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The large number of available sequences and the diversity of protein functions challenge

current experimental and computational approaches to determining and predicting protein

function. We present a deep learning Graph Convolutional Network (GCN) for predicting

protein functions and concurrently identifying functionally important residues. This model

is initially trained using experimentally determined structures from the Protein Data Bank

(PDB) but has significant de-noising capability, with only a minor drop in performance ob-

served when structure predictions are used. We take advantage of this denoising property to

train the model on > 200,000 protein structures, including many homology-predicted struc-
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tures, greatly expanding the reach and applications of the method. Our model learns general

structure-function relationships by robustly predicting functions of proteins with  40%

sequence identity to the training set. We show that our GCN architecture predicts func-

tions more accurately than Convolutional Neural Networks trained on sequence data alone

and previous competing methods. Using class activation mapping, we automatically identify

structural regions at the residue-level that lead to each function prediction for every confi-

dently predicted protein, advancing site-specific function prediction. We use our method to

annotate PDB and SWISS-MODEL proteins, making several new confident function predic-

tions spanning both fold and function classifications.

Proteins fold into 3-dimensional structures to carry out a wide variety of functions within the

cell1. Even though many functional regions of proteins are disordered (lack a well defined ensem-

ble average structure), the majority of protein domains in natural proteins fold into specific and

ordered three-dimensional conformations 2–6. In turn, the structural features of proteins determine

a wide range of functions: from binding specificity, forming structures like cytoskeletal elements

within the cell, to catalysis of biochemical reactions, transport, and signal transduction. There are

several widely used classification schemes that organize these myriad protein functions including:

the Gene Ontology (GO) Consortium7, Enzyme Commission (EC) numbers8, Kyoto Encyclopedia

of Genes and Genomes (KEGG)9, and others. GO, for example, classifies proteins into hierarchi-

cally related functional classes organized into 3 different ontologies: Molecular Function (MF),

Biological Process (BP) and Cellular Component (CC), to describe different aspects of protein

functions.

2
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The advent of efficient low-cost sequencing technologies and advances in computational

methods (e.g. gene-finding) have resulted in a massive growth in the number of sequences avail-

able in key protein sequence databases like the UniProt Knowledgebase (UniProtKB)10. UniProt

currently contains over 100 million sequences, only ˜0.5 million (0.5%) of which are manually an-

notated (UniProtKB/Swiss-Prot). Due to considerations of scale, experimental design, and the cost

of experimentally verifying a function, it is safe to posit that most proteins with unknown func-

tion (i.e., hypothetical proteins) are unlikely to be experimentally characterized. Understanding

the functional roles and studying the mechanisms of newly discovered proteins is one of the most

important biological problems in the post-genomic era. In parallel to the growth of sequence data,

the advent of experimental as well as computational techniques in structure biology has made the

three-dimensional structures of many proteins available11–18. The Protein Data Bank (PDB)19, a

repository of three-dimensional structures of proteins, nucleic acids, and complex assemblies, has

experienced significant recent growth, reaching over 150,000 entries. Large databases of compara-

tive models (e.g., SWISS-MODELs where structure is mapped to query sequences via alignment)

also provide valuable resources for studying structure-function relationships 13, 20.

To address the sequence-function gap many computational methods have been developed

that aim to predict protein function for whole protein genes. A related body of work is also di-

rected at the related problem of predicting function in a site- or domain-specific manner (meth-

ods that automatically generate functional hypothesis linked to residues, regions or domains)21–24.

Traditional machine learning classifiers, such as support vector machines, random forests, and

high-dimensional statistical methods like logistic regression have been used extensively for the

3
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protein function prediction problem, and have established that integrative prediction schemes

can outperform homology-based function transfer25, 26 and that integration of multiple gene- and

protein-network features typically outperform sequence based features (although network features

are often incomplete or unavailable). Systematic benchmarking efforts, such as the Critical As-

sessment of Functional Annotation (CAFA127, CAFA228 & CAFA329) and MouseFunc30, have

also played a key role in the development of these methods and have shown that integrative ma-

chine learning and statistical methods outperform traditional sequence alignment-based methods

(e.g., BLAST)26. However, the performance of these methods is typically strongly affected by the

quality of manually-engineered features constructed from either sequence, biological networks or

protein structure (features that rely heavily on heuristics that in turn require domain-expert knowl-

edge, and in some cases unstable assumptions, thresholds and preprocessing pipelines)31. Here,

we focus on methods that can take as inputs sequence and features that are readily derived from

sequence (such as predicted structure) and do not focus on, or compare to, the many methods that

rely on protein networks like GeneMANIA32, Mashup33, DeepNF34, and other integrative network

prediction methods. We focus our study in this way to present a method that can be applied to very

large volumes of sequences where many proteins are from unknown organisms and thus lacking

the required network data. In this way we aim to address the critical need for function and structure

annotation methods in larger-scale metagenomic contexts.

In the last decade, deep learning approaches have achieved unprecedented improvements in

performance across a broad spectrum of problems ranging from learning protein sequence embed-

dings for contact map prediction35 to predicting protein structure36, 37 and function38. In particular,

4
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Convolutional Neural Networks (CNN)39, the state-of-the-art in computer vision, have also shown

tremendous success in addressing problems in computational biology. These machine learning

methods have enabled task-specific feature extraction directly from protein sequence (or the cor-

responding 3D structure) overcoming the limitations of feature-based Machine Learning (ML)

methods. The majority of sequence-based protein function prediction methods use 1D CNNs, or

variations thereof, that search for recurring spatial patterns within a given sequence and converts

them hierarchically into complex features using multiple convolutional layers. Recent work has

employed 3D CNNs to make predictions and extract features from protein structural data40, 41. Al-

though these works demonstrate the utility of structure features, storing explicit 3D representations

of protein structure at high resolution is not memory efficient, since most of the 3D space is unoc-

cupied by protein structure. We experiment here with more efficient representations for the protein

structure. Geometric deep learning methods42, 43, and more specifically Graph Convolutional Net-

works (GCNs)44, have offered a way to overcome these limitations by generalizing convolutional

operations on more natural graph-like molecular representations. GCNs have shown tremendous

success in various problems ranging from learning useful molecular fingerprints45, to predicting

biochemical activity of drugs46, to classifying protein interface prediction47.

