
 1 

The sensory representation of causally controlled objects 
 

Kelly B. Clancy1 and Thomas D. Mrsic-Flogel1 

 
1. Sainsbury Wellcome Centre, UCL, 25 Howland Street London, W1T 4JG, UK 

 

Correspondence: Kelly Clancy (k.clancy@ucl.ac.uk) and Thomas Mrsic-Flogel (t.mrsic-
flogel@ucl.ac.uk) 
 

Abstract 
Intentional control over external objects is informed by our sensory 

experience of them, in a continuous dialogue between action and perception. 

How such control is represented at the sensory level, however, is not 

understood. Here we devised a brain machine interface (BMI) task that 

enabled mice to guide a visual cursor to a target location for reward, using 

activity in brain areas recorded with widefield calcium imaging. Parietal and 

higher visual cortical regions were more engaged when expert animals 

controlled the cursor, but not in naïve mice learning the task. Intentional 

control enhanced responses: single-cell recordings from parietal cortex 

indicated that the same visual cursor elicited larger responses when mice 

controlled it than when they passively viewed it. Moreover, neural responses 

were greater when the cursor was moving towards the target than away from 

it. Thus, the sensory representation of a causally-controlled object is 

sensitive to a subject's intention, as well as the object's instantaneous 

trajectory relative to the subject’s goal: potentially strengthening the 

sensory feedback signal to adjudicating areas for exerting more fluent 

control.  
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Introduction 
 
The experience of agency is integral to our sense of self and responsibility, and its 

dysfunction in a number of psychopathologies can have devastating social effects 

(Haggard, 2017). But how is an internal locus of control represented in the brain?  

How does the brain infer a causal relationship between its activity and the sensed 

world, and how does this affect the sensory encoding of controlled external 

objects? Actions and perceptions reciprocally affect one another (Dewey, 1896). 

The sense of agency can be operationalised to inferring a causal relationship 

between a subject’s internally generated actions or activity, and their outcome in 

the external world. In motor learning, for example, the relationship between an 

action and its outcome can be learned and re-learned throughout adulthood as 

animals acquire new motor skills. Brain machine interfaces (BMI) are a method for 

investigating how subjects learn arbitrary action-outcome relationships (Fetz, 

1969; Bakay and Kennedy, 1998; Nicolelis, 2001; Donoghue, 2002; Carmena et 

al., 2003; Sitaram et al., 2017). When learning to control a BMI, animals employ 

the same mechanisms as implicated in motor learning (Koralek et al., 2012; Neely 

et al., 2018). But unlike motor learning, wherein animals learn a task and 

researchers must search for correlates of the behaviour in patterns of neural 

activity, BMIs allow the experimenter to precisely control sensory feedback, as well 

as prescribe the requisite activity patterns necessary for successful task execution, 

which can then be changed day to day. Thus, animals learning neuroprosthetic 

control of external objects must engage in continuous self-monitoring to assess 

the contingency between their neural activity and its outcome, preventing them 

from executing a habitual or fixed motor pattern.  

 

A key aspect of self-monitoring is the sensory feedback from the object being 

controlled by the agent. Yet little is known about how causally controlled objects 

are represented in the brain. Studies have implicated parietal cortex in intention, 

as well as the subjective assessment of agency over outcome. Disrupting activity 
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in parietal cortex with TMS temporarily ablates self-reported agency (Chambon et 

al., 2015), and parietal activity has been found to be involved in representing task 

rules, the value of competing actions, and visually-guided real-time motor plan 

updating (Andersen et al., 1997; Pisella et al., 2000; Sugrue et al., 2004; Kahnt et 

al., 2014; Wisniewski et al., 2015). Motor plans can be decoded from parietal 

activity, and its responses are task-, expectation-, and goal-dependent (Andersen 

and Cui, 2009; Aflalo et al., 2015; Licata et al., 2017; Pho et al., 2018; Mohan et 

al., 2018). All of this evidence suggests that parietal cortex plays a role in 

intentional, goal directed behaviours. However, previous studies of the role of 

parietal cortex in intention have not examined how causal control transforms 

sensory representations across different sensorimotor contingencies.  

 

To address this, we devised a mouse model of adaptive causal control, which 

allowed us to record from the dorsal cortex of behaving mice while simultaneously 

recording from individual cells in a mouse homologue of parietal cortex (PPC). 

Animals learned to guide a visual feedback cursor to a target location in order to 

obtain a reward using activity in brain areas recorded with widefield imaging. We 

found evidence that PPC was engaged when expert animals controlled the BMI. 

We targeted single-cell recordings to this area, and found that the visual cursor 

elicited larger responses when an animal was controlling it in a closed-loop 

configuration than when passively viewing it in an open-loop (Bagur et al., 2018). 

Responses were highest when the cursor was closest to the target zone. 

