1 Article

2 The genome of Mekong tiger perch (Datnioides undecimradiatus) provides

3 insights into the phylogenic position of Lobotiformes and biological conservation

5	Shuai Sun ^{1,2,3†} , Yue Wang ^{1,2,3,†} , Xiao Du ^{1,2,3,†} , Lei Li ^{1,2,3,4,†} , Xiaoning Hong ^{1,2,3,4} , Xiaoyun Huang ^{1,2,3} , He Zhang ^{1,2,3} ,
6	Manazi Zhanalah Cuanazi Fanlah Vin Liulah* Shanghan Liulah*

- Mengqi Zhang^{1,2,3}, Guangyi Fan^{1,2,3}, Xin Liu^{1,2,3,*}, Shanshan Liu^{1,2,3*}
- 8 ¹ BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
- 9 ² BGI-Shenzhen, Shenzhen, 518083, China
- 10 ³ China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
- ⁴ School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
- 12 13

4

14 [†] These authors contributed equally to this work.

15 *Correspondence authors: <u>liushanshan@genomics.cn</u> (S. L.), <u>liuxin@genomics.cn</u> (X. L.)

16

17 Abstract

Mekong tiger perch (Datnioides undecimradiatus) is one ornamental fish and a 18 vulnerable species, which belongs to order Lobotiformes. Here, we report a ~595 Mb 19 D. undecimradiatus genome, which is the first whole genome sequence in the order 20 Lobotiformes. Based on this genome, the phylogenetic tree analysis suggested that 21 Lobotiformes and Sciaenidae are closer than Tetraodontiformes, resolving a long-time 22 dispute. We depicted the pigment synthesis pathway in Mekong tiger perch and result 23 confirmed that this pathway had evolved from the shared whole genome duplication. 24 We also estimated the demographic history of Mekong tiger perch, showing the 25 effective population size suffered a continuous reduction possibly related to the 26 27 contraction of immune-related genes. Our study provided a reference genome resource for the Lobotiformes, as well as insights into the phylogeny of Eupercaria 28 29 and biological conservation.

30

31 Instruction

Mekong tiger perch (*Datnioides undecimradiatus*) [1] is one tropical freshwater fish, belonging to the order Lobotiformes under series Eupercaria. It is native to Mekong river and usually found in the main waterway and large tributaries of the Mekong

35 river basins, feeding on small fishes and shrimps [2]. It is also one ornamental fish,

36 which is kept for its vertical yellow and black stripes running its body.

37

Eupercaria is by far the largest series of percomorphs with more than 6,600 species 38 arranged in 161 families and at least 16 orders. The phylogenetic relationship of the 39 order Lobotiformes, Tetraodontiformes, and the family Sciaenidae is in conflict. 40 Mirande reported Sciaedidae as the sister clade of Tetraodontiformes, and then 41 followed by Lobotiformes based on 44 DNA makers from uncompleted nuclear and 42 mitochondrial sequences combined with morphological characters [3]. Compared to it, 43 44 Betancur-R et al. reported Lobotiformes was more closely related to Tetraodontiformes than Sciaedidae using molecular and genomic data, which was also 45 46 not complete or whole-genome sequenced for most of species. [4], agreed with this phylogeny by investigating. However, more recently Lobotiformes was reported to be 47 more closely related to Sciaenidae than Tetraodontiformes based on complete 48 49 mitochondrial genome [5] using and transcriptomic data [6]. Furthermore, fourteen families of Eupercaria included in order-level incertae sedis, which are called "new 50 51 bush at the top", were not arranged to explicit orders and interrelationships among 52 them was a long-term issue [7]. Therefore, the whole-genome containing comprehensive evolutionary information is called for resolving the long-time dispute 53 on the phylogenetic relationships of the huge number of species in Eupercaria, 54 especially for the problem of "new bush at the top". 55

56

57 In addition to its evolutionary importance, Mekong tiger perch has a body color pattern with vertical yellow and black stripes. Body color diversity in animals has 58 59 important functions in numerous biological processes and social behaviors, such as sexual selection, kin recognition and changing coloration for camouflage [8]. Recent 60 studies proposed that teleost genomes might contain more copies of genes involved in 61 pigment cell development than tetrapod genomes after an ancient fish-specific 62 genome duplication (FSGD), which might contribute to the evolution and 63 diversification of the pigmentation gene repertoire in teleost fish [9]. With more 64 genome sequences, especially for fish with unique body color schemes such as 65 Mekong tiger perch, we can further apply comparative genomics to illustrate the 66

67 genetic mechanisms of body color development.

68

69 Mekong tiger perch is currently assigned as 'Vulnerable' due to the rapidly declined population size by the IUCN [10], and is considered as endangered (EN) by Thailand 70 Red data [2]. The external factors, such as the construction of hydraulic engineering 71 infrastructures, urban pollution, and the aquarium trade, are thought to be exerting a 72 negative effect on wild populations. Meanwhile, internal genetic factors such as 73 74 resistance to biological and abiotic stress may be related to their survivals. Due to its 75 limited distribution and commercial values, rare genetic research has been focused on 76 Mekong tiger perch. With the rapid development of genomics, each fish deserves the right to own its genome assembly representing its unique genetic resource, which will 77 78 help to better investigate its unique characters and biological conservations.

79

Here, we sequenced Mekong tiger perch and assembled a reference genome, which 80 was the first genome of the order Lobotiformes. We constructed a phylogenetic tree in 81 Eupercaria based on the whole genome sequences, to elucidate the relationships 82 among family Sciaenidae, order Lobotiformes and order Tetraodontiformes, providing 83 insights into the phylogenic position of Lobotiformes. Utilizing the assembled 84 85 genome, we identified genes involved in the cell development regulation and pigment synthesis in Mekong tiger perch. We confirmed population decline by the analysis of 86 87 demographic history and found the contraction of immune-related genes might be a contributing factor for Mekong tiger perch's vulnerability. The genome assembly of 88 Mekong tiger perch provided a valuable genome resource for future fish studies in 89 Lobotiformes, and also contributes to the understanding of body color development as 90 91 well as demographic history and conservation.

92

93 **Results**

94 Genome assembly, annotation, and genomic features

We sampled muscle tissue from a Mekong tiger perch captured in Mekong river (Supplementary Fig. 1), and applied single tube long fragment read (stLFR) [11]

97 technology for whole genome sequencing, generating stLFR co-barcode reads 122.4 Gb raw data. After filtering low-quality and duplicated reads, we obtioned75.3 Gb 98 clean data for genome assembly using supernova [12], and gaps were closed using 99 GapCloser [13]. We obtained a final genome assembly spanning 595 Mb, accounting 100 for 95.5% of the estimated genome size (623 Mb, Supplementary Fig. 2). The 101 assembly achieved a high level of contiguity, with a total of 4,959 scaffolds and 102 103 scaffold N50 of 9.73Mb. The longest 71 scaffolds (longer than 1.41 Mb) accounted for 90% of the total genome, and the longest scaffold reached up to 39.31 Mb (Fig. 1, 104 105 Table 1 and Supplementary table 1). Total repeat content accounted for 11.97% (Table 1 and Supplementary table 2) of the genome, and 29,150 protein-coding 106 genes were predicted via *ab initio* and homology-based methods (Table 1). The 107 average length of coding sequences (CDS) was 1,510 bp with an average of 9 exons 108 per gene, which were similar to that of other related species (Supplementary table 3 109 and Supplementary Fig. 3). The ncRNAs including miRNA, tRNA, rRNA, and 110 snRNA were also annotated with a total length of 179 kb (Supplementary table 4). 111 We used BUSCO metazoan database (v9) to evaluate the completeness of gene sets 112 and observed a completeness of 95.34%. Other databases including Actinopterygii (v9) 113 114 and vertebrata (v9) estimated the completeness to be 94% and 91%, separately (Supplementary Fig. 4). Furthermore, the mitochondrial genome was assembled a 115 total length of 16,606 bp, containing 18 coding genes, 2 rRNA, and 17 tRNA 116 (Supplementary table 5). 117

118

119 CpG islands (CGIs) are an important group of CpG dinucleotides in the guanine-120 and cytosine rich regions as they harbor functionally relevant epigenetic loci for 121 whole genome studies. 32,148 CpG islands (CGIs) were identified with a total length 122 up to 18.8 Mb. The CpG density has the most prominent correlations with three other 123 genomic features. It correlated positively with CG content density and gene density, 124 and correlated negatively with repeat density (**Fig. 1b and Supplementary table 6**), 125 showing a similar pattern observed in other published fishes or mammal [14-16].

127 Phylogenetic tree of Eupercaria uncovers the phylogenetic position of 128 Lobotiformes

129 To clarify the evolutionary relationships of major orders in Eupercaria clade, 9 sequenced species from 7 different orders were used in the comparative genomics 130 analysis (Supplementary table 7). We clustered the gene families based on protein 131 sequences similarity and obtained a total of 13,785 gene families, 1,428 of which 132 were single-copy gene families (Supplementary Fig. 5 and Supplementary table 8). 133 The nucleotide sequences on the four-fold degenerate (4d) site of those single-copy 134 gene families were used to construct the maximum likelihood (ML) tree. The 135 phylogeny of the seven orders was found consistent with the previous study [5, 6]. 136 Order Perciformes was identified as the early branch to other orders in Eupercaria, 137 138 and the divergent time was estimated 101.9 million years ago (mya). Our phylogenetic tree (Fig. 2a) showed Lobotiformes was more related to Sciaenidae than 139 to Tetraodontiformes, which supported the results of some previous studies [5, 6]. 140 Furthermore, the divergence time between Lobotiformes and Sciaenidae was inferred 141 to be 82.9 mya (Fig 2a). 142

143

144 The conserved genomic synteny reflects the arrangements on evolutionary processes was used to further demonstrate the ambiguous phylogeny among 145 146 Lobotiformes and closely related orders. The syntenic analysis both at whole-genome nucleotide-level and gene-level were performed by aligning L. crocea and T. rubripes 147 to our assembled *D. undecimradiatus*, separately. At whole-genome nucleotide-level 148 after filtering alignment length < 1kb, 41.76 % of D. undecimradiatus genome 149 sequences were covered by L. crocea genome with an average of 2.29 kb per block. In 150 comparison, only 10.48% of D. undecimradiatus genome sequences were covered by 151 T. rubripes genome with an average of 1.65 kb per block (Fig. 2b and 152 Supplementary table 9). Similarly, at the whole genes level after keeping block 153 length > 3 genes, 89.19% of D. undecimradiatus genes showed synteny with L. 154 crocea with an average of 50.28 genes per block, and 77.21% of D. undecimradiatus 155 genes had synteny with T. rubripes with an average of 41.28 genes per block (Fig. 2c 156 and Supplementary table 10). Despite the difference in genome size, both L. crocea 157 and T. rubripes genomes were assembled to comparable chromosome level and the 158

159 BUSCO assessments showed no significant differences in the completeness of genome and gene set between L. crocea and T. rubripes (Supplementary table 11). In 160 addition, the distribution of the length of syntenic blocks at both whole-genome 161 nucleotide-level and gene-level showed significant difference by t-test statistics 162 (nucleotide-level, *p*-value<0.0001; gene-level, *p*-value<0.05) (Supplementary Fig. 6). 163 Therefore, the results of synteny suggested that the Lobotiformes had better 164 evolutionary conservation and closer relationship with Sciaenidae than with 165 Tetraodontiformes, providing strong evidence for the constructed phylogenic tree. 166

167

To further demonstrate the phylogeny among Lobotiformes, Sciaenidae, and Tetraodontiformes, only the homologous genes of 1:1:1 on the syntenic blocks were inferred as reliable orthologous genes to construct the genes genealogy, with the human CDS sequences as outgroup in the rooted tree. 73% of the 3,974 orthologous gene sets supported that *D. undecimradiatus* was more closely related to *L. crocea*, supporting Lobotiformes as sister group to Sciaenidae, instead of the other two hypotheses (**Fig. 2d**).

175

176 The genes involved in pigment development and two copies of three rate-limiting

177 genes of pigment synthesis as the result of FSGD similar to other teleosts

In consideration of special skin color pattern, among established pigmentation 178 179 database containing 198 genes [17], 172 genes were found on our genome, occupying 92% of the database and possibly genetic basis for the phenotypic characteristics of 180 181 vertical yellow and black stripes running its body (Supplementary table 12). For two major pigment synthesis pathways in D. undecimradiatus, three main rate-limiting 182 genes of Tyrosinase family (TYR, DCT, TYRP1) in the melanin synthesis pathway 183 have two copies respectively (Fig.3a) and one main rate-limiting gene SPR in 184 pteridine synthesis pathway also have two copies (Fig. 3b). This suggests D. 185 undecimradiatus retained the pigment related genes from a fish-specific 186 whole-genome duplication (FSGD), which was also observed in many other teleosts. 187 It should be noted that the phylogeny of those genes also served as another evidence 188 to the evolution relationship among the three close relative orders. 189

190

191 Decreasing population size related to the contraction of immune-related gene

192 families provides clues to biological conservation

Pairwise sequentially Markovian coalescent (PSMC) was used to infer the demographic history of Mekong tiger perch. The effective population size continuously reduced since LGM (last glacial maximum), and there were no signs of recovery to date, which was consistent with its vulnerable state [2, 10](**Fig. 4a**).

197 The change of genes copy number plays a role in the species adaptation [18] To investigate the genetic basis potentially related to fish survival, we identified the 198 expanded and contracted gene families in Mekong tiger perch, and 19 and 101 199 200 significantly expanded and contracted gene families were found (p-value < 0.05), separately (Fig. 4b). 62 contracted and 18 expanded gene families were annotated to 201 KEGG ortholog functions. The top enriched KEGG pathway was the immune-related 202 pathway with fifteen contracted gene families (Fig. 4c and Supplementary table 203 13-14), Furthermore, the most gene families' KO were annotated to the genes MHC1, 204 NLRP12, ANK (ankyrin), IGH CLDN, and PLAUR (Supplementary Table 15), 205 which may play a role in the adaptive immunity and survival. For example, MCH1, 206 which was responsible for presenting peptides on the cell surface for recognition by T 207 cells [19], was significantly contracted in D. undecimradiatus with only 2 copies, 208 compared to 22 copies in closely related L. crocea and 14 copies in T. rubripes (Fig. 209 210 4c). NLRP12, which play a role in regulating inflammation and immunity [20], there were 13 copies in D. undecimradiatus, compared to 20 copies in L. crocea and 29 211 212 copies in T. rubripes. The contraction of immune-related genes may affect the capacity of Mekong tiger perch to adapt to environmental changes or stress, implying 213 214 of human-mediated species and environmental conservation is meaningful.