Here, we describe a method, DeepFRI, based on GCNs for functionally annotating protein

sequences and structures that outperforms current methods and scales to the size of current repos-

itories of sequence information (see Fig. 1). Our model is a two stage architecture that takes as

input a protein sequence and structure (represented as graphs derived from amino acid interactions

in the 3D structure) and outputs probabilities for each function. The first stage of the method is

5
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Figure 1: Schematic method overview. (A) LSTM language model, pretrained on ˜10 million
Pfam protein sequences, used for extracting residue level features of PDB sequence. (B) our GCN
with 3 graph convolutional layers for learning complex structure–to–function relationships.
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a self-supervised a Long Short-Term memory Language Model (LSTM-LM)48 pretrained on a set

of protein domain sequences from the protein families database (Pfam)49 (see Methods), and is

used for extracting residue-level features from PDB sequences. The second stage is a graph con-

volutional network that uses a deep architecture to propagate these residue-level features between

residues that are proximal in the structure and construct final protein-level feature representations

that we show are useful for protein function prediction below.

For learning sequence features we use a LSTM-LM pretrained on a corpus of around 10

million protein domain sequences from Pfam49 (see Supplemental Methods). Our LSTM-LM

is trained to predict an amino-acid residue in the context of its position in a protein sequence.

Using features from a pre-trained, task-agnostic, LSTM-LM as input to classification tasks has

demonstrated tremendous success in many Natural Language Processing (NLP)50 and biological

problems35. During the training of the GCN the parameters of the LSTM-LM are frozen; i.e.,

the LSTM-LM stage is only used as a sequence feature extractor. The residue-level features con-

structed for sequences, together with contact maps, are used as an input for the second stage of

our method. We show that such features can significantly boost performance of the GCN in func-

tion prediction task (see Supplementary Fig. 2A). Using LSTM-LM features together with contact

maps we show that our method outperforms sequences-only state-of-the-art methods.

Each layer of the graph convolution stage takes both an adjacency matrix and the residue-

level embeddings described above, and outputs the residue-level embeddings in the next layer. The

GCN protein representation is obtained by concatenating features from all layers of this GCN into

7



a single feature matrix and subsequently fed into two fully connected layers to produce the final

protein function predictions for all terms (see Methods). This choice of architecture leads to the

main advantage of our method, that it convolves features over residues that are distant in the pri-

mary sequence, but close to each other in the 3D space, without having to learn these functionally

relevant proximities from the data. Such an operation, implemented here using graph convolution,

leads to better protein feature representations and ultimately to more accurate function predictions.

The effect of long-range connections on predictive performance of our method is shown below and

in Supplementary Fig. 2B.

Evaluating our method on experimental and predicted structures

We train different models to predict GO terms (one model for each branch of the GO) and EC

numbers. First, we systematically investigate the performance of our method trained only on

experimentally determined, high-quality, structures from the PDB. Then, we examine the per-

formance when homology-based predicted structures from SWISS-MODEL are included in the

training procedure. GO term and EC number annotations for PDB and SWISS-MODEL structures

are retrieved from SIFTS 51 and UniProtKB/Swiss-Prot repositories, respectively (see Methods for

data collection and preprocessing). We carefully explore the utility of using predicted structure (by

multiple methods) for both training and prediction of newly observed sequences and find that the

use of SWISS-MODEL structures during the training greatly improves model comprehension and

accuracy.

8



(A)

(C)

(B)

(D)

Figure 2: Improved performance on experimental and predicted structures. (A) (left)
Precision-recall curves showing performance on ˜800 annotated PDB chains obtained using the
CNN-based method (DeepGOPlus) applied to sequences (blue), our GCN-based method (Deep-
FRI) applied to NATIVE protein structures (black), Rosetta-predicted lowest energy (LE) struc-
tures (yellow) and DMPfold lowest energy (LE) structures (red). All models are trained only
on experimental PDB structures. (right) Precision-recall curves representing the performance
of our method, trained only on PDB experimental structures, and evaluated on SWISS-MODEL
homology-predicted structures (red); performance of DeepGOPlus trained on PDB sequences and
BLAST baseline are shown in blue and grey, respectively. The curves are averaged over predic-
tion results from 100 bootstraps of the test set; (B) Average performance of our DeepFRI method
trained on PDB (blue), SWISS-MODEL (yellow) and both PDB and SWISS-MODEL (red) struc-
tures in comparison to BLAST baseline (grey). (C) F-max and AUPR scores, summarized over
all proteins and GO terms, respectively, computed on the test set comprised of PDB and SWISS-
MODEL chains chosen to have  40 % sequence identity to the sequences in the training set.
Numbers in brackets indicate the number of GO terms in different ontologies. (D) Average AUPR
performance of DeepFRI on MF-GO terms of different specificities in comparison to CNN-based
architecture (DeepGOPlus) and BLAST baseline. The results are averaged over 100 bootstraps
of the test set. Asterisks indicate where the performance of DeepFRI is significantly better than
DeepGOPlus (rank-sum p� val < 0.001).
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We first explore how our method, trained on experimental PDB structures, tolerates errors in

predicted structures by examining its performance on predicted structures obtained from SWISS-

MODEL13 and other de novo protocols (see Fig. 2A). We use both Rosetta macromolecular model-

ing suite52 and protein contact predictions from DeepMetaPSICOV contact predictor (DMPfold)12

to fold sequences of ˜800 experimentally annotated PDB chains and obtain the lowest energy decoy

from folding. We construct two kinds of C↵�C↵ contact maps for each PDB chain – one from its

experimental (i.e., NATIVE) structure and one from the lowest-energy (i.e., LE) decoy (see Meth-

ods). Our model exhibits higher performance than that of the CNN-based method (DeepGOPlus)

even when accounting for errors in predicted contact maps from the full range of widely adopted

methods tested (Fig. 2A). Even though Rosetta- and DMPfold- predicted structures often result in

noisy contact maps, the fact that the performance of our method on the predicted LE structures is

not drastically impaired (Fig. 2A, left) can be attributed to the high denoising ability of the GCN

implied by high correlation between GCN features extracted from NATIVE and LE contact maps

(see Supplementary Fig. 3).

