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Abstract 

Gene co-expression network (GCN) mining identifies gene modules with highly 

correlated expression profiles across samples/conditions. It helps to discover latent 

gene/molecular interactions, identify novel gene functions, and extract molecular 

features from certain disease/condition groups, thus help to identify disease 

biomarkers. However, there lacks an easy-to-use tool package for users to mine GCN 

modules that are relatively small in size with tightly connected genes that can be 

convenient for downstream Gene Ontology (GO) enrichment analysis, as well as 

modules that may share common members. To address this need, we develop a GCN 

mining tool package TSUNAMI (Tools SUite for Network Analysis and MIning) 

which incorporates our state-of-the-art lmQCM algorithm to mine GCN modules in 

public and user-input data (microarray, RNA-seq, or any other numerical omics data), 

then performs downstream GO and enrichment analysis based on the modules 

identified. It has several features and advantages: (i) user friendly interface and the 

real-time co-expression network mining through web server; (ii) direct access and 

search of GEO and TCGA databases as well as user-input expression matrix 

(microarray, RNA-seq, etc.) for GCN module mining; (iii) multiple co-expression 

analysis tools to choose with highly flexible of parameter selection options; (iv) 

identified GCN modules are summarized to eigengenes, which are convenient for user 

to check their correlation with other clinical traits; (v) integrated downstream Enrichr 

enrichment analysis and links to other GO tools; (vi) visualization of gene loci by 

Circos plot in any step. The web service is freely accessible through URL: 

http://spore.ph.iu.edu:3838/zhihuan/TSUNAMI/. Source code is available at 

https://github.com/huangzhii/TSUNAMI/. 

 

KEYWORDS: Network mining; Gene co-expression network; Transcriptomic data 

analysis; lmQCM; Web server
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Introduction 1 

Gene co-expression network (GCN) mining is a popular bioinformatics approach to 2 

identify densely connected gene modules, which are linked by their highly correlated 3 

expression profiles. It helps reveal latent gene/molecule interactions, identify novel 4 

gene functions, disease pathways and biomarkers, as well as provide disease 5 

mechanistic insights. GCN mining approaches such as WGCNA [1] and lmQCM [2] 6 

have been used increasingly [3–7]. Compared to the more popularly used WGCNA 7 

package, lmQCM is capable to mine smaller densely co-expressed GCN modules and 8 

allow overlapped membership in the output modules. Those features reflect closely 9 

the real biological networks in vivo, where the same genes may participate in multiple 10 

pathways and a small group of genes are more likely to be synergistically regulated in 11 

local pathway functions. Besides, the generally smaller size of modules from lmQCM 12 

usually generates more meaningful GO enrichment results, which has been 13 

successfully applied to many diseases and cancer types [8–17]. 14 

   There exist several online databases that curate transcriptomic data, for example, 15 

PanglaoDB (https://panglaodb.se/) collected single-cell RNA-seq (scRNA-seq) data 16 

from mouse and human. Cao et al. scRNASeqDB [18] provides an scRNA-seq 17 

database for gene expression profiling in human. Recount2 [19] provides public 18 

available analysis-ready gene and exon counts datasets. However, all of these 19 

databases focus on data collection, to the best of our knowledge, there is no tool 20 

offering the entire pipeline that can directly process transcriptomic data, mine GCN 21 

modules, analyse GO enrichment, and visualized the results in a complete pipeline 22 

fashion. To meet such needs, we released our web-based analysis tool suite 23 

TSUNAMI (Tools SUite for Network Analysis and MIning). 24 

 For users’ convenience, TCGA mRNA-seq data (Illumina HiSeq RSEM genes 25 

normalized from https://gdac.broadinstitute.org/) and NCBI Gene Expression 26 

Ominbus (GEO) are directly incorporated into TSUNAMI, where GEO contains a 27 

large number of microarray datasets. In addition, other data types such as miRNA-seq 28 

and DNA methylation are also compatible with this suite. In fact, TSUNAMI can 29 

handle any numerical matrix data regardless which omics data type it is from. In 30 

TSUNAMI, it not only incorporates the newly released lmQCM algorithm, but also 31 

includes WGCNA package for users to explore and compare their GCN modules from 32 
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two different algorithms. We offer highly flexible parameter choices in each step to 33 

users who may want to fine tune each algorithm to suit for their own data and goal. 34 

