,

Size reductions and genomic changes associated with harvesting within two generations in wild walleye populations

Ella Bowles ${ }^{1 *}$, Kia Marin ${ }^{1,4}$, Stephanie Mogensen ${ }^{2}$, Pamela Macleod ${ }^{3}$, Dylan J. Fraser ${ }^{1}$
${ }^{1}$ Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6; ${ }^{2}$ University of Calgary, 2500
University Dr. NW, Calgary AB, T2N $1 \mathrm{~N} 4 ;{ }^{3}$ Cree Nation of Mistissini, 187 Main Street, Mistissini, QC,
G0W 1C0
*corresponding author
*Email: bowlese@gmail.com
${ }^{4}$ Golder Associates, 7250, rue du Mile End, 3e étage, Montréal, Québec, H2R 3A4

Abstract

The extent and rate of harvest-induced genetic changes in natural populations may impact population productivity, recovery and persistence. While there is substantial evidence for phenotypic changes in harvested fishes, knowledge of genetic change in the wild remains limited, as phenotypic and genetic data are seldom considered in tandem, and the number of generations needed for genetic changes to occur is not well understood. We quantified changes in size-at-age, sex-specific changes in body size, and genomic metrics in three harvested walleye (Sander vitreus) populations and a fourth reference population with low harvest levels over a 15-year period in Mistassini Lake, Quebec. We also collected Traditional Ecological Knowledge (TEK) surrounding concerns about these populations over time. Using ~9000 SNPs, genomic metrics included changes in population structure, neutral genomic diversity, effective population size and signatures of selection. TEK revealed concerns about overall reductions in body size and number of fish caught. Smaller body size, smaller size-at-age, changing population structure (population differentiation within one river and homogenization between two others), and signatures of selection between historical and contemporary samples reflected coupled phenotypic and genomic change in the three harvested populations in both sexes, while no change occurred in the reference population. Sex-specific analyses revealed differences in both body size and genomic metrics but were inconclusive about whether one sex was disproportionately affected. Our results support that harvest-induced genetic changes can arise within 1-2.5 generations in long-lived wild fishes, demonstrating the need to investigate concerns about harvest-induced evolution quickly once they have been raised.

Keywords: walleye, Sander vitreus, harvesting, fisheries-induced-evolution, genomics, body size, size-at-age

Introduction

Harvesting of wild populations can affect growth, body-size, maturation and population productivity (Heino et al. 2013; Heino \& Godø 2002; Hutchings 2005); but it can also alter genetic population structuring, reduce genetic diversity (primarily through reducing population size) and select for different genotypes that underlie phenotypic traits (the latter commonly referred to as fisheriesinduced evolution, FIE) (Allendorf et al. 2008; Hutchings \& Fraser 2008). Because harvest-induced genetic changes can affect population productivity, recovery and persistence, assessing how quickly, to what extent and under what circumstances such changes arise has become an emerging component of contemporary fisheries management (Heino et al. 2015; Jorgensen et al. 2007; Law \& Grey 1989; Rowell 1993).

Many studies have shown rapid phenotypic change towards smaller body size and size-at-age in harvested fish populations, though whether such changes are plastic responses (Law 2007), genetic changes or both is a source of ongoing debate (Heino et al. 2015; Jorgensen et al. 2007; Sharpe \& Hendry 2009). Much of the empirical evidence that fishing causes rapid, genetically-based phenotypic change comes from lab-based studies (e.g. within three generations (van Wijk et al. 2013), or two to five generations (Therkildsen et al. 2019; Uusi-Heikkilä et al. 2017)). However, lab environments can introduce unintended selection pressures (possibly body condition, growth, maturation, Uusi-Heikkilä et al. 2017) and may not adequately depict the actual extent or rate of harvest-induced change that wild fishes experience (Fraser et al. 2018). Results from the few studies that have integrated phenotypic and genetic evidence in the wild suggest that harvest-induced genetic change may occur within as little as one generation (Chebib et al. 2016), to four to eight (Allen et al. 2017), or longer (Hutchinson et al. 2003; Therkildsen et al. 2013), though these studies were based on relatively limited genetic data and/or did not consider sex. Indeed, how genetic change from fishing may differentially affect males and females is understudied in fishes, despite that in many species the sexes exhibit divergent, genetically-based life histories (Fraser et al. 2018), and that harvest may affect the sexes differently (Hixon et al. 2013; Hutchings \& Rowe 2008; Philipp et al. 2015). Overall, there remains much to learn in nature about how
fishing may drive genetic changes in the life history (e.g. body size, size-at-age, by sex), and genetic characteristics (e.g. population structure, genetic diversity and composition) of wild populations.

While Western Scientific Methods (WSM) are most often used to inform fisheries management, inclusion of Traditional Ecological Knowledge (TEK) has become an integral complement to scientific knowledge for wildlife management and community-based conservation (Berkes et al. 2000; Fraser et al. 2006; Polfus et al. 2016; Polfus et al. 2014). TEK is defined as the "cumulative body of knowledge, practice and belief, evolving by adaptive processes and handed down through generations by cultural transmission, about the relationship of living beings (including humans) with one another and with their environment" (Berkes et al. 2000). Importantly, TEK provides extensive location-specific knowledge, can detect changes in wildlife more quickly than WSM (Huntington 2011), and often provides increased knowledge of environmental linkages (Chapman 2007; Drew 2005).

Walleye (Sander vitreus) are important for commercial, sport and Indigenous subsistence fisheries across North America (Bozek et al. 2011; Hansen et al. 2015; Scott \& Crossman 1979). Mistassini Lake in northern Quebec, Canada, is the province's largest natural lake (161 km long, 2335 $\mathrm{km}^{2}, 183 \mathrm{~m}$ maximum depth), is in Grand Council of the Crees land, Eeyou Istchee, and is considered to be largely pristine (minimal mining, forestry, development; no known invasive species) (Fraser et al. 2006; Marin et al. 2017). The motivation behind this study was observations by Cree elders and fishers of reduced body size and catch rates in walleye populations in three of Mistassini Lake's southern tributaries that are close to the community, and a desire by the community to determine if management actions were needed. We also studied a fourth river at the northeastern tip of the lake, where the population was perceived to be largely unaffected by fishing until very recently (~ 2015, TEK, see methods). Subsistence harvest takes place on the rivers during spawning in the spring, and walleye from different rivers comprise a mixed-population fishery in the lake during the summer, both recreationally and for subsistence (Table S1). However, recreational non-Cree fishers are only permitted to fish below the $51^{\text {st }}$ parallel when they are without a Cree guide (Figure 1), fishing by Cree appears to be mostly in the south (Table 2), and the genetically-distinct populations that contribute most to the mixed summer fishery are
those from the rivers of concern (Dupont et al. 2007). Documented catch by non-Cree fishers without a guide has not increased between 1997 and 2015 (Table S1), but we do not have data on direct or latent mortalities due to local fishing derbies. In addition, the human population and the number of households in Mistissini almost doubled between 1997 and 2016 (Table S1). Cumulatively, this information indicates an increase in fishing pressure in the southern rivers.

