultra-rare variants exhibit disproportionately significant impact on the 
transcriptome. 
 
For the set of individuals and genes tested by all methods, 35 outliers were found by all three 
methods, all but one of which have a nearby rare variant with half annotated as splice variants. 
For outliers detected across molecular phenotypes, the greatest sharing occurs between 
aseOutliers and eOutliers. We found that aseOutliers tend to show an impact on expression 
even when it is too modest to reach our threshold for detecting eOutliers (Wilcoxon rank-sum 
p-value < 2.2 x 10 -16). Furthermore, aseOutliers with modest expression changes, 1 < |median Z| 
< 3, showed stronger enrichment for nearby rare variants than those without an expression 
change (Fig S6), highlighting a benefit of combining these phenotypes to discover diverse rare 
variant effects. 
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We found that different types of genetic variants contribute to outliers for the three molecular 
phenotypes. Splice donor variants are strongly enriched nearby all outlier types. For 
aseOutliers, the strongest enrichments occur for stop-gained variants at 93.2-fold, while 
sOutliers show strongest nearby enrichments for splice acceptor variants at 185-fold and 
eOutliers for frameshift variants at 117-fold (Fig 1C). The largest differences among data types 
were copy number variations (CNVs) and duplications that were enriched within eOutliers, and 
splice acceptor variants that were enriched within sOutliers (Fig S7). All outlier types were 
significantly depleted for having no rare variants in the 10kb window around the gene and also 
depleted for non-coding rare variants that do not fall in any other annotated category (Fig 1C).  
 
For all phenotypes, the proportion of outliers with a nearby rare variant of any category 
increases with threshold stringency. We split eOutliers by over- and under-expression. At the 
strictest threshold, of 336 over-eOutliers 82% have a nearby rare variant, of which 62% have an 
additional annotation (from those in Fig 1C) and of 175 under-eOutliers, 94% have a nearby 
rare variant, 88% of which are annotated. Of 584 aseOutliers, 92% have a nearby rare variant, 
of which 56% are annotated as at least conserved non-coding. For sOutliers, of 644, 92% have 
a nearby rare variant of which 73% are annotated (Fig 1D). This analysis provides additional 
insight into expectations for causal rare variant types when an outlier effect of a specific 
magnitude is observed in an individual. 
 
While the strongest outliers indicate the presence of rare genetic variants well over 75% of the 
time, a large proportion of rare genetic variants do not manifest as large molecular aberrations, 
even for the most predictive classes of variants.  For example, for any given rare variant 
occurring within 10kb of a gene, for eOutliers, rare frameshift variants are most strongly 
enriched, but at just a 2.8% absolute frequency. Rare splice donor variants lead to an aseOutlier 
in 3.2% of instances and rare stops are associated with aseOutliers in 4.2% of instances. For 
sOutliers, 7.2% of rare splice donor variants lead to a sOutlier, as will 6.8% of rare splice 
acceptor variants (Fig 1E). When randomly selecting an equal number of gene-individuals as 
outliers over 1000 iterations, percentages greater than or equal to these were never observed, 
reflecting true enrichment for each category (Fig S7). Overall, the low frequency with which rare 
variants of these classes lead to large transcriptome changes highlights the utility of 
incorporating functional data in variant interpretation even for some variant classes already used 
in clinical interpretation. While subtle or context-specific transcriptomic effects may sometimes 
escape detection due to noise in RNA-sequencing data, tissue selection, or methodological 
choices, many annotated likely gene disrupting variants may actually not be functional (17). In 
those situations, incorporating functional data in variant interpretation will help to pinpoint 
variants with true functional effects. We return to this point in subsequent sections, developing 
methods to identify variants with much greater absolute risk of functional effects. 
 