Responses were also sensitive to the cursor’s instantaneous trajectory, and were 

greater when the cursor was moving towards the target than away from it. Thus, 

the sensory representation of the object was sensitive to the subject's intention, as 

well as its perception of the object's instantaneous trajectory with respect to its 

goal. Given that animals have to relearn a changing sensorimotor contingency on 

the fly, the heightened sensory representation of the cursor at the target position 

may serve to strengthen the signal to adjudicating areas for informing fluent control 

over external objects.  
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Results  
 
Goal-directed control of a visual cursor using areal signals  
In order to investigate how causal control over external objects is effected and 

encoded in mammalian cortex, we trained mice to control a visual feedback cursor 

using real-time calcium signals recorded with wide-field imaging (largely reflecting 

the summed spiking activity of local cells (Makino et al., 2017; Clancy et al., 2019). 

We imaged the dorsal cortex in transgenic mice expressing the calcium indicator 

GCamp6s in CaMKII+ pyramidal neurons (Wekselblatt et al., 2016), assigning two 

small frontal regions to control a visual feedback cursor (Figure 1a), similar to a 

task described previously (Clancy et al., 2014; Koralek et al., 2012). The animal’s 

goal was to bring a visual cursor (presented to both eyes on two separate monitors) 

to a target position in the centre of its visual field, which they could do by increasing 

activity in control region 1 (R1) relative to control region 2 (R2, see Methods). In 

this way, animals could not achieve the target by non-specifically increasing or 

decreasing activity. Regions were usually placed over ipsilateral motor areas and 

were changed day to day. The feedback cursor could take one of eight positions 

on the monitor (Figure 1a), and the cursor had to be held at the target for 300 

milliseconds to count as a hit. When animals succeeded in holding the cursor at 

the target position, a soyamilk reward was delivered after a one second delay. If 

animals failed to bring the cursor to the target position within 30 seconds, the trial 

was considered a miss, and a white noise miss-cue was played, followed by a brief 

time out. Chance performance was assessed using spontaneous activity recorded 

before the task began, and represents the estimated hit rate the animal would 

achieve from spontaneous fluctuations of neural signals alone. Animals improved 

their performance over training (Figure 1b, n = 7 mice), and took less time to reach 

a criterion performance of 50% correct trials over days (Figure 1c). Control regions 

could be changed from day to day or within a session, and hit rates improved over 

time within a session, and after control regions were changed, indicative of learning 

(Figure 1d).  
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Figure 1. Animals learn to control a visual cursor using areal neural activity 
a. Task schematic. Widefield signals were imaged from head-fixed animals in real time 
and transmuted into the position of a visual cursor. Two regions were used for controlling 
the cursor, whose activity opposed one another. b. Performance (the percentage of trials 
the animal reached the target) increased above chance over the course of days. Shaded 
region denotes chance, s.e.m., 7 mice. c. Animals achieve 50% performance faster over 
the course of training (moving average of the number of times the animal reached the 
target per attempt). d. Average hits per minute increased over the course of a session, 
and recovered within minutes when control regions were changed (n = 7 mice on one day 
of training, shading denotes s.e.m.).  e. Performance dropped to near chance when 
rewards were given randomly, but recovered when target-reward was coupled on a 
subsequent day (n = 5 mice). Performance also dropped to chance when the visual 
feedback cursor was uncoupled from neural activity and presented at random (n = 3 mice), 
even though animals could still achieve reward using the previously learned activity 
pattern.	  
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To test if the behaviour was goal-directed, we dissociated the reward from the 

target position. On day 8 of training, animals were allowed to perform the task as 

usual, but the training session was constrained to 30 minutes. Thereafter, the 

visual feedback was coupled to the animal’s neural activity as before, but the 

reward was given randomly, at the same rate as an animal performing at average 

levels. The animals’ target hit rate dropped to chance, indicating that the behaviour 

was goal-oriented (Figure 1e). The fluorescence signals representing the 

difference between R1 and R2 increased over a normal training session, indicative 

of increased efficacy of control, and decreased when reward was randomised, 

again suggesting that animals were effecting the requisite neural patterns in a goal-

directed manner (Supp. Figure 1). Animals were able to recover their performance 

following reinstatement of the normal task on the next day of training (Figure 1e). 

For a subset of animals, the visual feedback was then randomised: the visual 

stimulus was presented at random, though animals could still achieve the target 

with the appropriate neural activity patterns. The animals’ ability to bring the cursor 

to the target dropped to chance levels without meaningful visual feedback (Figure 

1e). Animals could perform the task without overt movements, licking, or eye 

saccades (Supp. Figure 2). Together, this suggests that animals performed the 

task in a goal-directed, visual feedback-dependent manner, using neural activity 

alone.  

 

Exploration and exploitation in neural activity space 
 

As control regions were changed day-to-day, the activity patterns necessary for 

successful BMI control had to be re-learned each session. Example fluorescence 

traces from control regions indicate the areas were initially highly spontaneously 

correlated (Figure 2a, top trace). Early in the training session, hits were preceded 

by diverse activity patterns (Figure 2a, middle trace). By late in the training session, 

the patterns were consistent (Figure 2a, bottom trace, Supp. Figure 3a), 

suggesting that animals first explored different activity patterns in order to achieve 

hits, then exploited the successful pattern to reliably reach the target. Animals 
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found different ways to do this, sometimes by sweeping activity through R1 

towards R2, or by depressing R2 while activating R1 (Supp. Figure 3b). The 

variance in R1 and R2 activity peaked around hits early in a training session as 

animals explored strategies that would yield reward. This variance decreased later 

in the session as animals discovered reliable, reproducible strategies (Supp. 