Using tissue samples and body size measurements collected in 2002/03 (Dupont et al. 2007) ("historical") and between 2015-2017 ("contemporary"), we tested the general hypothesis that harvesting over a period of 1-2.5 generations (based on ages of spawners in the southern rivers of Mistassini Lake (supplementary data, Dupont et al. 2007)) was sufficient to cause coupled phenotypic and genetic changes in wild walleye populations. Specifically, we predicted that, in association with recent, increased fishing effort in Mistassini Lake, the following should be evident within the southern, harvested rivers but not in the northern river with limited harvesting, when comparing contemporary versus historic samples. 1) Reduced body size (total length and mass). 2) Reduced size-at-age. 3) Changes to population structure such as collapsing/homogenization of between-river population structure. 4) Reductions in genetic diversity and effective population size. 5) Signatures of selection, with putatively selected loci related to growth, body size and/or maturation. 6) Greater reductions in body size, size-at-age and stronger signatures of selection in females than in males, as a sexually dimorphic species with larger females than males. As one of the relatively few studies incorporating genomic and phenotypic data in wild populations to date, and the first to show rapid genetic change in a long-lived species, this study could be used to inform population genomics parameters and monitoring practices for the sustainable harvest and management of other similar long-lived species.

Materials and Methods

Fishing pressure, Traditional Ecological Knowledge

Currently, there is no mechanism in place for indigenous fisheries to report the number of fish caught in Mistassini Lake. Thus, to establish trends in fishing pressure, fish abundance and body size, we
conducted semi-directed interviews as in Fraser et al. (2006) during February and July of 2018 with 17 elders and fisherman ($30-79$ years of age, with 13 respondents >40 years) (Table 2). Answers were not used for questions where respondents explicitly stated a lack of knowledge as per Gagnon and Berteaux (2009), and the frequency of respondents for a given answer has been provided, using the total number of respondents for that question as the denominator. In addition, we obtained census numbers for all people in the community close to the lake and the number of fish caught by non-Cree fishers for a subset of years (Table S1). Ethics certificate 30008247.

Rivers included in the study were Chalifour, Icon and Perch in the south and Takwa in the north. Communicated by two TEK respondents and incidentally by several Cree fishers and community members in 2017 and 2018, Takwa was perceived to be relatively unaffected by fishing until ~ 2015 when larger boat motors made access easier.

Fish sampling

Fish were sampled during spawning (after ice-off: mid May in the south and early June in the north) at spawning rivers in 2002 and 2003 by Dupont et al. (2007) (historical), and in 2015, 2016 and 2017 (contemporary) by us (see Table 1 for sample sizes). Sampling was collaborative with subsistence fishers for 2015 - 2017. Walleye were captured via angling using the same lures and a combination of boats and shore fishing, from the same locations within rivers, for both historical and contemporary sampling (Table 1). Catch-per-unit-effort was not available for historic samples or collaborative sampling and is therefore not included here for contemporary sampling. After capture, fish were immediately placed in freshwater baths with aerators. From each walleye, we collected total and fork length (TL $\pm 1 \mathrm{~mm}$), wet mass ($\pm 50 \mathrm{~g}$), sex (M, F, U (unknown, either spawned out or premature)) and a tissue sample for genetics; otoliths were collected from a random subsample. Live walleye were returned to the water near the location of capture. Opercular bones were collected for aging for historic samples (Table 1); 2015 and 2017 otoliths were aged at the Wisconsin Cooperative Fishery Unit, US Geological Service, University of Wisconsin, Stevens Point, USA.

Body size at spawning and size-at-age

We modeled both body size (total length and mass) and size-at-age in this study because we had a far greater sample size for body size estimates than aged samples, and mass estimates had not been correlated to historic aged samples. Thus, evaluating body size allowed us to investigate changes in length and mass on a per-river, per-sex and per-year basis.

Body size

We used multiple regressions and ANOVA in R (R Core Team 2017) to test our prediction that body size of breeding adults had been reduced in southern rivers between 2002/03 and each 2015, 2016 and 2017. Year was set as a factor. Error was normally distributed for total length (TL), and mass was log transformed to improve fit of the error term. Our full model for each TL and mass $\left(Y_{i}\right)$ included the following.

$$
\begin{gathered}
Y_{i}=\beta_{0}+\beta_{1} \text { Year }_{i}+\beta_{2} \text { River }_{i}+\beta_{3} \text { Sex }_{i} \\
+\beta_{4} \text { Year }_{i} \times \text { River }_{i}+\beta_{5} \text { Year }_{i} \times \text { Sex }_{i}+\beta_{6} \text { River }_{i} \times \text { Sex }_{i}+\beta_{7} \text { Year }_{i} \times \text { River }_{i} \times \text { Sex }_{i}+e_{i}
\end{gathered}
$$

To determine the best model, we used backward step-wise model selection and AIC (Akaike 1974). Significance was detected at an alpha of 0.05 and all multi-comparison P-values were adjusted using the false discovery rate (FDR) method for 64 planned contrasts (Tables S3 and S5) (Benjamini and Hochberg 1995).

There were insufficient samples collected across locations in 2002 and 2003 to use these years independently for body size analysis. Since no population genetic structure existed between 2002 and 2003 within rivers (Dupont et al. 2007), they were combined for all analyses, and denoted as 2002/03. In addition, in 2017 we were unable to collect any female walleye from Perch River, nor a sufficient number
of female walleye in Icon River to be able to use them in length/mass models (see Table 1 for sample numbers).

Size-at-age

To test our prediction of reduction in size-at-age in the southern populations relative to the northern one through time, we used a Bayesian hierarchical regression model. We used Bayesian as opposed to frequentist modelling to account for possible bias due to sampling gear, as well as small and variable sample sizes for aging structures across rivers. In addition, only total length was modeled because mass data were not included in the historical dataset containing age information. We assumed walleye total length (TL) was normally distributed such that:

$$
T L_{i} \sim \operatorname{normal}\left(\mu_{i}, \sigma\right)
$$

with shape parameters μ_{i} and σ representing the mean and standard deviation for walleye total length, respectively. Mean total length for the i th walleye was then modelled using linear regression:

$$
\mu_{i}=\beta_{0}+\beta_{1} \text { Age }_{i}+\beta_{2} \text { Location }_{i}+\beta_{3} \text { History }_{i}+\beta_{4} \text { Sex }_{i}+\beta_{5} \text { History }_{i} \times \text { Location }_{i}
$$

We used vague normal priors for all β coefficients and modelled hyperpriors for age and sex by river. Location (southern rivers vs northern river), and history (contemporary vs historic samples) were coded as categorical variables.

The Bayesian model was run using JAGS version 4.3.0 (Plummer 2003) in R, using rjags and run.jags (Denwood 2016). We described the posterior distribution for the model using four MCMC chains. Starting parameter values for each chain were jittered. Each chain took 20,000 samples of the posterior, thinned at a rate of 50 . The adaption period was 1000 iterations, and a burn-in rate of 50% was used, for a total chain length of $2,050,00$. We evaluated MCMC chain convergence by visual inspection
of trace-plots to assess mixing. Additionally, we ensured that each parameter had effective samples sizes $>1,000$ and that they passed the Gelman-Rubin diagnostic test with potential scale reduction factors (PSRF) <1.1 suggesting convergence on a common posterior mode (Gelman et al. 2013).

