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Abstract 
As we navigate the world, we use learned representations of relational structures to explore and 
reach goals. Studies of how relational knowledge enables inference and planning are typically 
conducted in controlled small-scale settings. It remains unclear, however, how people use 
stored knowledge in continuously unfolding navigation, e.g., walking long distances in a city. We 
hypothesized that predictive representations, organized at multiple scales along 
posterior-anterior prefrontal and hippocampal hierarchies, guide naturalistic navigation.  
We conducted model-based representational similarity analyses of neuroimaging data 
measured during navigation of realistically long paths in virtual reality. We tested the pattern 
similarity of each point–along each path–to a weighted sum of its successor points within 
different predictive horizons. We found that anterior PFC showed the largest predictive horizons, 
posterior hippocampus the smallest, with the anterior hippocampus and orbitofrontal regions in 
between. Our findings offer novel insights into how cognitive maps support hierarchical planning 
at multiple scales. 
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Introduction 
 
As we navigate the world, our brains construct representations in memory. Relational structures 
are updated using these representations during generalization and inference. This relational 
knowledge is later retrieved to make decisions, plan, and guide behavi or (Behrens et al., 2018; 
Momennejad, 2020). This idea has been captured by computational models that account for 
planning in human behavior (Momennejad et al., 2017), relational kno wledge in human fMRI 
(Garvert et al., 2017), and place and grid fields in rodent electrophysiology (Stachenfeld et al., 
2017). This converging body of evidence suggests that the brain encodes predictive maps of 
relational structures, which can be used for fast and flexible planning. It has been suggested 
that these predictive representations are organized in a multi-scale fashion, each scale of 
representation corresponding to different gradients in the neural representational hierarchy, e.g., 
in the hippocampus (Momennejad & Howard, 2018; Stachenfeld et al., 2017) and the prefrontal 
cortex (Christoff & Gabrieli, 2000; Koechlin & Hyafil, 2007; Momennejad & Haynes, 2013). Here, 
we tested the hypothesis that predictive representations are organized along prefrontal and 
hippocampal hierarchies at multiple scales, consistent with predictions made by our 
computational models. We predicted that representations at multiple scales would be active 
simultaneously, and supported by different brain regions. Such hierarchical structure in the 
representations of states and trajectories could also enable the extraction of generalized 
schemas, or structured relationships at higher levels of abstraction that can be unfolded at lower 
levels when necessary (Figure 1A). 
 
It is typically assumed that testing computational models is only possible in small-scale, highly 
controlled experiments. Here, we used model-based analysis of fMRI data to test predictions of 
a reinforcement learning (RL) model (Momennejad & Howard, 2018 ) on brain signals collected 
during virtual navigation of realistic distances. We show that even though participants had 
learned these paths in their real lives, representations in their prefrontal and hippocampal 
hierarchies followed predicted representations learned by our hypothesized RL model. 
Previously we had shown that the representations learned by these models capture human 
behavior in planning tasks (Momennejad et al. 2017). Here we test the hypothesis that simple 
principles of representation learning from our computational models may predict the 
representations in human brains for navigation in real life and everyday settings. We think this 
contribution opens up a new window into building and testing neurally plausible models of 
everyday cognition. Such models need to capture both behavioral and neural responses of 
humans performing the given task. Our approach offers a theory-rich perspective on testing 
models of multi-scale predictive representations in the hippocampus and the PFC using fMRI 
representational similarity analysis. 
 
Multi-scale representations of space are supported by electrophysiological and neuroimaging 
evidence from rodents and humans. Hippocampal place cells fire within spatial fields of different 
sizes, and entorhinal grid fields tile the space at various levels of granularity (Brun et al., 2008; 
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Kjelstrup et al., 2008; Poppenk et al., 2013; Strange et al., 2014). Evidence from rodent 
electrophysiology suggests that the average place field size increases along the dorsoventral 
axis of the rodent hippocampus, with more ventral regions encoding space at a larger spatial 
scale and in a more overlapping manner (Contreras et al., 2018; Jung et al., 1994; Strange et 
al., 2014). Furthermore, human fMRI evidence suggests that the hippocampal posterior-anterior 
axis (homologous to the rodent dorsal-ventral axis) is also involved in finer- to coarser-grained 
spatial representations (Evensmoen et al., 2013), representing memories from shorter to longer 
time-scales (Nielson, Smith, Sreekumar, Dennis, & Sederberg, 2015), and inference from lower 
to higher levels of abstraction (Collin et al., 2015). 
 
The larger scale representations in the anterior hippocampus are proposed to support 
goal-directed search (Ruediger et al., 2012), the integration of spatial and non-spatial states that 
are further apart (Collin et al., 2015), and longer time h orizons (Brunec, Bellana et al., 2018; 
Nielson, Smith, Sreekumar, Dennis, & Sederberg, 2015). The representations in the posterior 
hippocampus are more myopic and might support smaller predictive scales, such as smaller 
place fields in spatial navigation (Strange et al., 2014) and more pattern separation in memory 
studies (Duncan & Schlichting, 2018; Leutgeb et al., 2007; Lohnas et al., 2018; Schlichting et 
al., 2015). Finally, recent computational models provide further support for multi-scale predictive 
cognitive maps. These models account for why place fields are skewed toward goal locations 
(Stachenfeld et al., 2017) and show that multi-scale predictive maps can capture distance to 
goal and reconstruct predicted sequences (Momennejad & Howard, 2018). Taking these results 
into account, our first hypothesis was that in virtual navigation with realistically long distances, 
the anterior hippocampus would display representational similarity to farther predictive horizons 
compared to the posterior hippocampus. 
 
Another candidate region for processing hierarchical representations during planning is the 
prefrontal cortex (Badre & D’Esposito, 2007). Broadly, it has been proposed that the prefrontal 
cortex (PFC) is involved in navigation when it is active and requires planning (Behrens et al., 
2018; Epstein et al., 2017; Spiers & Gilbert, 2015), in consideration of the number of paths to 
goal and alternative paths (Javadi et al., 2017), in reversal and detours (Kringelbach & Rolls, 
2004; Spiers & Gilbert, 2015), and in retrospective revaluation mediated by offline replay 
(Momennejad, Otto, Daw, & Norman, 2018). Neuroimaging evidence suggests a prefrontal 
hierarchy in which more anterior PFC regions support relational reasoning (Christoff & Gabrieli, 
2000; Christoff, Keramatian, Gordon, Smith, & Mädler, 2009), abstraction (Bunge, Kahn, Wallis, 
Miller, & Wagner, 2003; Christoff et al., 2001), and prospective memory (Gilbert, 2011; Haynes 
& Rees, 2006; Momennejad & Haynes, 2012, 2013). Bringing these findings together, our 
second hypothesis was that anterior prefrontal cortex encodes predictive maps with farther 
predictive horizons, i.e., information about states further away, while more posterior prefrontal 
regions maintain predictive maps that display representational similarity to more myopic 
predictive horizons.  
 
Importantly, we expected the scales of anterior prefrontal cortex to exceed the highest predictive 
horizons of the hippocampus (Figure 1B). This is because PFC cells broadly have longer delays 
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enabling information to linger across longer time frames–as in working memory–and slower 
learning rates. The anterior PFC is the largest cytoarchitectonic region of the human prefrontal 
cortex, and a region in which we have the most difference with evolutionary ancestors (Ramnani 
& Owen, 2004). In contrast, the hippocampus has been suggested to be involved in rapid 
statistical learning at a faster rate (Schapiro et al., 2017) and is less heterogeneous across 
mammal species (Strange et al., 2014). It is important to note that the predictive horizon 
discussed here need not be merely temporal, or spatial, but can involve states that are far apart 
from one another in graph structures (Javadi et al., 2017) of relational knowledge acquired by 
statistical learning (Schapiro et al., 2013) and conceptual state spaces (Constantinescu et al., 
2016). Furthermore, our predictions do not rely on the claim that supporting longer horizons is 
the only function of the PFC and remain agnostic to the generative mechanisms that may 
reinstate these representations. 
 