Figure 4a, b). 

 

In order to achieve the target activity pattern, animals had to functionally 

decorrelate the two control regions, which were usually highly spontaneously 

correlated. Indeed, activity in dorsal cortex was globally correlated in animals pre-

task, as indicated by correlation maps using R1 and R2 as seed pixels (Figure 2b, 

2a top trace). Although activity in dorsal cortex was globally correlated in animals 

pre-task, as indicated by correlation maps using R1 and R2 as seed pixels, 

correlations between these areas decreased during task performance (Figure 2b, 

Supp. Figure 3c-e). They could arbitrarily decorrelate different regions: in a 

separate subset of animals trained using an auditory instead of visual feedback 

cursor, animals could decorrelate visual control areas (Supp. Figure 3d). 

Interestingly, the task-induced correlation patterns were invariably bilateral, even 

when control regions were ipsilateral to each other.  

 

Animals took longer to reach criterion 50% performance when control regions were 

spontaneously highly correlated (Figure 2c). Early in the session, the spectral 

entropy of activity (a measure of the spectral power distribution of a signal, and a 

proxy for its complexity, see Methods) around the control regions increased as 

animals explored activity patterns that would yield reward, then dramatically 

dropped as they discovered successful patterns and reliably exploited them 

(Figure 2d). At the start of a session, or when control regions were changed, 

animals faced with uncertain task rules ‘explored’ activity space through stochastic 

bursting, and gradually switched to effecting stereotyped patterns they could 

reliably exploit after having probed the rules of their environment (Tervo et al., 

2014). 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 30, 2019. ; https://doi.org/10.1101/786467doi: bioRxiv preprint 

https://doi.org/10.1101/786467
http://creativecommons.org/licenses/by-nc/4.0/


 8 

 
Figure 2. Exploration and exploitation of neural activity patterns 
a. Areal signals were highly spontaneously correlated before the training session (top 
trace). Animals explored different activation patterns early in the training session (middle 
trace) in order to discover and exploit successful patterns by the end of the session 
(bottom trace). Pink triangles denote target hits. b. Correlation map across cortex with R1 
and R2 seeds for spontaneous activity (left) and during task (right). c. Animals took longer 
to reach criterion performance (50% hits/attempt) if control regions were highly 
spontaneously correlated (data from 7 mice, 9 days of training starting on day 4). d. Early 
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in the session, neural activity around the control regions had high spectral entropy as 
animals used stochastic bursts of activity to explore the neural patterns that would yield 
reward. By late in the session, animals had discovered a successful activity pattern to 
exploit, and spectral entropy in control area activity decreased. Shaded area indicates 
95% confidence interval around mean. e. Activation map during task on day 1, day 9, and 
during passive playback of a previous session (normalised activity difference for task-on 
vs. task-off periods). f. The relative ratio of task-activation in higher visual areas versus 
V1 increased over training. When animals passively viewed playback of the same session, 
higher areas were not activated. Red bars indicate mean ratios (paired t-test). 
 
Expert performance correlated with increased activity in higher visual areas 
 

We sought to determine what cortical areas were most active during task 

performance, and how this changed over learning. On the first day of training, 

primary visual cortex was most active during the task, but as animals became 

expert in the task, higher visual areas were recruited (Figure 2e-f): in particular, 

anteromedial cortex (AM), posteriomedial cortex (PM), and rostrolateral visual 

cortex (RL), similar to previous studies of learning visually-guided tasks in mice 

(Wekselblatt et al., 2016; Orsolic et al., 2019). Areas AM and RL are considered 

parietal cortex homologues in mouse cortex (Licata et al., 2017; Mohan et al., 

2018; Pho et al., 2018). Activity in these higher areas was not evident in animals 

passively watching playback of the task stimuli, suggesting their recruitment was 

specific to goal-oriented task engagement (Figure 2c). A separate cohort of 

animals trained using an auditory feedback cursor had variable task-active areas 

(Supp. Figure 5, n = 4 mice), but, as with the visual task, higher activity was also 

seen in RL. 

 

Population tuning of neurons shifted towards target position 
 

Having identified brain areas implicated in BMI control, we recorded spiking from 

individual cells while animals performed the task, in order to investigate the task-

dependent increase in calcium signals with cellular resolution. We chose to record 

from functionally identified, parietal homologue area AM, due to its recruitment 

over learning, and used multi-channel silicon probes to record spikes from 

individual neurons while simultaneously imaging the rest of dorsal cortex (see 
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Methods, (Xiao et al., 2017; Clancy et al., 2019; Barson et al., 2018; Peters et al., 

2019)). We obtained 16-49 single units per recording, spanning all cortical layers. 