Sequencing

DNA was extracted using a modified Qiagen blood and tissue kit protocol (Qiagen Inc., Valencia, CA) (see Table 1 for sample sizes) and was sequenced using individual-based genotyping-by-sequencing (GBS). Libraries for Ion Proton GBS were prepared using the procedure described by Masher et al. (2013) at IBIS, Université Laval, Québec, Canada, with modifications described in Abed et al. (2018). Libraries were prepared for sequencing using an Ion CHEF, Hi-Q reagents and P1 V3 chips (ThermoFisher), and the sequencing was performed for 300 flows. Enzymes used to cleave the DNA were rare cutter $p s t l$ and frequent cutter $m s p l$.

Single-nucleotide polymorphisms (SNPs) were determined from raw sequence reads using the stacks pipeline v1.45 (Catchen et al. 2013), and de novo sequence alignment, on the supercomputer Guillimin from McGill University, managed by Calcul Québec and Compute Canada. Pre-processing of fastq files was completed using fastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to assess read-quality before and after using cutadapt (Martin 2011) to trim any remaining adapters and remove sequences <50bp. Our stacks parameter optimization method was similar to Mastretta-Yanes et al. (2015), but we did not estimate error rate because we did not have enough positive controls to do so. Final stacks parameters included default settings with the following custom options: within process_radtags, 80bp trim-length; ustacks, SNP model, alpha $=0.1$ for SNP calls, $-\mathrm{m}=7$; cstacks, $-\mathrm{n}=3$; rxstacks, log-likelihood cut-off $=-30$ for SNP calls; populations, log-likelihood cut-off of -30 for SNP calls, choose single SNP, maf $=0.01,-\mathrm{r}=0.8$. We ran populations twice. First, we used the parameters listed here, and generated a blacklist of loci consisting of loci with $\mathrm{F}_{\text {IS }}<-0.3$. We then re-ran populations with the same parameters listed here using this blacklist, with each $-p=6 / 8,5 / 7$ and $4 / 6$. No negative controls produced stacks, and all positive controls assigned to the correct populations using Discriminant

Analysis of Principal Components (DAPC) analysis in Adegenet (Jombart 2008; Jombart et al. 2010). After quality trimming and filtering, an average of 8457 high-quality SNPs were used to estimate population structure, genetic diversity and effective population size (Ne).

Population structure

To test our prediction that harvesting in the southern populations would change genetic population structure, potentially homogenizing structure between southern rivers over time, we assessed population structure using DAPC, ADMIXTURE (Alexander et al. 2009), and genetic distance (F_{ST}) (using GenoDive and 999 permutations, Meirmans \& Van Tienderen 2004; Weir \& Cockerham 1984). The optimal number of principal components (PCs) to retain for DAPC was determined using the xval procedure, using $\mathrm{n} / 3$ (recommended by the manual) as the maximum number of PCs allowable, and 500 replicates. The population grouping that best fit the data was assessed using Bayesian Information Criterion (BIC) for DAPC, while for ADMXTURE analysis, we used cross validation (CV) and 500 bootstrap replications. Both analyses were completed at least four times using different bootstrap values and numbers of replicates to ensure results were stable. Based on DAPC, it was clear that 28 individuals, primarily sampled in Icon and Chalifour Rivers, were from different unsampled genetic source populations. We removed these individuals, re-ran the populations module of stacks, and conducted all subsequent analyses using this reduced dataset.

Removing loci potentially under selection

Global outlier loci (loci putatively under selection) were detected using PCAdapt (Luu et al. 2017), using the scree plot method to determine the best number of PCs (K) to retain (Jackson 1993), and Mahalanobis distance with alpha $=0.1$ to determine outliers. PCAdapt does not use pre-defined population structure, but instead ascertains structure based on PCA. The program detects outliers based on how they relate to the structure of populations on the PCA (i.e., the distance between a point and a distribution). After removing the outlier loci from the dataset, the effect of linkage disequilibrium (LD) on
population structure was assessed by finding markers that were in $L D\left(r^{2}=0.7\right)$ using plink v1.9 (Chang et al. 2015). We removed these markers $(\mathrm{n}=507)$ and re-analyzed population structure with DAPC. Since linked loci had no effect on structure, they were retained for all subsequent analyses. Genetic diversity, $\mathrm{F}_{\text {ST }}$ and Ne analyses were completed both including and excluding global outlier loci - while there was little difference between results including or excluding outlier loci for genetic diversity and Ne , the magnitude of $\mathrm{F}_{\text {ST }}$ was greater with outlier loci included, and the conclusion changed in one case for $\mathrm{F}_{\text {ST }}$. Thus, we have included only results for neutral loci here for these two metrics.

Genetic diversity and Ne

To test the prediction that genetic diversity and Ne were reduced over time in southern populations, genetic diversity estimates were obtained using the populations model of stacks, and pergeneration Ne (5-7 year generation time) was estimated using the linkage disequilibrium method in NeEstimator v2.01 (Do et al. 2014). Ne estimates and confidence intervals were corrected for linkage by correcting for chromosome number according to Waples et al. (2016).

Signatures of selection

To test the prediction that signatures of selection would be most evident between timepoints within southern and not northern river(s), and that putatively selected loci would be associated with relevant biological processes, analyses to determine outlier loci were conducted with PCAdapt using the method described above. Analyses were conducted both for sexes combined and separately: (i) for all populations combined, (ii) for southern rivers only, and (iii) within each population. For all analyses, except when all populations and years were included, the populations module of stacks was re-run including only the populations and/or sexes that were being contrasted, specifying that loci had to be present in both populations (see Table S 7 for sample sizes and numbers of loci in each analysis). For sexbased analysis of the full dataset including all rivers and years, loci were required to be present in 6 of 8 populations.

To determine possible functions for outlier loci, for all within-river historic-contemporary contrasts for which there were outlier loci, FASTA files were blasted, mapped and annotated using blast2go (Götz et al. 2008). Default parameters were used with the following custom choices: proprietary cloudblast, fast-blast, UniProtKB/Swiss-Prot (Swissprot_v5) database, blast e-value 1.0E-5, 10 blast hits, filtered GO by taxonomy taking only matches to animals (Metazoa).

Results

Fishing pressure, Traditional Ecological Knowledge

Of 17 elders and fishers, most reported reductions in the size and number of walleye caught in the lake (15 and 14 respondents respectively) within the last 5-20 years (Table 2). Eleven respondents expressed concerns directly about overfishing, fishing during spawning or taking of too many fish during spawning. There was no consistent change in the number of fish caught by non-Cree fishers between 1997 and 2015 (virtually the same in 1997, 2011 and 2015, but 54% higher in 2003) (Table S1), but the community of Mistissini (3724 people in 2016) grew by $\sim 29 \%$ between 1997 and 2011, and the population and number of households in the community increased by ~50\% between 1997 and 2016 (Table S 1). In addition, while there is currently no data on the number of fishers in the community nor the proportion of the population that fishes, the majority of fishers (16/17) fished in the southern area of concern in the lake, more than double than in all other areas of the lake except Takwa River (where 9/17 fishers fished) (Table 2).