Here we tested the hypothesis that hippocampal-prefrontal hierarchies simultaneously maintain 
multiple representations of the same underlying relational structures at different predictive 
horizons. We used representational similarity analysis of an existing dataset with functional 
magnetic resonance imaging (fMRI) data. We reanalyzed fMRI data from a previously published 
study of realistic virtual navigation of Goal-directed and novel routes (Brunec, Bellana et al., 
2018). In this paradigm, participants underwent functional neuroimaging while they navigated 
Goal-directed and GPS-guided routes in a virtual version of the city they lived in (Toronto). 
Virtual Toronto was built using images from Google Street View. In the Goal-directed condition, 
participants navigated routes that they regularly traversed in their everyday lives. In the 
GPS-guided (GPS) condition, they were guided along unfamiliar routes by following a dynamic 
arrow.  
 
This virtual navigation setup had important advantages for our purposes. First, it rendered the 
participants’ experience as realistic as possible within the constraints of fMRI scanning. More 
importantly, it allowed us to compare pattern similarity for long horizons with realistically long 
distances in daily navigation (at the scale of kilometers). Finally, the experimental design 
benefited from participants’ real world familiarity with certain paths. This allowed us to compare 
the scales or predictive horizons of well-learnt long routes vs. novel routes. In order to navigate 
GPS-guided routes, participants used the same control buttons as they did along Goal-directed 
routes. However, in the GPS condition they did not know the goal they were navigating towards 
(Figure 1C).  
 
To test our hypotheses about multi-scale predictive representations along hippocampal and 
PFC hierarchies, we used two main representational similarity analyses (Figure 1D). To 
maximally benefit from the temporal resolution afforded by fMRI, paths were discretized into 
steps: each step corresponded to a TR, or repetition time, during which an entire brain volume 
was measured. In the first analysis, we computed the correlation between every given step (TR) 
and the average of all future steps (TRs) within a particular horizon (e.g., mean of future 10 TRs 
following the current TR). In the second analysis, following the equations for predictive or 
successor representations (Dayan, 1993; Momennejad et al., 2017), we computed the 
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correlation between every given step and the weighted sum of future steps within a horizon. The 
pattern across voxels at each future TR was weighed exponentially using a discount parameter 
(i.e., gamma value, ɣ) between 0 and 1, and the value of the discount parameter correspo nded 
to the scale of abstraction, corresponding to different levels of a representational hierarchy 
(Momennejad & Howard, 2018). Consistent with our prediction, we found that on Goal-directed, 
compared to GPS paths, the anterior hippocampus and anterior prefrontal regions maintained 
predictive maps with longer horizons (i.e. displayed similarity to more distal states), while the 
posterior hippocampus cached predictive maps with smaller scales (i.e. displayed similarity to 
more proximal states).  

Methods  

Subjects 

Twenty-two healthy right-handed volunteers were recruited. One participant was excluded 
because of excessive difficulty with the task (i.e., repeatedly getting lost). Two additional 
participants were excluded due to incomplete data or technical issues. Exclusions resulted in 19 
participants who completed the study (9 males; mean age 22.58 years, range 19-30 years).  All 
participants had lived in Toronto for at least 2 years (M = 10.45, SE = 1.81). All participants 
were free of psychiatric and neurological conditions. All participants had normal or 
corrected-to-normal vision and otherwise met the criteria for participation in fMRI studies. 
Informed consent was obtained from all participants in accordance with Rotman Research 
Institute at Baycrest’s ethical guidelines. Participants received monetary compensation upon 
completion of the study. 

Experimental design and paradigm 
 
We used a realistic navigation software drawing on 360° panoramic images from Google Street 
View. This allowed participants to walk through a virtual Toronto from a first-person, street-level 
perspective. The navigation software was written in MATLAB v7.5.0.342. Navigation was 
controlled using three buttons: left, right, and forward. A “done” button allowed participants to 
indicate that they had completed a route. The task was projected on a screen in the bore of the 
scanner viewed by the participants through a mirror mounted inside of the head coil. 
Participants navigated in 4 conditions, and navigated 16 routes in total (4 in each condition, in a 
randomized order). The details of the experimental design have been reported in a previously 
published study (Brunec, Bellana, et al., 2018).  
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Data from two conditions of interest were analyzed in the present manuscript: Goal-directed and 
GPS/arrow-following routes. The routes were constructed prior to the day of scanning: 
participants built routes with researcher assistance, using a computer program which showed 
overhead maps of Toronto. Additionally, sets of routes in areas of Toronto with which 
participants were generally unfamiliar were created. Four of these routes were randomly 
assigned to each participant to be used in the baseline (GPS) condition. In the scanner, 
participants were provided with Goal-directed route destinations and asked to navigate towards 
the goal along the most Goal-directed/comfortable route. GPS trials involved no goal-directed 
navigation; instead, participants followed a dynamic arrow (Figure 1A). We only analyzed routes 
where participants successfully reached the goal (MGoal-directed = 3.37, MGPS = 3.16 routes). 
Comparing these conditions enabled us to contrast navigational signals associated with 
goal-directed navigation with matched motor control and optic flow, but no goal. 
 

fMRI acquisition and preprocessing 

Participants were scanned with a 3T Siemens MRI scanner at the Rotman Research Institute at 
Baycrest. A high-resolution 3D MPRAGE T1-weighted pulse sequence image (160 axial slices, 
1 mm thick, FOV = 256 mm) was first obtained to register functional maps against brain 
anatomy. Functional T2*-weighted images were acquired using echo-planar imaging (30 axial 
slices, 5 mm thick, TR = 2000 ms, TE = 30 ms, flip angle = 70 degrees, FOV = 200 mm). The 
native EPI resolution was 64 x 64 with a voxel size of 3.5mm x 3.5mm x 5.0mm. Images were 
first corrected for physiological motion using the Analysis of Functional NeuroImages (Cox, 
1996).  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 14, 2020. ; https://doi.org/10.1101/786434doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?1uAr6s
https://www.zotero.org/google-docs/?1uAr6s
https://doi.org/10.1101/786434
http://creativecommons.org/licenses/by-nd/4.0/


7 

 
Figure 1. Schematic of the hypothesis, task conditions, and analytic methods. A) Multiple 
scales of representation along a navigated route are activated simultaneously. Longer temporal 
horizons correspond to longer-range planning and greater scales of navigational representations. 
B) Predictive representations in the hippocampus and prefrontal cortex should proceed along a 
posterior-anterior gradient within the hippocampus and prefrontal cortex. C) Participants used the 
same keys to navigate Goal-directed routes and to follow the GPS dynamic arrow, but only 
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Goal-directed routes required goal-directed navigation. D) Analytic approach. The voxelwise 
pattern at each timepoint was correlated with the gamma-weighted sum of all future states (for 
gamma values of .1, .6, .8 and .9). With higher gamma values, the weighted future states remain 
above zero further into the future. Not displayed: We also computed similarity for each TR to goal, 
and similarity of each TR to mean of future TRs (equally weighted) within a given horizon (e.g. 10 
TRs).  
 

All subsequent preprocessing steps were conducted using the statistical parametric mapping 
software SPM12 (Penny et al., 2011). Preprocessing involved slice timing correction, spatial 
realignment and co-registration with a resampled voxel size of 3 mm isotropic. No spatial 
smoothing was applied. The mean time-courses from participant-specific white matter and 
cerebrospinal fluid masks were regressed out of the functional images, alongside estimates of 
the 6 rigid body motion parameters from each EPI run. To further correct for the effects of 
motion which may persist despite standard processing (Power et al., 2012), an additional motion 
scrubbing procedure was added to the end of our preprocessing pipeline (Campbell et al., 
2013). Using a conservative multivariate technique, time points that were outliers in both the six 
rigid-body motion parameter estimates and BOLD signal were removed, and outlying BOLD 
signal was replaced by interpolating across neighbouring data points. Motion scrubbing further 
minimizes any effects of motion-induced spikes on the BOLD signal, over and beyond standard 
motion regression, without leaving sharp discontinuities due to the removal of outlier volumes. 