   Prior to data mining, a data pre-processing interface is designed to address the 35 

input data format difference and filter the data to remove noise for GCN mining. Each 36 

step of the pre-processing is transparent to users and can be adjusted according to 37 

their own preferences and needs. 38 

   Furthermore, our website directly incorporates GO enrichment analysis and Circos 39 

plot function for researchers to explore the enriched biological terms and gene 40 

locations in the output GCN modules, as well as providing a tool for survival analysis 41 

with respect to each GCN module’s eigengene values. All of the aforementioned 42 

functions only need button clicks from user-side. The design of such user-friendly 43 

implementations of our TSUNAMI pipeline provides a one-stop comprehensive 44 

analysis tool suite for biological researchers and clinicians to perform transcriptomic 45 

data analysis themselves without any prior programming skill or data mining 46 

knowledge. 47 

 48 

Data input 49 

A flowchart that describes TSUNAMI pipeline is presented in Figure 1. The entire 50 

pipeline is implemented in R language with Shiny server pages. In the future, it will 51 

be upgraded with Python to improve the computing speed in module mining step. 52 

Some front-end interfaces and functions are done by JavaScript. In TSUNAMI, users 53 

can choose to use either TCGA RNA-seq expression data, GSE series matrix data, or 54 

other RNA-seq data from GEO database, or local user-input numerical matrix data, 55 

such as microarray, RNA-seq, scRNA-seq data, DNA methylation data, or any other 56 

type of numeric matrix data. User can also choose specific omics data type on GEO 57 

database if keywords are given to indicate the data type in the search window. Only 58 

few GSE data is not able to be processed (for example, 12 out of first 1000 GSE data), 59 

mostly are legacy microarray data, which contain too much missing data or too small 60 

sample size. Other 98.80% of first 1000 GSE data can be processed. On the website, 61 

various of example data from microarray to scRNA-seq data are listed on TSUNAMI 62 

for users’ reference. Instead of searching GEO database manually, TSUNAMI 63 

provides a friendly interface for users to retrieve data from GEO by keywords, offers 64 

flexible select tool to retrieve relevant GSE dataset to perform GCN analysis. 65 
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TSUNAMI also provides an upload bar for users to upload local files in various 66 

formats (CSV, TSV, XLSX, TXT, etc.), the upload interface is shown in Figure 2A. 67 

In this paper, one microarray dataset (GSE17537 from GEO) is chosen as an example 68 

to present the features of TSUNAMI. GSE17537 contains microarray data of 55 69 

colorectal cancer patients from Vanderbilt Medical Center (VMC), with 54,675 70 

probesets [20, 21]. 71 

 72 

Online data pre-processing 73 

One issue of GEO microarray data is that different platforms adopted different rules 74 

when converting probeset IDs to gene symbols. To make this step easier for users, 75 

probeset IDs in GSE data matrix from GEO can be converted to gene symbols using 76 

R package “BiocGenerics” [22] by only one click. For instance, for GSE17537, the 77 

annotation platform is GPL570. TSUNAMI can also automatically identify annotation 78 

platforms of the data from GEO. During the conversion, TSUNAMI will (i) remove 79 

rows with empty gene symbol; and (ii) select the rows with the largest mean 80 

expression value when multiple probesets are matched with the same gene symbol. 81 

The interface of data pre-processing step is shown in Figure 2B. 82 

   Additional data filtering steps include: (i) convert “NA” value (not a number 83 

value) to 0 in expression data, to ensure all the values are numeric and can be 84 

interpreted by co-expression algorithms; (ii) perform log��� � 1� transformation of 85 

the expression values � if the original values have not been transformed previously; 86 

(iii) remove lowest 	 percentile rows (genes) with respect to mean expression values; 87 

(iv) remove lowest 
 percentile rows with respect to expression values’ variance. 88 

These data filtering steps are necessary to reduce noise and to ensure the robustness 89 

for the downstream correlational computation in lmQCM algorithm. The default 90 

settings are 	 � 50 and 
 � 50, by which genes with low expression and variance 91 

across samples are filtered out. In our example with GSE17537, we deselect logarithm 92 

conversion and NA value to 0 conversion, set 	 � 50, and 
 � 10, as shown in 93 

Figure 2B. However, users can always adjust these parameters based on their own 94 

needs and preferences. In Data Pre-processing section, we further provide 95 

“Advanced” panel to allow users select samples subgroup of their interest. After 96 

finished the data pre-processing, a dialog box will appear to indicate how many genes 97 

left after the filtering process. 98 
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 99 