Second, we examine the possibility of including the predicted structures into the model train-

ing procedure. Having a large number of diverse protein structures in the training set is an impor-

tant prerequisite for more accurate and robust performance of our deep learning-based method.

To this end, we combine ˜40k non-redundant experimental structures from the PDB and ˜200k

non-redundant homology-predicted structures from the SWISS-MODEL repository. Inclusion

of SWISS-MODEL predicted structures not only results in more training examples, and conse-

quently in more accurate performance (with AUPR of 0.501 ± 0.007 in comparison to AUPRs of

10



0.436 ± 0.007, 0.481 ± 0.006 of the models trained only on PDB and only on SWISS-MODEL

chains, respectively; see Fig. 2B), but it also results in a larger GO term coverage, especially in the

number of very specific, rarely-occurring GO terms (Information Content, IC > 10; Supplementary

Fig. 4). Comparing the performance of our model with the CNN-based method, DeepGOPlus38,

that operates only on sequences, and BLAST baseline (AUPR of 0.269 ± 0.004, Fig. 2B) we

observe that our method benefits greatly from predicted structures.

For comparison to prior studies, we evaluate the performance of our model in comparison

to other methods using commonly accepted measures also employed in the CAFA1 challenge 27:

protein-centric maximum F-score (F-max) and term-centric Area Under Precision-Recall (AUPR)

curve (see Supplementary Material). The AUPR and F-max scores are averaged over all GO terms

and all proteins in the test set, respectively. The performance of our method for each branch of

GO is shown in red in Figure 2C. The performance is compared to 1) BLAST baseline (grey) used

in the CAFA127, CAFA228 & CAFA329 function blind challenges, and to 3) DeepGOPlus, a state-

of-the-art CNN-based method (blue) (see Methods for the architecture details). Comparison to

standard feature engineering-based, SVM-based method, FFPred, is shown in Supplementary Fig.

5. Given that FFPred is limited in the number of GO terms for which it can make predictions (and

also it cannot predict EC numbers), we only show the result averaged over a subset of GO terms

common to all methods. It is important to note that different methods encompass different subsets

of the GO-term vocabulary and that a key advantage of using comparative models in training is the

increase in the size of the vocabulary encompassed by our method; for this reason the number of

GO terms is indicated throughout each figure. Our method substantially outperforms both CNN-

11



based methods and BLAST on the EC numbers (only the most specific EC numbers are considered

in the training, i.e., leaf nodes in the EC tree), and GO terms in all three branches.

We explored the performance of our method on individual GO terms. We observe that for the

majority of MF-GO terms, our method outperforms the sequence-only CNN method, indicating the

importance of structure features in improving performance (see also Supplementary Fig. 6). Our

method performs better than sequence-only CNN and the CAFA-like BLAST baseline for more

specific MF-GO with fewer training examples (see Fig. 2D). Our method outperforms CNN on

almost all GO terms with average PDB chain length � 400 (see Supplementary Fig. 6), illustrating

the importance of encoding distant amino-acid contacts via the structure graph. This demonstrates

the superiority of graph convolutions over sequence convolutions in constructing more accurate

protein features when key functional sites are composed of distal sequence elements (as is the case

for higher contact order proteins)53. Specifically, in the case of long protein sequences, a CNN with

reasonable filter lengths, would most likely fail to convolve over residues at different ends of the

long sequence, even after applying multiple consecutive CNN layers; whereas, graph convolutions

applied on contact maps would, in 3 layers or less, access feature information from the complete

structure.

From protein-level to region-level predictions

Many proteins carry out their functions through spatially clustered sets of important residues (e.g.,

active sites on an enzyme, ligand-binding sites on a protein, protein-protein interactions); this is
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calcium ion binding (GO:0005509)

1S3P-A, PARVALBUMIN ALPHA

DNA binding (GO:0003677)

2PE5-B, LACTOSE OPERON REPRESSOR

GTP binding (GO:0005525)

2W83-E, ADP-RIBOSYLATION FACTOR 6

glutathione transferase activity (GO:0004364)

2J9H-A, GLUTATHIONE S-TRANSFERASE P

(A)

(C)

(B)

Figure 3: Automatic mapping of function prediction to sites on protein structures (A) An
example of the gradient-weighted class activation map for ’Ca Ion Binding’ (right) mapped onto
the 3D structure of rat alpha-parvalbumin (PDB Id: 1S3P), chain A (left), annotated with cal-
cium ion binding. The two highest peaks in grad-CAM activation profile correspond to calcium
binding regions. (B) ROC curves showing the overlap between grad-CAM activation profiles and
binding sites, retrieved from the BioLiP database, computed for the PDB chains shown in panel
C. (C) Examples of other PDB chains annotated with DNA binding, GTP binding and glutathione
transferase activity. All residue are colored using gradient color scheme to match the grad-CAM
activity profile, with more salient residues highlighted in red and less salient residues highlighted
in blue. No information about co-factors, active sites, or site-specificity was available to the model
during training.

especially the case for site-specific functions in the Molecular Function branch of the GO, and

less true for terms encoded in GO Biological Process terms. Designing ML methods for identify-

ing such functional residues have been the subject of many recent studies21–24. Much recent work

in ML has provided several new approaches for localizing signal to regions of the input feature

space that lead to a given positive prediction, providing a means of interpreting decisions made

by neural networks54, 55. In computer vision these methods determine the regions of images that
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lead to positive object classifications; in NLP these methods lead to identification of sub-regions

of documents56. Recent work in computer vision uses gradient-weighted Class Activation Maps