Analysis 

Region of Interest analysis  
 
We investigated the predictive similarity of each state to future representations in a set of 
regions of interest (ROIs). To do so, we first extracted voxelwise time courses across each 
navigated route and z-scored the values within each voxel. We then ran two predictive similarity 
analyses. First, we measured the correlation of each timepoint (TR) with the mean of successor 
TRs within a given horizon (e.g., correlation between TR at time t, and the mean of 10 following 
TRs). Second, we correlated the voxelwise pattern at each timepoint (TR) within each navigated 
route with a weighted sum of future TRs. The patterns at future TRs were weighted by different 
constant values (ɣ), corresponding to different predictive spatial scales. The specified ɣ values 
were .1, .6, .8, and .9 (Fig. 1D). With increasing ɣ values, timepoints further in the future remain 
weighted above zero.  
 
As the average distance traversed within each TR was 25 meters, a ɣ value of .1 meant that 
only each subsequent step (1 TR away) was weighted above zero, and steps farther in the 
distance contributed little-to-no weight to the sum of future representations. Note that we 
computed the predictive horizon using the unit of fMRI measurement, i.e., a TR of 2 seconds. 
Hence, depending on the speed of navigation, which was matched across conditions (Fig. 2C), 
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each step could cover a varying range of spatial distances (in meters) within and across 
subjects. Here we used the average distance traversed within a given horizon. For a ɣ value of 
.6, approximately 7 steps in the future were weighted above zero, corresponding to roughly 175 
meters (Fig. 6C). For a value of .8, approximately 15 steps or 375 m were weighted above-zero, 
while this was the case for approximately 32 steps or 800 m for a ɣ value of .9 (Fig. 6C).  
 
The TR-by-TR correlations within each route were averaged to derive the representation of 
future states on each trial. We first applied this analysis to a priori ROIs, including bilateral 
anterior and posterior hippocampi (aHPC, pHPC) and anterior and medial prefrontal cortical 
ROIs (antPFC, mPFC). As described in Brunec, Bellana et al. (2018), we divided the 
hippocampus into 6 anterior-posterior segments. We also examined the same measure in the 
mPFC and antPFC. The anterior PFC and medial PFC ROIs were defined as spheres 
surrounding peak voxels identified in preliminary findings from an fMRI adaptation of a known 
behavioral study of successor representations (Momennejad et al., 2017) reported in (Russek et 
al., 2018). The spheres were centered on an anterior prefrontal voxel (MNI coordinates x = 8, y 
= 68, z = 8) and a medial prefrontal voxel (MNI coordinates z = -22, y =  56, z = -10). These 
analyses were performed for each of the ROIs, as well as a searchlight within the prefrontal 
cortex.  

Prefrontal cortex searchlight analysis 
 
In order to identify any gradients of predictive representation in the PFC, a custom searchlight 
analysis was performed within a prefrontal cortex mask (created in WFU PickAtlas). The 
analysis was restricted to grey matter voxels, and a spherical ROI with a 6mm radius was used 
to iteratively correlate each TR with the weighted sum of future states for voxels within each 
searchlight. The searchlight analysis was performed for four different values of ɣ: .1, .6., .8, and 
.9. The single-subject correlation maps were then compared against zero (AFNI 3dttest++). The 
output z-score maps were thresholded at values corresponding to 5% false positive rates 
established by a cluster-size permutation simulation (AFNI ClustSim).  
 

Model-based analysis: The weighted sum of successor states 
 
This section addresses the reasoning behind testing the successor representation hypothesis in 
terms of pattern similarity between a given state and the weighted sum of its successor states 
(Figure 1). Consider an environment that consists of n states, some of which lead to one 
another. Consider T to be the n x n matrix of transition probabilities for one-step transitions 
among these n states. In a deterministic environment, when there is a transition from a given 
state S i to state S j, we assign 1 in the ith row and jth column of T (Supplementary Figure 1, left). 
The successor representation under a random policy can be then computed from T as follows 
(for comparison to policy-dependent SR see Momennejad, 2020):  
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-11) M I γT )( = ( −   
 
 
Equation (2) expands equation 1 for computing the successor representation from state s1 to the 
goal state sg from T, which is one cell in the SR matrix. Recall that T denotes the matrix of 
one-step transition probabilities among adjacent states, while SR contains multi-step 
dependencies among non-adjacent states. Here the parameter t refers to the number of steps 
(or the distance) between states. This parameter need not denote temporal steps, and can 
denote any type of sequential relationship among states.  
 

2) M (s , s ) γ  T (s , s ) ( 1  g =  ∑
tg

t=t1
 t

 

t1  t
 

 
Assume the starting state is s1 and the goal state is s5 (as in the Markov Decision Process 
(MDP) in Supplementary Figure 1). Expanding equation 2, the successor representation from 
state 1 to 5 is the 5th element in the 1st row of the successor representation (Equation 3), and 
corresponds to the expected discounted number of times we expect to visit state 5, if we start 
from state 1: 
 
3) M (s , s ) γ  T (s , s ) γ  T (s , s ) ( 1  5 =   

1  3 +  2
3  5

 

 
Note that equations 2 and 3 only capture 1 cell or element in the SR row associated with state 
s1. In the successor representation framework, the sth row of the SR matrix (the M matrix in 
Dayan 1993’s equations) is the representation we expect to observe when the agent is in state 
s. It denotes how often we expect to visit the current state’s successors on average and given a 
discount. A given row of the successor representation includes the present state, and the 
weighted representation of successor states. Thus, at the moment when an agent is in state s, 
the row activation of successor states predicts the simultaneous activation of gamma-weighted 
representations. We take this simultaneous row activation as the  sum of all activated weighted 
states in the row (Equation 4).  
 

4) Rep(s ) γ  Rep(s )( i = ∑
n

i=t
 t

t
 

 
In short, the 1st row of the SR matrix  corresponds to the representation that is simultaneously 
activated when the agent is in state 1, which is the sum of M(s1, s 2), M (s1, s 3) , M (s1, s 4) , M (s1, 
s5). Since we only have a goal-directed trajectory, this can be the weighted sum of 
representations of successor states (Equation 4). Each successor state is weighted by the 
discount factor (gamma, ɣ) to the power of its distance (here in the number of states) to the 
starting state. A simple prediction following this weighted sum view is that being in a given state 
along the trajectory activates the row associated with that state and hence the weighted sum of 
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successor states on that trajectory. This predicts neural similarity between the current state and 
the weighted sum of successor state representations.  
 
Note that we did not have access to pretraining representations of the stimuli, e.g., the 
un-correlated representation of each location on the trajectory prior to being associated with 
specific paths (through lived experience in Toronto). Since we do not have these pretraining 
representations this method offers an approximation of the expected similarity structure. 
Therefore, as a general rule, we make the following prediction. In a goal-directed trajectory, and 
assuming the agent stays on path, we can assume that the transition probability between two 
adjacent states, e.g., T(si, s j), equals 1 (i.e., we have a deterministic MDP). We predict that 
Equation 3 approximates the pattern similarity of the TR in the ith state to the weighted sum of 
TRs that are its successor states. Note that the predictive horizon is the successor distance 
within which the discount parameter  is above zero (Figure 6). We hypothesize that differentγ  
parts of the brain will show pattern similarity contingent with different values of the discount 
parameter , and thus different predictive horizons.0 < γ < 1  
 
This is a first step towards testing the multi-scale predictive representation hypothesis in a 
realistic navigation setting. To improve prediction accuracy, future studies are needed that 
incorporate diverse paths through each state, to each goal, and to different goals. These studies 
should include a larger graph or MDP of the environment with different starting and goal 
locations. In order to study map-dependent and path-dependent changes in the representation 
of each location, a study design is needed where the participants learn a new environment. 
Such studies would enable us to compare pre-training and post-training neural correlations 
among the states or locations in the environment. 