Genomic position of rare variants predicts impact on expression  
While we primarily assessed rare variants that occur either within an outlier gene, or in a 10kb 
surrounding window, gene regulation can occur at greater distances (18, 19 ). As we observed 
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the strongest enrichments for the lowest frequency variants, we intersected singleton variants 
(SVs appearing only once in GTEx, and SNVs/indels that do not appear in gnomAD) with 200kb 
length windows, exclusive of other windows, upstream from outlier genes and compared their 
frequency in outlier vs non-outlier individuals. SNV enrichments dropped off quickly at greater 
distances from the gene, though remained weakly enriched for eOutliers out to 200kb. The 
same is true for rare indels, with enrichment at 200kb only for sOutliers. However, singleton SVs 
remained enriched at longer distances, and are enriched at 2.33-fold as far as 800kb-1Mb (Fig 
2A). Thus, transcriptome data can help detect distal cis-regulatory effects that would often be 
difficult to annotate and link to target genes using only genetic data. 
 
Rare variants in promoter regions have been previously linked to outlier expression (6, 15 ). To 
extend these observations and assess the types of transcription factor binding sites that could 
lead to outliers, we tested enrichment of rare TSS variants in several specific TF motifs nearby 
under- and over-eOutliers. For under-eOutliers, we saw an enrichment of variants in GABP that 
activates genes that control cell cycle, differentiation, and other critical functions (20). For 
over-eOutliers, we saw an enrichment of rare variants intersecting the E2F4 motif that has been 
reported as a transcriptional repressor (21). In both under and over-eOutliers, we saw rare 
variants in YY1 that can act as both an activator or repressor, depending on context (22) and 
has been associated with GABP in co-regulatory networks (23) (Fig 2B). Thus, these naturally 
occurring rare variant perturbations can provide information about how specific TFs up- and 
down-regulate their target genes. 
 
We observed that some rare variants can impact multiple genes potentially yielding oligogenic 
effects. We found a strong enrichment for eOutliers, and to a lesser degree, aseOutliers, 
occurring in the same individual within close proximity. As expected, we do not see a similar 
enrichment for nearby sOutlier pairs, which are less subject to co-regulation. Within a 100kb 
window, neighboring eOutlier genes are 70 times more frequent than expected by chance. 
These outlier gene pairs are enriched for rare CNVs, duplications and TSS variants nearby one 
or both genes, as compared to individuals who have outlier expression for only one of the genes 
(Fig S8), providing insight into transcriptional expectations for genes in the vicinity of these 
types of rare variants. 
 
Previous studies have shown rare variants disrupting splice sites result in outlier alternative 
splicing patterns (24, 25 ). We used sOutlier calls made for each LeafCutter cluster (see 
Supplementary methods), providing greater resolution than aggregating by gene, to more 
precisely assess enrichment of splicing-related variants. As expected, we observed extreme 
enrichment of rare variants near splice sites in sOutliers. A sOutlier is 333 times more likely than 
a non-outlier to harbor a rare variant within a two base pair window around a splice site (Fig 
S9A; see Supplementary methods), with signal decaying at greater distances but still modestly 
enriched (relative risk 7.43) up to 100 bp away. To get base pair resolution enrichments, we 
computed the relative risk of sOutlier rare variants located at specific positions relative to 
observed donor and acceptor splice sites (see Supplementary methods). Ten positions near the 
splice site show significant enrichment for harboring a sOutlier variant (Fig 2C,D), corresponding 
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precisely to positions that have also been shown to be intolerant to mutations, due to their 
conserved role in splicing (we will refer to these positions as the splicing consensus sequence) 
(25). Among the most enriched positions within the splicing consensus sequence were the four 
essential splice site positions (D+1, D+2, A-2, A-1) (26), showing an average relative risk of 195. 
 