Units could be classified as regular-spiking (RS) or fast-spiking, putative 

interneurons (FS) depending on spike width (see Methods, Figure 3a). We 

recorded from 126 units in 7 mice performing the task (Figure 3b), and 133 units 

from the same animals passively viewing a playback of a previous session’s 

stimuli. During the task, population firing was significantly increased for stimuli 

closer to the rewarded stimulus location, and this was true both of FS and RS units 

(Figure 3d-h, Supp. Figure 6). Responses were also different depending on the 

preceding stimulus—the firing to stimuli closest to the target was higher if the 

cursor swept towards the target, but lower if the cursor swept away from it. The 

opposite was true for the stimuli farther from the target: firing was higher if the 

cursor swept away from the target. 

 

The target-dependent increased spiking could not be explained by reward 

expectation, as a subset of animals were given reward at the target position during 

passive playback as well (Supp. Figure 7). Pupil diameter and locomotion were 

significantly decorrelated during task performance compared to playback (Supp. 

Figure 8), suggesting distinct mechanisms underlie pupil size in the two conditions. 

At the population level, firing rates were uncorrelated with both pupil diameter and 

pupil position during the task, while firing rates were weakly correlated with pupil 

diameter during playback (Supp. Figure 8).  

 

We correlated the spike trains of individual units with fluorescence activity across 

the brain to build affiliation maps for each unit (Xiao et al., 2017; Clancy et al., 

2019; Barson et al., 2018; Peters et al., 2019). We aligned these maps to the 

common coordinate framework of the Allen Brain Atlas using stereotaxic marks on 

the skull, and sorted these maps by units' preference for different cursor locations. 

During task performance, the cells most responsive to the target and target-

adjacent stimuli were significantly more correlated with activity across the dorsal 

cortex. This could mean that the boosting around target might be the result of a 
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cortex-wide signal, or that units tuned to the target correlate more strongly with the 

rest of dorsal cortex during task performance, but not playback (Supp. Figure 9). 

 
Figure 3. Stimulus tuning shifts to target location and is influenced by sweep 
direction 
a. Example waveforms from three isolated units (FS unit in red). b. Example spiking during 
three successful trials (trials denoted in blue, hits denoted with pink triangle). Top traces 
are running velocity, pupil diameter and cursor position, from top to bottom. c. Feedback 
schematic: cursor can take one of 8 potential positions on screen. d. Average firing rates 
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for each cursor position during task (red) and playback (blue). Shaded regions indicate 
95% confidence interval. e. Responses to visual stimuli at the 8 monitor positions for 2 
units during task performance (red line indicates stimulus start). f. Same as e, for 2 units 
during playback. g. Mean firing rate to different stimuli depended on whether the preceding 
stimulus was sweeping towards (red) or away (black) from the direction of the target during 
task (t-test, Bonferroni corrected, asterisks indicate p>0.05). h. Cursor sweep direction 
had little effect on firing rates when animals were passively viewing playback. 
 

Discussion 
 

The idea of representation is fundamental to the idea of computation, and the 

cortex appears to operate on hierarchies of transformed representations. It has 

become increasingly clear that cortical sensory representations are not strictly 

veridical reproductions of the outside world, however, but are shaped by a 

subject’s internal states and goals. We sought to understand how having causal 

control over an external object affects the cortical sensory representation of that 

object, given that fluent control must be informed by a dialogue between action 

and perception (Haggard, 2017). Animals learned to causally control an external 

object using neural calcium signals recorded by widefield imaging, and did so by 

discovering and exploiting arbitrary mappings between their neural activity and 

visual feedback that led to reward. This technique enabled us to identify cortical 

areas involved in task performance, in order to target recordings from individual 

cells in these areas while animals were engaged in the task. We found that regions 

of the PPC were recruited during expert BMI control, and that single units in PPC 

encoded the same visual stimuli differently depending on whether the animal was 

causally controlling it, or passively viewing it. These results lends further evidence 

to the idea that PPC activity encodes a subject’s intention and self-monitoring of 

sensorimotor transformations (Andersen and Buneo, 2002; Andersen and Cui, 

2009; Desmurget et al., 2009; Aflalo et al., 2015; Cui, 2016).  

 

Previous work indicates that subjects can learn to control neuroprosthetic devices 

using single cells or bulk electrophysiological signals (Fetz, 1969; Bakay and 

Kennedy, 1998; Nicolelis, 2001; Serruya et al., 2002; Carmena et al., 2003; 

Weiskopf et al., 2003; Sitaram et al., 2007; Koralek et al., 2012; Hochberg et al., 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 30, 2019. ; https://doi.org/10.1101/786467doi: bioRxiv preprint 

https://doi.org/10.1101/786467
http://creativecommons.org/licenses/by-nc/4.0/


 13 

2012; Collinger et al., 2013; Clancy et al., 2014; Sadtler et al., 2014; Prsa et al., 

2017; Sitaram et al., 2017; Trautmann et al., 2019), but this is the first work, to our 

knowledge, to employ control using imaged population calcium signals. This 

technique allowed us to monitor much of the dorsal cortical network as animals 

learned neuroprosthetic control, whereas previous BMI work has been limited to 

recording from neighbouring neurons (Koralek et al., 2012; Clancy et al., 2014; 

Sadtler et al., 2014; Prsa et al., 2017). Using population signals, rather than 

individual neurons, to manipulate neuroprosthetic devices might afford more stable 

and minimally invasive control, robust to losing signals from single control cells.  