Results 
 
Participants navigated a set of distances they regularly traversed in everyday life (MGoal-directed = 
3.5, MGPS = 2.5 km). After completing each route, participants rated how familiar each route felt, 
and how difficult they found it to navigate on a scale from 1-9 (where 1 would correspond to 
least familiar and least difficult, respectively). As expected, the average reported familiarity was 
higher in the Goal-directed condition (M = 7.0, SD = 1.44) than in the GPS condition (M = 3.0, 
SD = .51; t(18) = -10.53, p < .001; Figure 2A). The subjective difficulty was similar in the 
Goal-directed (M = 6.98, SD = 1.43) and GPS (M = 7.2, SD = 1.08) conditions, suggesting that 
all navigated routes were perceived to be similarly undemanding (t(18) = .827, p = .419; Figure 
2B). There was also no difference in movement speed across the Goal-directed (M = 16.21, SD 
= 5.04) and GPS conditions (M = 17.02, SD = 1.48; t(18) = .719, p = .481; Figure 2C). GPS 
routes did, however, include more turns (M = 7.08, SD = 1.39) than Goal-directed routes (M = 
5.86, SD = 1.78; t(18) = 3.04, p = .007; Figure 2D). This was the case despite the GPS routes 
being shorter than Goal-directed routes, on average (t(18) = -4.31, p < .001; Figure 2E).  
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Figure 2. Descriptive statistics for navigated distances in Goal-directed and GPS 
conditions. A) The Goal-directed routes were rated as more familiar by participants than GPS 
routes. Goal-directed and GPS routes were matched in B) ease of navigation and C) speed of 
travel. D) GPS routes included more turns, on average, than Goal-directed routes, but E) the 
Goal-directed routes tended to be longer than GPS routes.  
 

Hippocampal and prefrontal gradients of near-future predictive 
representations 
 
To investigate predictive representations along the hippocampal longitudinal axis and within the 
PFC, we first performed an analysis investigating the similarity between each timepoint (TR) and 
the average of future 1, 2, 3, 4, 5, or 10 TRs. As described in Brunec, Bellana et al. (2018), we 
divided the hippocampus into 6 anterior-posterior segments. We also examined the same 
measure in the mPFC and antPFC.  
 
We first ran linear mixed effects models on these similarity measures in bilateral hippocampi for 
each of the routes travelled within each condition, including the average Fisher’s z-transformed 
similarity on each route as the dependent variable, and axial segment (1-6), number of TRs 
(1-5), and hemisphere (L, R) as fixed effects. Participants were included as a random effect. 
The random intercept mixed effects models were implemented in R (R Core Team) using the 
packages lme4 (Bates, Maechler, Bolker, & Walker, 2015) and lmerTest (Kuznetsova et al., 
2017) to assess significance. This produced a Type III ANOVA table with Satterthwaite’s 
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method of approximating degrees of freedom. Where these included decimal numbers, they 
were rounded to the nearest integer. The similarity values for 10 TRs ahead were not entered in 
the present model due to the non-linear shift from 5 to 10 TR, but they are plotted in Figure 3. 
 
We found a significant effect of axial segment (F(5, 6796) = 45.38, p < .001), driven by greater 
future representations in the anterior segments compared to posterior ones. There was also a 
main effect of condition (F(1, 6796) = 1182.35, p < .001), reflecting generally greater values in 
the Goal-directed (Figure 3A), compared to the GPS condition (Figure 3B), and a significant 
effect of the future horizon (F(1, 6796) = 633.44, p < .001), reflecting higher similarity values for 
states closer to the present. There was a main effect of hemisphere, reflecting higher values in 
the right compared to the left hemisphere (F(1, 6796) = 6.97, p = .008). There were significant 
interactions between axial segment and condition (F(5, 6796) = 6.97, p < .001), axial segment 
and future horizon (F(20, 6796) = 2.13, p = .002), and condition and future horizon (F(4, 6796) = 
13.16, p < .001). The latter interaction is of particular interest as it suggests that the decline 
across different temporal horizons was greater in the GPS compared to the Goal-directed 
condition. There was no significant three-way interaction (F < 1).  
 
We also ran the same models separately for the anterior and mPFC. In the antPFC, there was a 
significant main effect of condition (F(1, 1222) = 363.76, p < .001), as well as a main effect of 
future horizon (F(4, 1222) = 48.36, p < .001), but no condition by future horizon interaction (F(4, 
1222) = 1.18, p = .319). In the mPFC, there was a significant effect of condition (F(1, 1222) = 
218.77, p < .001) and a significant effect of future horizon (F(4, 1222) = 114.82, p < .001), but 
again no condition by future horizon interaction (F(4, 1222) = 1.82, p = .122). 
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Figure 3. Similarity of each TR to mean of future TRs (equally weighted). Average 
correlation between each timepoint and the average of future 1/2/3/4/5 or 10 timepoints in A) the 
Goal-directed condition and B) the GPS condition. As the average distance traversed within each 
TR was 25 m (meters).  
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Comparing the representational similarity in the Goal-directed and GPS conditions against zero, 
we found that the anterior PFC displayed above-zero similarity for every predictive horizon 
including 10 steps ahead, in the Goal-directed condition (all p-values < .001), but only up to 5 
steps in the GPS condition (all p-values for 1-5 steps < .001). In contrast, the medial PFC only 
displayed above-zero similarity up to 5 steps in the future on Goal-directed routes (p-values < 
.001) and three steps on GPS routes (p-values ≤ .002). The anterior-most hippocampal segment 
displayed above-zero similarity for up to 4 steps in the future (p-values ≤ .006) on Goal-directed 
routes and only one step on GPS routes (p < .001), while the posterior-most hippocampal 
segment displayed above-zero similarity for one step on Goal-directed routes (p < .001), and 
two steps on GPS routes (p-values ≤ .006). 

Model-based (weighted sum) predictive representations in ROIs 
 
To investigate the similarity between each time point and ɣ-weighted representations of future 
states, we again ran a series of linear mixed effects models following the logic described above, 
including each route within each of the conditions. The models included Fisher’s z-transformed 
representational similarity values as the dependent variable, with ɣ and condition as fixed 
effects and participant as a random effect. Ɣ was modelled as an ordinal variable. For the 
hippocampus, the reported statistics and plotted values apply to the right hippocampus, but 
there was no significant difference between the left and right hippocampi (all ps > .34). 
 
The first mixed effects model included all ROIs to determine whether the average correlation 
values differed across regions with different hypothesized future timescales. There was a 
significant main effect of ɣ, suggesting that all regions showed a decrease in correlation with 
increasing values of ɣ (F(2, 1448) = 322.14, p < .001), as well as a significant main effect of 
condition (F(1, 1452) = 309.46, p < .001), suggesting that correlations were generally greater in 
the Goal-directed, compared to the GPS condition (Figure 4A-B). There was a main effect of 
ROI (F(3, 1448) = 547.38, p < .001), confirming the prediction of strongest future 
representations in the antPFC, followed by mPFC, aHPC, and pHPC. There was also a 
significant interaction between ɣ and condition (F(2, 1448) = 7.49, p < .001), and a significant 
interaction between condition and ROI (F(3, 1448) = 10.13, p < .001).  
 
Follow-up mixed effects models were run for values within each ROI. The significance levels 
were established against a Bonferroni-adjusted value of ɑ = .0125 (as 4 ROIs were 
investigated). In the antPFC, there was a significant main effect of ɣ, with significantly higher 
correlations for lower values of gamma (F(2, 347) = 53.29, p < .001). There was also a 
significant effect of condition, with significant higher correlations in the Goal-directed than the 
GPS condition (F(1, 349) = 103.42, p < .001). There was no significant ɣ x condition interaction 
(F < 1).  
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In mPFC, there was again a significant main effect of ɣ (F(2, 350) = 106.39), as well as a main 
effect of condition (F(1, 352) = 83.19, p < .001) in the same direction as the antPFC. There was 
no significant ɣ x condition interaction (F(2, 350) = 3.44, p = .033).  
 