Weighted network co-expression analysis 100 

After data pre-processing, users can directly download pre-processed data or further 101 

proceed to GCN analysis. In GCN analysis, we implemented lmQCM algorithm as 102 

well as WGCNA pipeline. We kept the mining steps concise and simple with default 103 

parameter settings, while preserving the flexibility for users to select parameters in 104 

each step. Guidelines for parameter selection are in method pages of the website. 105 

Besides this article, we also release the lmQCM package to CRAN 106 

(https://CRAN.R-project.org/package=lmQCM). The R package “WGCNA” from 107 

Bioconductor (http://bioconductor.org) was adopted to integrate the WGCNA 108 

pipeline. 109 

   In the lmQCM method panel, users can adjust parameters such as initial edge 110 

weight �, weight threshold controlling parameters �, �, �, and minimum cluster 111 

size (Figure 3). Pearson correlation coefficient (PCC) and Spearman's rank 112 

correlation coefficient (SCC) are implemented separately for users to select. SCC is 113 

recommended for analysing RNA-seq data due to the large range of data values, and it 114 

is more robust than PCC to tolerate outliers. In our example with GSE17537, the 115 

default settings were used (unchecked weight normalization, � � 0.7, � � 1, � � 1, 116 

� � 0.4, minimum cluster size� 10, and PCC for correlation measure). The running 117 

time of lmQCM depends on the number of genes after filtering process. A progress 118 

bar is provided to show the program progress. Note that lmQCM will not work if the 119 

data contain no clustering structure or the gene pair correlations are so poor that none 120 

is above the initial mining starting threshold (�). In those cases, the program will stop 121 

running and generate a warning message. However, if the data contain enough high 122 

correlated gene pairs after filtering and with the default program settings, this should 123 

not happen. 124 

   The WGCNA method panel is a two-step analysis: Step 1 helps users to specify 125 

the hyper-parameter “power” in step 2, i.e., the soft thresholding in [1] by visualizing 126 

the resulting plot (Figure 4A). Step 2 allows users to select the remaining parameters. 127 

TSUNAMI allows users to customize the parameters of power, reassign threshold, 128 

merge cut height, and minimum module size. After applying WGCNA, a hierarchical 129 

clustering plot for getting the result modules is also shown in this panel (Figure 4B). 130 

The resulting plot in Figure 4B is from the example data GSE17537 with power� 10, 131 
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set reassign threshold � 0, merge cut height � 0.25, and minimum module size 132 

� 10. 133 

   In the last step of GCN mining, two outputs are provided by TSUNAMI: (i) 134 

merged gene clusters sorted by their sizes in descending order (Figure 5A with 135 

lmQCM algorithm); (ii) an eigengene matrix, which is the expression values of each 136 

GCN summarized into the first principal component using singular value 137 

decomposition (Figure 5C with lmQCM algorithm). Eigengene values can be 138 

regarded as the weighted average expressions of each GCN, thus each GCN is 139 

summarized to a “super gene” with the first right singular vector as the expression 140 

values. Such values are very useful for users to correlate GCN modules expression 141 

profiles with various traits in the downstream analysis such as survival analysis. All 142 

results can be downloaded in CSV or TXT format. 143 

 144 

Downstream enrichment analysis 145 

Enrichr [23, 24] is used as the tool for downstream GO enrichment analysis 146 

implementation. By default, total 14 types of frequent used enrichment are performed. 147 

They are (1) Biological Process; (2) Molecular Function; (3) Cellular Component; (4) 148 

Jensen DISEASES; (5) Reactome; (6) KEGG; (7) Transcription Factor PPIs; (8) 149 

Genome Browser PWMs; (9) TRANSFAC and JASPAR PWMs; (10) ENCODE TF 150 

ChIP-seq; (11) Chromosome Location (Cytoband); (12) miRTarBase; (13) 151 

TargetScan microRNA; (14) ChEA. Users can further customize the enrichment result 152 

categories from the open source code available in Github 153 

(https://github.com/huangzhii/TSUNAMI). 154 

   To access Enrichr results, users can simply click the blue button “GO” in each 155 

row adjacent to the GCN mining results (as shown in Figure 5A). In each enrichment 156 

analysis result, it outputs the term (e.g., GO or pathway), P value, z-score, overlapped 157 

genes, etc. Users can download multiple analysis results which are bundled in a ZIP 158 

file. Besides, other popular GO analysis websites are also directly linked in 159 