Body size at spawning and size-at-age

Body size

Our prediction that body size would be reduced in southern populations within a 1-2.5-generation period was supported. The main effects, year, river and sex all had a significant effect on total length and mass (Table 3), and the best-fit models for each TL and mass each contained a three-way interaction between year, sex and river. AIC was >10 better for the full model for TL and >6 better for mass. Both
regression models were significant $\left(T L, \mathrm{R}^{2} \operatorname{adj}=0.418, \mathrm{~F}_{27,1486}=41.24, p<0.001\right.$; mass $\mathrm{R}^{2} \operatorname{adj}=0.3907$, $\mathrm{F}_{27,1481}=36.81$). Mean TL and mass decreased significantly for both sexes between 2002/03 and each of 2015, 2016 and 2017 in the southern rivers (TL $7-21 \%$ and mass $22-47 \%$ reductions), except for Perch River males in two contrasts and Chalifour females in two contrasts. While there was no significant change between 2002/03 and each of 2016 and 2017 years for females in Chalifour, the trend in decline remained clear (Figure 2); lack of significance may relate to low female sample size in this river (Table 1). Indeed, the trend for Chalifour females was particularly evident when contrasted to Takwa (the reference northern river), where mean sizes of fish were consistent across all sampling years. Finally, a sex-bias for more males than females being captured at spawning sites was consistent for all sampling years and for all rivers, including Takwa (Figure S1).

Size-at-age

Our prediction that fish in the southern rivers would be smaller for their age through time was supported, although the reduction in size was small (See Table 4 for posterior means and 95% credible intervals). Overall, fish were larger in the southern than the northern river(s), over all rivers fish were 29.4 mm larger contemporaneously than they were historically, and males were 48.2 mm smaller than females on average. Lastly, and the term that tested our hypothesis, fish in the southern rivers were 13.7 mm smaller relative to fish in the north in contemporary relative to historical samples.

All parameter estimates passed convergence checks. Each parameter had effective samples sizes $>1,000$ and passed the Gelman-Rubin diagnostic test with potential scale reduction factors (PSRF) < 1.1, suggesting convergence on a common posterior mode (Gelman et al. 2013).

Population structure

Our prediction that population structure would change over time, possibly including homogenization of structure between southern rivers, was supported for Icon and Perch Rivers in two of the three analyses. Specifically, ADMIXTURE and $\mathrm{F}_{\text {ST }}$ analyses supported this prediction, while DAPC
did not. Using both DAPC and ADMIXTURE 3 populations best described the data ($\mathrm{k}=3053.162$ and $\mathrm{CV}=0.421$ respectively) (Figure 1), but the difference between CV 2-4 was small for ADMIXTURE (CV of $2=0.423$ and CV of $4=0.428$). In the 3-population scenario, Icon and Perch grouped as a metapopulation and Chalifour and Takwa Rivers were independent, with 2002/03 and 2015 samples grouping together for each river. In a 4-population scenario, many Perch 2003 individuals showed a substantial fraction of loci that were different from the Icon-Perch group. Genetic differentiation by $\mathrm{F}_{\text {sT }}$ mirrored what was evident in the $\mathrm{K}=4$ scenario. $\mathrm{F}_{\text {ST }}$ showed weak differentiation between Perch and Icon in 2002/03 (Table 5), and then merged as a single metapopulation in 2015. At a within-population level, Chalifour River was differentiated between timepoints, Icon did not diverge between timepoints, Perch diverged marginally between timepoints, and Takwa did not diverge between timepoints. Given that $\mathrm{k}=3$ was identified as the best structure overall, subsequent genetic diversity and Ne analyses were conducted using a meta-population structure for Icon-Perch, with Chalifour and Takwa identified separately, but years were defined as separate populations for temporal analysis.

Genetic diversity and Ne

Our prediction that genetic diversity and Ne would be reduced between historical and contemporary timepoints was not supported. Genetic diversity fell within a tight range for all populations over all years, ranging from 0.21 to 0.23 , with the lowest and highest values being in the southern populations (Figure 3a). Confidence Intervals (CIs) overlapped between timepoints for H_{E} in Chalifour and Icon-Perch; there was a 4.9% loss in H_{E} in Takwa, though the reduced H_{E} still fell within the range of southern populations. Point estimates of Ne ranged from 1741 to 3146 individuals across all populations, with the lowest and highest values being in the northern population. Ne CIs also overlapped between timepoints in Chalifour and Icon-Perch Rivers, and the data suggested a doubling in Ne over time in Takwa River (Figure 3b). There were likely insufficient samples to accurately detect a difference between thousands of individuals (Nunziata \& Weisrock 2018; Waples \& Do 2010) however these results clearly show that all populations remained large (i.e., Ne in the thousands).

Signatures of selection
Our prediction that signatures of selection would be present between historic and contemporary timepoints within southern rivers but not the northern river, with putatively selected loci related to growth, body size and/or maturation, was supported. Eleven to 263 loci were outliers (0.17-2.83\%) (Figures $4 \mathrm{a}-\mathrm{b}$). Outliers were found in the global PCA that included all rivers and both timepoints, for each F/M together and F \& M individually, and Perch 2003 clustered as a separate population. But removing these outliers did not change the population structure in most cases. On the contrary, when the southern rivers were analyzed as a unit (i.e., the south historic vs contemporary) and on their own (i.e., each Chalifour and Icon-Perch historic vs contemporary years), for F/M combined and for each F \& M separately, population structure existed between the two timepoints and removing outlier loci usually collapsed the population structure. Further, there was no population structure between timepoints in Takwa (and thus no outlier loci) (Figure 4c, Table S7 and figures S2-16). In sum, while there were outliers separating north from south, outlier SNPs disproportionately contributed to the PCs between years in the southern subset. In addition, the greatest proportion of outlier SNPs found in each historic/contemporary PCA in the south maintained population structure between years (Figure 4c). Lastly, parallel outliers existed between the southern rivers (Figure 4d); of note, more outliers were in common between Icon-Perch F and Chalifour M (18 outliers) than between Icon-Perch F and Chalifour F (0) or Chalifour M and F (3).

Sex-specific analyses provided greater resolution than with sexes combined (Figures 4 c and d). For example, outlier SNPs maintained population structure between timepoints in more of the southern rivers in sex-specific rather than combined analyses (Table S7, Figures S2-7). In addition, there was no population structure in Icon-Perch males, but there was in females (Figures 4c and S12-13). Lastly, the number of outliers in common between rivers differed between the sexes (Figure 4 d), though this may be due in part to the number of individuals sequenced.

Blasts were conducted for southern (F/M combined and separately), Chalifour (F/M combined and separately), and Icon-Perch F (no outliers were found for Icon-Perch M or Takwa) Rivers. Southern F/M combined and M had no blast hits. Otherwise, between 2 and 6 alleles were annotated for each blast. Because annotations were completed against all mapped Metazoa, at level 2 go-annotation, functional annotations included many different biological processes, molecular functions and cellular components. Three relevant processes indicated were growth, metabolism and developmental process (Table S8).