 

In order to learn the arbitrary action-outcome relationships required to perform BMI 

tasks, animals must match internally generated actions or activity with external 

sensory feedback. To probe how animals learned these contingencies, we 

changed the regions that controlled the BMI between and within training sessions: 

meaning that animals could not rely on a habitual activity pattern or strategy, but 

had to continually explore different neural patterns to achieve reward on different 

training days. Animals did so by ‘exploring’ with highly variable neural activity 

patterns early in a training session, until they discovered a successful activity 

pattern they could reliably exploit (Figure 2). Target hit rates dropped when reward 

was dispensed randomly, unlinked to the target zone, indicating the animals’ task 

performance was goal-directed, and not habitual. 

 

Animals could arbitrarily decorrelate normally correlated brain areas during task 

execution, even though spontaneous activity was widely correlated across cortex 

in mice not performing the task, in agreement with previous work (Ledochowitsch 

et al., 2013). We found this to be true of both anterior and posterior cortical areas—

in mice trained to control an auditory cursor, for example, posterior visual control 

areas could also be decorrelated during the task. However, animals performed 

better when control regions were less spontaneously correlated. Pupil and 

locomotion also became significantly decorrelated during task performance, 

indicating that task-engagement and locomotion may engage distinct arousal 
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mechanisms (Supp. Figure 8, (Vinck et al., 2015; Reimer et al., 2016; Clancy et 

al., 2019)). 

By imaging dorsal cortex as animals performed this task, we were able to screen 

for cortical areas involved in expert BMI control. On the first day of training, V1 was 

most active during the task, but as animals learned the task over days, higher 

visual areas, including AM, PM and RL, became more active. When the same 

stimuli were played back to animals in an open-loop fashion (e.g. not controlled by 

animals), activation was again mainly evident in V1, suggesting these higher areas 

were involved in the goal-directed aspect of task performance. AM and RL are 

rodent homologues of parietal cortex (Glickfeld and Olsen, 2017; Wang et al., 

2011), which has been shown in humans to be involved in intention and monitoring 

the mapping between action and outcome (Andersen and Buneo, 2002; 

Desmurget et al., 2009; Andersen and Cui, 2009; Aflalo et al., 2015; Cui, 2016). 

However, it was unclear whether the recruitment of parietal cortex over learning 

was related to the fact that it’s involved with sensorimotor transformations 

generally, or because it’s involved more specifically in planning and intentional 

control.  

 

In order to clarify the role of parietal cortex in causal control, we recorded from 

individual neurons in a parietal area as animals performed a BMI task. We targeted 

extracellular recordings in one of the identified task-active areas, AM, to probe 

task-related changes in the spiking of single units. We found that units were more 

active during task performance than during passive playback of the same stimuli. 

In particular, units were more responsive to the target, and target-adjacent, stimuli 

during task performance compared to passive playback, similar to spatial attention 

boosting evident in previous work (Moran and Desimone, 1985; Engel et al., 2016), 

and in accordance with evidence that attention can reshape stimulus 

representations in a manner that more effectively guides decisions (Ruff and 

Cohen, 2019). This boosting did not appear to be simply reward expectation, and 

the animal did not use saccades or overt movements to perform the task. This 

boosting was also sensitive to the task goal: if the cursor was positioned close to 
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the target and sweeping towards it, responses were boosted relative to when it 

was sweeping away. If the cursor was far from the target and sweeping farther 

away from it, responses were also boosted relative to the cursor at the same 

position sweeping towards the target. This suggests that firing rates reflect 

intention, and may also reflect a valence of the animal’s perceived fluency of cursor 

control—that is, whether it was successfully or unsuccessfully guiding the cursor 

towards its intended goal (Lee and Dan, 2012).  

 

We present a novel task and imaging method for exploring the encoding of action-

outcome assessments, which allowed us to simultaneously monitor–with both 

dorsal cortex-wide and cell-level resolution–what activity patterns support the 

causal control of external objects. While using widefield imaging afforded us a view 

of the dorsal cortex as animals learned neuroprosthetic control, there are a number 

of limitations to this method. Cortical neuroprosthetic control requires interactions 

with basal ganglia (Koralek et al., 2012; Neely et al., 2018), from which we cannot 

record using this method. Furthermore, we know from work in humans that 

prefrontal cortex (PFC) is involved in the sense of control over external stimuli, but 

we cannot record signals from PFC using this preparation due to its obscuration 

by the frontal sinus. While we found increased spiking to target stimuli using this 

preparation, we don’t know the exact cellular or neuromodulatory mechanisms 

giving rise to this difference. Future work may address this by using mesoscale 2-

photon imaging to record from molecularly defined neural subpopulations in 

parietal and motor control areas during task performance.  
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Methods 
 

All experimental procedures were carried out in accordance with institutional 

animal welfare guidelines and licensed by the Swiss cantonal veterinary office. 