(grad-CAMs) on trained CNN-based architectures57 to localize the most important regions in im-

ages relevant for making correct classification decisions57. We propose an approach adapted for

GCNs for detecting functional regions in proteins, Deep Functional Residue Identification (Deep-

FRI) that provides the ability to interpret predictions by analysing the relative importance of fea-

tures during the training and during prediction. For each protein, our DeepFRI grad-CAM detects

GO term-specific structural sites by identifying residues relevant for making accurate GO term pre-

diction. We use grad-CAMs57, adapted for post-training analysis of GCNs, to determine a region of

a protein that leads to the correct prediction of its GO function. For each GO term, the grad-CAM

technique generates an activation map over the input data, in our case a sequence of residues and

the contact or distance map, indicating the importance of each residue to the GO term classification

decision (see an example of grad-CAM and its corresponding heatmap over sequence in Fig. 3A,

right). It does so by first computing the contribution of each graph convolutional feature map of the

model (trained on the MF-GO dataset) to the GO term prediction, and then by summing the feature

maps with positive contributions to obtain a final residue-level activation map (see Methods).

For site-specific functions, this method identifies correct function regions and we provide

several examples where we automatically and correctly identify functional sites for several func-

tions where binding sites are known (see Fig. 3). Fig. 3A shows the grad-CAM identified residues

for a calcium ion binding (GO:0005509) of alpha-parvalbumin protein (PDB id: 1S3P). The two

highest peaks in the grad-CAM profile correspond to the binding regions in the 3D structure of the
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protein (Fig. 3A, left). Indices of the calcium binding residues of the 1S3P protein were retrieved

from the BioLiP database58 and compared to the residues identified by our method. ROC curve

computed between the binary profile representing binding sites from BioLiP (shown in red) and the

grad-CAM profile (shown in grey) in Fig. 3A, right are depicted in Fig. 3B for several proteins.

High area under the ROC curve indicates high correspondence between annotated binding sites

and our predictions. Similar correspondence with BioLiP is observed for several other functions

including DNA binding (GO:0003677), GTP binding (GO:0005525) and glutathione transferase

activity (GO:0004364) (see Fig. 3C and their corresponding ROC curves in Fig. 3B). Our study

of grad-CAMs against BioLiP database reveals that the highest performing group of GO terms

are related to functions with known site-specific mechanisms or site specific underpinnings. We

depict examples (with high AUROC scores) for which grad-CAMs correctly identify binding re-

gions. We show that, for various GO terms, these functional sites correspond to known binding

sites, conserved functional regions or experimentally characterized active sites (see Supplementary

Fig. 7 and Supplementary Figs. 8-16). Interestingly, our model is not explicitly trained to predict

functional sites, but instead such predictions stem solely from the grad-CAM analysis of the graph

convolution parameters of the trained model; thus, the ability of the method to correctly map func-

tional sites supports our argument that the method is general and capable of predicting functions in

a manner that transcends sequence alignment. Performing such analysis for identifying functional

sites is also very efficient as it does not require any further training or modification of the model’s

architecture. The site-specificity afforded by our function predictions is very valuable, especially

in the case when predicting functions of poorly studied, unannotated proteins. Site-specific pre-
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dictions provide first insights into the correctness of predictions and frames follow-up validation

experiments: for example, using genetics or mutagenesis to test site specific predictions.

We also evaluate the performance of our method in a more “realistic” scenario by using a

temporal holdout validation strategy similar to the one in CAFA 27–29. That is, we composed a

test set of PDB chains by looking at the difference in GO annotations of the PDB chains in the

SIFTS 51 database between two releases separated by ˜6 months time period – realises 2019/06/18

and 2020/01/04. We identify ˜3,000 PDB chains that did not have any annotations in the 2019

SIFTS release and gain new annotations in the 2020 SIFTS release (see Methods). By using the

annotations from the 2020 SIFTS release, we evaluated the performance of our method on these

newly annotated PDB chains. We show that our method significantly outperforms both BLAST and

DeepGOPlus (see Supplementary Fig. 17). Furthermore, we highlight particular examples of PDB

chains with GO terms correctly predicted by our method for which both BLAST and DeepGOPlus

are failing to produce any meaningful predictions, indicating again the importance of structure

information (see Supplementary Fig. 17).

Unannoated PDB and SWISS-MODEL chains

There are a large number of high quality protein structures in both the PDB and SWISS-MODEL

that lack functional annotations, or that have only high-level or incomplete annotation in the

databases we used for training and testing our models. For example, our analysis of the June

2019 release of the SIFTS database51 reveal that around 20,000 non-redundant, high quality PDB
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(A)

(B)

(C)

(D)

Figure 4: Predicting and mapping function to unannotated PDB & SWISS-MODEL struc-

tures. Percentage/number of PDB chains (A) and SWISS-MODEL chains (B) with MF-, BP- and
CC-GO terms predicted by our method; the number of specific GO term predictions (with IC >
5) are shown in blue and red color for PDB and SWISS-MODEL chains, respectively. (C) An ex-
ample of a Fe-S-cluster-containing hydrogenase protein (PDB Id: 6F0K), found in Rhodothermus
marinus, with missing GO term annotations in SIFTS (“unannotated”). The PDB chain lacks an-
notations in databases used for training our model and predicted to bind 4Fe4S iron-sulfur cluster
with high confidence score; The predicted grad-CAM profile significantly overlaps with lignad-
binding sites of 4Fe4S obtained from BioLiP as shown by the ROC curve. (D) grad-CAM profiles
for predicted DNA binding and metal ion binding functions mapped onto the 3D structure of an
“unannotated” zinc finger protein (PDB Id: 1MEY) found in Escherichia coli; the corresponding
ROC curves show the significant overlap between grad-CAM profile and binding sites obtained
from BioLiP.

chains currently lack GO term annotations. Similarly, around 13,000 SWISS-MODEL chains also

lack Swiss-Prot GO term annotations. Interestingly, even though these PDB chains lack actual GO

term annotations, we found that many have additional site-specific functional information infor-

mation present/evident in their PDB files (e.g. presence of ligands, co-factors, metals, DNA and

RNA). We focus on these cases, as their function predictions can be verified and discussed in depth

(our larger set of predictions, including many for truly unknown PDB chains, is provided in the
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Supplementary Files 1). For example, there are a number of metal ion-bound PDB chains, with

known binding residues in BioLip58, but with missing metal ion binding (GO:0046872) GO term

annotations. In other cases, the function, albeit missing in SIFTS, is directly implied in the name of

the protein (e.g., a zinc finger protein without zinc ion binding (GO:0008270) annotation). Here,

we apply our method to these “unannotated” PDB chains, as a part of blind experiment, to evaluate

the chain-level predictions of our method and also the residue-level predictions of the grad-CAM

approach. We also apply our method on SWISS-MODEL chains.