sOutliers further captured the transcriptional consequences both for variants that disrupt a 
reference splicing consensus sequence, as well as for variants that created a new splicing 
consensus sequence that was not previously present. Individuals with sOutlier variants where 
the rare allele deviates away from the splicing consensus sequence showed decreased junction 
usage of the splice site near the variant, whereas individuals with variants where the rare allele 
creates a splicing consensus sequence showed increased junction usage of the splice site near 
the variant relative to non-outliers (see Supplementary methods;  Fig 2F, Fig S9B, Fig S10). We 
saw a related enrichment pattern after separating annotated and novel (unannotated) splice 
sites. (Fig S11). sOutliers were also enriched for rare variants positioned within the 
Polypyrimidine Tract (PPT). The PPT is a highly conserved, pyrimidine rich region, 
approximately 5 to 35 base pairs upstream from acceptor splice sites (27). A rare variant is 6.25 
times more likely to be located in the PPT near an sOutlier relative to a non-outlier. sOutliers 
with a rare variant that changes a position in the PPT from a pyrimidine to a purine (ie. 
disrupting an existing PPT) show decreased junction usage of the splice site near the variant, 
whereas the inverse is true for variants that change a position in the PPT from a purine to 
pyrimidine (Fig 2E, Fig S12).  
 
Rare variants in tissue-specific regulatory regions can lead to tissue-specific 
aberrant expression. 
While outliers detected across most tissues or samples from the same individual offer improved 
power to detect rare variant effects, we are also now able to evaluate rare variants based on 
outliers detected in individual tissues. First, we performed replication analysis across all 
individuals with data available for the three methods to evaluate the degree to which outlier 
status detected in one tissue of an individual is replicated in other tissues. Among all 
individual-gene outliers across all methods in a discovery tissue, we calculated the percentage 
of times the same individual-gene pair was detected as an outlier in a test tissue, limiting to 
tissues where both genes are expressed. We then aggregated this calculation across all 
individuals and genes (Figure 3A, S14). On average, we find that the eOutlier, aseOutlier, and 
sOutlier status in a discovery tissue is detected in a test tissue 5.1%, 10.7%, and 8.7% of the 
time, respectively. This is consistent with other findings that measurements of ASE better 
replicate across tissues (The GTEx Consortium 2019, in submission) and has implications for 
the use of functional data from easily accessible tissues to understand disease states.  
 
We next evaluated the ability of single-tissue outliers from each method to prioritize rare variants 
near outlier genes. Single-tissue aseOutliers were most enriched for nearby rare variants, 
followed by sOutliers than eOutliers, across all outlier cutoff thresholds (Figure 3B, Fig S14). We 
also observed enrichment of variants likely triggering nonsense mediated decay (NMD) among 
single-tissue aseOutliers, sOutliers, and eOutliers, among other predicted functional 
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annotations, indicating that the most likely deleterious variants can still have a measurable 
effect in a single tissue (Figure 3C). Additionally, we found that sOutliers, even when restricted 
to evaluation of a single tissue, show extreme enrichment for rare variants in the splicing 
consensus sequence and the PPT (Fig S13). These results indicate that multi-tissue analysis 
substantially increases the detection of rare genetic effects, but transcriptome data from a single 
tissue does also inform on rare functional variants. 
 
We did not see rare variant enrichments for eOutliers in single tissues until the most extreme 
thresholds, except for rare structural variants which are still enriched at comparable thresholds 
to multi-tissue outliers, though to a lesser degree (Fig S15). Therefore, we applied a different 
approach to discover tissue-specific expression effects by calling outliers based on their 
deviation from the expected covariance of expression across tissues on a gene by gene basis 
(see Supplementary Methods). A similar approach has been implemented to identify functional 
rare variants based on the correlation of expression among genes in a single tissue (6). Here 
we leveraged the breadth of tissue data available and used normal patterns of correlation 
across tissues to detect outliers that deviate in subsets of tissues in unexpected patterns to help 
identify tissue-specific functional rare variants. We found outliers identified via this approach 
were often driven by expression changes in one or a few tissues as compared to |median Z| 
outliers, which by definition, require changes in at least half of tested tissues (Fig 3C). These 
outliers were enriched for nearby rare variants in a 10kb window around the gene (Fig S16C). 
However, tissue-specific correlation outliers were also enriched for rare variants in enhancers 
that are active in the tissue driving the outlier effect, as determined by single-tissue Z-score, 
within a 500kb window around the gene, as compared to any enhancer region present in any 
tissue (Fig 3D). These tissue-specific outliers were depleted for rare variation in enhancers 
annotated to other tissues, highlighting the importance of considering tissue-specific regulatory 
annotations when assessing tissue-specific expression outliers. 
 