In the aHPC, there was a significant main effect of ɣ (F(2, 348) = 151.90, p < .001), a main 
effect of condition (F(1, 350) = 128.05, p < .001), as well as a ɣ x condition interaction (F(2, 348) 
= 4.89, p = .008). As in the mPFC, this interaction reflected a steeper slope across ɣ values in 
the GPS condition (-.16) than in the Goal-directed condition (-.12).  
In the pHPC, there was a significant main effect of ɣ (F(2, 349) = 218.38, p < .001), a main 
effect of condition (F(1, 351) = 87.99, p < .001), and a significant ɣ x condition interaction (F(2, 
349) = 3.81, p = .023), again reflecting a steeper slope in the GPS condition (-.17), compared to 
the Goal-directed condition (-.13).  
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Figure 4. Predictive similarity across temporal scales. Correlations between current 
timepoints and the ɣ-weighted sum of future states for different values of gamma, in the four 
specified ROIs in the A) Goal-directed and B) GPS conditions. ɣ=.1 only included 1-step (1 TR) 
away, ɣ=.6 reached approximately 6-7 steps in the future, corresponding to roughly 175 m, ɣ=.8, 
approximately 14 steps or 350 m ahead.  
 
To test for evidence of predictive representations, we tested these values against zero, with an 
adjusted value of ɑ = .002 (24 comparisons in total). At ɣ = .1, the correlations in all ROIs were 
significantly above zero in both conditions. At ɣ = .6, all correlations in the Goal-directed 
condition were significantly above zero, with the exception of pHPC. In the GPS condition, 
however, correlations in neither the aHPC nor the pHPC were significantly above zero. At ɣ = .8, 
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values in both antPFC and mPFC remained significantly above zero in the Goal-directed 
condition, but only antPFC remained above zero in the GPS condition. For this value of ɣ, the 
values in aHPC and pHPC were not significantly above zero in either condition, and were 
actually significantly below zero in the pHPC. This significant negative correlation could reflect 
the differentiation of neural patterns across time, potentially as a manner of separating 
experience into fine-grained units. 
 

Representational similarity during goal-directed navigation is related to 
travelled path distance 
 
If the hippocampus and PFC represent planning processes associated with the currently 
navigated route, these representations should be modulated by the route path distance. To test 
this, we included the path distance on each route as a factor in the model. Path distance was 
calculated as the summed change in longitude and latitude coordinates between each adjacent 
pair of TRs. To account for the contribution of time, we also regressed out the number of TRs on 
each route. The reported model fits thus account for the variability in the amount of time spent 
navigating. Here, we focused on the Goal-directed condition only, as we did not anticipate 
distance-related modulation in the GPS condition, where participants had no planned goal in 
mind. We excluded 9 Goal-directed routes from a total of 8 participants from this analysis as the 
recorded longitude and latitude information associated with their routes resulted in improbably 
long paths that diverged more than 1.5 km from the paths that the participants constructed 
ahead of the experiment. Including these paths, however, did not change the significance of any 
of the results. Prior to running these models, we mean-centered distances within each 
participant to account for different ranges travelled. 
 
In the Goal-directed condition, there was a significant effect of ɣ (F(2, 630) = 186.83, p < .001), 
ROI (F(3, 630) = 369.49, p < .001). There was no significant main effect of path distance (F(1, 
645) = 1.06, p = .304) but there were significant interactions between ROI and path distance 
(F(3, 630) = 38.13, p < .001) and ɣ and path distance (F(2, 630) = 6.47, p = .002; Figure 5), but 
no significant interaction between ɣ and ROI, nor a three-way interaction (both ps > .40). As 
predicted, we observed no main effect of path distance in the GPS condition (F < 1), nor any 
interactions with ROI (F < 1) or ɣ (F < 1). The main effects of ɣ (F(2, 671) = 159.40, p < .001) 
and ROI (F(3, 671) = 186.99, p < .001) remained significant, however. 
 
To unpack the interaction between ROI and path distance, we ran a linear mixed effects model 
for each of the ROIs, predicting representational similarity from path distance and ɣ. In the 
antPFC, there were significant effects of ɣ (F(2, 170) = 34.14, p < .001) and path distance (F(1, 
174) = 112.14, p < .001), but no interaction between the two (F < 1), suggesting that the effect 
of path distance did not change across different temporal horizons in this region. In the mPFC, 
the effects of ɣ (F(2, 170) = 63.77, p < .001) and path distance (F(1, 173) = 87.27, p < .001) 
were again significant, as well as the interaction between them (F(2, 170) = 2.21, p = .113). In 
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the aHPC, there was a significant effect of ɣ (F(2, 170) = 84.58, p < .001), a significant effect of 
path distance (F(1, 177) = 60.51, p < .001), and a weaker interaction between ɣ and path 
distance (F(2, 170) = 3.55, p = .031). Finally, in the pHPC, there were significant effects of ɣ 
(F(2, 169) = 156.96, p < .001), path distance (F(1, 173) = 100.15, p < .001), and a weaker 
interaction between the two (F(2, 169) = 3.29, p = .040).  
 
 

 
Figure 5. Linear mixed effects model predicting representational similarity (y-axis) from 
path distance (x-axis), ɣ, and ROI.  Voxelwise patterns in different ROIs interacted differently 
with path distance: in the antPFC, routes with longer path distances were associated with greater 
representational similarity, while the opposite trend was present in the hippocampus (both aHPC 
and pHPC). The plot depicts the model fit values and confidence intervals. These reflect the 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 14, 2020. ; https://doi.org/10.1101/786434doi: bioRxiv preprint 

https://doi.org/10.1101/786434
http://creativecommons.org/licenses/by-nd/4.0/


20 

relationships between the variables of interest after regressing out the effect of the number of TRs 
on each route and accounting for all other main effects and interactions. The plotted values were 
estimated using the effects package in R (Fox, 2003; Fox & Weisberg, 2011) . 
 
To establish how specific these results were to the traversed paths, we re-ran the models but 
this time included the Euclidean distance from start to goal as a predictor instead. In the 
Goal-directed condition, the effects of ɣ and ROI remained significant (both ps < .001), but there 
was no main effect of Euclidean distance (F < 1), and no significant interaction between ɣ and 
Euclidean distance (F(2, 631) = 1.93, p = .145). There was an interaction between ROI and 
Euclidean distance (F(3, 630) = 3.33, p = .019), but no three-way interaction (F < 1). In the GPS 
condition, the effects of ɣ and ROI were again significant (ps < .001), and there was a weaker 
main effect of Euclidean distance (F(1, 49) = 4.39, p = .041), but no interactions between 
Euclidean distance and any other factor (all ps > .50).  

Predictive representations in prefrontal searchlights 
 
Prefrontal cortex has a much larger volume than the hippocampus. In order to identify 
hierarchies of predictive representations comparable to hippocampal ROIs, we ran a searchlight 
analysis and computed similarity for voxels within every spherical searchlight (of 6mm radius). 
The searchlight analysis was performed for four values of ɣ (.1, .6, .8., .9) within each of the 
conditions. The thresholded z-score maps for different values of ɣ are displayed as overlays in 
Figure 6A, along with the average correlation maps within each condition (thresholded at .06; 
Figure 6B).  
 