Discussion

We detected rapid genetic changes associated with harvesting wild populations of walleye within 1-2.5 generations, a shorter timescale than previously observed in other fisheries. Concurrent with reductions in body size within a 15 -year period (2002/03-2017) (Figure 2), we detected a reduction in size-at-age (Table 4), genomic change evidenced by changing genomic population structure (Figure 1, Table 5) and putative signatures of selection within rivers (Figure 4), both with sexes combined and separately. These changes were present in the southern rivers most-impacted by increased fishing pressure by Cree and non-Cree fishers alike (Tables 2 and S1), and not in the northern river where there were fewer boats and fishers. Importantly, not only is fishing pressure greatest in the south, but southern fish from the affected spawning runs remain close to those spawning runs in the summer mixed population fishery (Dupont et al. 2007). A genetic drift hypothesis could posit that the observed genomic changes are stochastic. However, all of the observed populations had large Ne, making it unlikely that drift caused the phenotypic or genetic changes observed. The difference between neutral and adaptive genomic results, however, illustrates the capacity for genetically-large populations in nature to rapidly respond to harvestinduced selective pressures.

Reductions in body size (or trends indicating such reductions) were consistent between 2002/03 and each of 2015-2017 within all southern rivers, except for Perch River male body size (Figure 2); moreover, size-at-age was reduced in the south over time (Table 4). In fact, size reductions in all southern rivers were likely underestimates of the true change. Namely, 2016 monitoring was largely collaborative;
approximately 48% of all sampled walleye (216 of 446) were harvested and donated by fishers. Donated 2016 walleye were 639 g (stderr $\pm 21 \mathrm{~mm}$) and 424 mm (stderr $\pm 4 \mathrm{~mm}$) on average compared to 603 g (stderr $\pm 20 \mathrm{~g}$) and 410 mm (stderr $\pm 4 \mathrm{~mm}$) from our caught and released 2016 walleye (note that sampling was not collaborative in this way in 2002/03). Lastly, given that Perch River males were smaller than females, it is less likely that they would be subject to size-selective harvesting. In sum, these results support the idea that fishers often target larger fish, and this type of size-selective harvesting has been documented to lead to the evolution of smaller body size (Heino et al. 2015; Hutchings 2005; Swain et al. 2007).

Genomic change occurred between timepoints in the southern Rivers but not in the northern river. Population structure was homogenized over time between Icon and Perch Rivers. Signatures of selection were evident within southern Rivers: rivers were genetically differentiated between years (Table 5), outlier loci maintained that structure (Figure 4, Table S7), and exploratory analysis revealed relevant biological functions associated with a small number of those outlier loci (Table S8). In addition, although the extent of parallelism in events of natural selection is variable (Oke et al. 2017), parallel outlier loci were detected between timepoints in the southern rivers (Figure 4c). However, genomic change was clearly nascent. Neutral genetic diversity did not change between timepoints. Differences between the preferred population structures in ADMIXTURE were small (Figure 1). $\mathrm{F}_{\text {ST }}$ within rivers between years and between Icon and Perch 2015 were small (Table 5), and scree plots for outlier locus detection showed weak structure in two cases (Figures S9 and S12). Nonetheless, results were generally consistent when sexes were analyzed together and separately; although congruent with reductions in body size between 2002/03 and 2015 in Perch River, genetic structure was present between timepoints in Icon-Perch females but not males (Figure 4).

Alternative explanations for the genomic change evident in Icon-Perch include sampling bias, spatial movement, or increased gene flow. If sampling bias was present, Perch 2003 individuals could have been from a different population, but 2002/03 were genetically indistinct within rivers (Dupont et al. 2007), and Perch 2003 grouped with 2015 samples by DAPC. Alternatively, Perch 2003 individuals that
were different historically could have moved to a different spawning location in later years (Bigrigg 2008), though Mistassini Lake populations generally have strong spawning site fidelity (Dupont et al. 2007). Another possibility is that individuals from Icon River could be using Perch River to spawn much more now than historically, either replacing genotypes that have been fished out, or increasing gene flow substantially (Allendorf et al. 2008). Although the observed neutral and putatively selective genomic change in Icon-Perch is rapid, it is not without precedent (3 generations or less, Chebib et al. 2016; van Wijk et al. 2013), and even though these are genetically large populations (Figure 3a), rapid adaptation is possible via soft sweeps (Hermisson 2005; Messer \& Petrov 2013). In sum, nascent genomic change occurred within a 12-year period (genomic samples were 2003 and 2015) within the southern mostharvested rivers, which represents 1-2.5 generations maximum.

Our data are consistent with rapid genetic changes to population structure and genetically-based phenotypes due to harvest, but alternative explanations must be explored. The observed reduction in size-at-age in the south was small relative to the overall change in body size between historical and contemporary samples, and may be due to a difference in aging structures used (historical using opercula, contemporary using otoliths) (Faust \& Scholten 2017). However, ages calculated using opercula and otoliths have been highly correlated in walleye (Geisler 2012), and opercula have been validated to the age of 16 in walleye (94% of aged fish in Mistassini were < 16) (Faust \& Scholten 2017).

Another alternative could be that the large body size changes are entirely plastic due to changes in the environment or a habitat shift unrelated to fishing. However, climate change is expected to warm the Mistassini region; as a cold oligotrophic lake, Mistassini is not ideal habitat for walleye, which prefer mesotrophic lakes (Kitchell et al. 1977; Niemuth et al. 1972). Climate warming is expected to increase the growing season length for walleye, and thus in the absence of fishing an increase in body size is a more likely response with climate warming than a decrease. Regarding plasticity, growing degree day (GDD) was shown to account for 96% of the variation in length of immature walleye over 416 populations in Ontario and Quebec, though variation in growth associated with food availability was also evident (Neuheimer \& Taggart 2007; Venturelli et al. 2010). Thus, although it is unlikely that all
observed changes are due to selection, smaller body size at spawning and smaller size-at-age could indicate that fish are selectively growing slower (Enberg et al. 2012).

Under variable recruitment (Bozek et al. 2011; Hansen et al. 1998), fish captured in 2002 and 2003 could represent distinct, strong year classes, biasing estimates of mean size and contributing to temporal genetic differences. However, there was no genetic differentiation within rivers between 2002 and 2003 (Dupont et al. 2007), Takwa River walleye had consistent body size in all years sampled, and we found a significant reduction in size-at-age in the southern rivers.

We estimated the selective pressure required to generate the observed changes in body size within 1-2.5 generations to assess whether they were biologically plausible using the breeders equation $\left(R=h^{2} S\right.$, where $R=$ response to selection, $h^{2}=$ heritability, $S=$ selection differential). Using averages for 11-year old walleye in the south for each $2002(515 \mathrm{~mm})$ and $2015(424 \mathrm{~mm})$ (a 13-year interval), $R=-7 \mathrm{~mm}$ per year. Given realistic h^{2} estimates (0.3) (Law 2000; Nussle et al. 2009), if observed changes were entirely due to selection, S would need to be -23 mm per year. Our Bayesian model held all variables constant when assessing the size change associated with harvest, and in so doing found that the size change attributed to selection was smaller than what is shown here. Thus, it is very likely that some of the observed body size change was plastic and/or due to stochasticity in addition to selection pressure.