We present Supplementary Files 1 & 2 with all high confidence predictions for the PDB

and SWISS-MODEL chains produced by our method. In Fig. 4 (panels A & B), we show their

statistics, with the total number of PDB and SWISS-MODEL chains predicted to be annotated

with all and more specific (IC > 5) GO terms. Some interesting “unannotated” PDB chains with

known ligand-binding information include 4 iron, 4 sulfur cluster binding (GO:0051539) of a Fe-

S-cluster-containing hydrogenase protein (PDB id: 6F0K), is shown in Fig. 4C. Iron-sulfur clusters

are shown to be important in oxidation-reduction reactions of electron transport and our method can

accurately predict their binding sites as shown by the corresponding ROC curve computed between

the predicted grad-CAM profile and known 4Fe4S cluster binary binding profile retrieved from

BioLiP. Another example includes predicted DNA binding (GO:0003677) and metal ion binding

(GO:0046872) of the zinc finger protein (PDB Id: 1MEY) with predicted grad-CAM activity

mapped onto the same 3D structure and validated by experimental density for both DNA and

metal as shown in Fig. 4D.
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Discussion

In this work, we described a novel deep learning-based method for predicting protein function

from both protein sequences and contact map representations of protein structures. Our method,

trained on protein structures from PDB and SWISS-MODEL, is very efficient, and it is capable of

predicting both GO terms and EC numbers of proteins and improves over state-of-the-art sequence-

based methods on the majority of function terms. Features learned from protein sequences by

the LSTM-LM and from contact maps by the GCN lead to substantial improvements in protein

function prediction accuracy, which could enable novel protein function discoveries. It is important

to note here that although high quality sequence alignment is often sufficient to transfer fold or

structure information 59, sequence alignments are not straightforward to use to transfer function

(as evidenced by the poor performance of the CAFA-like BLAST benchmark) due to the need

for different thresholds for different functions, partial alignments and domain structure, protein

moonlighting, and neofunctioalization 27, 29, 60. Thus, one important advantage of our method is

that it makes progress towards function predictions that go beyond homology-based transfer by

extracting local sequence and global structure features 27.

By comparing function prediction performance on both DMPFold and Rosetta-predicted

structures and their corresponding experimentally determined structures we demonstrate that our

method has a robust high denoising power. Our method’s robustness to structure prediction error

indicates that it can also be reliably used in predicting functions of proteins with computationally

inferred structures. The ability to use predicted structures opens a door for characterizing many
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proteins lacking experimentally determined 3D structures and the contents of many databases with

available predicted structures (e.g., homology-based SWISS-MODEL13, and ModBase20 can be

used for expanding the train set and improving predictive power of the model). The more exten-

sive use of homology models allowed by the denoising properties of our network architecture will

be a subject of future study.

While this paper mainly focuses on introducing efficient and accurate function prediction

models, it also provides a means of interpreting prediction results. We demonstrate, on multiple

different GO terms, that the DeepFRI grad-CAM identifies structurally-meaningful protein regions

encompassing functionally relevant residues (e.g., ligand-binding residues). For some PDB chains,

the accuracy of the DeepFRI grad-CAM in identifying binding residues is quite remarkable, espe-

cially given the fact the model is not principally designed to predict functional residue location and

that the ligand-binding information was not given to the model a priori. However, the main disad-

vantage of considering this to be a site-specific function prediction method is in the multiple differ-

ent meanings of grad-CAMs. Specifically, for some GO terms related to “binding”, grad-CAMs do

not necessarily identify binding residues/regions; instead, they identify regions of residues that are

conserved among the sequences annotated with the same function. The most interesting example

demonstrating this property is maltose binding (GO:1901982) (see Supplementary Fig. 7). In this

example, the salient residues are far from the residues binding maltose in the 3D structure; but, by

looking at a few non-redundant PDB sequences annotated with maltose binding, we find that the

grad-CAM always identifies the same residues that are conserved across the sequences. These can

be explained with the fact that any neural network, including ours, would always tend to learn the
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most trivial features that lead to the highest accuracy 61, 62.

After the culmination of much effort, two key problems in computational biology, protein

structure prediction and protein function prediction, are linked together by the described meth-

ods. Deep learning coupled with an increasing amount of available sequence and structural data

has the potential to meet the annotation challenges posed by ever increasing volumes of genomic

sequence data, offering several new methods for interpreting protein biodiversity across our ex-

panding molecular view of the tree of life.
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Methods 

 

Construction of contact maps 

 
We collect 3D atomic coordinates of proteins from the Protein Data Bank (PDB) [1]. As the 
PDB contains extensive redundancy in terms of both sequence and structure, we remove 
identical and similar sequences from our set of annotated PDB chains. We create a non-
redundant set by selecting PDB chains that are not identical to any other PDB chain in the set. To 
do so, we first cluster all PDB chains (for which we were able to retrieve contact maps) by 
blastclust at 100% sequence identity (i.e., number of identical residues out of the total number of 
residues in the sequence alignment). Then, from each cluster we select a ``representative" PDB 
chain as a PDB chain which is annotated (i.e., has at least one GO term in at least one of the 3 
ontologies) and which is of high quality (has a high-resolution structure). In addition to PDB 
structures, we also obtained homology-based predicted structures from the SWISS-MODEL 
repository [2]. We include only annotated SWISS-MODEL structures (i.e., having at least one 
GO term in at least one of the 3 GO ontologies) in our training procedure. We remove similar 
SWISS-MODEL sequences in the same way as with PDB chains. Including SWISS-MODEL 
structures lead to 5-fold increase in the number of training samples (see Table S1) and also in 
larger coverage of more specific GO terms (see Supplementary Fig. 4).    
 