To capture the gradient of values from the anterior-most to the posterior-most segments of the 
PFC, we calculated the average value of representational similarity across voxels within each 
anterior-posterior slice (i.e., the y-direction). The slopes are plotted in Figure 7. These plots 
reveal a gradation of future state representations extending from posterior- to anterior-most 
slices of the PFC. This trend was reliable in both the Goal-directed and GPS conditions, but the 
representational similarity values were consistently greater in the Goal-directed condition.  
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Figure 6. One-sample T-tests for Goal-directed and GPS condition. A) Voxels with 
significant representations of future states in the Goal-directed and GPS conditions using a 
one-sample t-test against zero. B) Voxels with representational similarity (correlation) values 
above .06 for each value of ɣ. See Supplementary Figure 2 for the same results controlled for 
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distance by adding it as a covariate within each condition . C) Discounted weights corresponding 
to different gammas were applied to each successor TR. When the agent was in a given state (TR), 
the weighted successor states (TRs) were summed to estimate the predictive representation for 
that state. The average distance covered in each TR was approximately 25 m (24.8 m). Based on 
this, we computed approximate distances corresponding to predictive horizons for each discount 
parameter. Please note that the exact distances for each discount parameter differed across 
routes and participants depending on their speed. ɣ=.1  only included 1-step (1 TR) away, ɣ=.6 
reached approximately 7 steps in the future, corresponding to roughly 175 m, ɣ=.8 , approximately 
15 steps or 375 m, ɣ=.9  reached approximately 32 steps or 800 m ahead.  
 
 
Representational similarity slope along PFC hierarchy 
 

Figure 7. Increasing predictive similarity along posterior-to-anterior PFC.  In order to 
indicate which PFC regions displayed higher predictive similarity we computed the slope of 
correlations for posterior-to-anterior PFC slices for Goal-directed and GPS conditions. We 
computed these slopes for four values of ɣ, corresponding to gradients of low to high scales. 
Each line corresponds to predictive similarity results from one of 19 participants. 
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To account for the proportion of different histologically-defined brain regions covered by each 
significant cluster, we calculated the % of overlap between each prefrontal Brodmann Area (BA) 
region and the significant voxels for each value of ɣ in each of the conditions. These 
percentages are reported in Table 1 and Figure 8. These percentages represent the proportion 
of each BA region covered by the significant thresholded clusters. We found the largest overlap 
between voxels in the anterior PFC (BA 10) and significant voxels in the searchlight analysis 
with various ɣ values. Following anterior and polar PFC was BA 11, corresponding to the 
orbitofrontal cortex, and then BA 25 and 32, corresponding to subgenual area or cingulate 
cortex and anterior cingulate cortex respectively. These regions were followed by smaller 
overlap in area 47, corresponding to the orbital part of the inferior frontal gyrus, areas 46and 9 
corresponding to the dorsolateral PFC, and no overlap in area 45 corresponding to the inferior 
frontal gyrus. 
 
 

 Goal-directed GPS 

 ɣ = .1 ɣ = .6 ɣ = .8 ɣ = .9 ɣ = .1 ɣ = .6 ɣ = .8 ɣ = .9 

BA9 5.8% 5.8% 5.6% 0% 5.8% 4.3% 0% 0% 

BA10 59.4% 59.3% 54.9% 13.9% 59.1% 48.0% 4.9% 0% 

BA11 46.5% 44.4% 32.6% 6.0% 42.6% 21.8% 0% 0% 

BA25 41.1% 37.4% 15.9% 0% 21.5% 0% 0% 0% 

BA32 23.9% 21.6% 11.2% 0% 21.1% 2.8% 0% 0% 

BA47 16.6% 15.6% 5.8% 0% 12.7% 1.1% 0% 0% 

BA46 6.8% 6.8% 6.8% 0% 6.8% 4.2% 0% 0% 

BA45 0% 0% 0% 0% 0% 0% 0% 0% 

 
Table 1. Proportion of each prefrontal Brodmann Area accounted for by the significant 
prefrontal voxels. Results were driven from the one-sample T-test results displayed in Figure 
5A. (not matched for distance). Proportions are displayed for each value of ɣ within each 
condition.  
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Figure 8.  Prefrontal cortex hierarchy in the Goal-directed and GPS conditions. Proportion 
of prefrontal Brodmann Areas accounted for by the significant PFC voxels in searchlight analysis 
are shown. Results were driven from the one-sample T-test results displayed in Figure 5A (not 
matched for distance). Colorbars reflect different discount values (ɣ) corresponding to different 
predictive horizons within each condition. (Blue: ɣ=.1, Green: ɣ=.6, Yellow: ɣ=.8, Red: ɣ=.9). 

Controlling for Distance: Matched Distance Analysis 
 
As discussed in the ROI sections, the distances were not matched between the two conditions 
(Figure 2E). To account for this difference, we conducted a matched analysis in which we 
manually selected pairs of routes with the minimum difference in distance for each participant, 
up to a kilometer (Figure 9A). We were unable to include 1 of the participants in this analysis as 
the distances in their Goal-directed and GPS routes were too different (with a difference in 
distance > 1.5 km). For the remaining 18 participants, there was no significant difference 
between the selected GPS and Goal-directed routes (p = .215). We ran a paired samples t-test 
comparing their prefrontal correlation maps for the two selected routes, with the 
participant-specific difference in distance for the two selected routes as a covariate. The brain 
maps of the average correlation values thresholded at .04 are presented in Figure 9B and the 
results of the 5% FPR corrected t-test  in Figure 9C. 
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Figure 9. Predictive representations for Goal-directed and GPS routes with matched 
distances. A) Distribution of distance-matched routes included in this analysis. B) Voxels with 
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average correlation values of > .04. C) Significant voxels in Goal-directed > GPS paired t-test, 
thresholded at t-value corresponding to 5% FPR. Colors reflect predictive horizons corresponding 
to different discount parameters (Blue: ɣ=.1, Green: ɣ=.6, Yellow: ɣ=.8, Red: ɣ=.9). 
 
We compared matched-distance searchlight results in the Goal-directed and GPS conditions. In 
this comparison, relatively few clusters significantly differed between the Goal-directed and GPS 
conditions. However, the comparison at each level of ɣ suggests that there is a set of clusters 
along the rostrocaudal extent of the PFC which differentiates between goal-directed and 
GPS-guided navigation (Table 1). Notably, while only orbitofrontal clusters were significantly 
different for smaller horizons, more dorsal and rostral/polar PFC clusters emerged in the 
comparison of larger horizons or scales–between the Goal-directed and GPS conditions. It is 
worth noting, however, to ensure matched distances between the Goal-directed and GPS 
condition we excluded individuals with a large difference between the distances in the two 
conditions. As a result, this analysis only included individual paths from 16 participants, likely 
resulting in increased noise and lower statistical power.  

Discussion 
 
We investigated the hypothesis that relational knowledge – about navigational paths – is 
organized as multi-scale predictive representations in hippocampal and prefrontal hierarchies. 
We found evidence for such hierarchical representations in a task where participants navigated 
the city of Toronto virtually in both Goal-directed and GPS-guided conditions without knowing 
the goal. Both planned and guided paths covered realistically long distances (average 3 
kilometers). We computed representational similarity between fMRI patterns corresponding to 
each location (TR) and all  prospective locations (TRs) within given horizons along the path. 
Motivated by previous work on multi-scale predictive representations (Momennejad & Howard, 
2018), we computed pattern similarity to discounted predictive horizons (25-875 meters)–i.e., 
sum of TRs weighed by a discount parameter into the future. These analyses revealed four 
main findings. First, fMRI similarity reflected longer predictive horizons for paths in the 
Goal-directed  condition compared to GPS-guided paths. Second, similarity values in the 
anterior hippocampus and frontopolar cortex were significantly higher in the Goal-directed 
condition and for longer horizons. Third, predictive representations were organized along a 
posterior-anterior hierarchy of predictive horizons (25-175m) in the hippocampus with larger 
scales in gradually more anterior hippocampal regions. Fourth, similarity to future horizons was 
organized along a rostro-caudal hierarchy in the PFC with larger-scale horizons (25-875m) in 
gradually more polar regions (Figure 6). Overall, anterior PFC showed predictive similarity at the 
largest scales and posterior hippocampus the smallest, while the anterior hippocampus, 
pre-polar PFC, and orbitofrontal regions were in between.  
 