Prioritizing rare variants by integrating genomic annotations with diverse 
personal transcriptomic signals 
To incorporate diverse transcriptome signals into a method to prioritize rare variants, we 
developed Watershed, an unsupervised probabilistic graphical model that integrates information 
from genomic annotations of a personal genome with multiple signals from a matched personal 
transcriptome. Watershed provides scores that can be used for personal genome interpretation, 
describing the posterior probability given both WGS and RNA-seq signals that a variant has a 
functional effect on each transcriptomic signal (Fig 4A). The Watershed model can be adapted 
to any available collection of molecular phenotypes, whether different assays, different tissues, 
or different derived signals. Further, Watershed automatically learns Markov random field (MRF) 
edge weights reflecting the strength of the relationship between the different phenotypes 
included that together allow the model to optimally predict functional effects.  
 
We first applied Watershed to the GTEx v8 data using the three outlier signals examined here: 
ASE, splicing, and expression (Fig 4A; see Supplementary Methods), where each was first 
aggregated by taking the median across tissues for the corresponding individual. In agreement 
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with existing evidence of similarity between outlier signals (Fig S6), the learned Watershed edge 
parameters were strongest between ASE and expression but strictly positive for all pairs of 
outlier signals (ie. each outlier signal is informative of all other signals; Fig 4B). To evaluate our 
model we used held out individuals (see Supplementary Methods). Watershed greatly 
outperforms methods based on genome sequence alone (our Genomic Annotation Model 
(GAM) and CADD; Fig S17 and Fig 4C) (28, 29 ). Explicitly modeling the relationship between 
different molecular phenotypes also offers a performance gain  (Watershed compared to 
RIVER; Fig 4D, Fig S18). We have shown that even the most predictive genomic annotations 
only result in a transcriptomic outlier less than 10% of the time (Fig 1E and Fig 4C). However, 
integrating transcriptomic signals with genomic annotations via Watershed (at a posterior 
threshold of 0.9) detected SNVs that result in aseOutliers, sOutliers, and eOutliers with much 
greater frequency, 33.3, 50.0, 11.4% of the time, respectively (Fig 4C, Fig S19). 
 
We further extended the Watershed framework to provide tissue-specific scores to rare variants. 
In this version, Watershed prioritizes variants based on their predicted impact on transcription in 
each individual tissue, while sharing evidence between related tissues. Specifically, we trained 
three independent tissue-specific Watershed models (one for ASE, splicing, and expression) 
where each model considers effects in all tissues, giving 49 phenotypes in each model (See 
Supplementary methods, Fig S18, Fig S20). In this context, MRF edge parameters can be 
interpreted as the strength that functional variant effects are shared between pairs of tissues. 
Edge parameters from each of the three tissue-specific Watershed models resemble known 
patterns of tissue similarity (Fig 4E, Fig S21). Further, using held out individuals, the 
tissue-specific Watershed model outperforms a comparable model where each tissue is treated 
completely independently (Fig 4F, Fig S22). Tissue-specific Watershed also performs better 
than a comparable model trained using single median outlier statistics (Fig S23). Critically, 
Watershed models trained on a single tissue independently do still outperform methods based 
only on genome sequence annotations, supporting the benefit of collecting even a single 
RNA-seq sample to improve personal genome interpretation. However, when available, multiple 
samples, tissues, or assays can be incorporated to further improve performance and provide 
tissue- (or assay-) specific predictions.  
 