 
To construct contact maps, we use the alpha-carbon, Ca, atom type and consider two resides to 
be in contact if the distance between their corresponding Ca atoms is less than 10Å. We refer to 
this type of contact maps as “CA-CA”. We have also considered two other criteria for contact 
map construction. Two residues are in contact: 1) if the distance between any of their atoms is 
less than 6.5 Å (we refer to this type of contact maps as “ANY-ANY”) and 2) if the distance 
between their Rosetta neighbor atoms is less than sum of the neighbor radii of the amino acid 
pair (we refer to this type of contact maps as “NBR-NBR”). Rosetta neighbor atoms are defined 
as the beta-carbon (Cß) for all amino acids except glycine where the alpha-carbon is used. An 
amino acids neighbor-radius describes a potential interaction sphere that would be swept out by 
the side amino acid side chain as it samples all possible conformations. Neighbor-neighbor 
contact maps are therefore more indicative of side-chain-side-chain interactions than maps Ca - 
Ca. To avoid training the model on protein chains with long sequences, we only construct contact 
maps for chains > 60 and < 1200 residues. We have also experimented with different cut-off 
thresholds for Ca - Ca  and ANY-ANY contact maps. We found that our method produced similar 
results when trained on these contact maps with CA-CA (Ca - Ca with 10Å) producing slightly 
better results (see Supplementary Fig. 1).  
 
 
While some recent works show better structure-prediction performance when using explicit 
distance matrices for predicting protein structure, here the contact maps are an input and only a 
means of composing graph convolutions (discrete paths for convolutions over sequence-
features), and thus and there is no evidence that distances would inherently perform better than 
contacts in this setting. Our experiments show that additional detail in the protein structure 
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representation (via more complex or multi-modal approaches to the contact graph) are not likely 
to lead to substantive performance or interpretability gains.  
 
 
Function annotations of PDB & SWISS-MODEL chains 

 
In the training of our models we use two sets of function labels: 1) Gene Ontology (GO) [3] 
terms and 2) enzyme commission (EC) numbers [4]. GO terms are hierarchically organized into 
3 different onotologies - molecular function (MF), biological process (BP) and cellular 
component (CC). We train our models to predict GO terms separately for each ontology. The 
summary of GO identifiers as well as EC numbers for each PDB and SWISS-MODEL chain 
were retrieved from SIFTS [5] (Structure integration with function, taxonomy and sequence) 
database and UniProt Knowledgebase databases, respectively. 
  
SIFTS transfers annotation to PDB chain level via residue-level mapping between UniProtKB 
and PDB entries. All the annotation files were retrieved from SIFTS database (2019/06/18) with 
PDB release 24.19 and UniPortKB release 2019.06. We consider annotations that are: 1) not 
electronically inferred (in figure captions/legends, we refer to those as “EXP”), specifically, we 
consider GO terms with the following evidence codes: EXP, IDA, IPI, IMP, IGI, IEP, TAS and 
IC and 2) electronically inferred (in figure captions/legends , we refer to those as “IEA”). 
Furthermore, we focus only on specific MF-, BP- and CC-GO terms that have enough training 
examples from the non-redundant training set (see the section above). That is, we select only GO 
terms that annotate > 30 (for MF and CC) and > 50 (for BP) non-redundant PDB/SWISS-
MODEL chains. We retrieved enzyme classes for sequences and PDB structures from the lowest 
level (most specific level) of EC tree. The number of GO terms and EC classes in each ontology 
is represented in Table S1.  
 
In our analyses, we differentiate GO terms based on their specificity, expressed as Shannon 
Information Content (IC) [6]: 
 

!"($%&) = −	 +,-./0,1($%&) 
 
where, Prob(GOi) is the probability of observing GO term i in the UniProt-GOA database 
(Prob(GOi)=ni/n, where ni – number of proteins annotated with GO term i and n – total number 
of proteins in UniProt-GOA). Infrequent GO terms (i.e., more specific) have higher IC values.   
 
  
 
Predicted structures 

 
The initial set of benchmark structures used here was Jane and Dave Richardson's ``Top 500'' 
dataset [7]. It is a set of hand curated, high quality (the top 500 best), protein structures that were 
chosen for their fit to their completeness, how well they fit the experimental data, and lack of 
high energy structural outliers (bond angle and bond length deviations[8]). This set has been 
used in the past for fitting Rosetta energy/score terms and numerous other structural-
bioinformatics validation tasks. Unfortunately, the structures in this set lacked sufficient 
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annotations (many of these structures were the results of structural genomics efforts and had no, 
or only high level, annotations in GO and EC). Accordingly, we choose an additional 300 
sequences from the PDB. These additional high-quality benchmark structures were chosen by 
taking 119K chains with function annotations and filtering them with the PISCES Protein 
Sequence Culling Server [9] with the following criteria:  
 
Sequence percentage identity: <= 25 
Resolution: 0.0 ~ 2.0 
R-factor: 0.2 
Sequence length: 40 ~ 500 
Non- X-ray entries: Excluded 
CA-only entries: Excluded 
Cull PDB by chain 
 
That left us with 1606 SIFTS annotated chains from which we randomly selected 300. These 
proteins were then excluded from all phases of model training. The performance of our method 
on this set of PDB chains is shown in Fig. 2A in the main manuscript. In Supplementary Fig. 3 
we demonstrate capabilities of our method in denoising these predicted structures.  
    
