Summary
The glycine receptor is a pentameric, neurotransmitter-activated ion channel that transitions between closed/resting, open and desensitized states. Glycine, a full agonist, produces an open channel probability (Po) of ∼1.0 while partial agonists, such as taurine and γ-amino butyric acid (GABA) yield submaximal Po values. Despite extensive studies of pentameric Cys-loop receptors, there is little knowledge of the molecular mechanisms underpinning partial agonist action and how the receptor transitions from the closed to open and to desensitized conformations. Here we use electrophysiology and molecular dynamics (MD) simulations, together with a large ensemble of single particle cryo-EM reconstructions, to show how agonists populate agonist-bound yet closed channel states, thus explaining their lesser efficacy, yet also populate agonist-bound open and desensitized states. Measurements within the neurotransmitter binding pocket, as a function of bound agonist, provide a metric to correlate the extent of agonist-induced conformational changes to open channel probability across the Cys-loop receptor family.