Conclusions and management implications

We have presented coupled phenotypic and genetic evidence consistent with fisheries-induced genetic changes within 1-2.5 generations in wild walleye populations; with rare comprehensive evidence, this study sets a precedent for the timeframe needed for investigating concerns regarding harvest-induced evolution in fisheries. Furthermore, sex-specific dynamics for both body size and genomics herein highlight the importance of collecting sex-specific data.

Our study illustrates the power of integrating life history and genomics methods for conservation in order to understand the factors affecting population change (Bernatchez et al. 2017), of integrating these with TEK, and of iterative population monitoring practices (Flanagan et al. 2018); i.e., this study
would not have been possible without the historic data. Considerations for Cree management could include that observed phenotypic and genetic changes may cause reduced productivity (Allendorf et al. 2008; Hutchings 2005), and that genomic change is clearly nascent here. Depending on the severity of harvest (which is not precisely known in this case) and life-history (Audzijonyte \& Kuparinen 2016), fisheries-induced changes may be reversed in 9 generations (Conover et al. 2009) or less (Feiner et al. 2015) if fishing is halted.

Data accessibility: Supporting data are available on Dryad: to be completed after the manuscript has been accepted for publication.

Competing interests: The authors declare no competing interests.
Acknowledgements: We thank many people who contributed to this work. PP Dupont and L Bernatchez generously shared their historical tissue samples and length weight data. JP Coon-Come, D Schecapio, E Coon-Come and D Petawabano were excellent Cree guides. M Rabbitskin, our interpreter, and 17 anonymous Cree fishers and elders shared their knowledge of the species and the lake. R Arax Koumrouyan helped conduct the blast2go analysis. M Yates, E Lawrence, J-M Matte, A Prevost, N Hill, A Harbicht, B Brookes, P Peres-Neto, A Cantin, K Wilson, B Allen, W Larson, Z Feiner and D Isermann contributed critical feedback and discussion throughout the project and/or on drafts of the article. M Dunn facilitated engagement with Niskamoon Corporation. This project was funded by fisheries monitoring grants from Niskamoon Corporation to EB/DJF/PM, and by a Mitacs Elevate Postdoctoral Fellowship to EB.

Icon
2002
2003
2015

2016

2017

2002

2003
0
boat
\neq primarily
boat
2015 boat $\quad 116(\mathrm{M}), 15(\mathrm{~F}), 19(\mathrm{U}) \quad 10(\mathrm{M}), 11(\mathrm{~F}) \quad 20(\mathrm{M}), 19(\mathrm{~F})$
2016 boat
2017 boat 51(M), 22(F), 76(U)

27(M), 34(F)
77(M), 43(F)
106(M), 8(F)
156(M), 13(F), 1(U)

38(M), 1(F), 1(U)
shore

Takwa
\#primarily
64(M), 81(F), 26(U)
28(M), 15(F)
64(M), 17(M), 16(F), 2(U)
\ddagger Takwa and Chalifour spawning grounds are only accessible by boat; thus, while we do not have record of exactly how fishing was conducted, boat can be inferred
${ }^{\wedge}$ Individuals with unknown sex were not used in body size models, and nor were categories with any fewer than 8
observations
*We extracted DNA from 371 walleye (historical $\mathrm{n}=173$ from 2003, contemporary $\mathrm{n}=198$ from 2015), and that Icon and Perch were analyzed as a single population

Size of fish

Abundance of walleye

Other concerns about health of walleye

Trend

Region close to community
Far northeast, close to northern reference river
Other areas of the lake
Smaller
Smaller in the south
No change in average, but Takwa River fish are smaller Different sizes in different seasons within years 1

Not sure	1	0.06

Decreaing
Fewer in the south but not in the north 1
No change n/a 1
Does not know n/a 2
Fishing during spawning or taking too many 6 during spawning Use of snares to fish in the spring 3
Night fishing, taking too many 2

Overfishing 5
Damage to fish after being handled 1
Fishing derby's causing many dead fish 2
Pike are after walleye eggs 2
Pollution in lake, dirty water 2
No other concerns, or they will be fine 8

Freq0.940.53
Current time $\leq 7 \quad 0.41$
$5-25 \mathrm{yrs} \quad 12 \quad 0.71$
15 years 30.18
$5 y r s \quad 1 \quad 0.06$0.060.060.06
$5-25 y r s \quad 13 \quad 0.76$
0.060.060.060.12

Table 3: Analysis of variance table for best fit (full) model for each walleye total length (TL) and mass, with response \log (mass). Years are each 2002/03, 2015, 2016 and 2017. Rivers are Chalifour, Icon, Perch and Takwa.

TL	Df	Sum Sq	Mean Sq	\boldsymbol{F} value	\boldsymbol{P}
Year	3	656921.887	218973.962	111.058	0.000
River	3	393310.528	131103.509	66.492	0.000
Sex	1	860350.946	860350.946	436.347	0.000
Year:River	8	199492.923	24936.615	12.647	0.000
Year:Sex	3	9581.311	3193.770	1.620	0.183
River:Sex	3	36772.902	12257.634	6.217	0.000
Year:River:Sex	6	39265.708	6544.285	3.319	0.003
Mass	Df	Sum Sq	Mean Sq	\boldsymbol{F} value	\boldsymbol{P}
Year	3	30.776	10.259	91.847	0.000
River	3	23.854	7.951	71.189	0.000
Sex	1	38.923	38.923	348.478	0.000
Year:River	8	11.978	1.497	13.405	0.000
Year:Sex	3	1.025	0.342	3.060	0.027
River:Sex	3	2.461	0.820	7.345	0.000
Year:River:Sex	6	1.996	0.333	2.979	0.007

Table 4: Posterior means (PM) and 95\% credible intervals (CI) for walleye size-at-age model for total length (in mm). Age is the effect of each year on length, location is south versus north and history is contemporary versus historical.

Parameter	Parameter	PM (mm)	$\mathbf{9 5 \%}$ CI	Percent of the posterior mass below 0
β_{0}	Intercept	463.8	$418.7-506.4$	0%
β_{1}	Age	10.8	$8.6-12.9$	0%
β_{2}	Location	27.8	$-9.7-80.4$	6%
β_{3}	History	-29.4	$-50.0--9.3$	100%
β_{4}	Sex	-48.2	$-65.6--32.6$	100%
β_{5}	History x Location	-13.7	$-37.1-9.6$	87%

Table 5. $\mathrm{F}_{\text {ST }}$ differentiation for walleye within and between rivers for each year sampled. $\mathrm{F}_{\text {ST }}$ estimates are below the diagonal, and p-values are above the diagonal, with a "*" indicating $p \leq 0.001$.