TRE-Gcamp6s mice (Wekselblatt et al., 2016) (Jackson laboratories, 

https://www.jax.org/strain/024742) were crossed with B6.CBA-Tg(Camk2a-

tTA)1Mmay/DboJ mice (Jackson laboratories, JAX 007004), to drive the 

expression of gCamp6s in CamKII+ pyramidal neurons. Animals were housed in a 

facility using a reversed light cycle, and recordings were taken during their active 

period. Eleven female mice were trained on the task, and we took 

electrophysiological recordings from seven of these, ranging between P55-P75. 

Sample sizes were not statistically determined, but were consistent with previous 

papers using related methodology (Clancy et al., 2019; Xiao et al., 2017).  

 
Surgery  
 

A week before training, mice were prepared for imaging. Animals were 

anaesthetised with a mixture of fentanyl (0.05 mg per kg), midazolam (5.0 mg per 

kg), and medetomidine (0.5 mg per kg). The animal's scalp was resected and a 

head plate was secured to the skull. Four stereotaxically placed marks were made 

to enable alignment of the imaged brain with the Allen Brain Atlas 

(http://mouse.brain-map.org/static/atlas) post hoc, using the Allen Brain API (brain-

map.org/api/index.html). The exposed skull was cleaned and covered with 

transparent dental cement to avoid infection, and to cover the cut scalp edges 

(C&B Metabond). This was polished to enhance the transparency of the 

preparation. A custom-made 3D printed light shield was cemented to the skull and 

head plate to avoid light leaks from the visual stimulus.  

 

Behavioral setup and recordings 
The recording chamber was sound-isolated and shielded from outside light. Mice 

were head-fixed under the microscope and free to run on a Styrofoam running 

wheel (diameter = 20 cm, width = 12 cm). The animals’ movements were recorded 
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using a rotary encoder in the wheel axis (pulse rate 1000, Kubler). Two monitors 

were placed side by side in front of the mouse, angled towards one another (21.5” 

monitors, ~20 cm from mouse, covering ~100x70 degrees of visual space), 

similarly to the setup described in (Poort et al., 2015). A reward port was place in 

front of the animal, where reward delivery was triggered via pinch solenoid 

(NResearch) and animal licks were detected using a custom piezo element 

coupled to the spout. All behavioral data were recorded using custom MATLAB 

software and a PCI-6320 acquisition board (National Instruments). 

 

On electrophysiological recording days, pupil recordings were taken by illuminating 

the animal’s right eye with a custom IR-light source and imaging with a CMOS 

camera (DMK22BUC03, Imaging Source, 30 Hz) using custom MATLAB software. 

Pupil size was determined as described in (Orsolic et al., 2019): images were first 

smoothed with a 2-D gaussian filter and thresholded to low luminance areas. 

These thresholded regions were then filtered by circularity and size to 

automatically detect the pupil region. Pupil edges were detected using the canny 

method, and ellipses were iteratively fit to the region, tasked to minimise the 

geometric distance between the area outline and the fit ellipse using nonlinear 

least squares (MATLAB function fitellipse, Richard Brown). The pupil diameter was 

taken to be the major axis of the ellipse, then normalised by animal. Pupil 

recordings from one animal had to be discarded, as the video was not sufficiently 

in focus. 

 

Behavioral training 
 

After recovery, mice were acclimatised to head fixation for a minimum of two days, 

and started on food restriction. Awake animals were head-fixed under the 

microscope and free to run on a Styrofoam wheel. A baseline of spontaneous 

activity was taken on every training day (10-20 minutes) in order to estimate 

spontaneous hit rates. The decoder was calibrated such that animals achieved 

~25% performance on their first day. Two small control regions were chosen for 

real-time read out. The same control regions were used for the first few days of 
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training, then changed from day to day, or within sessions, so that animals did not 

learn a fixed control strategy.  

 

Activity was imaged at 40 Hz and the mean fluorescence from each control region 

was transmuted to the cursor’s position on screen with a simple transform: 

𝑝(𝑡) = 	𝐴(𝐹*( − 𝐴,𝐹*, + 𝐵 

where p is the cursor position, FR1 and FR2 are the fluorescence of control regions 

one and two, respectively, and A1, A2 and B are coefficients set based on the daily 

spontaneous baseline recordings (minimum 10 minutes). The display updated at 

approximated 10 Hz, with a latency of 300 ms from camera to screen, measured 

using a photodiode placed on one of the monitors (Thorlabs, PDA100A-EC). The 

raw fluorescence was converted to DF/F using a moving baseline of 5 minutes of 

activity. Activity in R1 would cause the cursor to move towards the target location 

in the centre of the animal’s visual field, while increased activity in R2 would cause 

the cursor to move away from the target. The cursor was presented on two 

monitors so that the animal could track the cursor with both eyes; its goal was to 

bring the cursors together in the middle of its visual field. These changes were 

binned, such that the cursor could take one of eight possible locations on the 

screen. The cursor had to be held at the target position for 0.3 seconds to count 

as a hit, at which point the cursor disappeared. When a target was hit, a MATLAB-

controlled Data Acquisition board (National Instruments, Austin, TX) triggered the 

administration of a soyamilk reward following a 1 second delay. The next trial could 

be initiated within 5 seconds of reward delivery, but only when the activation of R1 

relative to R2 returned to the mean value recording during spontaneous activity (to 

ensure enough time had passed for large transients to decay). If the animal did not 

bring the cursor to the target within a 30 second trial, the cursor disappeared, and 

the animal received a white noise tone and a 10 second ‘time out.’  