Aberrant expression informs rare variant trait associations 
Overall, we found that a given individual has a median of 13 aseOutliers, 19 sOutliers, and 11 
eOutliers after filtering for those with a nearby rare variant. When filtering by moderate 
Watershed posterior probability (>0.5) of impacting ASE, splicing, or expression, an individual 
has a median of 2 rare variants predicted to impact ASE, 5 predicted to impact splicing and 8 
predicted to impact expression (Fig 5A). In order to assess whether the identified rare functional 
variants from GTEx associate with traits, we intersected this set with variants present in the UK 
Biobank (UKBB) (13). We focused on a subset of 34 traits for which GWAS association had 
evidence of colocalizations with e/sQTLs (Table S2). Genes with a rare variant trait association 
are strongly enriched for their eQTLs colocalizing with GWAS signals for the same trait (The 
GTEx Consortium 2019, in submission) indicating that QTL evidence can be used to guide rare 
variant analysis. Rare variants nearby outliers that appear in GTEx and in UKBB had larger trait 
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association effect sizes than background rare GTEx variants near the same set of genes across 
tested traits (p=3.51 x 10 -9), with a shift in median effect size percentile from 46% to 53%. 
Additionally, outlier variants that fell in or nearby genes with eQTL or sQTL colocalization had 
even larger effect sizes (median effect size percentile 88%) than non-outlier variants (p=1.93 x 
10 -5) or outlier variants falling near any gene (p=4.88 x 10 -5) not matched to a colocalizing trait 
(Fig 5B).  
 
While most variants tested have low Watershed posterior probabilities of impacting the 
transcriptome (Fig S24A; termed Watershed scores), we hypothesized that filtering for those 
variants that do have high scores would yield variants in the upper end of the effect size 
distribution for a given trait. For each variant tested in UKBB, we took the maximum Watershed 
score per variant and compared this to a solely genomic annotation defined metric, CADD (28, 
29). We find that Watershed scores were a better predictor of variant effect size than CADD 
scores for the same set of rare variants (Table 1). Furthermore, across different score 
thresholds, we found that the proportion of variants falling in the top 25% of rare variant effect 
sizes in colocalized regions exceeded the proportion expected by chance at most thresholds 
(Fig 5D). While filtering by CADD score did return some high effect size variants, this proportion 
declines at the highest thresholds (Fig S24D). Furthermore, there was very little overlap 
between variants with high Watershed scores and high CADD variants (Fig S24D), with CADD 
variants more likely to occur in coding regions, and Watershed variants more frequent in 
non-coding regions (Fig S24D). Thus, the approaches largely identify complementary sets of 
variants for these traits. 
 
We identified 33 rare GTEx variant-trait combinations where the variant has a Watershed score 
> 0.5 and falls in the top 25% of variants by effect size for the given trait (Table S3). We 
highlight two such examples, for asthma and BMI (Fig 5E-F), showing that while rare variants 
usually do not have the frequency to obtain genome-wide significant p-values, when we 
prioritize by the probability of impacting expression, we can identify those that have greater 
estimated effect sizes on the trait. In the case of rs146597587 in asthma, the effect size in 
UKBB is 3 times greater than the lead colocalized variant. This variant, rs146597587, is a 
high-confidence loss of function splice acceptor with an overall gnomAD allele frequency of 
0.0019, and falls within the gene IL33, whose expression has been previously implicated in 
asthma (30, 31 ). For BMI, we find three rare variants with high effect sizes, rs35835984, 
rs184629044, and rs192797357, which each have between a 2-3 times greater effect size on 
the trait than the lead colocalized variant. These variants have a high predicted probability of 
impacting the expression of two colocalized genes, CD151 and POLR2L. For one additional 
high Watershed variant, rs564796245, for TTC38, which had a high effect size for 
self-reported high cholesterol in the UKBB, we were able to test this variant against four 
related blood lipids traits in the Million Veterans Program (32). We found that for these traits, 
which include HDL, LDL, total cholesterol, and triglycerides, among rare (gnomAD AF < 0.1%) 
variants within a 250kb window of rs564796245, this variant is in the top 10% of variants by 
effect size, and for HDL specifically, it is in the top 1% (Fig S25). Given that this variant is rare in 
all cohorts, and that the traits are not exact matches, seeing consistent higher effect sizes 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2019. ; https://doi.org/10.1101/786053doi: bioRxiv preprint 