 
Convolutional neural network 

 
Convolutional neural networks (CNNs) have shown tremendous success in extracting 
information from sequence data and making highly accurate predictive models. Their success 
can be attributed to convolutional layers with highly reduced number of learnable parameters 
which allow multi-level and hierarchical feature extraction. In the last few years, a large body of 
work has been published covering various applications of CNNs, such as prediction of protein 
functions [10] and subcellular localization [11], prediction of effects of noncoding-variants [12] 
and protein fold recognition [12]. Here we use the CNN-based DeepGOPlus method [10] in our 
comparison study. We describe this architecture in more detail in the Supplementary Material.  
 
We represent a protein sequence with L amino acid residues as a feature matrix 2 = [45 …47] ∈
{0,1}7×@ , where c = 26 dimensions (25 residues plus the gap symbol) are used as a one-hot 
indicator, 4& ∈ {0,1}@, of the amino acid residue at position i in the sequence. This representation 
is fed into a convolution layer which applies a one-dimensional convolution operation with a 
specified number of kernels (weight matrices or filters), fn, of certain length, fl, and all outputs 
are then transformed by the rectified linear activation function (ReLU), which sets values below 
0 to 0, i.e., ReLU(x) = max(x, 0). This is followed by a global max pooling layer and a fully 
connected layer with sigmoid activation function for predicting probabilities of GO terms or EC 
enzyme classes.  
 
In the first convolution layer, we used 16 CNN layers with fn = 512 filters of different lengths 
(see Supplementary Material). After concatenating the outputs of the CNN layers, we obtain 
A × 8192 dimensional feature map for each sequence. Using filters of variable lengths ensures 



 
 

4 
 

extraction of complementary information from protein sequences. The second layer has |GO|1 
number of units for GO terms (or |EC| for EC) classification.  
 
 
 
LSTM language model for learning residue-level features 

 
We use an approach similar to Bepler & Berger [13]. We train a LSTM language model on 
~10,000,000 sequences sampled from the entire set of sequences from Pfam. The sequences are 
represented using 1-hot encoding (see above). The LM architecture is comprised of two stacked 
forward LSTM layers with 512 units each (see Fig. 1 in the main manuscript). The LSTM LM 
model is trained for 5 epochs using ADAM optimizer with learning rate lr = 0.001 and batch size 
of 128. 
 
The residue-level features, extracted from the final LSTM layer's hidden states,  E7F, are 
combined together with 1-hot representation of sequences, X, through learnable non-linear 
mapping: 

E&GHIJ = KLAM(E7FN7F + 2NP + Q) 
 
where E&GHIJ is the final residue-level feature representation passed to the fist GCN layer, 
E(R) = E&GHIJ (see the equation below). We refer to this stage of our method as a feature 
extraction stage. The parameters, N7F	,NPand b are trained together with the parameters of the 
GCN. All the parameters of the LSTM LM are frozen during the training. We choose this 
strategy because it more efficient (i.e., instead of fine tuning the huge number of the LSTM-LM 
parameters together with GCN parameters, we only tune, N7F	,NPand b parameters while 
keeping the parameters of the LSTM-LM fixed).  
 
 
 
Graph Convolutional Network 

 
Graph Convolutional Networks (GCNs) have proven to be powerful methods for extracting 
features from data that are naturally represented as one or more graphs [14]. Here we experiment 
with the notion that GCN are a suitable method for extracting features from proteins by taking 
into account their graph-based structure of amino acids represented by contact maps.  We 
propose our model based on the work of Kipf & Welling [15].  A protein graph can be 
represented by an adjacency matrix (also termed contact map), S ∈ ℝU×U, encoding connections 
between its L residues, and a residue-level feature matrix, 2 ∈ ℝU×V. 
 
We explore different residue-level feature representations including the one-hot encoding 
representation of residues as in the CNN (c=26), LSTM language model (c=512, i.e., the output 
of the LSTM layers), and no sequence features (to be able to run GCN, in this case, feature 
matrix is substituted with an diagonal identity matrix, i.e., 2 = WU. 
 

 
1 |GO|, |EC| - denotes the number of GO term, EC numbers in the set. 
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The graph convolution takes both adjacency matrix, S, and residue-level embeddings from the 
previous layer, E(X) ∈ ℝU×VX and outputs the residue-level embeddings in the next layer, E(XYZ) ∈
ℝU×VX[Z: 
 

E\Y5 = $"(S,E\) 
 
where E(R) = E&GHIJ, and cl and cl+1 are residue embedding dimensions for layers l and l+1, 
respectively. Concretely, we use the formulation of Kipf & Welling [15]: 
 

$"(S,E\) = KLAM ]_̂`
5
.S_ _̂`

5
.E(\)N(\)a	(1) 

 
where S_ = S + W7 is the adjacency matrix with added self-connections represented by the 
identity matrix W7 ∈ ℝ7×7, _̂  is the diagonal degree matrix with entries _̂ && = ∑ S_&c

7
cd5  and 

N(\) ∈ ℝ@e×@e[f is a trainable weight matrix for layer l+1.  
 
To normalize residue features after each convolutional layer the adjacency matrix is first 
symmetrically normalized, hence the term _̂`

f
gS_ _̂`

f
g.  Equation (1) updates features of each 

residue by a weighted sum of features of the residue in its one-hop neighborhood (adding self-
connections ensures that the residue's own features are also included in the sum).  
 
Given that we are classifying individual protein graphs with different number of residues, we use 
several layers, Nl=3, of graph convolutions. The final protein representation is obtained by first 
concatenating features from all layers into a single feature matrix, i.e., E = hE(5) …E(ie)j ∈

ℝ7×∑ @e
k
elf  and then by performing a global pooling layer after which we obtain a fixed vector 

representation of a protein structure, mHnn\ ∈ ℝ∑ @e
k
elf . The global pooling is obtained by a sum 

operator over L residues: 
 

mHnn\ = ∑ E&:
7
&d5  

 
 

We then use a fully connected layer with ReLU activation function for computing hidden 
representation from the pooled representation. This is then followed by a fully connected layer 
which used for mapping the hidden representation from the previous layer to a |GO| x 2 output; 
that is, two activations for ach GO term. These activations are transformed by a softmax 
activation outputting the positive and negative probability for each GO term/EC number; (i.e., 
the final layer outputs probability vector pq of dimension |GO| x 2 (|EC| x 2 for EC numbers) for 
predicting positive and negative probabilities of GO terms (EC numbers).   
 