215 Discuss

The phylogeny of Eupercaria plays a fundamental role in species classification and uncovering the species evolutionary history at the Cretaceous–Palaeogene boundary[21]. However, although species in series Eupercaria account for more than twenty percent of the bony fish, the Eupercaria phylogeny is ambiguous or conflicted, especially for the "new bush at the top". Meanwhile, the resolution of the phylogeny

221 is currently limited to the order level, and few studies could go down to the class level or species level. Relying on limited morphological characters and molecular 222 sequences, it is difficult to draw convincing conclusion[3-6]s. In contrast, whole 223 genome sequencing provides sufficient information to perform the phylogenetic 224 analysis of species. In our study, we clarified the relationship of order Lobotiformes to 225 its related orders, Sciaenidae and Tetraodontiformes. With the rapid development of 226 sequencing technology, large-scale fish genome sequencing projects can be achieved, 227 such as fish 10k project (http://icg-ocean.genomics.cn/index.php/fish10kintroduction/). 228 229 Those projects will greatly promote studies on the fishes' classification and evolution.

230

Skin color is a biologically important trait, which is a fascinating research topic and has great implications on biological adaption, commercial value, and skin health[22, 23]. In our study, most genes involved in pigmentation development, regulation and synthesis can be found in our assembled genome. However, research of underlying mechanisms is difficult to penetrate with limited genome resource. More fish genome data and molecular experiments will facilitate the analysis of skin color regulation mechanisms.

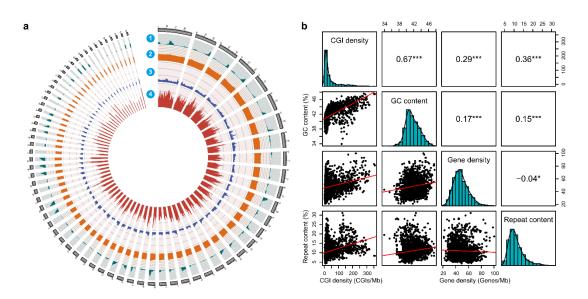
238

Biological conservation is an important research content of the relationship 239 between human and nature [23], and different species vary in their adaptive capacities. 240 In our study, immune-related genes of Mekong tiger perch were significantly 241 contracted relative to closely related species, indicating that its environmental 242 adaptability possibly responsible for its vulnerability. Therefore, it is necessary for 243 humans to take various measures to protect it, such as improving the living 244 245 environment, reducing fishing, artificial breeding, etc., and thus help maintain species diversity. 246

247

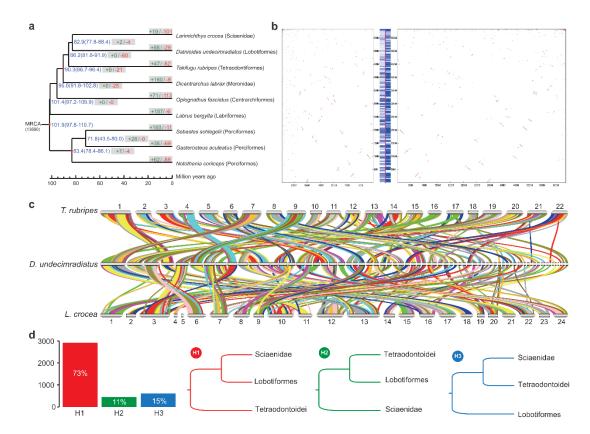
248 **References**

- Roberts, T.R. and M. Kottelat, *The Indo-Pacific tiger perches: with a new species from the Mekong basin (Pisces: Coiidae)*. 1994.
- 251 2. Vidthayanon, C., *Thailand red data: fishes.* 2005.
- 252 3. Mirande, J.M., Combined phylogeny of ray-finned fishes (Actinopterygii) and the use of


253		morphological characters in large-scale analyses. Cladistics, 2017. 33(4): p. 333-350.
254	4.	Betancur-R, R., et al., Phylogenetic classification of bony fishes. BMC Evolutionary Biology,
255		2017. 17 (1): p. 162.
256	5.	Yang, H., et al., Characterization of the complete mitochondrial genome sequences of three
257		croakers (perciformes, sciaenidae) and novel insights into the phylogenetics. International
258		Journal of Molecular Sciences, 2018. 19(6): p. 1741.
259	6.	Hughes, L.C., et al., Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on
260		transcriptomic and genomic data. Proceedings of the National Academy of Sciences, 2018.
261		115 (24): p. 6249-6254.
262	7.	Nelson, G., Phylogeny of major fish groups, in Phylogeny of major fish groups, B. Fernholm,
263		et al., Editors. 1989, Amsterdam: Elsevier Science. p. 325-336.
264	8.	Protas, M.E. and N.H. Patel, Evolution of coloration patterns. Annual Review of Cell and
265		Developmental Biology, 2008. 24: p. 425-446.
266	9.	Braasch, I., M. Schartl, and J.N. Volff, Evolution of pigment synthesis pathways by gene and
267		genome duplication in fish. BMC Evolutionary Biology, 2007. 7(1): p. 74.
268	10.	IUCN, The IUCN Red List of Threatened Species, version 2018-2. 2018.
269	11.	Wang, O., et al., Efficient and unique cobarcoding of second-generation sequencing reads
270		from long DNA molecules enabling cost-effective and accurate sequencing, haplotyping, and
271		de novo assembly. Genome Research, 2019. 29(5): p. 798-808.
272	12.	Weisenfeld, N.I., et al., Direct determination of diploid genome sequences. Genome Research,
273		2017. 27 (5): p. 757-767.
274	13.	Luo, R., et al., SOAPdenovo2: an empirically improved memory-efficient short-read de novo
275		assembler. Gigascience, 2012. 1(1): p. 18.
276	14.	Barazandeh, A., et al., Genome-wide analysis of CpG islands in some livestock genomes and
277		their relationship with genomic features. Czech Journal of Animal Science, 2016. 61(11): p.
278		487-495.
279	15.	Han, L., et al., CpG island density and its correlations with genomic features in mammalian
280		genomes. Genome Biology, 2008. 9(5): p. R79.
281	16.	Wright, S.I., N. Agrawal, and T.E. Bureau, Effects of recombination rate and gene density on
282		transposable element distributions in Arabidopsis thaliana. Genome Research, 2003. 13(8): p.
283		1897-1903.
284	17.	Lorin, T., et al., Teleost Fish-Specific Preferential Retention of Pigmentation Gene-Containing
285		Families After Whole Genome Duplications in Vertebrates. G3, 2018. 8(5): p. 1795-1806.
286	18.	Katju, V. and U. Bergthorsson, Copy-number changes in evolution: rates, fitness effects and
287		adaptive significance. Front in Genetics, 2013. 4: p. 273.
288	19.	Wieczorek, M., et al., Major Histocompatibility Complex (MHC) Class I and MHC Class II
289		Proteins: Conformational Plasticity in Antigen Presentation. Frontiers in Immunology, 2017.
290		8 : p. 292.
291	20.	Tuncer, S., M.T. Fiorillo, and R. Sorrentino, The multifaceted nature of NLRP12. Journal of
292		Leukocyte Biology, 2014. 96(6): p. 991-1000.
293	21.	Alfaro, M.E., et al., Explosive diversification of marine fishes at the Cretaceous-Palaeogene
294		boundary. Nature Ecology Evolution, 2018. 2(4): p. 688.
295	22.	Deng, L. and S. Xu, Adaptation of human skin color in various populations. Hereditas, 2018.
296		155 (1): p. 1.

- 297 23. Rehbein, H. and J. Oehlenschlager, *Fishery products: quality, safety and authenticity*. 2009:
 298 John Wiley & Sons.

301 Main Tables and Figures


Table 1. Assembly and annotation of the Mekong tiger perch genome

Genome asser	nbly	Repeat content		Genes finding and annotation		
Total Length (bp)	594,964,832	DNA (%)	6.11	gene number	29,150	
Number of scaffolds	4442	LINE (%)	2.75	average gene length (bp)	13,759	
longest scaffold	39.31 Mb	SINE (%)	0.19	average mRNA length (bp)	1510	
N content (%)	2.17	LTR (%)	2.37	average exon number per gene	9.04	
GC content	42.74	Other (%)	0	average exon length (bp)	167.03	
N50 / NG50	9.73Mb / 18	Unknown (%)	3.35	average intron length (bp)	1522.83	
N90 / NG90	1.41Mb / 71	Total (%)	11.97	annotated genes	19,837	

310

Fig1. The genome features of D. undecimradiatus. (a) A Circos plot representing 311 four features using sliding overlapping windows of 1Mb length with 200kb step 312 through the 71 scaffolds (scales in Mb), which accounts for 90% of genome. (1) CGI 313 314 content, measured by CGIs number per million base pairs (megabase, Mb). The range of the axis is 0 to 500. (2) GC content, measured by the proportion of GC in 315 316 unambiguous bases of 1 Mb window size. The range of the axis is 0 to 100. (3) Repeat content, measured by the proportion of repeat regions of 1 Mb window size. 317 The range of the axis is 0 to 100. (4) Gene density, measured by genes number per 318 million base pairs. (b) Correlation matrix plot with significance levels between four 319 genome features. The lower triangular matrix is composed by the bivariate scatter 320 plots with a fitted linear model. The diagonal shows the distribution by histogram 321 with density curve. The upper triangular matrix shows the Pearson correlation plus 322 significance level (as stars). Different significance levels are highlighted with 323 asterisks: p-values 0.001 (***), 0.01 (**), 0.05 (*). This plot was generated with the 324 "psych" package in R (v3.5.0). 325

326

Fig. 2 The phylogenetic and genome analysis for D. undecimradiatus and other 327 328 related species. (a) Time-calibrated maximum likelihood phylogenetic tree of nine species from Eupercaria. Red Nodes represents the calibration time points obtained 329 330 from TreeTime. The estimated divergent time (mean and 95% highest-probability) are showed on the right of the nodes. Behind the divergent time, the green positive 331 332 number and the red negative number in grey boxes stand for the number of gene families significantly expanded and contracted, respectively. (b) Synteny of D. 333 undecimradiatus between L. crocea and T. rubripes at whole-genome nucleotide level. 334 The y-axis represents the *D. undecimradiatus* genome, and the left x-axis refers to *T*. 335 rubripes and right x-axis refers to L. crocea. The fringe plot on the left of y-axis 336 represents the synteny regions between D. undecimradiatus and T. rubripes on D. 337 undecimradiatus genome. The fringe plot on the right of y-axis represents the synteny 338 regions between D. undecimradiatus and L. crocea on D. undecimradiatus genome. (c) 339 synteny of D. undecimradiatus between L. crocea and T. rubripes at gene level and 340 different colors represent different synteny blocks. (d) The number of gene genealogy 341 that supports for three hypotheses concerning the Lobotiformes phylogeny. 342

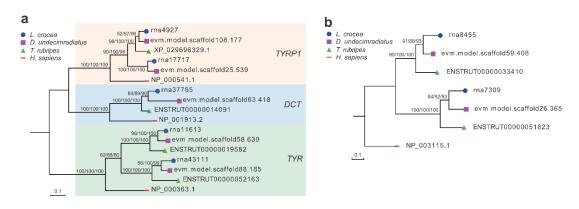



Fig. 3 The phylogeny of main rate-limiting genes involved in the pigment synthesis. (a) The concordant phylogeny of TYR gene family (*TYRP1*, *DCT* and *TYR*) using maximum likelihood, neighbor-join and minimal evolutionary methods, Corresponding bootstrap values were showed on branch labels. (b) The concordant phylogeny of *SPR* gene using maximum likelihood, neighbor-join and minimal evolutionary methods. Corresponding bootstrap values were showed on branch labels.

352

353

354

356

Fig. 4 The demographic history of *D. undecimradiatus* and genetic basis possibly 357 associated with vulnerability. (a) The population history of D. undecimradiatus 358 inferred using PSMC. LGM (last glacial maximum, ~26.5-19 kya) and LGP (last 359 glacial period, $\sim 102-1.05$ kya) are shaded in gray. (b) The number of significantly 360 contracted and expanded gene families (P-value < 0.05) involved in different KEGG 361 pathway (at level 1 and level 2). The number at the right end of the bar indicates the 362 number of gene families. (c) Phylogenetic tree of MHC1 gene family. Green color 363 refers to T. rubripes, and blue and red refers to L. crocea and D. undecimradiatu 364 separately. (d) Phylogenetic tree of NLRP12 gene family. Green color represents T. 365 rubripes, and blue and red represents L. crocea and D. undecimradiatu separately. 366

- 367
- 368
- 369

371 Materials and Method

372 DNA extraction and stLFR library construction, and sequencing

The long genomic DNA molecules were extracted from the muscle of Mekong tiger 373 perch. The stLFR library was constructed following the standard protocol using 374 MGIEasy stLFR library preparation kit (PN:1000005622) [11]. In details, the 375 transposons with hybridization sequences were inserted in the long DNA molecules 376 approximately every 200-1000 base pairs. The transposon integrated DNAs was then 377 mixed with beads that each contained an adapter sequence. A unique barcode was 378 shared by all adapters on each bead with a PCR primer site and a capture sequence 379 380 that is complementary to the sequences on the integrated transposons. When the genomic DNA was captured to the beads, the transposons were ligated to the barcode 381 adapters. After a few additional library-processing steps, the co-barcoded 382 sub-fragments were sequenced on the BGISEQ-500 sequencer. 383

384

385 Reads filtering, genome size estimation and genome assembly

We generated a total of 1,223,801,322 million raw pair-end co-barcoding reads of 122.4 Gb. To obtain high-quality genome, SOAPnuke (v2.2) [24]was performed to filter low-quality reads (>40% low-quality bases, Q<7), PCR duplications, or adapter contaminations. After that, 753,357,182 clean pair-end reads remained. Based on the 17-mer analysis, the Mekong tiger perch genome size was estimated to be 623 Mb. Supernova assembler v 2.0.1(10X Genomics, Pleasanton, CA) were used to construct contig and scaffold, followed by gaps closing using GapCloser (v1.2) [13].