 

We trained a separate group of four mice using an auditory, rather than visual, 

feedback cursor, where activity was transmuted to the pitch of a feedback tone 

(Clancy et al., 2014). As with the visual feedback task, a spontaneous baseline 
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was recorded every day (10-20 minutes) to assess chance levels of performance 

and calibrate the decoder. Activity from two arbitrarily chosen regions was entered 

into an online transform algorithm that related neural activity to the pitch of an 

auditory cursor: 

𝑓(𝑡) = 	𝐴(𝑒123( − 𝐴,𝑒*124 + 𝐵 

Where f is the cursor frequency, FR1 is the fluorescence of R1, FR2 the fluorescence 

of R2, and A1, A2, and B are coefficients set based on the daily baseline recording. 

Linear changes in firing rate resulted in exponential changes in cursor frequency, 

and frequency changes were binned in quarter-octave intervals to match rodent 

psychophysical discrimination thresholds. As with the visual task, a trial was 

marked incorrect if the target pitch was not achieved within 30 seconds of trial 

initiation. The auditory feedback was played using speakers mounted on 2 sides 

of the imaging platform.  

 

Widefield imaging 
 
Widefield imaging was performed through the intact skull using a custom-built 

epifluorescence macroscope with photographic lenses in a face-to-face 

configuration (85mm f/1.8D objective, 50mm f/1.4D tube lens; (Ratzlaff and 

Grinvald, 1991)). Data were recorded using a CMOS camera (Pco.edge 5.5, PCO, 

Germany) in global shutter mode. 16-bit images were acquired at a rate of 40 Hz 

and binned 2x2 online using custom-made LABVIEW software. A constant 

illumination at 470 nm was provided (M470L3, Thorlands, excitation filter FF02-

447/60-25), with average power ~0.05 mW.mm2 (emission filter 525/50-25, 

Semrock). The imaging site was shielded from light contamination using a 3D-

printed blackout barrier glued to the animal's skull. Signals from the two control 

regions were sent via UDP to a computer providing visual or auditory feedback to 

the mouse, using custom MATLAB software.  

 

Electrophysiological recordings 
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The day before recording, mice were anesthetised with isofluorane and a small 

craniotomy was opened over AM, which was functionally identified during task 

performance, and stereotaxically confirmed. The craniotomy was kept damp with 

Ringer's solution and sealed with KwikSil (World Precision Instruments). 

Recordings were taken on the following day to avoid residual effects of anesthesia.  

 

On the recording day, animals were head-fixed under a custom-built widefield 

microscope, the skull and cortex was cleaned with Ringer's solution, and the 

KwikSil plug removed from the craniotomy. A custom-designed silicon probe (64 

channels, 2 shanks, Neuronexus, as described in (Clancy et al., 2019)) was 

inserted at an angle of ~45 degrees from normal to cortex. The probe consisted of 

two shanks with 64 sites total, organised into 16 'tetrodes', each consisting of 4 

sites located 25 um apart from each other within-tetrode, and tetrodes spaced 130 

um apart from each other. A small amount of KwikSil or agar was used to cover 

the exposed cortex after the probe was in place. After allowing the probe to settle 

for 20-30 minutes, neural activity was recorded using the OpenEphys recording 

system (Siegle et al., 2017). Behavioral and stimulation data, including pulses 

representing each camera frame, were recorded using OpenEphys, enabling the 

alignment of electrophysiological signals with imaging and behavioral data. Ephys 

recordings were filtered between 700 and 7000 Hz, and spikes detected using the 

Klustakwik suite (Schmitzer-Torbert et al., 2005). Clusters were assigned to 

individual units by manual inspection, excluding any units without a clear refractory 

period. Units were separated into fast and broad spiking units by their peak-to-

tough time, using a cutoff of 0.66 ms (Barthó et al., 2004).  

 

Data analysis 
 
Raw imaging data were checked for dropped frames, spatially binned 2x2, and 

loaded into MATLAB as a mapped tensor (Muir and Kampa, 2015). The raw 

fluorescence was converted to DF/F using a moving baseline, calculated as the 

tenth percentile of points from the preceding 20 seconds of data. We did not 

perform hemodynamic correction as previous work indicates that hemodynamic 
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and flavoprotein signals contribute minimally compared to the calcium responses 

(Vanni and Murphy, 2014; Xiao et al., 2017; Clancy et al., 2019).  

 

Task-activation maps were calculated by taking the normalised average of 

fluorescence movies during the task, or visual stimulus, subtracted by periods 

when animals were not performing the task. To ensure that differences between 

early and late in training were not influenced by possible differences in the statistics 

of the visual feedback cursor, we randomly excluded success trials on late training 

days in order to have comparable numbers of success and failure trials between 

early and late training. To build the single-unit affiliation maps (Supp. Figure 9, see 

also (Clancy et al., 2019)), spike trains were binned to match imaging frames, and 

maps were calculated by taking the correlation of each unit's spike train with each 

pixel's DF/F. 