	Cha	Cha	Ico	Ico	Per	Per	Tak	Tak
	$\mathbf{2 0 0 3}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 1 5}$
Ch 2003	--	$*$	$*$	$*$	$*$	$*$	$*$	$*$
Ch 2015	0.004	--	$*$	$*$	$*$	$*$	$*$	$*$
Ic 2003	0.02	0.017	--	0.361	$*$	0.042	$*$	$*$
Ic 2015	0.02	0.016	0	--	0.013	0.895	$*$	$*$
Pe 2003	0.019	0.019	0.002	0.001	--	0.042	$*$	$*$
Pe 2015	0.021	0.017	0.001	0	0.001	--	$*$	$*$
Ta 2003	0.053	0.049	0.072	0.07	0.075	0.073	--	0.05
Ta 2015	0.057	0.053	0.077	0.076	0.078	0.078	0.001	--

Figures

Figure 1. A) Map of sampling sites: red is Takwa River, blue is Icon and Perch Rivers, green is an historical genotype in Perch River, yellow is Chalifour River. B) ADMIXTURE results showing, top to bottom, $\mathrm{K}=3$ and 4). C) DAPC analysis showing $\mathrm{k}=3$ (i.e., historical and contemporary sampling years are not separated statistically by DAPC).

Figure 2: Least squares means ($\pm 95 \% \mathrm{Cl}$) of A) total length and B) mass for male and female walleye between 2002/03, 2015, 2016 and 2017 in the four rivers surveyed. There was also a significant change between 2016 and 2017 ($p=0.0092$ for TL and $\mathrm{p}=0.003$ for mass) for male fish in Chalifour, but this was not shown for clarity.

Figure 3: A) Expected heterozygosity $\left(\mathrm{H}_{\mathrm{E}}\right) \pm 95 \% \mathrm{CI}$ and B$)$ effective population size $\left(\mathrm{N}_{\mathrm{E}}\right) \pm 95 \% \mathrm{CI}$ for walleye from each Chalifour (Ch), Icon-Perch (Ic-Pe) and Takwa (Ta) Rivers in each 2003 and 2015.

Figure 4. A) Total number of SNPs used in each between-year contrast (i.e., the number of SNPs used was unique for each sex and population). B) Percentage of SNPs that were outliers in each pairwise contrast. C) Number of outlier SNPs associated with each PCaxis. The star (\hbar) denotes which PC axis separated years. Where there is no star on a bar population structure between years was not maintained by outlier loci. See Table S7 and Figures S2-S16 for further explanations and detailed descriptions of how outliers on each PC axis maintained the observed population structure. Where no bars are shown (i.e., for Takwa and Icon-Perch m in \% outlier SNPs and SNPs associated with each PCaxis) there was no population structure and thus no outlier loci between years. D) Outlier loci overlap between the southern populations.

Literature cited

Abed A, Légaré G, Pomerleau S, et al. (2018) Genotyping-by-sequencing on the Ion Torrent platform in barley. In: Methods in molecular biology. Humana Press.
Akaike H (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716-723.
Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Research 19, 1655-1664.
Allen BE, Bowles E, Morris MR, Rogers SM (2017) Loss of SNP genetic diversity following population collapse in a recreational walleye (Sander vitreus) fishery. Canadian Journal of Fisheries and Aquatic Sciences, 1-8.
Allendorf FW, England PR, Luikart G, Ritchie PA, Ryman N (2008) Genetic effects of harvest on wild animal populations. Trends in Ecology \& Evolution 23, 327-337.
Audzijonyte A, Kuparinen A (2016) The role of life histories and trophic interactions in population recovery. Conservation Biology 30, 734-743.
Berkes F, Colding J, Folke C (2000) Rediscovery of traditional ecological knowledge as adaptive management. Ecological Applications 10, 1251-1262.
Bernatchez L, Wellenreuther M, Araneda C, et al. (2017) Harnessing the power of genomics to secure the future of seafood. Trends in Ecology \& Evolution 32, 665-680.
Bigrigg JL (2008) Determining stream origin of four purported walleye stocks in Lake Erie using otolith elemental analysis, The Ohio State University.
Bozek MA, Baccante DA, Lester NP (2011) Walleye and sauger life history: Chapter 7. In: Biology, Management and Culture of Walleye and Sauger (ed. Barton BA). American Fisheries Society.
Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Molecular Ecology 22, 3124-3140.
Chang CC, Chow CC, Tellier LC, et al. (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 .
Chapman PM (2007) Traditional ecological knowledge (TEK) and scientific weight of evidence determinations. Marine Pollution Bulletin 54, 1839-1840.
Chebib J, Renaut S, Bernatchez L, Rogers SM (2016) Genetic structure and within-generation genome scan analysis of fisheries-induced evolution in a Lake Whitefish (Coregonus clupeaformis) population. Conservation Genetics 17, 473-483.
Conover DO, Duffy TA, Hice LA (2009) The covariance between genetic and environmental influences across ecological gradients. Annals of the New York Academy of Sciences 1168, 100-129.
Denwood MJ (2016) runjags: An R package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS. Journal of statistical software 71, 1-25.
Do C, Waples RS, Peel D, et al. (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Molecular ecology resources 14, 209-214.
Drew JA (2005) Use of traditional ecological knowledge in marine conservation. Conservation Biology 19, 1286-1293.
Dupont PP, Bourret V, Bernatchez L (2007) Interplay between ecological, behavioural and historical factors in shaping the genetic structure of sympatric walleye populations (Sander vitreus). Molecular Ecology 16, 937-951.
Enberg K, Jørgensen C, Dunlop ES, et al. (2012) Fishing-induced evolution of growth: concepts, mechanisms and the empirical evidence. Marine Ecology 33, 1-25.

Faust MD, Scholten G (2017) Cleithra, densities, and other bones. In: Age and growth of fishes: Principles and Techniques (eds. Quist MC, Isermann DA), pp. 159-171. American Fisheries Society, Bethesda, Maryland.
Feiner ZS, Chong SC, Knight CT, et al. (2015) Rapidly shifting maturation schedules following reduced commercial harvest in a freshwater fish. Evolutionary applications 8, 724-737.
Flanagan SP, Forester BR, Latch EK, Aitken SN, Hoban S (2018) Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evolutionary applications 11, 1035-1052.
Fraser DJ, Coon T, Prince MR, Dion R, Bernatchez L (2006) Integrating traditional and evolutionary knowledge in biodiversity conservation: a population level case study. Ecology and Society 11, 4.
Fraser DJ, Walker L, Yates MC, et al. (2018) Population correlates of rapid captive-induced maladaptation in a wild fish. Evolutionary applications.
Gagnon C, Berteaux D (2009) Integrating traditional ecological knowledge and ecological science: a question of scale. Ecology and Society 14.
Geisler M (2012) Stock assessment of walleye (Sander vitreus) in waterhen lake, MB Honours thesis, University of Winnipeg.
Gelman A, Stern HS, Carlin JB, et al. (2013) Bayesian data analysis Chapman and Hall/CRC.
Götz S, García-Gómez JM, Terol J, et al. (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research 36, 3420-3435.
Hansen GJ, Carpenter SR, Gaeta JW, Hennessy JM, Vander Zanden MJ (2015) Predicting walleye recruitment as a tool for prioritizing management actions. Canadian Journal of Fisheries and Aquatic Sciences 72, 661-672.
Hansen MJ, Bozek MA, Newby JR, Newman SP, Staggs MD (1998) Factors affecting recruitment of walleyes in Escanaba Lake, Wisconsin, 1958-1996. North American Journal of Fisheries Management 18, 764-774.
Heino M, Baulier L, Boukal DS, et al. (2013) Can fisheries-induced evolution shift reference points for fisheries management? ICES Journal of Marine Science 70, 707-721.
Heino M, Godø OR (2002) Fisheries-induced selection pressures in the context of sustainable fisheries. Bulletin of Marine Science 70, 639-656.
Heino M, Pauli BD, Dieckmann U (2015) Fisheries-induced evolution. Annual Review of Ecology, Evolution, and Systematics 46.
Hermisson J (2005) Soft Sweeps: Molecular Population Genetics of Adaptation From Standing Genetic Variation. Genetics 169, 2335-2352.
Hixon MA, Johnson DW, Sogard SM (2013) BOFFFFs: on the importance of conserving old-growth age structure in fishery populations. ICES Journal of Marine Science 71, 2171-2185.
Huntington HP (2011) Arctic science: The local perspective. Nature 478, 182-183.
Hutchings JA (2005) Life history consequences of overexploitation to population recovery in Northwest Atlantic cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences 62, 824-832.
Hutchings JA, Fraser DJ (2008) The nature of fisheries-and farming-induced evolution. Molecular Ecology 17, 294-313.
Hutchings JA, Rowe S (2008) Consequences of sexual selection for fisheries-induced evolution: an exploratory analysis. Evolutionary applications 1, 129-136.
Hutchinson WF, van Oosterhout C, Rogers SI, Carvalho GR (2003) Temporal analysis of archived samples indicates marked genetic changes in declining North Sea cod (Gadus morhua). Proceedings of the Royal Society of London B: Biological Sciences 270, 2125-2132.
Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74, 2204-2214.
Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403-1405.
Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics 11, 94.