https://paperpile.com/c/q3BqIU/beB4+tyOx
https://paperpile.com/c/q3BqIU/beB4+tyOx
https://paperpile.com/c/q3BqIU/beB4+tyOx
https://paperpile.com/c/q3BqIU/beB4+tyOx
https://paperpile.com/c/q3BqIU/beB4+tyOx
https://paperpile.com/c/q3BqIU/y717+IxkV
https://paperpile.com/c/q3BqIU/y717+IxkV
https://paperpile.com/c/q3BqIU/y717+IxkV
https://paperpile.com/c/q3BqIU/y717+IxkV
https://paperpile.com/c/q3BqIU/y717+IxkV
https://paperpile.com/c/q3BqIU/0HJc
https://paperpile.com/c/q3BqIU/0HJc
https://paperpile.com/c/q3BqIU/0HJc
https://doi.org/10.1101/786053
http://creativecommons.org/licenses/by-nc-nd/4.0/


across these related traits in a separate cohort provides additional evidence for this variant’s 
association with cholesterol. 
 
Only four of the variants tested in UKBB have Watershed posterior probabilities > 0.9 for 
colocalized genes, but of those, three show high effect sizes for the relevant trait (Table S3). We 
are limited in the traits that we can assess here, and by the small overlap in rare variants 
observed between the datasets as few population-scale phenotyped and genome sequenced 
cohort are yet available. As datasets including genome sequencing, functional molecular data 
and trait and disease phenotype data grow, application of Watershed and other integrative 
methods would likely prove fruitful in prioritizing rare variants impacting traits, especially those in 
the lowest ends of the allele frequency spectrum. 

Discussion 
Rare variants are abundant in human genomes yet have remained difficult to systematically 
study. With over 800 genomes matched with transcriptomes across 49 human tissues available 
in GTEx v8 data, we have shown that rare variation, including singleton variants, underlie 
extreme changes in the transcriptome of carrier individuals. To better capture the diversity of 
transcriptome aberrations, we applied ANEVA-DOT to test aberrant allele-specific expression, 
and presented SPOT, a novel approach for discovering aberrant alternative splicing. Together, 
we applied these complementary approaches along with multi-tissue expression outlier 
detection for each GTEx individual, to assess rare variant impact on the transcriptome. We 
found that the genomic context of each rare variant is predictive of the nature and magnitude of 
the observed change in expression, such as changes to splice junction usage or tissue-specific 
effects. 
 
For each transcriptomic signal, we observed rare variant enrichment that increased with the 
extremity of the transcriptional aberration. Observed enrichments were strongest for ultra-rare 
variants and reflected the specific nature of each signal. Among eOutliers, we observed strong 
enrichment of structural variants including those that influenced multiple genes and across large 
distances. sOutliers were particularly enriched for variants that disrupted or created the splicing 
consensus sequence or the polypyrimidine tract. AseOutliers and sOutliers were particularly 
powerful signals of rare variant effects, with enrichment evident even with a single tissue, which 
has implications for studies where it is only possible to collect data from one or a few tissues. 
Furthermore, using a novel approach for assessing tissue-specific eOutliers, we observed rare 
variants enriched in tissue-matched enhancers. Evaluation of rare variants in distant regulatory 
elements remains an important challenge for further work, including incorporation of additional 
measurements of chromatin state and expression in relevant cell types and even single-cell 
data. 
  
We developed a probabilistic model for personal genome interpretation, Watershed, that 
improves over standard methods for scoring rare variants by additionally integrating multiple 
transcriptomic signals from the same individual. When assessing GTEx rare variants within 
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eQTL or sQTL colocalized regions for UKBB traits, we found that filtering by Watershed scores 
identified variants with larger trait effect sizes than relying only on genomic annotations. Our 
results demonstrate that considering predicted effects on expression could improve power for 
rare variant association testing by improving the quality of variant prioritization beyond what is 
possible using genomic annotations alone, with potential application in case/control studies. 
Combined, the integration of a richer set of functional rare variants into models of genetic 
burden and risk will improve disease gene identification and the delivery of personalized, 
precision genomics.  
 