TSUNAMI to bring conveniences to users. In our example with GSE17537, we select 160 

the 36th GCN module with 15 genes generated by lmQCM to analyze the GO 161 

enrichment, and each result table are sorted based on the P value that Enrichr 162 

calculated. From the result in Table 1, we can see the 36th GCN module is highly 163 

overlapped with GO Biological Process term “type I interferon signaling pathway 164 

(GO:0060337)” (9 out of 148 genes). 165 
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 166 

Circos plot 167 

TSUNAMI provides Circos plots [25] through any intermediate results or inputs in 168 

the cases of human transcriptomic data. Circos plot is a very useful graph for 169 

visualizing the positions of genes on chromosomes and gene-gene 170 

relationships/interactions. The Circos plot function from the R package “circlize” [25] 171 

is adopted in this package for users to locate and visualize mined GCNs of human 172 

genes. 173 

   In TSUNAMI, users can visualize the Circos plot via “Circos Plots” section, either 174 

by typing their own genes list separated by carriage return character (“\n”) directly, or 175 

using the calculated GCN modules (for example, by clicking the yellow button right 176 

next to the “GO” button in Figure 5A). TSUNAMI supports both human genomes 177 

hg38 (GRCh38) and hg19 (GRCh37). To match the gene symbol to chromosomes’ 178 

starting and ending sites, we use reference gene table from UCSC genome browser 179 

[26]. If multiple starting/ending site are matched, we choose the longest one with 180 

length calculated by: 181 

length � ending_site � starting_site � 1    (1) 182 

   By updating the plots, users can also choose the size of the plots and decide 183 

whether gene symbols and pair-wised links should be shown on the graph. 184 

   An example output of Circos plot in Figure 5B used the 36th GCN module with 185 

15 genes in the lmQCM result from GSE17537 series matrix (use a color set for texts 186 

to get a clear visual effect), indicated by gene symbols of human genome hg38 187 

(GRCh38). While the link between a pair of genes indicates that they belong to the 188 

same co-expressed GCN module. 189 

   Circos plots can help users to visualize the GCN module’s location on human 190 

chromosomes from either lmQCM or WGCNA mining, help them to visualize GCNs 191 

due to copy number variation and other structural changes. In the future, genome from 192 

mouse and other species will be incorporated for Circos plot. 193 

 194 

Survival analysis with respect to GCN modules 195 

An optional step of survival analysis follows the generation of the eigengene matrix. 196 

It allows users to correlate the GCN module’s eigengene values with patient clinical 197 

survival (or event-free survival), and such extension tool can be further customized as 198 
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users’ need to correlate module eigengene values with other clinical traits in the future 199 

version. In our current version, we only implemented survival analysis as an example. 200 

   In the survival analysis, users can perform Overall Survival/Event-Free Survival 201 

(OS/EFS) analysis based on the GCN modules’ eigengene values, and look for 202 

significant GCNs that are capable for prognosis, although depending on the group of 203 

patients user specifies, such GCNs may not be identified all the time. TSUNAMI lets 204 

user to select an eigengene row (corresponding to a GCN module). The program will 205 

splits the patients into two groups by eigengene values’ median, then tests two groups 206 

against OS/EFS by calculating the P value of the log-rank test [27, 28]. Before doing 207 

so, users need to input the numerical survival time of OS/EFS (either in months or in 208 

days) with categorical events OS/EFS status (1: deceased; 0: censored). “survdiff” 209 

function from R package “survival” is adopted to calculate the P value and plot the 210 

Kaplan-Meier survival curve. 211 

   Take GSE17537 with full survival information as an example, the Kaplan-Meier 212 

survival plot is generated according to the OS information by dichotomizing the 36th 213 

GCN module’s eigengene values by its median to high and low group, as shown in 214 