393

394 *Genes structure and function annotation*

We used both *de novo* approaches and homology-based approaches to predict repeat elements in *D. undecimradiatus* genome. Firstly, we aligned our genome against the Repbase database [25] at both protein and DNA levels by using RepeatMasker (v4.0.5) and RepeatProteinMasker (v4.0.5) [26] to identify transcriptional elements (TEs). Secondly, we used RepeatModeler (v1.0.8)[27] and LTR-FINDER (v1.0.6)[28] to implement *de novo* repeat annotation. Next, we used RepeatMasker to complete repeat elements identification and classification. Lastly, we combined and classified the above results. We masked the repeats in *D. undecimradiatus* genome for thesubsequent gene finding.

404 For homology-based annotation, we downloaded protein sequences of Dicentrarchus labrax, Labrus bergylta, Larimichthys crocea, and Gasterosteus 405 aculeatus **NCBI** (https://www.ncbi.nlm.nih.gov/) 406 from and Ensembl (http://ensemblgenomes.org/). We aligned these sequence to D. undecimradiatus 407 genome using BLAST[29] with an E-value cutoff of 1e⁻⁵ and the matched length 408 coverage >30% to identify homologous genes. Based on the aligned result, we used 409 GeneWise (v2.4.1) [30] to predict gene models. Furthermore, we used AUGUSTUS 410 (v3.1) [31]and GENSCAN(v2009) [32] for de novo annotation with default 411 parameters and zebrafish data setting as a training set of AUGUSTUS. Lastly, we 412 integrated all above gene models by EVM [33]. We used BUSCO (v 3.0.2) [34] to 413 assessment gene annotation integrity with three different databases, including 414 415 vertebrata (v9), metazoan (v9), and vertebrata (v9).

416

417 Gene functional annotation

In order to perform gene functional annotation, we aligned above gene sets against
Kyoto Encyclopedia of Genes and Genome (KEGG v87.0) [35], and NR (v84)[36]
databases by blastp (E-value≤1e-5) to identify genes with similar functions. For
identifying gene motifs and domains and obtaining Gene ontology (GO) terms [37],
we aligned our predicted genes against ProDom [38], Pfam [39], SMART [40],
PANTHER [41], and PROSITE [42] using InterProScan [43].

424

425 ncRNA annotation

Five types of ncRNA (Non-coding RNA), including tRNA, snRNA, miRNA, snRNA and, rRNA were predicted. We used tRNAscan-SE (v1.3.1) to predict tRNA in our genome with the default parameters. The genome was aligned against Rfam(v12.0) (Nawrocki E P et al., 2015) database and then we used infernal (v1.1.1) (Nawrocki E P & Eddy S R, 2013) to infer snRNA and miRNA based on mapping result. We aligned vertebrate rRNA database against *D.undecimradiatus* genome to predict rRNA.

433

434 CpG islands identification

The CpG islands (CGIs), which are clusters of CpGs in CG-rich regions, were identified using CpGIScan with the parameters "--length 500 --gcc 55 --oe 0.65"[44].

437 Comparative genome analysis

We download the annotation files of 8 species including *Dicentrarchus labrax*, *Gasterosteus aculeatus*, *Labrus bergylta*, *Labrus bergylta*, *Notothenia coriiceps*, *Oplegnathus fasciatus*, *Larimichthys crocea*, and *Takifugu rubripes* form NCBI or Ensembl database (Suppl. Table 5). The longest transcript was extracted for each gene. We filtered error sequences that didn't have enough sequence length, with termination codon in the middle, and with sequence length not divisible by 3 to obtain raw gene sets for each species. TreeFam (v4.0) [45] was used to identify gene families.

445

We concatenated single-copy genes into a supergene for each species and identified 446 fourfold degenerate sites within each supergene to construct a phylogenetic tree using 447 RAxML (v8.2.12) [46] with GTRCATX nucleotide substitution model with 448 parameters as "-f a -x 12345 -p 12345". Then by using the split time between 449 450 Gasterosteus aculeatus and Larimichthys crocea, Dicentrarchus labrax and Larimichthys crocea, and Notothenia coriiceps and Gasterosteus aculeatus from 451 timetree (<u>http://www.timetree.org/</u>) [47] as the reference time points, we estimated the 452 divergent time between each species by MCMCtree from the PAML package with 453 default parameters [48]. 454

455

456 Gene family cluster and expansion and contraction analysis

Expansion and contraction of each gene family were identified by Café (v2.1) [49] based on divergence time tree. To obtain the potential functions of the gene families, the number of different KO terms was counted for each gene family. The functions of the gene families were assigned by the corresponding KO terms of more than half counts or the highest count. The KEGG pathways involved by KO terms were extracted for further functional analysis. For the phylogenetic tree of the gene family, the CDS sequences were fetched to construct ML tree using RAxML (v8.2.12) [46].

464

465 Synteny analysis

466 The synteny analysis of *D. undecimradiatus* against *L. crocea* and *T. rubripes* was 467 performed on both whole-genome nucleotide level and gene level. On nucleotide level, 468 we used Lastz (v1.02.00) [50] to identify synteny blocks with parameters "T=2 C=2 469 H=2000 Y=3400 L=6000 K=2200", and aligned blocks less than 1 kb were filtered.

On gene level, we used JCVI (v0.8.12) [51] to identify synteny genes in two combinations based on CDS. The JCVI carried out sequence alignment based on Lastal (v979) with parameters "-u 0 -P 48 -i3G -f BlastTab". The JCVI filtered the blast result based on C-score (C-score(A,B) = score(A,B) / max(best score for A, best score for B)) with parameters "C-score >= 0.70 tandem_Nmax=10". We also filtered out the blocks spanning less than 30 genes on the *D. undecimradiatus* genome.

476

477 **Population demographic history inference**

The history of effective population size was reconstructed using PSMC (v0.6.5-r67) [52]. Diploid genome reference for the individual were constructed using SAMtools and BCFtools [53] with the parameters of "samtools mpileup -C30" and "vcfutils.pl vcf2fq -d 10 -D 100". The demographic history was inferred using PSMC with "-N25 -t15 -r5 -p 4+25*2+4+6" parameters. The estimated generation time (g) and mutation rate per generation per site (μ) were set to 1 and 2.5e-8.

484

485 **References**

486 24. Chen, Y., et al., SOAPnuke: a MapReduce acceleration-supported software for integrated
487 quality control and preprocessing of high-throughput sequencing data. Gigascience, 2017.
488 7(1): p. gix120.

489 25. Bao, W., K.K. Kojima, and O. Kohany, *Repbase Update, a database of repetitive elements in eukaryotic genomes.* Mobile DNA, 2015. 6(1): p. 11.

49126.Tarailo-Graovac, M. and N. Chen, Using RepeatMasker to identify repetitive elements in492genomic sequences. Current protocols in bioinformatics, 2009. 25(1): p. 4.10. 1-4.10. 14.

49327.Smith, A. and R. Hubley. RepeatModeler Open-1.0. 2008; Available from:494http://www.repeatmasker.org.

495	28.	Xu, Z. and H. Wang, LTR_FINDER: an efficient tool for the prediction of full-length LTR
496		retrotransposons. Nucleic Acids Research, 2007. 35(Web Server issue): p. W265-8.
497	29.	Altschul, S.F., et al., Basic local alignment search tool. Journal of Molecular Biology, 1990.
498		215 (3): p. 403-10.
499	30.	Birney, E., M. Clamp, and R. Durbin, GeneWise and Genomewise. Genome Research, 2004.
500		14 (5): p. 988-95.
501	31.	Stanke, M., et al., AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids
502		Research, 2006. 34(Web Server issue): p. W435-9.
503	32.	Burge, C. and S. Karlin, Prediction of complete gene structures in human genomic DNA.
504		Journal of Molecular Biology, 1997. 268(1): p. 78-94.
505	33.	Haas, B.J., et al., Automated eukaryotic gene structure annotation using EVidenceModeler and
506		the Program to Assemble Spliced Alignments. Genome Biology, 2008. 9(1): p. R7.
507	34.	Simão, F.A., et al., BUSCO: assessing genome assembly and annotation completeness with
508		single-copy orthologs. Bioinformatics, 2015. 31(19): p. 3210-3212.
509	35.	Kanehisa, M. and S. Goto, KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids
510		Research, 2000. 28(1): p. 27-30.
511	36.	Pruitt, K.D., T. Tatusova, and D.R. Maglott, NCBI reference sequences (RefSeq): a curated
512		non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids
513		Research, 2007. 35(Database issue): p. D61-5.
514	37.	Ashburner, M., et al., Gene ontology: tool for the unification of biology. The Gene Ontology
515		Consortium. Nature Genetics, 2000. 25(1): p. 25-9.
516	38.	Bru, C., et al., The ProDom database of protein domain families: more emphasis on 3D.
517		Nucleic Acids Research, 2005. 33(Database issue): p. D212-5.
518	39.	Punta, M., et al., The Pfam protein families database. Nucleic Acids Research, 2012.
519		40 (Database issue): p. D290-301.
520	40.	Ponting, C.P., et al., SMART: identification and annotation of domains from signalling and
521		extracellular protein sequences. Nucleic Acids Research, 1999. 27(1): p. 229-32.
522	41.	Mi, H., et al., The PANTHER database of protein families, subfamilies, functions and
523		pathways. Nucleic Acids Research, 2005. 33(Database issue): p. D284-8.
524	42.	Hulo, N., et al., The PROSITE database. Nucleic Acids Research, 2006. 34(Database issue): p.
525		D227-30.
526	43.	Zdobnov, E.M. and R. Apweiler, InterProScan-an integration platform for the
527		signature-recognition methods in InterPro. Bioinformatics
528	2001.	17 (9): p. 847-848.
529	44.	Fan, Z., et al., CpGIScan: an ultrafast tool for CpG islands identification from genome
530		sequence. Current Bioinformatics, 2017. 12(2): p. 181-184.
531	45.	Li, H., et al., TreeFam: a curated database of phylogenetic trees of animal gene families.
532		Nucleic Acids Research, 2006. 34(Database issue): p. D572-80.
533	46.	Stamatakis, A., RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
534		<i>phylogenies</i> . Bioinformatics, 2014. 30 (9): p. 1312-3.
535	47.	Kumar, S., et al., TimeTree: A Resource for Timelines, Timetrees, and Divergence Times.
536		Molecular Biology and Evolution, 2017. 34 (7): p. 1812-1819.
537	48.	Yang, Z., PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and
538		Evolution, 2007. 24(8): p. 1586-91.

Hahn, M.W., J.P. Demuth, and S.G. Han, *Accelerated rate of gene gain and loss in primates*.
Genetics, 2007. 177(3): p. 1941-9.

541 50. Harris, R.S., Improved pairwise Alignmnet of genomic DNA. 2007.

542 51. Tang, H., et al., *jcvi: JCVI utility libraries*. Zenodo, 2015: p. 10.5281/zenodo.31631.

- 543 52. Li, H. and R. Durbin, *Inference of human population history from individual whole-genome* 544 *sequences.* Nature, 2011. **475**(7357): p. 493-6.
- 545 53. Li, H., et al., *The Sequence Alignment/Map format and SAMtools*. Bioinformatics, 2009.
 546 25(16): p. 2078-9.
- 547
- 548

549 Data available

The sequencing reads of Mekong tiger perch in this study have been deposited in NCBI Sequence Read Archive (SRA) under BioProject accession PRJNA574247. The datasets reported in this study are also available in the CNGB under accession number CNP0000691.

554

555 Acknowledgements

This work was financially supported by the special funding of "Blue granary" scientific and technological innovation of China (2018YFD0900301-05) and Special Fund for Marine Economic Development of Fujian Province (ZHHY-2019-3). We also thanks for the technical support of stLFR library construction and sequencing from China National Genebank.

561 Author Contributions

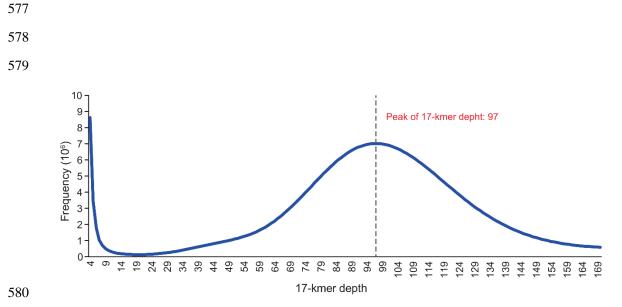
X. L., G. F. and H. Z. conceived the project. S. L. and G. F. supervised the study. M.
Z. contributed to sample collections. S. S., Y. W., L. L., and X. H. performed
bioinformatics analyses. S. S, Y.W., G. F., X. L., and X. D. wrote the manuscript with
help from all co-authors.