Jorgensen C, Enberg K, Dunlop ES, et al. (2007) Ecology-Managing evolving fish stocks. Science 318, 1247-1248.
Kitchell JF, Johnson MG, Minns CK, et al. (1977) Percid habitat: the river analogy. Journal of the Fisheries Board of Canada 34, 1936-1940.
Law R (2000) Fishing, selection, and phenotypic evolution. ICES Journal of Marine Science 57, 659-668.
Law R (2007) Fisheries-induced evolution: present status and future directions. Marine Ecology Progress Series 335, 271-277.
Law R, Grey DR (1989) Evolution of yields from populations with age-specific cropping. Evolutionary Ecology 3, 343-359.
Luu K, Bazin E, Blum MG (2017) pcadapt: an R package to perform genome scans for selection based on principal component analysis. Molecular ecology resources 17, 67-77.
Marin K, Coon A, Fraser DJ (2017) Traditional Ecological Knowledge reveals the extent of sympatric lake trout diversity and habitat preferences. Ecology and Society 22, 20.
Martin M (2011) Cutadapt removes adapter sequences from highthroughput sequencing reads. EMBnet. journal 17: 10-12.
Mascher M, Wu S, Amand PS, Stein N, Poland J (2013) Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley. PLoS One 8, e76925.
Mastretta-Yanes A, Arrigo N, Alvarez N, et al. (2015) Restriction site-associated DNA sequencing, genotyping error estimation and de novo assembly optimization for population genetic inference. Molecular ecology resources 15, 28-41.
Meirmans PG, Van Tienderen PH (2004) Genotype and Genodive: two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes 4, 792-794.
Messer PW, Petrov DA (2013) Population genomics of rapid adaptation by soft selective sweeps. Trends in Ecology \& Evolution 28, 659-669.
Neuheimer AB, Taggart CT (2007) The growing degree-day and fish size-at-age: the overlooked metric. Canadian Journal of Fisheries and Aquatic Sciences 64, 375-385.
Niemuth W, Churchhill W, Wirth T (1972) Walleye, its life history, ecology, and management. Wisconsin Department of Natural Resources, Wisconsin, Madison.
Nunziata SO, Weisrock DW (2018) Estimation of contemporary effective population size and population declines using RAD sequence data. Heredity 120, 196.
Nussle S, Bornand CN, Wedekind C (2009) Fishery-induced selection on an Alpine whitefish: quantifying genetic and environmental effects on individual growth rate. Evolutionary applications 2, 200-208.
Oke KB, Rolshausen G, LeBlond C, Hendry AP (2017) How parallel is parallel evolution? A comparative analysis in fishes. The American Naturalist 190, 1-16.
Philipp DP, Claussen JE, Koppelman JB, et al. (2015) Fisheries-induced evolution in largemouth bass: linking vulnerability to angling, parental care, and fitness 82, 223-234.
Plummer M (2003) JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling 124.

Polfus J, Manseau M, Simmons D, et al. (2016) Łeghágots' enetę (learning together): the importance of indigenous perspectives in the identification of biological variation. Ecology and Society 21.
Polfus JL, Heinemeyer K, Hebblewhite M (2014) Comparing traditional ecological knowledge and western science woodland caribou habitat models. The Journal of wildlife management 78, 112121.

R Core Team (2017) R: A language and environment for statistical computing (ed. Computing RFfS), Vienna, Austria.
Rowell CA (1993) The effects of fishing on the timing of maturity in North Sea cod (Gadus morhua L.). In: The exploitation of evolving resources, pp. 44-61. Springer.
Scott WB, Crossman EJ (1979) Freshwater fishes of Canada Fisheries Research Board of Canada, Ottawa.

Sharpe DM, Hendry AP (2009) SYNTHESIS: life history change in commercially exploited fish stocks: an analysis of trends across studies. Evolutionary applications 2, 260-275.
Swain DP, Sinclair AF, Hanson JM (2007) Evolutionary response to size-selective mortality in an exploited fish population. Proceedings of the Royal Society of London B: Biological Sciences 274, 1015-1022.
Therkildsen NO, Hemmer-Hansen J, Als TD, et al. (2013) Microevolution in time and space: SNP analysis of historical DNA reveals dynamic signatures of selection in Atlantic cod. Molecular Ecology 22, 2424-2440.
Therkildsen NO, Wilder AP, Conover DO, et al. (2019) Contrasting genomic shifts underlie parallel phenotypic evolution in response to fishing. Science 365, 487-490.
Uusi-Heikkilä S, Sävilammi T, Leder E, Arlinghaus R, Primmer CR (2017) Rapid, broad-scale gene expression evolution in experimentally harvested fish populations. Molecular Ecology 26, 39543967.
van Wijk SJ, Taylor MI, Creer S, et al. (2013) Experimental harvesting of fish populations drives genetically based shifts in body size and maturation. Frontiers in Ecology and the Environment 11, 181-187.
Venturelli PA, Lester NP, Marshall TR, Shuter BJ (2010) Consistent patterns of maturity and densitydependent growth among populations of walleye (Sander vitreus): application of the growing degree-day metric. Canadian Journal of Fisheries and Aquatic Sciences 67, 1057-1067.
Waples RK, Larson WA, Waples RS (2016) Estimating contemporary effective population size in nonmodel species using linkage disequilibrium across thousands of loci. Heredity 117, 233-240.
Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evolutionary applications 3, 244-262.
Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38, 1358-1370.