These results support the hypothesis that prefrontal-hippocampal representations organize 
relational knowledge–in this case for spatial navigation–at different scales of generalization and 
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abstraction (Behrens et al., 2018; Momennejad & Howard, 2018). In the case of spatial 
navigation, this hierarchical representation in turn enables hierarchical planning and subgoal 
computation using graphs of the environment (Figure 1) abstracted at different scales 
(Ribas-Fernandes et al., 2018). Our proposal is that planning at larger scales may be enabled 
by larger and more abstract scales of predictive representations in anterior PFC (Figure 1, large 
scale graph). This higher level plan may be translated into more precise policies using 
representations in pre-polar PFC and anterior hippocampal regions (Figure 1, mid-scale graph), 
and finer scale trajectories are translated by hippocampal gradients down to the smallest 
predictive horizons of place fields (Figure 1, small scale graph). This proposal is also supported 
by previous findings. 
 
Hierarchical structuring of fine-grained to coarse-grained representations would also enable 
abstraction and generalization. A similar approach can potentially generalize local information to 
derive schema (Figure 1A). We propose that local representations at small scales, supported by 
the hippocampus, are nested within large-scale, generalized representations in the PFC. 
Multiple scales of representation exist simultaneously, but the spatial precision of information 
differs across the scales: at larger scales the representations are more nebulous. The global 
structure of each route is thus represented in the PFC, but the precise information about 
individual locations is supported by the hippocampus.  
 
Consistent with our proposal, recent work on cognitive maps in rodents, monkeys, and humans 
indicate PFC’s involvement in active navigation and planning (Epstein et al., 2017), while earlier 
work on finer scale spatial representation had primarily focused on the hippocampus. The 
hippocampus is thought to support cognitive maps of space (O’Keefe & Nadel, 1978; Burgess, 
Maguire, & O’Keefe, 2002) as well as nonspatial relational structures (Bellmund et al., 2018; 
Garvert et al., 2017). Recent computational perspectives suggest that the hippocampus serves 
rapid statistical learning (Schapiro et al., 2016, 2017) to form and update a predictive map of the 
state space at multiple scales (Momennejad & Howard, 2018; Stachenfeld et al., 2017). As 
such, the hippocampus serves as a predictive map that organizes relational knowledge of 
spatial and non-spatial states (Garvert et al., 2017; McKenzie et al., 2014; Schuck et al., 2016). 
Notably, the long axis of the hippocampus is shown to support gradually larger spatiotemporal 
scales (Brunec et al., 2018; Nielson et al., 2015; Poppenk et al., 2013; Strange et al., 2014). 
Place cells along the dorsoventral extent of the rodent hippocampus display gradually larger 
place fields  (Strange et al., 2014). Furthermore, a number of fMRI studies have focused on the 
role of posterior-anterior axis in spatio-temporal scales (Nielson et al., 2015; Peer et al., 2019), 
and inference on mnemonic relations (Collin et al., 2015; Schlichting & Preston, 2015).  
 
An important aspect of our findings is that we observed predictive similarity reflecting gradually 
higher scales along the posterior-to-anterior gradient of the PFC hierarchy (Figures 6-9, Table 
1). To compare predictive similarity in this gradient, we computed the slope of correlations for 
each predictive horizon (weighted sum of TRs) across posterior to anterior PFC slices. We 
found an overall effect of condition, where predictive similarity was generally higher in the 
Goal-directed vs. the GPS-guided condition especially for higher horizons. We also observed a 
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prefrontal gradient effect: more anterior PFC regions showed higher predictive similarity 
(correlation) values in general. Furthermore, we measured the proportional overlap between 
significant voxels in the searchlight analysis and voxels in different histologically-defined PFC 
regions. To do so, we calculated the % of overlap between each prefrontal Brodmann Area (BA) 
region and the significant voxels for each value of ɣ in the Goal-directed and GPS-guided 
conditions. These percentages, reported in Table 1 and Figure 8, indicate the largest overlap in 
the anterior PFC (BA 10), orbitofrontal cortex (BA 11), and granular and anterior cingulate 
cortex (BA 25 and 32). These findings are consistent with the direction of the slope of predictive 
similarity in Figure 7. 
 
The majority of PFC voxels that displayed significant predictive similarity were in polar or 
anterior PFC (BA 10), especially for larger predictive scales (Table 1, Figure 8). BA 10 is the 
largest cytoarchitectonic region of the human PFC, it has the largest volumetric and proportional 
difference between humans and other great apes, it is highly interconnected within the PFC, 
and its cells display longer decay times (Ramnani & Owen, 2004). Thus, the properties of BA 10 
suggest a structurally well-connected region to support higher levels of abstraction. This 
includes supporting predictive representations with larger scales of integration, which can be 
thought of in terms of clustering of relational graphs with a higher radius. For temporal relations, 
this graph clustering or integration radius can be thought of in terms of longer decays or longer 
sustained memory leading to binding over longer time-scales. For spatial relations, this radius 
can be thought of in terms of associating locations that are farther apart. For relational 
structures, this radius can be thought of in terms of an increase in similarity among a cluster of 
associations within a given degree of separation.  
 
It is noteworthy that while the present analyses were focused on representational similarity, we 
do not take them to mean the representations we’re measuring are static, and simply there. It is 
possible that these representations are constructed from compressed representation, e.g., 
eigenvectors (Stachenfeld et al., 2017), inverse laplace transform (Ida Momennejad & Howard, 
2018) (Momennejad, Howard, 2018), or generative models (Whittington et al., 2019). Future 
studies are required to shed light on prefrontal and medial temporal contributions to the process 
involved in integration, eigen-decomposition, generative models, and abstraction. In what 
follows we discuss the present representation-based findings. 
 
A crucially non-spatial body of evidence from the study of goal-directed behavior and 
prospective memory is relevant here. These studies indicate a functional role for anterior or 
rostral prefrontal cortex in the encoding and retrieval of prospective task sets and goals (Gilbert, 
2011; Haynes & Rees, 2006; Momennejad & Haynes, 2012, 2013). This frontopolar evidence 
fits well with the proposal that the PFC is organized in a rostrocaudal hierarchy (Badre & 
D’Esposito, 2007; Koechlin, 2011; Koechlin et al., 2003; Koechlin & Hyafil, 2007), with more 
anterior or rostral regions corresponding to higher levels of integration and relational abstraction 
(Bunge et al., 2003; Kalina Christoff et al., 2009; Momennejad & Haynes, 2013). Lesions to the 
frontopolar cortex do not impair usual navigation or performance on intelligence or working 
memory tests, but impair the patient’s ability for multi-tasking and prospective memory (Burgess, 
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2000; Volle, Gonen-Yaacovi, Costello, Gilbert, & Burgess, 2011) such as completing a 
sequential plan for simple everyday tasks, e.g., plan a visit to multiple stores on a street to write 
a note and stamp and post it (Burgess, 2000).  
 
Studies and models of the orbitofrontal cortex (OFC) have indicated the OFC as the brain’s 
cognitive map of task-related state spaces that serves prediction, decision-making, and planning 
(Schuck et al., 2016; Wilson et al., 2014). However, some studies suggest that the involvement 
of the OFC is more tied with the anticipation of reward (Kahnt et al., 2010), reversal learning and 
reappraisal due to prediction errors (Boorman et al., 2009), and prediction of states-value 
associations (Wimmer & Büchel, 2019). One interpretation of these findings is that the ventral 
PFC and the OFC are well-suited to process state-value relations due to their connectivity to 
subcortical value systems. In contrast, the dorsal PFC is better suited to manage action policies 
due to its connectivity to the dorsal striatum and motor cortical regions.  
 