566

567 Competing Interests

568 The authors declare no competing interests.

569


570

572 Supplementary Figures and Tables

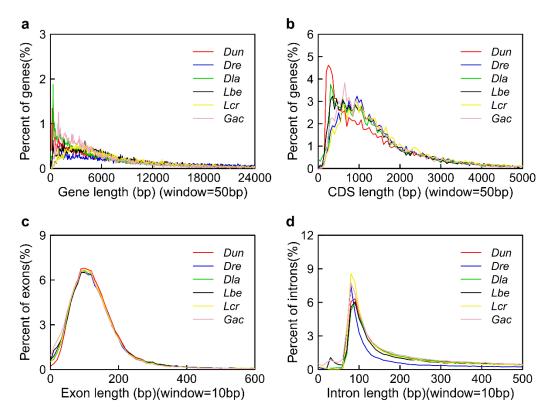
573

575 Supplementary figure 1. The photo of the Mekong tiger perch captured in Mekong576 river.

581 **Supplementary figure 2.** Kmer (K=17) frequency at different Kmer depth. The total 582 number of Kmer is 60,437,782,622, the Kmer depth peak at 97, and the reads 583 sequencing length was 100, so that the genome size was estimated 623,069,923bp. 584

scaffold ID	Length (bp)	GC content (%)	N_ratio (%)
scaffold22	39,306,008	42.33	1.58
scaffold23	24,901,081	42.33	1.97
scaffold24	23,317,972	42.03	0.87
scaffold63	22,660,142	42.41	1.76
scaffold26	19,767,337	41.45	0.89
scaffold27	19,537,586	42.15	1.03
scaffold58	17,534,777	41.68	2.25
scaffold25	17,129,097	41.35	2.02
scaffold28	15,606,803	41.60	0.76
scaffold45	15,041,297	41.93	1.28
scaffold60	13,384,554	42.11	0.81
scaffold61	13,186,598	42.71	1.04
scaffold77	11,679,837	42.19	2.24
scaffold79	11,352,832	42.26	0.96
scaffold59	10,986,376	41.77	1.75
scaffold88	10,659,222	41.96	1.16
scaffold89	9,983,168	43.64	3.77
scaffold62	9,730,178	42.24	1.24
scaffold64	9,455,329	41.09	0.99
scaffold80	9,009,409	41.98	1.13
scaffold90	8,890,068	44.17	5.80
scaffold66	7,986,709	42.51	0.72
scaffold67	7,981,977	42.51	0.72
scaffold155	7,882,590	44.18	2.10
scaffold76	7,221,551	42.34	0.79
scaffold83	7,024,340	43.41	1.36
scaffold129	7,004,772	43.25	3.18
scaffold86	6,951,544	44.19	2.53
scaffold87	6,939,792	42.63	1.33
scaffold85	6,732,700	43.19	2.76
scaffold75	6,668,441	40.74	0.60
scaffold102	6,529,773	42.51	1.49
scaffold78	6,505,070	40.03	1.04
scaffold110	6,218,238	42.57	2.73
scaffold65	6,149,668	41.30	0.92
scaffold81	6,042,282	40.32	0.84
scaffold107	5,552,807	43.61	1.57
scaffold82	5,383,449	45.41	3.42
scaffold108	5,037,774	42.28	1.01
scaffold111	4,837,472	43.64	1.99
scaffold105	4,507,353	42.91	1.23
scaffold101	4,379,686	46.21	5.84

585 **Supplementary table 1.** The details of longest 71 scaffolds.

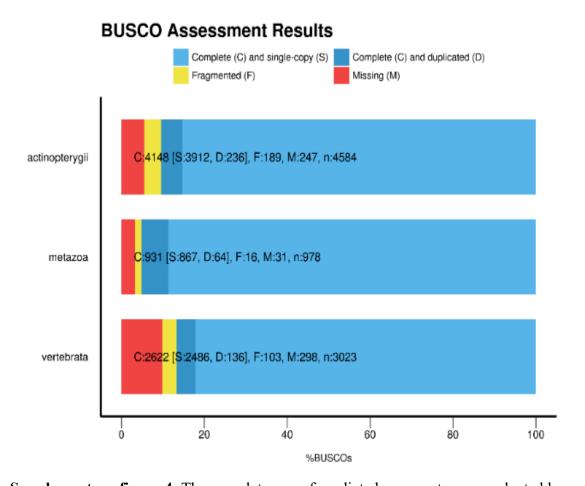

scaffold176	4,245,196	46.52	3.11
scaffold125	4,183,443	46.18	1.54
scaffold84	3,961,987	40.27	0.99
scaffold106	3,649,163	43.70	1.26
scaffold148	3,238,164	41.03	2.37
scaffold147	3,070,712	47.24	2.74
scaffold103	2,911,789	45.84	9.75
scaffold69	2,816,955	45.17	5.65
scaffold68	2,814,068	45.16	5.64
scaffold131	2,714,138	42.91	2.44
scaffold186	2,711,499	39.58	0.54
scaffold200	2,366,470	46.18	4.82
scaffold113	2,352,837	42.56	3.55
scaffold104	2,165,782	41.93	0.79
scaffold201	2,162,358	43.22	0.86
scaffold122	2,118,146	46.78	8.16
scaffold133	2,111,711	41.92	4.03
scaffold18494	1,965,245	45.72	4.53
scaffold18500	1,963,021	45.71	4.53
scaffold124	1,863,279	46.42	5.63
scaffold112	1,679,604	41.45	0.25
scaffold109	1,675,575	42.10	2.24
scaffold137	1,624,607	42.65	3.82
scaffold173	1,554,608	43.17	0.68
scaffold130	1,511,149	41.63	2.51
scaffold185	1,502,512	43.66	3.3
scaffold136	1,485,443	43.24	2.61
scaffold127	1,411,413	46.76	6.74
scaffold135	1,407,639	47.20	6.86

Type	Repbase TEs		TE proteins		De ne	0V0	Combined TEs	
Туре _	Length (bp)	% in genome	Length (bp)	% in genome	Length (bp)	% in genome	Length (bp)	% in genome
DNA	16,506,661	2.77	1,633,161	0.27	30,824,896	5.18	36,324,964	6.11
LINE	6,821,950	1.15	4,071,954	0.68	12,961,236	2.18	16,349,136	2.75
SINE	662,765	0.11	-	0.00	908,953	0.15	1,152,466	0.19
LTR	6,332,971	1.06	1,837,976	0.31	9,602,730	1.61	14,084,966	2.37
Other	4,319	0.00	-	0.00	-	0.00	4,319	0.00
Unknown	-	0.00	-	0.00	19,939,915	3.35	19,939,915	3.35
Total	26,352,522	4.43	7,536,991	1.27	65,356,559	10.98	71,231,464	11.97

Supplementary table 2. Repeat annotation of the Mekong tiger perch genome.

Supplementary table 3. The statistics of predicted genes using different methods.

Method	Software/Species	Number of predicted genes	Average gene length (bp)	Average CDS length (bp)	Average exon number	Average exon length (bp)	Average intron length (bp)
ab initio	Augustus	26,826	11324.91	1428.76	8.21	173.94	1371.75
ad initio	Genscan	29,524	14516.5	1596.21	9.18	173.87	1579.41
	Danio rerio	44,300	19786.39	1526.41	8.79	173.62	2343.59
	Dicentrarchus labrax	28,264	12505.75	1483.79	8.13	182.44	1545.24
Homolog-based	Labrus bergylta	39,412	21851.38	1494.87	8.67	172.36	2653.06
	Larimichthys crocea	47,139	19654.28	2187.95	12.62	173.42	1503.63
	Gasterosteus aculeatus	28,975	10277.3	1456.49	8.92	163.2	1113.07
Combined	EVM	29,150	13758.59	1510.42	9.04	167.03	1522.83



590

Supplementary figure 3. The distribution of gene length, CDS length, exon length
and intron length of the Mekong tiger perch compared to related speices. Scientific
names are abbreviated as follows: *Dun*, *Datnioides undecimradiatus*; *Dre*, *Danio rerio*; *Dla*, *Dicentrarchus labrax*; *Lbe*, *Labrus bergylta*; *Lcr*, *Larimichthys crocea*; *Gac*, *Gasterosteus aculeatus*.

597 **Supplementary table 4.** ncRNA annotation of the Mekong tiger perch genome.

Туре	Sub-type	Copy number	Average length (bp)	Total length (bp)	% of genome
miRNA	-	260	82.73	21509	0.003615
tRNA	-	753	76.03	57248	0.009622
	rRNA	98	184.79	18109	0.003044
	18S	12	388.33	4660	0.000783
rRNA	28S	47	215.021	10106	0.001699
	5.8S	7	117.14	820	0.000138
	58	32	78.84	2523	0.000424
	snRNA	261	126.20	32938	0.005536
DNI A	CD-box	117	94.60	11068	0.001860
snRNA	HACA-box	77	154.45	11893	0.001999
	splicing	58	140.03	8122	0.001365

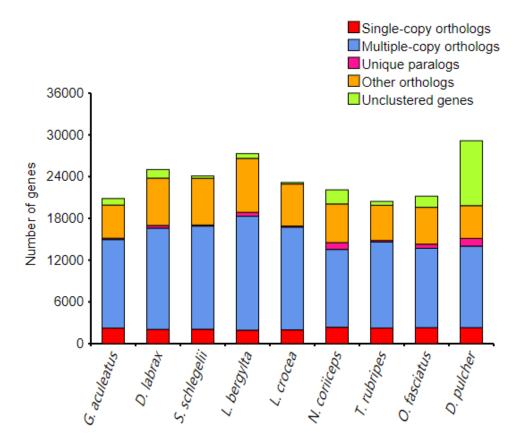
598

599 Supplementary figure 4. The completeness of predicted genes sets was evaluated by
600 BUSCO based on three different databases, including Actinopterygii (v9), metazoan

601 (v9) and vertebrata (v9).

Mitochondrial genome	Start	End	Length(bp)	Direction	Туре	Gene name	Gene product	Occurred Counts
C515351	134	202	69	+	tRNA	trnF(gaa)	tRNA-Phe	1
C515351	202	1170	969	+	rRNA	s-rRNA	12S ribosomal RNA	1
C515351	1170	1242	73	+	tRNA	trnV(uac)	tRNA-Val	1
C515351	1262	2954	1693	+	rRNA	l-rRNA	16S ribosomal RNA	1
C515351	2954	3028	75	+	tRNA	trnL(uaa)	tRNA-Leu	2
C515351	3028	4003	976	+	CDS	ND1	NADH dehydrogenase subunit 1	1
C515351	4008	4079	72	+	tRNA	trnI(gau)	tRNA-Ile	1
C515351	4078	4149	72	-	tRNA	trnQ(uug)	tRNA-Gln	1
C515351	4148	4220	73	+	tRNA	trnM(cau)	tRNA-Met	1
C515351	4220	5267	1048	+	CDS	ND2	NADH dehydrogenase subunit 2	1
C515351	5266	5338	73	+	tRNA	trnW(uca)	tRNA-Trp	1
C515351	5338	5407	70	-	tRNA	trnA(ugc)	tRNA-Ala	1
C515351	5408	5481	74	-	tRNA	trnN(guu)	tRNA-Asn	1
C515351	5516	5585	70	-	tRNA	trnC(gca)	tRNA-Cys	1
C515351	5585	5655	71	-	tRNA	trnY(gua)	tRNA-Tyr	1
C515351	5656	7207	1552	+	CDS	COX1	cytochrome c oxidase subunit I	1
C515351	7207	7278	72	-	tRNA	trnS(uga)	tRNA-Ser	2
C515351	7281	7354	74	+	tRNA	trnD(guc)	tRNA-Asp	1
C515351	7362	8061	700	+	CDS	COX2	cytochrome c oxidase subunit II	1
C515351	8053	8128	76	+	tRNA	trnK(uuu)	tRNA-Lys	1

Supplementary table 5. Genes annotated on mitochondrial genome.


C515351	8129	8297	169	+	CDS	ATP8	ATP synthase F0 subunit 8	1
C515351	8314	8971	658	+	CDS	ATP6	ATP synthase F0 subunit 6	1
C515351	8970	9756	787	+	CDS	COX3	cytochrome c oxidase subunit III	1
C515351	9755	9827	73	+	tRNA	trnG(ucc)	tRNA-Gly	1
C515351	9827	10178	352	+	CDS	ND3	NADH dehydrogenase subunit 3	1
C515351	10176	10245	70	+	tRNA	trnR(ucg)	tRNA-Arg	1
C515351	10245	10542	298	+	CDS	ND4L	NADH dehydrogenase 4L	1
C515351	10535	11921	1387	+	CDS	ND4	NADH dehydrogenase 4	1
C515351	11916	11984	69	+	tRNA	trnH(gug)	tRNA-His	1
C515351	11984	12051	68	+	tRNA	trnS(gcu)	tRNA-Ser	2
C515351	12055	12128	74	+	tRNA	trnL(uag)	tRNA-Leu	2
C515351	12128	13967	1840	+	CDS	ND5	NADH dehydrogenase subunit 5	1
C515351	13963	14485	523	-	CDS	ND6	NADH dehydrogenase 6	1
C515351	14486	14555	70	-	tRNA	trnE(uuc)	tRNA-Glu	1
C515351	14560	15721	1162	+	CDS	СҮТВ	cytochrome b	1
C515351	15701	15771	71	+	tRNA	trnT(ugu)	tRNA-Thr	1
C515351	15770	15840	71	-	tRNA	trnP(ugg)	tRNA-Pro	1

Supplementary table 6. Relationship GC with repeat content.

Pairs	Pearson r	Lower 95% CI	Upper 95% CI	<i>P</i> -value
CGI density vs. GC content	0.643	0.666	0.688	4.83E-304
CGI density vs. Gene density	0.252	0.290	0.326	4.37E-47
CGI density vs. Repeat content	0.329	0.364	0.399	1.75E-75
GC content vs. Gene density	0.135	0.174	0.213	1.42E-17
GC content vs. Repeat content	0.108	0.147	0.187	5.27E-13
Gene density vs. Repeat content	-0.082	-0.042	-0.002	4.16E-02

Supplementary table 7. Nine species used in our study.