Figure 6. Such GCN module was generated from lmQCM method with default 215 

settings as shown in Figure 3. This survival analysis offers researchers the tool to 216 

immediately identify any GCN modules that reflects patients’ survival difference, 217 

thus allows researchers to further study their roles as potential prognosis biomarkers, 218 

as well as the biological pathways that differentiate the patients. 219 

 220 

Conclusion 221 

We released the TSUNAMI online tool package for gene co-expression modules 222 

identification with direct link to TCGA RNA-seq database and GEO transcriptomic 223 

database as well as users' input data. It is a one-stop comprehensive tool package 224 

which has several advantages such as flexibility of parameter selections, 225 

comprehensive GCN mining tools, direct link to downstream GO enrichment analysis, 226 

Circos plot visualization, and survival analysis, with downloadable results in each 227 

step. All of which bring tremendous convenience to biological researchers. 228 

Besides, TSUNAMI can not only process microarray, RNA-seq, and single-cell 229 

RNA-seq transcriptomic data, but also be capable for processing any type of the 230 

numerical valued matrix for weighted network module mining. If the users upload an 231 
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adjacency matrix of any supported format with numerical values as the edge weights, 232 

TSUNAMI can be used to mine any correlational network modules or even beyond 233 

that. This extension will be implemented in version 2.0. 234 
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Figure legends 335 

Figure 1  Flowchart of TSUNAMI. 336 

In this flowchart representation of TSUNAMI pipeline, blue rectangles represent 337 

pipeline operations; rounded rectangles in pink represent download processes. 338 

Figure 2  Dataset Selection and Pre-processing Panel 339 

A. Data can be uploaded manually, or chosen from NCBI GEO database (not shown 340 

in the figure). When uploading the data, the maximum file size that TSUNAMI allows 341 

is 300 Megabytes. Header, separators and quote methods can be adjusted by users. B. 342 

The Data Pre-processing Panel includes several pre-processing steps. 343 

Figure 3  lmQCM Method Panel Data Pre-processing Panel. 344 

The lmQCM algorithm panel which allows users to choose various of parameters. In 345 

this paper, experiment runs with unchecked weight normalization, � � 0.7, � � 1, 346 

� � 1 , � � 0.4 , minimum cluster size � 10 , and adopted Pearson correlation 347 

coefficient. 348 

Figure 4  Choosing the Power in WGCNA and the Hierarchical Clustering 349 

Graph of WGCNA 350 

A. The hyper-parameter “power” that chosen from the value above the blue horizontal 351 

line. B. The result hierarchical clustering graph with color bar indicating result 352 

modules with GSE17537 series matrix as an example, use parameters power� 10, 353 

reassign threshold � 0, merge cut height � 0.25, minimum module size � 10 in 354 

WGCNA. 355 

Figure 5  Merged Clusters Result Generated by lmQCM 356 

A. The merged GCN module results, sorted in descending order based on the length 357 

of each cluster. Figure only shows part of the results (cluster 35~39) with part of 358 

genes. B. The Circos plot result from the 36th GCN module with 15 genes. C. The 359 

screenshot of the eigengene matrix (rounded to 4 decimal places for better 360 

visualization). Figure only shows part of the results (cluster 1~16) with part of 361 

samples (GSM437270~GSM437274). All subfigures use lmQCM algorithm with 362 

default parameters (unchecked weight normalization, � � 0.7 , � � 1 , � � 1 , 363 

� � 0.4, minimum cluster size � 10, and adopted Pearson correlation coefficient) 364 

with GSE17537 series matrix as an example. 365 

Figure 6  Survival Analysis using GCN Module Eigenvalues 366 
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Survival analysis using the 36th GCN module eigenvalues generated from lmQCM 367 

algorithm, with default parameters (unchecked weight normalization, � � 0.7, � �368 

1, � � 1, � � 0.4, minimum cluster size � 10, and adopted Pearson correlation 369 

coefficient) with GSE17537 series matrix as an example. 55 samples are used with 370 

Overall Survival information.  371 
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Tables 372 

Table 1  The partial results of GO enrichment analysis 373 

Note: This table contains partial rows and columns from original result (active panel: 374 

GO Biological Process) from the 36th GCN module with 15 genes generated by 375 

lmQCM with GSE17537 series matrix as data. GO terms are sorted by P value. We 376 

refer readers to explore other P values and scores from TSUNAMI webpage and 377 

Enrichr package. 378 
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