 
Model training and hyperparameters 

 
To account for imbalanced label problem, both CNN and GCN are trained to minimize weighted 
binary cross-entropy cost function that gives higher weights to GO term with fewer training 
examples: 
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ℒ(s) = −
1

t
uuuvcw&cx log|w}&cx~

.

xd5

|ÄÅ|

cd5

i

&d5

 

 
where s is the set of all parameters in all layers to be learned; vc =

i

iÇ
[	is class weight for 

function j, with tcY being the number of positive examples associated with function j; N is the 
total number of samples and |GO| is the total number of functions (i.e., GO terms); w&cx is the 
true binary indicator for sample i and function j (i.e., w&c5 = 1, w&c. = 0,	if sample i is annotated 
with function j) and w}&c5 is the predicted probability that sample i is annotated with function j. In 
the inference phase, we say we predict GO terms/ EC numbers if the positive probability is > 0.5. 
 
All hyperparameters are determined through grid search based on the model's performance on 
the validation set. The validation set is comprised of ~10% randomly chosen samples from the 
training set. To avoid overfitting, we use early stopping with patience=5 (i.e., we stop training if 
validation loss does not improve in 5 epochs). We use ADAM optimizer [16] with learning rate 
lr = 0.0001, É5= 0.95 and É.= 0.95 and batch size of 64. The default number of epochs is 200. 
Both GCN and CNN are implemented to deal with variable length sequences, by performing 
sequence/contact map padding. The entire method is implemented using Keras deep learning 
library. 	
 
 
Training and test set construction 

 
We partition the non-redundant set composed of both PDB and SWISS-MODEL sequences into 
train, validation and test sets, with ratio 80%/10%/10% such that for each function we have at 
least 20 training examples with direct experimental evidence (GO evidence code EXP) validated 
annotations (15 SWISS-MODEL and 5 PDB) and at least 2 test examples (1 SWISS-MODEL 
and 1 PDB). The test set is chosen to be no more than 40% sequence identical to the training set. 
We use cd-hit tool [17] to split the sequences into training, validation and test sets. We perform 
experiments with different thresholds. In all our experiments we trained the model using both 
EXP and IEA GO annotations (see Supplementary Fig. 2), but the test set, composed of only 
experimentally annotated PDB & SWISS-MODEL chains (EXP), is always kept fixed. See 
Table S1.  
 
We examine the performance of our method when trained only on PDB, SWISS-MODEL and 
both PDB & SWISS-MODEL contact maps; we also investigate training on only EXP and both 
EXP and IEA function labels (see Supplementary Fig. 2). In all our experiments the final 
results are averaged over 100 bootstraps of the test set.  
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Temporal holdout validation 

 
 
We also evaluate the performance of our method by using temporal holdout validation approach 
similar to CAFA [18]. The temporal holdout approach ensures a more “realistic” scenario where 
function predictions [19] are evaluated based on recent experimental annotations. We used GO 
annotations retrieved from SIFTS [5] from two time points, version 2019/06/18 (we refer to this 
as SIFTS-2019) and version 2020/01/04 (we refer to this as SIFTS-2020), to construct our 
temporal holdout test set. We form the test set from the PDB chains that did not have any 
annotations in SIFTS-2019 but gained annotations in SIFTS-2020. To increase the GO term 
coverage, we focus on the PDB chains with both “EXP” and “IEA” evidence codes. We obtain 
4,072 PDB chains (out of which 3,115 have sequences < 1200 residues). We use our model 
(trained on SIFTS-2019 GO annotations) to predict functions of these newly annotated PDB 
chains. We evaluated our predictions against the annotations from SIFTS-2020.  
 
The results for MF-, BP- and CC-GO terms are show in Supplementary Fig. S17. We also show 
a few examples of the PDB chains with correctly predicted MF-GO terms by our method, for 
which both BLAST and DeepGO are not able to make any significant predictions.  
 
 
Residue-level annotations 

 
 
We use a method based on Gradient-weighted Class Activation Map (grad-CAM) [20] to 
localize function predictions on a protein structure (i.e., to find residues with highest contribution 
to a specific function). Grad-CAM is a class-discriminative localization technique that provides 
visual explanations for predictions made by CNN-based models.  Motivated by its success in 
image analysis, we use grad-CAM to identify important, function-specific residues in a protein 
structure.  
 
In a grad-CAM approach, we first compute the contribution of each filter, k, in the last 
convolutional layer to the prediction of function label l by taking derivative of the output of the 
model for function l, yl, with respect to feature map Ñx ∈ ℝ7 over the whole sequence of length 
L: 

 

vx
\ =u

Öw\

ÖÜx,&

7

&d5

 

 
where vx\  represent the importance of feature map k for predicting function l, obtained by 
summing the contributions from each individual residue. Finally, we obtain the function-specific 
heat-map in a residue space by making the weighted sum over all feature maps in the last 
convolutional layer: 
 

"áà\[â] = KLAM(uvx
\Üx,&

x

) 
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where ReLU function ensures that only features with positive influence on the functional label 
are preserved; "áà\[â] - indicates the relative importance of residue i to function l. The 
advantage of grad-CAM is that it does not require re-training or changes in the architecture of the 
model which makes is computationally efficient and directly applicable to our models. See 
Supplementary Figs. 8-16 representing grad-CAM mapped onto 3D structure of PDB chains 
with known ligand-binding information.  
 
 
Data availability 

 

Our training, validation and test data splits are available from: 
https://users.flatironinstitute.org/~vgligorijevic/DeepFRI_data/ 
 
Code availability 

  
Source code for training the DeepFRI model, together with neural network weights are available 
for research and non-commercial use at: https://github.com/flatironinstitute/DeepFRI 
Web service of our method is available at: https://beta.deepfri.flatironinstitute.org/ 
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