Three letter code	Scientific name	Common name	Order	Data source	Accession ID
Ofa	Oplegnathus fasciatus	barred knifejaw	Centrarchiformes	NCBI	GCA_003416845.1
Lbe	Labrus bergylta	ballan wrasse	Labriformes	NCBI	GCF_900080235.1
Dun	Datnioides undecimradiatus	Mekong tiger perch	Lobotiformes	our study	our study
Dla	Dicentrarchus labrax	European seabass	Moronidae	NCBI	GCA_000689215.1
Gac	Gasterosteus aculeatus	three-spined stickleback	Perciformes	NCBI	GCA_000180675.1
Nco	Notothenia coriiceps	black rockcod	Perciformes	NCBI	GCF_000735185.1
Ssc	Sebastes schlegelii	Schlegel's black rockfish	Perciformes	NCBI	GCA_004335315.1
Lcr	Larimichthys crocea	large yellow croaker	Sciaenidae	NCBI	GCF_000972845.2
Tru	Takifugu rubripes	torafugu	Tetraodontiformes	NCBI	GCF_000180615.1

610

611 Supplementary figure 5. The genes number of five type of gene families for nine

612 species used in the analysis of comparative genomes.

613

614	Supplementary table 8.	. The statistics of gene family clusters.	

Spec	Genes*	Un-clustered	Families	Unique family's	Average genes
ies	number	genes number	number	number	per family
Gac	20,862	1,107	8,792	19	2.25
Dla	25,020	1,423	10,090	77	2.34
Ssc	24,094	425	9,745	21	2.43
Lbe	27,305	888	10,031	133	2.63
Lcr	23,163	315	9,967	30	2.29
Nco	22,099	2,713	9,752	139	1.99
Tru	20,434	704	9,359	37	2.11
Ofa	21,901	2,023	9,481	81	2.10
Dun	26,894	8,260	9,208	378	2.02

* Pseudo-genes (stop-gained in middle) were filtered out, and the genes with protein length <50

616 were also removed.

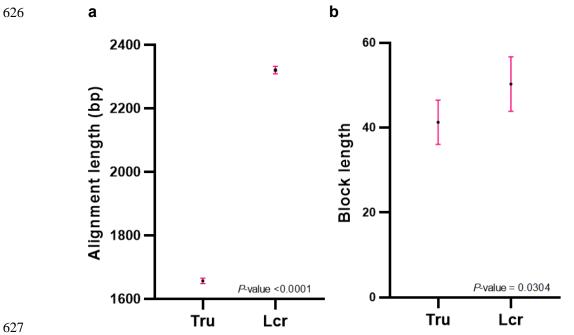
617 **Supplementary table 9.** Synteny of alignment statistics at whole-genome nucleotide

618 sequences level.

Species aligned to <i>Dun</i>	Cutoff of alignmen t length	Synteny coverag e (%)	Alignmen t number	Average alignmen t length (bp)	Median alignmen t length (bp)	Min alignmen t length (bp)	Max alignmen t length (bp)
Lcr	$\geq 1 \text{kb}$	41.13%	105,447	2,321	1,717	1,000	56,540
(length:658	$\geq 2kb$	26.02%	41,422	3,738	2,967	2,000	56,540
M)	\geq 5kb	8.89%	6,811	7,769	6,571	5,000	56,540
Tru	$\geq 1 \text{kb}$	10.04%	36,032	1,657	1,388	1,000	24,987
(length:391	$\geq 2kb$	3.58%	7,312	2,552	2,954	2,000	24,987
M)	\geq 5kb	0.39%	352	6,621	5,952	5,000	24,987

619

620 Supplementary table 10. Distribution of synteny of alignment statistics at whole


621	genes	level	at	different	cutoff.
-----	-------	-------	----	-----------	---------

Species	Cutoff of	Synteny	Block	Average	Median	Min	Max
aligned to	block	coverage	numb	block	block	block	block
Dun	length*	(%)	er	length	length	length	length
Lcr	>= 4	91.24	529	50.28	28	4	679
(gene	>= 10	89.19	433	60.05	34	10	679
number:		77.92	255	89.07	58	30	679
23423)	>= 30						
Tru	>=4	83.97	593	41.28	20	4	542
(gene	>= 10	80.93	452	52.19	29	10	542
number:		66.95	222	87.91	54	30	542
28679)	>= 30						

⁶²² * block length was defined as the spanning genes number on *Dun*.

		Genome level		Gene level	
		Larimichthys crocea	Takifugu rubripes	Larimichthys crocea	Takifugu rubripes
	Complete BUSCOs (C)	4362 (95.2%)	4263 (93.0%)	4554 (99.3%)	4345 (94.7%)
	Complete and single-copy BUSCOs (S)	4275 (93.3%)	4168 (90.9%)	2615 (57.0%)	3000 (65.4%)
actinontomycii (dh. y0)	Complete and duplicated BUSCOs (D)	87 (1.9%)	95 (2.1%)	1939 (42.3%)	1345 (29.3%)
actinopterygii (db_v9)	Fragmented BUSCOs (F)	119 (2.6%)	202 (4.4%)	23 (0.5%)	134 (2.9%)
	Missing BUSCOs (M)	103 (2.2%)	119 (2.6%)	7 (0.2%)	105 (2.4%)
	Total BUSCO groups searched	4584	4584	4584	4584
	Complete BUSCOs (C)	918 (93.9%)	915 (93.6%)	973 (99.5%)	950 (97.1%)
	Complete and single-copy BUSCOs (S)	882 (90.2%)	880 (90.0%)	656 (67.1%)	670 (68.5%)
matazas (dh. v0)	Complete and duplicated BUSCOs (D)	36 (3.7%)	35 (3.6%)	317 (32.4%)	280 (28.6%)
metazoa (db_v9)	Fragmented BUSCOs (F)	7 (0.7%)	12 (1.2%)	4 (0.4%)	15 (1.5%)
	Missing BUSCOs (M)	53 (5.4%)	51 (5.2%)	1 (0.1%)	13 (1.4%)
	Total BUSCO groups searched	978	978	978	978

Supplementary table 11. Genome assembly and gene set quality by BUSCO.

627

Supplementary figure 6. The t-test statistics of alignment length and block length. (a) 628 The distribution of the length of synteny blocks at nucleotide-level. P-value was 629 calculated using t-statistic. (b) The distribution of the length of synteny blocks at 630 gene-level. P-value was using t-statistic. 631

Supplementary table 12. Genes involved in the pigment synthesis. 633

Pigmentary_function	Gene	Gene ID
Components of melanosomes	gpnmb	evm.model.scaffold89.24
Components of melanosomes	slc24a4	evm.model.scaffold22.131;
Components of melanosomes	trpm1	evm.model.scaffold27.487;
Components of melanosomes	tspan10	evm.model.scaffold80.229;
Components of melanosomes	vat1	evm.model.scaffold18344.71;evm.model.s caffold18367.69;evm.model.scaffold60.23 6
Iridophores	chm	evm.model.scaffold200.145
Iridophores	csf1	evm.model.scaffold64.448
Iridophores	ece2	evm.model.scaffold75.239
Iridophores	fbxw4	evm.model.scaffold111.35;
Iridophores	fhl2	evm.model.scaffold61.509;evm.model.sca ffold63.296;evm.model.scaffold82.226
Iridophores	foxd3	evm.model.scaffold23.901;
Iridophores	gart	evm.model.scaffold82.268;