Furthermore, OFC as well as anterior PFC have been suggested to support model-based 
reinforcement learning (Daw et al., 2011), where an animal unfolds a learned state-action-state 
associative model during goal-directed planning and decision-making. This finding has been 
replicated across different experiments (Daw & Dayan, 2014; McDannald et al., 2012, 2014; 
Pauli et al., 2019). It supports the idea that the OFC maintains task-relevant state-state 
relational maps that enable iterative value computation in planning and decision-making (Daw et 
al., 2005; Keiflin et al., 2013; Simon & Daw, 2011). Notably, recent work on the neural 
substrates of model-based behavior indicate a role for the hippocampus in model-based 
decision-making as well (Miller et al., 2017; Vikbladh et al., 2019). Consistently, the present 
predictive representations in the anterior hippocampus were the most similar to OFC 
representations. However, more anterior OFC regions yielded higher predictive similarity along 
larger predictive horizons, more similar to aPFC than the hippocampus (Figures 4, 8).  These 
findings expand previous perspectives on OFC-hippocampal interactions in cognitive map-like 
representations (Keiflin et al., 2013; Schuck et al., 2016; Wikenheiser & Schoenbaum, 2016; 
Wood & Grafman, 2003). 
 
While the present analyses were focused on spatial navigation, predictive representations are 
generalizable to non-spatial domains as well. Examples include relational knowledge and 
category generalization (Constantinescu et al., 2016; Garvert et al., 2017), abstraction and 
transfer  (Cole et al., 2011), reward predictions (Takahashi et al., 2017), associative inference, 
and schema learning (Hebscher & Gilboa, 2016; McKenzie et al., 2014; Moscovitch & Melo, 
1997; Spalding et al., 2018; van Kesteren et al., 2013; Yu, 2018; Zeithamova et al., 2012; 
Zeithamova & Preston, 2010). Previous work has proposed a hierarchy of time-scales in the 
brain (Chen et al., 2015) and indicated a role for hippocampal-prefrontal interactions in 
integrating episodes to build abstract schema (Schlichting & Preston, 2017). In previous 
modeling work, we have proposed a role for hierarchies of predictive representations along 
prefrontal and hippocampal gradients (Momennejad & Howard, 2018).  
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It is worth noting that the fMRI dataset used in the present analyses (Brunec, Bellana et al., 
2018) was measured as participants moved through a virtual Google navigation of a city they 
lived in (Toronto). Importantly, here participants navigated realistically long spatial distances, 
between 1-5 kilometers, which allowed us to truly distinguish between different predictive 
scales. However, the data set has some caveats, some of which we addressed in our controlled 
analyses and some of which remain to be addressed by future studies. 
 
The first caveat of the present dataset was that the navigated routes in the Goal-directed 
condition were, on average, significantly longer compared to the GPS-guided condition (Figure 
2). To overcome this caveat, we first controlled for distance in one-sample t-tests to reveal 
regions with significant pattern similarity within a given horizon (Supplementary Figure 2). In a 
more conservative analysis, we reran the analyses excluding longer routes and including only 
Goal-directed routes that were within the range of distances in the GPS-guided condition. For 
longer predictive scales, more dorsal PFC regions displayed significantly different similarity 
between the two conditions (Figure 9). These controlled analyses suggest that our main findings 
are reliable (compare to Table 1 and Figures 7 and 8). However, future studies with a controlled 
design of traversed distances and more participants are needed to replicate these findings. 
 
The second caveat is that, in the present design, the selection of routes did not include multiple 
past and future trajectories for each subgoal location, nor multiple past routes for each goal 
location. Future studies with such a design would allow for further testing of the graph structure 
of relational structures. Such a study would also advance previous work using routes with 
multiple paths (Balaguer et al., 2016; Chanales et al., 2017). Specifically, this design would 
allow us to dissociate pattern similarity due to the memory of the past from pattern similarity due 
to predictive representation. Measuring neural representations as participants navigate a full 
graph would also enable investigating compressed representations. For instance, we could 
study whether subgoal locations that appear on many paths have a pronounced predictive 
representation, or whether nearby locations are clustered as one subgoal by some brain 
regions. Such a design could be easily implemented in future fMRI studies, enabling a more 
thorough analysis of prefrontal-hippocampal interactions in abstraction and sub-goal processing 
during planning. Future studies can address the caveats and investigate the robustness of the 
present findings and theoretical proposal. 
 
Theoretically, the interpretation we adopt here is that representational similarity between a given 
state and its frequently visited successors along the planned path is increased (Ezzyat & 
Davachi, 2014; Garvert et al., 2017; Momennejad et al., 2017; Stachenfeld et al., 2017). That 
said, it is possible that the similarity to successor states reported here is due to replay of 
previous trajectories or paths (Ambrose, Pfeiffer, & Foster, 2016; Momennejad et al., 2018; Wu 
& Foster, 2014). Our interpretation can also be discussed in terms of increased association, 
integration, abstraction, and clustering (Ritvo, Turk-Browne, & Norman, 2019). This similarity 
could also be due to the spread of activation across memory networks (Sievers & Momennejad, 
2019). While there are clever analytic designs to hint one way or another, a clear-cut 
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dissociation of these hypotheses requires higher spatio-temporal resolutions such as 
electrophysiology, MEG, and other methods across species.  
 
Future studies could test the temporal hierarchy of large-scale predictive representations in the 
PFC and the hippocampus for higher level plans (e.g., train from New York to Philadelphia) and 
smaller subgoal processing (e.g., walk to the bodega around the corner). They can also test the 
dynamics of goal and subgoal representation more closely. This analysis would complement 
previous electrophysiology and neuroimaging work showing goal representation in the 
hippocampus (Brown et al., 2016; Howard et al., 2014; Sarel et al., 2017; Tsitsiklis et al., 2019). 
Future studies with larger graphs–with multiple paths leading from one location to others–will be 
better suited to investigate the specifics of similarity to goal findings in hippocampal-prefrontal 
hierarchies.  
 
Summary We present support for the hypothesis that predictive maps with different scales are 
structured in hippocampal-prefrontal hierarchies. We found that while posterior hippocampal 
regions supported smaller predictive scales–up to 100-200 meters–anterior prefrontal regions 
supported larger predictive horizons–which in this spatial navigation task extended to 875-900 
meters. Our results support the idea that medial temporal-prefrontal representations underlie 
cognitive maps and hierarchical planning. The organizational principles of predictive hierarchies 
can be extended to non-spatial domains. Future studies can be specifically designed to further 
investigate planning, subgoal setting, and abstraction in spatial and non-spatial graphs. 
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Supplementary Material 

Supplementary Methods 
 
Supplementary Figure 1. Assume an environment with the structure in the graph or Markov 
Decision Process (MDP) below. The starting state is s1 and the goal state is s5 (as in the MDP 
below), where we observe the highest reward. On the left we have the 6x6 transition probability 
matrix T, with probability 1 for every 1-step connection between any 2 adjacent states. On the 
right we have the successor representation matrix, which can be computed As follows:  
 

-1I γT )M = ( −   

 

Note that the 1st row of the SR matrix  corresponds to the representation when the agent is in 
state 1 . Consider an environment with 6 states and relationships depicted in the Markov 
Decision Process (MDP) in Supplementary Figure 1. In reinforcement learning, computing the 
value (V) of a state, under policy π, can be arrived at by multiplying the associated SR row by 
the vector of rewards (a 6 item vector storing the observed reward for each state). 
 

 
  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 14, 2020. ; https://doi.org/10.1101/786434doi: bioRxiv preprint 

https://doi.org/10.1101/786434
http://creativecommons.org/licenses/by-nd/4.0/


41 

 
 
Supplementary Figure 2. One-sample T-tests with distance as covariate. The results look 
very similar to running to running a T-test on Goal-directed routes vs. zero, and GPS routes vs. 
zero. The mean distance, per participant, per condition, was included as a covariate.  
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