 

Spectral entropy was calculated in 10 second windows, each overlapping by 5 

seconds. The calcium signal of the control areas was transformed into power 

spectral density (PSD) during these windows (the magnitude squared of the 

signal’s Fourier transform). This was then used to calculate the spectral entropy 

for that time span: 

𝑆𝐸 = − 7 𝑃𝑆𝐷:(𝑓)𝑙𝑜𝑔,[𝑃𝑆𝐷:(𝑓)]

@A@B,

@AC@B,

 

 

Where SE is the spectral entropy, PSDn is the normalised PSD, and f is frequency. 

 

The data and code used in this study are available from the corresponding author 

upon reasonable request. 
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Supplementary Figure 1. Animals intentionally modulate activity patterns 
a. Example trace of the difference between control areas’ fluorescence during task 

(R1-R2), showing an increase in differential modulation over the course of a training 

session (left). These modulations decreased when reward was provided randomly 

(right). b. The slope of R1-R2 DF/F was positive during the normal task (left, p < 0.01, 

n = 5 mice) and negative over the course of random reward (right, p < 0.01, n = 5 

mice). 
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Supplementary Figure 2. Animals did not use gross motor movements to 
perform task  
a. Lick averaged around hits on 2 consecutive days of training for the same animal. 

b. Velocity averaged around hits on 2 consecutive days of training for the same 

animal. c. Lick averaged around hits (top) and misses (bottom) on day 8 of training 

(n = 7 mice). d. Velocity averaged around hits (top) and misses (bottom) on day 8 

of training (n = 7 mice). e. Saccade averaged around hits, 95% confidence interval 

(n = 6 mice). f. Same as e, for misses (n = 6 mice). 
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Supplementary Figure 3. Animals use different strategies to perform task 
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a. Example fluorescence trace from R1 and R2 in pre-task spontaneous activity, and 

during task. b. DF/F triggered around hits for three example animals, indicating 

different strategies animals use to achieve reward. c. DF/F triggered around large R1 

transients (top) and R2 transients (bottom), before (left) and during (right) the training 

session, with the z-scored value of DF/F > 3 as the threshold. d. Example correlation 

maps with R1 (left) or R2 (right) used as a seed pixel in spontaneous activity (top) vs 

during task performance (bottom), in an auditory-feedback based task. e. 
Correlations between R1 and R2 dropped between spontaneous activity and task 

performance (n = 7 mice, paired t-test).  
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Supplementary Figure 4. Activity variance around hits decreased as animals 
discovered reliable strategies 
a. Early in a training session, the average variance of activity in R1 was greater 

around hits than late in session (n = 7 mice, day 8 of training, shading indicates 

s.e.m.), indicating mice honed in on more reliable control strategies. b. Same as 

a, for R2.  
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Supplementary Figure 5. Variable areas involved in auditory task  
a. Example task-related activity maps from four animals trained on an auditory 

version of the task. b. Mean task-related activity map indicating involvement of 

lateral parietal homologue RL. 
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Supplementary Figure 6. Similar task-related tuning shifts for FS and RS units 
a. Mean firing rate for RS units to different stimulus positions during task performance (95% 

confidence interval around mean indicated by shading, n = 7 mice). b. Same as a, for FS units.  
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Supplementary Figure 7. Boosted firing rate at target position was not 
explained by reward expectation 

a. Firing rates for units recorded in 2 animals where the target cursor position was 

rewarded during passive playback. The enhanced firing for target-adjacent stimuli 

during task performance remained, suggesting the boosting was not simply reward 

expectation (95% confidence interval around mean indicated by shading, n = 2 

mice). 
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Supplementary Figure 8. Pupil and locomotion become uncoupled during 
task 
a. Average velocity at each stimulus location during recordings during task (left) 

and playback (right), (n = 7 mice, final day of recording). b. Normalized pupil 

diameter at each stimulus location during task (left) and playback (right). c. Pupil 

diameter and running speed were significantly decorrelated during task 

performance compared to playback (n = 6 mice, paired t-test). d. The correlation 
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between firing rate and pupil diameter was not different from zero during task, but 

slightly higher during playback (reward periods and inter-trial intervals excluded, n 

= 6 mice, N = 105 units task, n= 122 units playback, t-test). e. Firing rate and pupil 

position were uncorrelated both during task and playback (reward periods and 

inter-trial intervals excluded, N = 6 mice, n = 105 units task, n = 122 units playback, 

t-test). 
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Supplementary Figure 9. Cortex-wide affiliations of units tuned to different 
stimuli 
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a. Spike trains for each unit were correlated with the activity of each pixel to build 

cortex-wide affiliation maps. These were sorted into bins based on which stimulus 

position units were most responsive to. The average of these maps is shown in a 

for task performance, and b for passive playback. c. Mean correlation of spiking 

activity with calcium activity across dorsal cortex, sorted by units' stimulus 

preference for task and playback (t-test, Bonferroni corrected). d. The trend seen 

in a is not due to higher firing rates of target stimulus-tuned units, when units were 

organized into quartiles of mean firing rates rather than stimulus preference. 
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