Iridophoresmed12evm.model.scaffold81.240; evm.model.scaffold18251.25;evm.model.s caffold18251.25;evm.model.scaffold18251.25; evm.model.scaffold18251.25;evm.model.scaffold76.195;evm.model.scaffold76.195;evm.model.scaffold76.195;evm.model.scaffold76.195;evm.model.scaffold76.195;evm.model.scaffold66.197; evm.model.scaffold76.195;evm.model.scaffold67.196; Iridophores, Melanocyte developmentevm.model.scaffold76.195;evm.model.sca ffold66.197;evm.model.scaffold67.196; evm.model.scaffold67.196; evm.model.scaffold67.196; evm.model.scaffold80.182; developmentIridophores, Melanocyte developmentoca2evm.model.scaffold80.182; evm.model.scaffold82.33; evm.model.scaffold80.182; evm.model.scaffold80.182; evm.model.scaffold80.182; evm.model.scaffold102.172; evm.model.scaffold110.30; evm.model.scaffold21.709; evm.model.scaffold21.709; evm.model.scaffold22.31; melanocyte development evelopment evelopment evelopmentMelanocyte development Melanocyte development Melanocyte developmentclorf11 evm.model.scaffold23.137; evm.	Iridophores	ltk	evm.model.scaffold61.336;
Iridophoresmpv17evm.model.scaffold18251.25;evm.model.sca fold618349.23;Iridophores, Melanocyte developmentedmb"caffold26.302;evm.model.scaffold63.409;Iridophores, Melanocyte developmentmpdh1evm.model.scaffold27.353;evm.model.scaffold67.195;evm.model.scaffold67.195;Iridophores, Melanocyte developmentoca2evm.model.scaffold23.184Iridophores, Melanocyte developmentoca2evm.model.scaffold80.182;Iridophores, Melanocyte developmentoca2evm.model.scaffold85.272;Iridophores, Melanocyte developmentsox9evm.model.scaffold82.33;Iridophores, Melanocyte developmentsox10evm.model.scaffold82.33;Iridophores, Melanocyte developmentgch1evm.model.scaffold82.33;Iridophores, Xanthophore differentiationgch1evm.model.scaffold24.275;Leucophores, Xanthophore differentiationgch1evm.model.scaffold24.275;Leucophores, Xanthophore differentiationgch1evm.model.scaffold24.275;Leucophores, Xanthophore differentiationgch1evm.model.scaffold24.275;Leucophores, Xanthophore differentiationgc2evm.model.scaffold27.147;Melanocyte development developmentadamt320evm.model.scaffold27.137;Melanocyte development developmentadamt320evm.model.scaffold27.08;Melanocyte development developmentadamt320evm.model.scaffold27.147;Melanocyte development developmentadamt320evm.model.scaffold27.147;Melanocyte development developmentcti0 </td <td>-</td> <td></td> <td></td>	-		
Iridophorestrim33evm.model.scaffold158.1;Iridophores, Melanocyte developmentedmbevm.model.scaffold76.195;evm.model.sca ffold62.302;evm.model.scaffold7.196;Iridophores, Melanocyte developmentimpdh1evm.model.scaffold27.1353;evm.model.scaffold67.196;Iridophores, Melanocyte developmentoca2evm.model.scaffold23.184Iridophores, Melanocyte developmentsox9evm.model.scaffold80.182;Iridophores, Melanocyte developmentsox9evm.model.scaffold85.272;Iridophores, Melanocyteevm.model.scaffold82.33;Leucophores, Melanocyteevm.model.scaffold82.33;Leucophores, Netanocytegch1evm.model.scaffold82.33;Leucophores, Xanthophore differentiationgch1evm.model.scaffold24.275;Leucophores, Xanthophore differentiationgch1evm.model.scaffold26.142Melanocyte development adamt72adamt72evm.model.scaffold26.142Melanocyte development adamt72adamt72evm.model.scaffold75.6;Melanocyte development adamt72adamt72evm.model.scaffold75.6;Melanocyte development adamt72apcevm.model.scaffold75.6;Melanocyte development developmentapcevm.model.scaffold75.147;Melanocyte development developmentcitclevm.model.scaffold75.6;Melanocyte development developmentcitclevm.model.scaffold75.147;Melanocyte development developmentcitclevm.model.scaffold75.147;Melanocyte development developmentcitclevm.model.scaffold75.147;		mpv17	evm.model.scaffold18251.25;evm.model.s
Iridophores, Melanocyte developmentedmbevm.model.scaffold76.195;evm.model.sca ffold62.302;evm.model.scaffold63.409; evm.model.scaffold27.353;evm.model.sca ffold66.197;evm.model.scaffold67.196; iridophores, Melanocyte developmentIridophores, Melanocyte developmentoca2evm.model.scaffold23.184Iridophores, Melanocyte developmentoca2evm.model.scaffold80.182;Iridophores, Melanocyte developmentsox9evm.model.scaffold85.272;Iridophores, Melanocyte developmentsox10evm.model.scaffold82.33;Iridophores, Melanocyte developmentgch1evm.model.scaffold24.275;Ifferentiation leucophores, Xanthophore differentiationgch1evm.model.scaffold24.275;Leucophores, Xanthophore differentiationgch1evm.model.scaffold24.275;Leucophores, Xanthophore differentiationgch1evm.model.scaffold24.275;Melanocyte developmentadamt7evm.model.scaffold24.275;Melanocyte developmentadamt7evm.model.scaffold27.709;Melanocyte developmentadrb2evm.model.scaffold52.31;Melanocyte developmentapcevm.model.scaffold75.6;Melanocyte developmentbrsk2ffold89.353Melanocyte developmentctite11evm.model.scaffold23.37;evm.model.scaf ffold89.353Melanocyte developmentctite11evm.model.scaffold23.37;evm.model.scaf ffold89.353Melanocyte developmentctite11evm.model.scaffold23.159;Melanocyte developmentctite11evm.model.scaffold23.159;Melanocyte developmentctite	Iridophores	trim33	,
developmentimpdh1ffold66.197;evm.model.scaffold67.196;Iridophores, Melanocyte developmentoca2evm.model.scaffold23.184Iridophores, Melanocyte developmentsox9evm.model.scaffold80.182;Iridophores, Melanocyte development, Xanthophore synthesissox10evm.model.scaffold85.272;differentiationcmm.model.scaffold82.33;Leucophores, Pteridine synthesisgch1evm.model.scaffold82.33;Leucophores, Xanthophore differentiationgch1evm.model.scaffold24.275;leucophores, Xanthophore differentiationgch1evm.model.scaffold24.275;Leucophores, Xanthophore differentiationslc2a11ffold24.381;evm.model.scaffold24.795;ev m.model.scaffold26.142Melanocyte development adamt20adamt20evm.model.scaffold27.109;Melanocyte development adamt20adamt20evm.model.scaffold27.211;Melanocyte development adamt20admt20evm.model.scaffold27.211;Melanocyte development adpcadmt20evm.model.scaffold27.211;Melanocyte development developmentadmt20evm.model.scaffold27.201;Melanocyte development developmentcite01evm.model.scaffold27.208;evm.model.scaffold27.201;Melanocyte development developmentcite11evm.model.scaffold28.337;evm.model.scaffold28.337;evm.model.scaffold28.342Melanocyte development developmentcite11evm.model.scaffold23.159;Melanocyte development developmentcite11evm.model.scaffold23.309;evm.model.scaffold23.309;evm.model.scaffold23.309;evm.model.scaffold23.3159; <td></td> <td>ednrb</td> <td></td>		ednrb	
developmentoca2evm.model.scaffold2.3.184Iridophores, Melanocytesox9evm.model.scaffold80.182;developmentsox10evm.model.scaffold80.182;Iridophores, Melanocyteevm.model.scaffold85.272;differentiationxdhevm.model.scaffold85.272;Leucophores, Pteridinexdhevm.model.scaffold82.33;synthesisgch1evm.model.scaffold24.275;differentiationpax7evm.model.scaffold60.596;evm.model.scaffold24.275;Leucophores, Xanthophorepax7evm.model.scaffold60.596;evm.model.scaffold24.795;evdifferentiationslc2a11ffold24.381;evm.model.scaffold61.347;Melanocyte developmentadam17evm.model.scaffold61.347;Melanocyte developmentadamt520evm.model.scaffold62.231;Melanocyte developmentapcevm.model.scaffold27.709;Melanocyte developmentapcevm.model.scaffold75.6;Melanocyte developmentbcl2evm.model.scaffold27.208;evm.model.scaMelanocyte developmentbcl2evm.model.scaffold27.208;evm.model.scaMelanocyte developmentc10orf11evm.model.scaffold28.337;evm.model.scaMelanocyte developmentcited1evm.model.scaffold3.159;Melanocyte developmentcited1evm.model.scaffold3.159;Melanocyte developmentcited1evm.model.scaffold23.403;.909;evm.model.scaffold80.316ffold80.316evm.model.scaffold62.5157Melanocyte developmentcited1evm.model.scaffold62.157Melanocyte developmentcited1evm.m	1	impdh1	
developmentsox9evm.model.scaffold80.182;Iridophores, Melanocyteevm.model.scaffold85.272;differentiationueucophores, Nanthophoregch1evm.model.scaffold82.33;Leucophores, Xanthophoregch1differentiationpax7Leucophores, Xanthophoregch1differentiationpax7Leucophores, Xanthophoregch1differentiationpax7Leucophores, Xanthophoregch1differentiationpax7Leucophores, Xanthophoreglc2a11differentiationslc2a11Melanocyte developmentadam17adamts20evm.model.scaffold61.347;Melanocyte developmentadamts20adarb2evm.model.scaffold62.231;Melanocyte developmentappcevm.model.scaffold75.6;Melanocyte developmentbcl2welanocyte developmentbcl2welanocyte developmentbcl2welanocyte developmentbcl2welanocyte developmentctied1welanocyte developmentctied1		oca2	evm.model.scaffold23.184
development, Xanthophore differentiationsox10evm.model.scaffold85.272;differentiation Leucophores, Pteridine synthesisxdhevm.model.scaffold82.33;Leucophores, Xanthophore differentiationgch1evm.model.scaffold110.30;Leucophores, Xanthophore differentiationpax7evm.model.scaffold24.275;Leucophores, Xanthophore differentiationpax7evm.model.scaffold60.596;evm.model.sca ffold24.381;evm.model.scaffold24.795;ev m.model.scaffold26.142Leucophores, Xanthophore differentiationslc2a11ffold24.381;evm.model.scaffold24.795;ev m.model.scaffold26.142Melanocyte development adamts20adamts20evm.model.scaffold61.347;Melanocyte development adarb2adamts20evm.model.scaffold25.142;Melanocyte development adarocyte developmentapcevm.model.scaffold27.208;evm.model.sca ffold89.353Melanocyte development Melanocyte developmentc10orf11evm.model.scaffold27.208;evm.model.sca ffold28.342Melanocyte development Melanocyte developmentcited1evm.model.scaffold157.20Melanocyte development Melanocyte developmentcited1evm.model.scaffold23.909;evm.model.sca ffold80.316Melanocyte development Melanocyte developmentdock7evm.model.scaffold62.157Melanocyte development Melanocyte developmentedaevm.model.scaffold63.630; evm.model.scaffold24.1046;evm.model.scaffold24.1046;evm.model.scaffold24.1046;evm.model.scaffold24.1046;evm.model.scaffold24.318;Melanocyte development Melanocyte developmentedaevm.model.scaffold24.1046;evm.model.scaffold25.157<		sox9	evm.model.scaffold80.182;
synthesisxdhevm.model.scaffold82.33;Leucophores, Xanthophore differentiationgch1evm.model.scaffold110.30;Leucophores, Xanthophore differentiationpax7evm.model.scaffold24.275;Leucophores, Xanthophore differentiationpax7evm.model.scaffold24.275;Leucophores, Xanthophore differentiationslc2a11ffold24.381;evm.model.scaffold24.795;ev m.model.scaffold26.142Melanocyte development Melanocyte developmentadam17evm.model.scaffold61.347;Melanocyte development adarb2adamts20evm.model.scaffold62.231;Melanocyte development developmentapcevm.model.scaffold75.6;Melanocyte development bcl2evm.model.scaffold27.208;evm.model.sca ffold89.353Melanocyte development developmentc10orf11evm.model.scaffold5157.20Melanocyte development detanocyte developmentcited1evm.model.scaffold63.418;Melanocyte development dock7cvm.model.scaffold23.909;evm.model.sca ffold80.316Melanocyte development developmentdock7evm.model.scaffold62.157Melanocyte development developmentedaevm.model.scaffold63.630; evm.model.scaffold63.630; evm.model.scaffold24.1046;evm.model.scaffold24.1046;evm.model.scaffold24.1046;evm.model.scaffold24.1046;evm.model.scaffold24.1046;evm.model.scaffold24.1046;evm.model.scaffold24.1046;evm.model.scaffold24.1046;evm.model.scaffold24.1046;evm.model.scaffold24.1046;evm.model.scaffold24.1046;evm.model.scaffold24.1046;evm.model.scaffold24.1046;evm.model.scaffold24.1046;evm.model.scaffold24.1046;evm.model.scaffold24.1046;evm.model.scaffold24.1046;evm.model.scaffold24.1046;evm.model.scaffold24.	development, Xanthophore	sox10	evm.model.scaffold85.272;
differentiationgch1evm.model.scaffold110.30;Leucophores, Xanthophore differentiationpax7evm.model.scaffold24.275;Leucophores, Xanthophore differentiationslc2a11ffold24.381;evm.model.scaffold24.795;ev m.model.scaffold26.142Melanocyte development developmentadam17evm.model.scaffold61.347;Melanocyte development developmentadam17evm.model.scaffold62.231;Melanocyte development developmentadrb2evm.model.scaffold62.231;Melanocyte development developmentapcevm.model.scaffold62.231;Melanocyte development developmentbcl2evm.model.scaffold75.6;Melanocyte development developmentbcl2evm.model.scaffold27.208;evm.model.sca ffold89.353Melanocyte development developmentc10orf11evm.model.scaffold28.337;evm.model.sca ffold28.342Melanocyte development developmentcited1evm.model.scaffold63.159;Melanocyte development developmentcited1evm.model.scaffold63.159;Melanocyte development developmentcited1evm.model.scaffold63.159;Melanocyte development developmentdock7evm.model.scaffold62.157Melanocyte development developmentdock7evm.model.scaffold62.157Melanocyte development developmentedaevm.model.scaffold63.630; evm.model.scaffold63.630; evm.model.scaffold63.630; evm.model.scaffold63.630; evm.model.scaffold63.630; evm.model.scaffold63.630; evm.model.scaffold63.630; evm.model.scaffold63.630; evm.model.scaffold63.630; evm.model.scaffold63.630; evm.model.scaffold63.6	-	xdh	evm.model.scaffold82.33;
differentiationpax/evm.model.scaffold24.2/5;differentiation $slc2a11$ evm.model.scaffold60.596;evm.model.scadifferentiation $slc2a11$ ffold24.381;evm.model.scaffold24.795;ev m.model.scaffold26.142Melanocyte developmentadam17evm.model.scaffold61.347;Melanocyte developmentadamts20evm.model.scaffold62.231;Melanocyte developmentapcevm.model.scaffold62.231;Melanocyte developmentapcevm.model.scaffold75.6;Melanocyte developmentbcl2evm.model.scaffold27.208;evm.model.scaMelanocyte developmentbcl2evm.model.scaffold28.337;evm.model.scaMelanocyte developmentc10orf11evm.model.scaffold63.159;Melanocyte developmentcited1evm.model.scaffold63.159;Melanocyte developmentcited1evm.model.scaffold63.418;Melanocyte developmentdock7evm.model.scaffold63.418;Melanocyte developmentdock7evm.model.scaffold63.157Melanocyte developmentedaevm.model.scaffold63.630;Melanocyte developmentedaevm.model.scaffold63.630;Melanocyte developmentedaevm.model.scaffold63.630;Melanocyte developmentedaevm.model.scaffold63.630;Melanocyte developmentedaevm.model.scaffold63.630;Melanocyte developmentedaevm.model.scaffold63.630;Melanocyte developmentedaevm.model.scaffold63.630;Melanocyte developmentedaevm.model.scaffold63.630;Melanocyte developmenteda		gch1	evm.model.scaffold110.30;
Leucophores, Xanthophore differentiation $slc2a11$ ffold24.381;evm.model.scaffold24.795;ev m.model.scaffold26.142Melanocyte developmentadam17evm.model.scaffold26.142Melanocyte developmentadamts20evm.model.scaffold27.709;Melanocyte developmentadrb2evm.model.scaffold62.231;Melanocyte developmentapcevm.model.scaffold75.410;Melanocyte developmentatp6v0bevm.model.scaffold75.6;Melanocyte developmentbcl2evm.model.scaffold27.208;evm.model.sca ffold89.353Melanocyte developmentc10orf11evm.model.scaffold28.337;evm.model.sca ffold28.342Melanocyte developmentcited1evm.model.scaffold63.159;Melanocyte developmentcreb1evm.model.scaffold63.418;Melanocyte developmentdctevm.model.scaffold63.418;Melanocyte developmentdctevm.model.scaffold63.418;Melanocyte developmentedaevm.model.scaffold63.159;Melanocyte developmentdctevm.model.scaffold63.418;Melanocyte developmentdctevm.model.scaffold63.418;Melanocyte developmentedaevm.model.scaffold63.157Melanocyte developmentedaevm.model.scaffold62.157Melanocyte developmentedaevm.model.scaffold63.630;Melanocyte developmentedaevm.model.scaffold63.630;Melanocyte developmentedaevm.model.scaffold63.630;Melanocyte developmentedaevm.model.scaffold63.630;		pax7	evm.model.scaffold24.275;
Melanocyte developmentadamts20evm.model.scaffold27.709;Melanocyte developmentadrb2evm.model.scaffold62.231;Melanocyte developmentapcevm.model.scaffold62.231;Melanocyte developmentapcevm.model.scaffold75.410;Melanocyte developmentatp6v0bevm.model.scaffold75.6;Melanocyte developmentbcl2evm.model.scaffold75.147;Melanocyte developmentbrsk2evm.model.scaffold27.208;evm.model.sca ffold89.353Melanocyte developmentc10orf11evm.model.scaffold28.337;evm.model.sca ffold28.342Melanocyte developmentcited1evm.model.scaffold157.20Melanocyte developmentcited1evm.model.scaffold63.159;Melanocyte developmentcreb1evm.model.scaffold63.418;Melanocyte developmentdock7evm.model.scaffold62.157Melanocyte developmentedaevm.model.scaffold63.630;Melanocyte developmentedarevm.model.scaffold63.630;Melanocyte developmentedarevm.model.scaffold63.630;		slc2a11	ffold24.381;evm.model.scaffold24.795;ev
Melanocyte developmentadrb2evm.model.scaffold62.231;Melanocyte developmentapcevm.model.scaffold155.410;Melanocyte developmentatp6v0bevm.model.scaffold75.6;Melanocyte developmentbcl2evm.model.scaffold75.147;Melanocyte developmentbrsk2evm.model.scaffold27.208;evm.model.sca ffold89.353Melanocyte developmentc10orf11evm.model.scaffold28.337;evm.model.sca ffold28.342Melanocyte developmentcited1evm.model.scaffold63.159;Melanocyte developmentcreb1evm.model.scaffold63.418;Melanocyte developmentdctevm.model.scaffold63.418;Melanocyte developmentdock7evm.model.scaffold62.157Melanocyte developmentedaevm.model.scaffold63.630;Melanocyte developmentedaevm.model.scaffold63.630;Melanocyte developmentedaevm.model.scaffold63.630;	Melanocyte development	adam17	evm.model.scaffold61.347;
Melanocyte developmentapcevm.model.scaffold155.410;Melanocyte developmentatp6v0bevm.model.scaffold75.6;Melanocyte developmentbcl2evm.model.scaffold75.147;Melanocyte developmentbrsk2evm.model.scaffold27.208;evm.model.sca ffold89.353Melanocyte developmentc10orf11evm.model.scaffold27.208;evm.model.sca ffold28.342Melanocyte developmentcited1evm.model.scaffold157.20Melanocyte developmentcited1evm.model.scaffold63.159;Melanocyte developmentcreb1evm.model.scaffold63.418;Melanocyte developmentdock7evm.model.scaffold23.909;evm.model.sca ffold80.316Melanocyte developmentedaevm.model.scaffold63.630;Melanocyte developmentedarevm.model.scaffold63.630;Melanocyte developmentedarevm.model.scaffold24.1046;evm.model.scaffold24.	Melanocyte development	adamts20	evm.model.scaffold27.709;
Melanocyte developmentatp6v0bevm.model.scaffold75.6;Melanocyte developmentbcl2evm.model.scaffold75.147;Melanocyte developmentbrsk2evm.model.scaffold27.208;evm.model.sca ffold89.353Melanocyte developmentc10orf11evm.model.scaffold28.337;evm.model.sca ffold28.342Melanocyte developmentcited1evm.model.scaffold157.20Melanocyte developmentcited1evm.model.scaffold63.159;Melanocyte developmentcreb1evm.model.scaffold63.159;Melanocyte developmentdctevm.model.scaffold63.418;Melanocyte developmentdock7evm.model.scaffold63.157Melanocyte developmentedaevm.model.scaffold62.157Melanocyte developmentedaevm.model.scaffold63.630;Melanocyte developmentedarevm.model.scaffold63.630;Melanocyte developmentedarevm.model.scaffold63.630;	Melanocyte development	adrb2	evm.model.scaffold62.231;
Melanocyte developmentbcl2evm.model.scaffold75.147; evm.model.scaffold27.208;evm.model.sca ffold89.353Melanocyte developmentbrsk2evm.model.scaffold27.208;evm.model.sca ffold89.353Melanocyte developmentc10orf11evm.model.scaffold28.337;evm.model.sca ffold28.342Melanocyte developmentcited1evm.model.scaffold157.20Melanocyte developmentcreb1evm.model.scaffold63.159;Melanocyte developmentdctevm.model.scaffold63.418;Melanocyte developmentdock7evm.model.scaffold63.16Melanocyte developmentedaevm.model.scaffold63.157Melanocyte developmentedaevm.model.scaffold63.630; evm.model.scaffold63.630;Melanocyte developmentedarevm.model.scaffold63.630; evm.model.scaffold63.630;	Melanocyte development	apc	evm.model.scaffold155.410;
Melanocyte developmentbrsk2evm.model.scaffold27.208;evm.model.sca ffold89.353Melanocyte developmentc10orf11evm.model.scaffold28.337;evm.model.sca ffold28.342Melanocyte developmentcited1evm.model.scaffold157.20Melanocyte developmentcreb1evm.model.scaffold63.159;Melanocyte developmentdctevm.model.scaffold63.418;Melanocyte developmentdock7evm.model.scaffold63.418;Melanocyte developmentedaevm.model.scaffold63.157Melanocyte developmentedaevm.model.scaffold63.630;Melanocyte developmentedaevm.model.scaffold63.630;Melanocyte developmentedarevm.model.scaffold63.630;Melanocyte developmentedarevm.model.scaffold63.630;	Melanocyte development	atp6v0b	evm.model.scaffold75.6;
Melanocyte developmentbrsk2ffold89.353Melanocyte developmentc10orf11evm.model.scaffold28.337;evm.model.sca ffold28.342Melanocyte developmentcited1evm.model.scaffold157.20Melanocyte developmentcreb1evm.model.scaffold63.159;Melanocyte developmentdctevm.model.scaffold63.418;Melanocyte developmentdock7evm.model.scaffold23.909;evm.model.sca ffold80.316Melanocyte developmentedaevm.model.scaffold63.157Melanocyte developmentedaevm.model.scaffold63.630;Melanocyte developmentedarevm.model.scaffold63.630;Melanocyte developmentedarevm.model.scaffold63.630;Melanocyte developmentedarevm.model.scaffold63.630;	Melanocyte development	bcl2	evm.model.scaffold75.147;
Melanocyte developmentc10orf11ffold28.342Melanocyte developmentcited1evm.model.scaffold157.20Melanocyte developmentcreb1evm.model.scaffold63.159;Melanocyte developmentdctevm.model.scaffold63.418;Melanocyte developmentdock7evm.model.scaffold23.909;evm.model.scaMelanocyte developmentedaevm.model.scaffold62.157Melanocyte developmentedaevm.model.scaffold63.630;Melanocyte developmentedarevm.model.scaffold63.630;Melanocyte developmentedarevm.model.scaffold63.630;	Melanocyte development	brsk2	
Melanocyte developmentcreb1evm.model.scaffold63.159;Melanocyte developmentdctevm.model.scaffold63.418;Melanocyte developmentdock7evm.model.scaffold23.909;evm.model.sca ffold80.316Melanocyte developmentedaevm.model.scaffold62.157Melanocyte developmentedarevm.model.scaffold63.630;Melanocyte developmentedarevm.model.scaffold63.630;Melanocyte developmentedn3evm.model.scaffold63.630;	Melanocyte development	c10orf11	
Melanocyte developmentdctevm.model.scaffold63.418;Melanocyte developmentdock7evm.model.scaffold23.909;evm.model.sca ffold80.316Melanocyte developmentedaevm.model.scaffold62.157Melanocyte developmentedarevm.model.scaffold63.630;Melanocyte developmentedn3evm.model.scaffold24.1046;evm.model.sc	Melanocyte development	cited1	evm.model.scaffold157.20
Melanocyte developmentdock7evm.model.scaffold23.909;evm.model.sca ffold80.316Melanocyte developmentedaevm.model.scaffold62.157Melanocyte developmentedarevm.model.scaffold63.630; evm.model.scaffold24.1046;evm.model.sc	Melanocyte development	creb1	evm.model.scaffold63.159;
Melanocyte developmentdock /ffold80.316Melanocyte developmentedaevm.model.scaffold62.157Melanocyte developmentedarevm.model.scaffold63.630;Melanocyte developmentedn3	Melanocyte development	dct	evm.model.scaffold63.418;
Melanocyte developmentedarevm.model.scaffold63.630;Melanocyte developmentedn3	Melanocyte development	dock7	
Melanocyte development edn3 evm.model.scaffold24.1046;evm.model.sc	Melanocyte development	eda	evm.model.scaffold62.157
Melanocyte development edn3	Melanocyte development	edar	evm.model.scaffold63.630;
	Melanocyte development	edn3	