Figures and Figure Legends 
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Figure 1. Enrichment of rare variants underlying aberrant expression, splicing, and allele 
specific expression. (A) RNA-sequencing data in 838 individuals was combined across 49 
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tissues and used to identify shared tissue expression, alternative splicing and ASE outliers. (B) 
Enrichment of novel (not in gnomAD), singleton, doubleton, rare (MAF < 1%) and low frequency 
(MAF 1-5%) variants across the allele frequency spectrum in a 10kb window around the outlier 
genes across all data types. Outliers were defined as those with values greater than 3 standard 
deviations from the mean (|MedZ| > 3), or equivalently, a median p-value < 0.0027. Bars 
represent the 95% confidence interval. (C) Assigning each outlier its most consequential nearby 
rare variant, enrichments for different categories of rare variants for each outlier type. (D) The 
proportion of rare variants in a given category that lead to an outlier at a p-value threshold of 
0.0027 across types. (E) Proportion of outliers at a given threshold that have a nearby rare 
variant in the given category. |Median Z-scores| are converted to p-values for expression 
outliers. TSS = transcription start site, TE = transposable element, INV = inversion, BND = 
breakend, DEL = deletion, CNV = copy number variation, DUP = duplication 
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Figure 2. Rare variant enrichments in specific genomic positions. (A) Enrichment of 
singleton SNVs, indels, and SVs at varying distances upstream of outlier genes (bins exclusive) 
across data types. (B) Enrichment of TSS rare variants in promoter motifs within 1000bp of 
eOutliers. Under and over bins are defined using a median Z-score threshold of 3, and controls 
are all individuals with a median Z-score less than 3 for the same set of outlier genes. (C) 
Graphic summarizing positional nomenclature relative to observed donor and acceptor splice 
sites. (D) Relative risk (y-axis) of a sOutlier (median LeafCutter cluster p-value < 1 x 10 -5) rare 
variant being located at a specific position relative to the splice site (x-axis) compared to 
non-outlier rare variants. Relative risk calculation done separately for donor and acceptor splice 
sites. (E) Junction usage of a splice site is the natural log of the fraction of reads in a LeafCutter 
cluster mapping to the splice site of interest in sOutlier (median LeafCutter cluster p-value < 1 x 
10 -5) samples relative to the fraction in non-outliers samples aggregated across tissues by 
taking the median (see Supplementary Methods). Junction usage (y-axis) of the closest splice 
sites to rare variants that lie within a polypyrimidine tract ([A-5, A-35]) binned by the type of 
variant (x-axis). (F) Independent position weight matrices showing mutation spectra of sOutlier 
(median LeafCutter cluster p-value < 1 x 10 -5) rare variants at positions relative to splice sites 
with negative junction usage (ie. splice sites used less in outlier individuals than in non-outliers). 
 
 

 
 
Figure 3. Single-tissue outlier enrichments and replication.  (A) Outlier replication across 
tissues for each outlier type. Black indicates untested pairs. Tissue color legend in Fig S14. (B) 
Relative risk point estimate for nearby rare SNVs for outliers across all tissues individually. (C) 
Relative risk enrichments for likely gene disrupting nearby single-tissue outliers at a threshold of 
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|Z| > 4 (p < 0.000063 ), with one point per tissue. (D) Distribution of number of tissues with 
aberrant expression underlying expression outliers defined via median Z-score (MEDZ) or 
Mahalanobis distance p-value (Correlation). (E) Enrichment of correlation outliers driven by a 
single tissue for rare variants in enhancers annotated to that tissue within a 500kb window of the 
outlier gene. Unmatched are defined as all tissue-specific enhancer regions, regardless of 
outlier tissue.  
 
 

 
 
Figure 4. Prioritizing functional rare variants with Watershed. (A)  Graphic summarizing 
plate notation for Watershed model when it is applied to three median outlier signals (ASE, 
Splicing, and Expression). (B) Learned Watershed edge parameters (weights) between pairs of 
outlier signals after training Watershed on three median outlier signals. (C) The proportion of 
rare variants, with Watershed posterior probability greater than 0.9 (right) and with genomic 
annotation model (GAM) probability greater than a threshold set to match the number of 
Watershed variants for each outlier signal (left), that lead to an outlier at a median p-value 
threshold of 0.0027 across three outlier signals (colors). Watershed and GAM models evaluated 
on held-out pairs of individuals. (D) Precision-recall curves comparing performance of 
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Watershed, RIVER, and GAM (colors) using held out pairs of individuals for three median outlier 
signals. (E) Learned tissue-specific Watershed edge parameters (weights) between pairs of 
tissue outlier signals after training tissue-specific Watershed on eOutliers across single tissues. 
Tissue color to tissue name mapping can be found in Supplementary Figure S14C. (F) Area 
under precision recall curves (AUC(PR); y-axis) in a single tissue between GAM, RIVER, and 
tissue-specific Watershed (x-axis) when applied to outliers across single tissues in all three 
outlier signals (colors). Precision recall curves in each tissue generated using held out pairs of 
individuals. 
 
 

 
 
Figure 5. Trait associations for rare variants underlying outlier genes.  (A) Distribution of 
the number of outliers, outliers with a nearby rare variant, outliers with a nearby rare variant in 
colocalizing genes, and variants with high Watershed score per data type. (B) The distribution of 
effect sizes, transformed to a percentile, for the set of GTEx rare variants that appear in UKBB 
and are not outlier variants, those that are outlier variants, and those outlier variants that fall in 
colocalizing genes for the matched trait across 34 traits. Percentiles are calculated on the set of 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2019. ; https://doi.org/10.1101/786053doi: bioRxiv preprint 

https://doi.org/10.1101/786053
http://creativecommons.org/licenses/by-nc-nd/4.0/


rare GTEx variants that overlap UKBB. The set of genes is restricted to those that have at least 
one outlier individual in any data type, and a nearby variant included in the test set (4,787 
variants and 1,323 genes). p-values are calculated from a one-sided Wilcoxon rank-sum test. 
(C) The proportion of variants filtered by Watershed posterior that fall in the top 25% of effect 
sizes for a colocalized trait (red), and the proportion of randomly selected variants of an equal 
number that also fall in these regions over 1000 iterations (black). (D) Manhattan plot (top) 
across chromosome 9 for asthma in the UKBB, filtered for non-low confidence variants, with the 
high-Watershed variant, rs146597587, in pink and the lead colocalized variant, rs3939286, in 
blue. This variant’s effect size rank was similarly high for both self-reported and diagnosed 
asthma, but we show the summary statistics for asthma diagnosis here. The UKBB MAF vs 
absolute value of the effect size for all variants within 10kb of the Watershed variant (bottom). 
(E) Manhattan plot across chromosome 11 for BMI in the UKBB, filtered to remove low 
confidence variants, with the high-Watershed variants, rs35835984, rs184629044, and 
rs192797357 in pink and the lead colocalized variant, rs6591, in blue. The UKBB MAF vs 
absolute value of the effect size for all variants within 15kb of the Watershed variant to capture 
the lead colocalized variant (bottom). 
 

Tables and Table Legends 
 
Predictor Beta p-value 95% confidence interval 

Watershed score 1.61 2.12 x 10 -6 0.95 - 2.27 

CADD score 0.77 2.41 x 10 -2 0.10 - 1.43 

 
Table 1. Watershed and CADD as predictors of variant effect size percentile. Coefficient 
estimate and 95% confidence interval from separate linear models with variant effect size 
percentile as the response and CADD or Watershed score (scaled to have a mean of 0 and sd 
of 1 so values are of comparable range) as the predictor for all tested variants in co-localized 
regions (n=5,277). 
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