		evm.model.scaffold173.15;evm.model.sca
Melanocyte development	ednrb2	ffold90.41
Melanocyte development	egfr	evm.model.scaffold75.24;
Melanocyte development	en1	evm.model.scaffold83.123
Melanocyte development	erbb3	evm.model.scaffold24.541;
Melanocyte development	fgfr2	evm.model.scaffold28.677;
Melanocyte development	frem2	evm.model.scaffold25.244;evm.model.sca
Welandeyte development	IICIII2	ffold58.224;evm.model.scaffold88.161
Melanocyte development	fzd4	evm.model.scaffold58.625;
Melanocyte development	gata3	evm.model.scaffold17418.1;
Melanocyte development	gfpt1	evm.model.scaffold176.182;
Melanocyte development	gja5	evm.model.scaffold63.370;
Melanocyte development	gli3	evm.model.scaffold45.346;
Melanocyte development	gnaq	evm.model.scaffold26.243;
Melanocyte development	gpc3	evm.model.scaffold62.322;evm.model.sca
Welanocyte development	gpc3	ffold62.324;
Melanocyte development	gpr161	evm.model.scaffold63.326;
Melanocyte development	hdac1	evm.model.scaffold87.53;
Melanocyte development	hps1	evm.model.scaffold28.431;
Melanocyte development	hps4	evm.model.scaffold176.213;
Melanocyte development	hps6	evm.model.scaffold28.443;
Melanocyte development	hsd3b1	evm.model.scaffold121.40
Melanocyte development	igsf11	evm.model.scaffold88.256
Melanocyte development	ikbkg	evm.model.scaffold153.7;
Melanocyte development	irf4	evm.model.scaffold23.1068;
Melanocyte development	itgb1	evm.model.scaffold107.36;evm.model.sca
Welanocyte development	ligui	ffold45.427
Melanocyte development	kcnj13	evm.model.scaffold148.100
Melanocyte development	kit	evm.model.scaffold23.254;
Melanocyte development	kitlg	evm.model.scaffold27.925
Melanocyte development	lmx1a	evm.model.scaffold23.711;evm.model.sca
Welande yte de velopment	IIIX1a	ffold80.296
Melanocyte development	mbtps1	evm.model.scaffold105.8;
Melanocyte development	mcoln3	evm.model.scaffold107.276;evm.model.sc
Welandeyte development	meonis	affold23.933
Melanocyte development	mef2c	evm.model.scaffold26.63;
Melanocyte development	mib1	evm.model.scaffold75.31;
Melanocyte development	mib2	evm.model.scaffold130.11;
Melanocyte development	mitf	evm.model.scaffold24.917;evm.model.sca
were an object of veropment	1111(1	ffold90.355
Melanocyte development	mreg	evm.model.scaffold63.744
Melanocyte development	myc	evm.model.scaffold45.322;
Melanocyte development	myo5a	evm.model.scaffold89.43;
Melanocyte development	oprm1	evm.model.scaffold28.210;

	1.07	
Melanocyte development	rab27a	evm.model.scaffold78.237;
Melanocyte development	recql4	evm.model.scaffold79.292
Melanocyte development	rnf41	evm.model.scaffold90.252;
Melanocyte development	scarb2	evm.model.scaffold155.132;
Melanocyte development	scg2	evm.model.scaffold147.42;evm.model.sca ffold75.225
Melanocyte development	sf3b1	evm.model.scaffold63.23;
Melanocyte development	sfxn1	evm.model.scaffold28.394;evm.model.sca ffold62.97
Melanocyte development	skiv2l2	evm.model.scaffold155.121;
Melanocyte development	slc24a5	evm.model.scaffold104.16;
Melanocyte development	slc45a2	evm.model.scaffold155.130;
Melanocyte development	snai2	evm.model.scaffold75.68;
Melanocyte development	sox18	evm.model.scaffold90.125
Melanocyte development	sox2	evm.model.scaffold23.977;
Melanocyte development	tfap2e	evm.model.scaffold79.450;
Melanocyte development	trpm7	evm.model.scaffold89.41;
Melanocyte development	tyr	evm.model.scaffold58.630;
Melanocyte development	tyrp1	evm.model.scaffold108.177;
Melanocyte development	usp13	evm.model.scaffold23.587;
Melanocyte development	vps11	evm.model.scaffold201.85;
Melanocyte development	vps18	evm.model.scaffold22.483
Melanocyte development	zic2	evm.model.scaffold63.207;
Melanocyte development, Melanosome transport	tpcn2	evm.model.scaffold110.180;
Melanogenesis regulation	asip1	evm.model.scaffold24.1152;
-	asip1 atrn	evm.model.scaffold24.1152; evm.model.scaffold61.91;evm.model.scaff old61.93
Melanogenesis regulation	-	evm.model.scaffold61.91;evm.model.scaff
Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation	atrn	evm.model.scaffold61.91;evm.model.scaff old61.93
Melanogenesis regulation Melanogenesis regulation	atrn clcn7	evm.model.scaffold61.91;evm.model.scaff old61.93 evm.model.scaffold85.359;
Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation	atrn clcn7 corin	evm.model.scaffold61.91;evm.model.scaff old61.93 evm.model.scaffold85.359; evm.model.scaffold103.174;
Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation	atrn clcn7 corin ctns	evm.model.scaffold61.91;evm.model.scaff old61.93 evm.model.scaffold85.359; evm.model.scaffold103.174; evm.model.scaffold23.51;
Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation	atrn clcn7 corin ctns drd2	evm.model.scaffold61.91;evm.model.scaff old61.93 evm.model.scaffold85.359; evm.model.scaffold103.174; evm.model.scaffold23.51; evm.model.scaffold58.505;
Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation	atrn clcn7 corin ctns drd2 mc1r	evm.model.scaffold61.91;evm.model.scaff old61.93 evm.model.scaffold85.359; evm.model.scaffold103.174; evm.model.scaffold23.51; evm.model.scaffold58.505; evm.model.scaffold84.143;
Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation	atrn clcn7 corin ctns drd2 mc1r mgrn1	evm.model.scaffold61.91;evm.model.scaff old61.93 evm.model.scaffold85.359; evm.model.scaffold103.174; evm.model.scaffold23.51; evm.model.scaffold58.505; evm.model.scaffold84.143; evm.model.scaffold80.306;
Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation	atrn clcn7 corin ctns drd2 mc1r mgrn1 myg1	evm.model.scaffold61.91;evm.model.scaff old61.93 evm.model.scaffold85.359; evm.model.scaffold103.174; evm.model.scaffold23.51; evm.model.scaffold58.505; evm.model.scaffold84.143; evm.model.scaffold80.306; evm.model.scaffold24.229
Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation	atrn clcn7 corin ctns drd2 mc1r mgrn1 myg1 nf1	evm.model.scaffold61.91;evm.model.scaff old61.93 evm.model.scaffold85.359; evm.model.scaffold103.174; evm.model.scaffold23.51; evm.model.scaffold58.505; evm.model.scaffold84.143; evm.model.scaffold80.306; evm.model.scaffold24.229 evm.model.scaffold148.96;
Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation Melanogenesis regulation	atrn clcn7 corin ctns drd2 mc1r mgrn1 myg1 nf1 ostm1	evm.model.scaffold61.91;evm.model.scaff old61.93 evm.model.scaffold85.359; evm.model.scaffold103.174; evm.model.scaffold23.51; evm.model.scaffold58.505; evm.model.scaffold84.143; evm.model.scaffold80.306; evm.model.scaffold24.229 evm.model.scaffold148.96; evm.model.scaffold22.252 evm.model.scaffold66.283;evm.model.sca
Melanogenesis regulation Melanogenesis regulation	atrn clcn7 corin ctns drd2 mc1r mgrn1 myg1 nf1 ostm1 pah	evm.model.scaffold61.91;evm.model.scaff old61.93 evm.model.scaffold85.359; evm.model.scaffold103.174; evm.model.scaffold23.51; evm.model.scaffold58.505; evm.model.scaffold84.143; evm.model.scaffold80.306; evm.model.scaffold24.229 evm.model.scaffold148.96; evm.model.scaffold148.96; evm.model.scaffold66.283;evm.model.sca ffold67.285; evm.model.scaffold18287.1;evm.model.sc

Melanogenesis regulation	zeb2	evm.model.scaffold63.1009;evm.model.sc affold82.245;
Melanogenesis regulation, Components of	rab32	evm.model.scaffold22.284;
melanosomes		
Melanogenesis regulation,		
Components of	rab38	evm.model.scaffold58.626;
melanosomes		
Melanosome biogenesis	ankrd27	evm.model.scaffold123.74;evm.model.sca ffold17829.1;
Melanosome biogenesis	ap1g1	evm.model.scaffold78.212;
Melanosome biogenesis	ap1m1	evm.model.scaffold107.226;
Melanosome biogenesis	ap3b1	evm.model.scaffold186.47;
Melanosome biogenesis	ap3d1	evm.model.scaffold23.686;
Melanosome biogenesis	bloc1s2	evm.model.scaffold23.292;
Melanosome biogenesis	bloc1s3	evm.model.scaffold58.568;
Melanosome biogenesis	bloc1s4	evm.model.scaffold79.226
Melanosome biogenesis	bloc1s6	evm.model.scaffold104.27;
Melanosome biogenesis	cd63	evm.model.scaffold90.258;
Melanosome biogenesis	dtnbp1	evm.model.scaffold79.219;
Melanosome biogenesis	fig4	evm.model.scaffold22.305
Melanosome biogenesis	gpr143	evm.model.scaffold63.395;
Melanosome biogenesis	hps3	evm.model.scaffold23.989;
Melanosome biogenesis	hps5	evm.model.scaffold27.568;
Melanosome biogenesis	kif13a	evm.model.scaffold22.1353;
Melanosome biogenesis	lyst	evm.model.scaffold28.639
Melanosome biogenesis	mlana	evm.model.scaffold155.272;
Melanosome biogenesis	a of	evm.model.scaffold125.81;evm.model.sca
Metanosome biogenesis	nsf	ffold85.138
Melanosome biogenesis	rabggta	evm.model.scaffold23.271;
Melanosome biogenesis	th	evm.model.scaffold27.193;
Melanosome biogenesis	txndc5	evm.model.scaffold45.10;
Melanosome biogenesis	vps33a	evm.model.scaffold176.125;
Melanosome biogenesis,	bloc1s5	and a coffeed 45 11.
Melanocyte development	0100185	evm.model.scaffold45.11;
Melanosome transport	crh	evm.model.scaffold45.154;
Malan a sama tuan an art	data 1	evm.model.scaffold108.42;evm.model.sca
Melanosome transport	dctn1	ffold61.121
Melanosome transport	dctn2	evm.model.scaffold24.217;
Melanosome transport	ippk	evm.model.scaffold173.23;
Melanosome transport	map2k1	evm.model.scaffold27.524;
Melanosome transport	mlph	evm.model.scaffold63.882
Melanosome transport	myo7a	evm.model.scaffold122.10;
Melanosome transport	rab11a	evm.model.scaffold89.340;

Melanosome transport	rab17	evm.model.scaffold63.881;
		evm.model.scaffold106.125;evm.model.sc
Melanosome transport	rab1a	affold111.24;evm.model.scaffold122.11;e vm.model.scaffold135.99
Melanosome transport	rab3ip	evm.model.scaffold68.83;evm.model.scaff old69.84;
Melanosome transport	rab8a	evm.model.scaffold23.677;
Melanosome transport	ric8b	evm.model.scaffold27.301
Melanosome transport	tmem33	evm.model.scaffold86.109
Melanosome transport, Melanosome biogenesis	pmel	evm.model.scaffold24.612;evm.model.sca ffold79.47;
Melanosome transport, Melanosome biogenesis	trappc6a	evm.model.scaffold58.569;
Pigment cell differentiation	cdh2	evm.model.scaffold75.131;
Pigment cell differentiation	lef1	evm.model.scaffold25.192;
Pigment cell differentiation	ovol1	evm.model.scaffold131.150;
Pigment cell differentiation, Melanocyte development	wnt3a	evm.model.scaffold75.50;
Pteridine synthesis	gchfr	evm.model.scaffold61.168
Pteridine synthesis	mycbp2	evm.model.scaffold63.234;
Pteridine synthesis	pcbd1	evm.model.scaffold165.14;
Pteridine synthesis	pcbd2	evm.model.scaffold77.416;
Pteridine synthesis	qdpr	evm.model.scaffold86.97;
Pteridine synthesis	spr	evm.model.scaffold26.365;evm.model.sca ffold59.406
Pteridine synthesis, Melanogenesis regulation	gart	evm.model.scaffold82.268;
Xanthophore differentiation	ghr	evm.model.scaffold26.345;evm.model.sca ffold59.333;
Xanthophore differentiation	leo1	evm.model.scaffold159.5;
-		evm.model.scaffold147.48;evm.model.sca
Xanthophore differentiation	pax3	ffold147.49;evm.model.scaffold15214.1;
Xanthophore differentiation	sox5	evm.model.scaffold65.166;

		Number of	
Level 1 KEGG pathway	Level 2 KEGG pathway	gene family	Detail of gene family (ID)
Cellular Processes	Cell growth and death	10	2348;23;26;18;2368;1576;415;774;2156;493
Cellular Processes	Cell motility	1	5098
Cellular Processes	Cellular community-eukaryotes	4	4060;894;680;2920
Cellular Processes	Transport and catabolism	11	528;958;2678;1949;960;2065;2061;2348;2920;950;529
Environmental Information Processing	Membrane transport	2	3614;2065
Environmental Information Processing	Signal transduction	13	4381;525;894;2065;528;542;680;2156;529;5098;4490;2061;4507
Environmental Information Processing	Signaling molecules and interaction	13	4060;2061;1967;2348;611;521;525;631;616;894;1965;542;680
Genetic Information Processing	Folding, sorting and degradation	1	561
Genetic Information Processing	Replication and repair	3	2065;493;562
Genetic Information Processing	Transcription	1	493
Genetic Information Processing	Translation	4	482;497;2020;4918
Metabolism	Carbohydrate metabolism	2	2065;2061
Metabolism	Global and overview maps	9	2499;2514;2061;2065;6338;2047;2020;3783;3762
Metabolism	Glycan biosynthesis and metabolism	4	497;6338;955;3762
Metabolism	Lipid metabolism	3	3783;2514;2047
Metabolism	Metabolism of cofactors and vitamins	1	2499
Organismal Systems	Aging	1	2514
Organismal Systems	Circulatory system	2	5098;2156
Organismal Systems	Development	2	482;1949

Supplementary table 13. KEGG pathway involved by contracted gene families

	Organismal Systems	Digestive system	7	1021;5098;2156;680;955;894;2065
	Organismal Systems	Endocrine system	8	3614;4381;2156;680;2514;4490;5098;2061
	Organismal Systems	Environmental adaptation	3	4490;2156;680
				493;1965;542;23;26;18;2301;1967;2348;4490;525;1949;4857;528;77
	Organismal Systems	Immune system	23	4;680;4060;529;4855;2368;12264;2565;482
	Organismal Systems	Nervous system	6	2514;2061;4490;680;3783;2156
	Organismal Systems	Sensory system	7	2621;2514;2617;2061;2619;680;2156
636				
637				
638				
639				
640				
641				
642				
643				
644				
645				
646				
647				
648				

Supplementary table 14. KEGG pathway involved by size expanded gene families

Level 1 KEGG pathway	Level 2 KEGG pathway	Number of gene family	Detail of gene family (ID)
Cellular Processes	Cell growth and death	2	6680;2948
Cellular Processes	Transport and catabolism	1	2967
Environmental Information Processing	Signal transduction	3	3683;2654;6680
Environmental Information Processing	Signaling molecules and interaction	2	2654;6680
Genetic Information Processing	Folding, sorting and degradation	1	794
Metabolism	Global and overview maps	2	9457;3404
Metabolism	Glycan biosynthesis and metabolism	2	9457;3404
Organismal Systems	Development	2	1171;6680
Organismal Systems	Digestive system	1	3933
Organismal Systems	Endocrine system	1	3683
Organismal Systems	Environmental adaptation	1	2654
Organismal Systems	Immune system	1	6680
Organismal Systems	Nervous system	1	2654
Organismal Systems	Sensory system	1	546

family ID	accents KO to	function of gene family	
	gene family*	function of gene failing	
4	-	-	
112	-	-	
121	-	-	
127	K09228	KRAB, KRAB domain-containing zinc finger protein	
139	K09228	KRAB, KRAB domain-containing zinc finger protein	
148	K09228	KRAB, KRAB domain-containing zinc finger protein	
149	K09228	KRAB, KRAB domain-containing zinc finger protein	
276	-	-	
400	K04299	P2RY14, purinergic receptor P2Y, G protein-coupled, 14	
414	K05051	TAAR, trace amine associated receptor	
439	K05051	TAAR, trace amine associated receptor	
506	K20865	NLRP12, NACHT, LRR and PYD domains-containing protein 1	
508	K22614	NLRC3, NOD3, NLR family CARD domain-containing protein	
511	K22614	NLRC3, NOD3, NLR family CARD domain-containing protein	
512	K22614	NLRC3, NOD3, NLR family CARD domain-containing protein	
537	K01446	PGRP, peptidoglycan recognition protein	
539	K06712	BTN, CD277, butyrophilin	
556	K06751	MHC1, major histocompatibility complex, class I	
557	K06751	MHC1, major histocompatibility complex, class I	
		CEACAM, CD66, carcinoembryonic antigen-related cell adhesic	
603	K06499	molecule	
608	K06467	CD22, SIGLEC2, CD22 antigen	
610	K06467	CD22, SIGLEC2, CD22 antigen	
647	-	-	
654	K12012	TRIM35, tripartite motif-containing protein 35	
663	K12006	TRIM16, tripartite motif-containing protein 16	
669	K12006	TRIM16, tripartite motif-containing protein 16	
675	K12015	TRIM39, tripartite motif-containing protein 39 [EC:2.3.2.27]	
813	K17388	ROCK2, Rho-associated protein kinase 2 [EC:2.7.11.1]	
814	-	-	
826	-	-	
827	K17854	CYP2K, cytochrome P450 family 2 subfamily K	
939	-	-	
951	K08826	HIPK, homeodomain interacting protein kinase [EC:2.7.11.1]	
991	K10380	ANK, ankyrin	

650 **Supplementary table 15.** The detail for contracted gene families.

1057	K07375	TUBB, tubulin beta
1059	-	-
1100	K07377	NRXN, neurexin
1392	-	-
1492	K03654	recQ, ATP-dependent DNA helicase RecQ [EC:3.6.4.12]
1498	K06560	MRC, CD206, CD280, mannose receptor, C type
1502	-	-
1505	K06560	MRC, CD206, CD280, mannose receptor, C type
1518	K11275	H1_5, histone H1/5
1519	K11252	H2B, histone H2B
1521	K11253	H3, histone H3
1522	K11251	H2A, histone H2A
1533	K18626	TCHH, trichohyalin
1554	K05096	FLT1, VEGFR1, FMS-like tyrosine kinase 1 [EC:2.7.10.1]
1567	K06634	CCNH, cyclin H
1592	K16826	SIRPB2, signal-regulatory protein beta 2
1593	K16826	SIRPB2, signal-regulatory protein beta 2
1597	K10784	TRAV, T cell receptor alpha chain V region
1599	K06553	VPREB, CD179a, pre-B lymphocyte gene
1600	K06856	IGH, immunoglobulin heavy chain
1601	K06856	IGH, immunoglobulin heavy chain
		IGLL1, IGLL, CD179b, immunoglobulin lambda-like polypeptide
1611	K06554	1
1613	K06553	VPREB, CD179a, pre-B lymphocyte gene
1614	K10785	TRBV, T-cell receptor beta chain V region
1634	K09228	KRAB, KRAB domain-containing zinc finger protein
1659	K04257	OLFR, olfactory receptor
1664	K04257	OLFR, olfactory receptor
1666	K04257	OLFR, olfactory receptor
		C1QTNF6, complement C1q tumor necrosis factor-related protein
1769	K19470	6
1807	K06238	COL6A, collagen, type VI, alpha
2057	-	-
2080	-	-
2117	K01068	ACOT1_2_4, acyl-coenzyme A thioesterase 1/2/4 [EC:3.1.2.2]
2142	K04615	GABBR, gamma-aminobutyric acid type B receptor
		SART3, TIP110, squamous cell carcinoma antigen recognized by
2146	K22611	T-cells 3

2159	K16810	TBCCD1, TBCC domain-containing protein 1	
2200	K18543	HCE, choriolysin H [EC:3.4.24.67]	
2614	K14480	APOL, apolipoprotein L	
2787	K06719	CD300, CD300 antigen	
3054	K06556	CD200, CD200 antigen	
3071	K06733	SLAMF7, CD319, SLAM family member 7	
3082	-	-	
3084	-	-	
		SLC6A6S, solute carrier family 6 (neurotransmitter transporter,	
3480	K05039	GABA) member 6/8/11/12/13	
3550	-	-	
3561	-	-	
3620	-	-	
		ALOXE3, hydroperoxy icosatetraenoate dehydratase/isomerase	
3651	K18684	[EC:4.2.1.152 5.4.4.7]	
		TNFRSF14, HVEM, CD270, tumor necrosis factor receptor	
3796	K05152	superfamily member 14	
3883	-	-	
3919	K06087	CLDN, claudin	
4277	-	-	
4321	K13826	HBZ, hemoglobin subunit zeta	
4384	-	-	
4401	K17072	IFI47, interferon gamma inducible protein 47	
4503	K21922	KCTD21, BTB/POZ domain-containing protein KCTD21	
4741	K04612	CASR, calcium-sensing receptor	
4743	K04612	CASR, calcium-sensing receptor	
		DHRSX, dehydrogenase/reductase SDR family member X	
4827	K11170	[EC:1.1]	
		IGLL1, IGLL, CD179b, immunoglobulin lambda-like polypeptide	
4846	K06554	1	
		FUT9, 4-galactosyl-N-acetylglucosaminide	
6363	K03663	3-alpha-L-fucosyltransferase [EC:2.4.1.152]	
7663	K14217	IFIT1, interferon-induced protein with tetratricopeptide repeats 1	
11586	-	-	
11850	-	-	
11970	K14639	SLC15A5, solute carrier family 15, member 5	
12008	K09228	KRAB, KRAB domain-containing zinc finger protein	
12055	K03985	PLAUR, CD87, plasminogen activator, urokinase receptor	