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In brief

We show that realistic neuron models essentially collapse to point neurons when stimulated

by randomly distributed inputs instead of by single synapses or current injection in the soma.

Highlights

• A simple equation that predicts voltage in response to distributed synaptic inputs.

• Responses to distributed and clustered inputs are largely independent of dendritic

length.

• Spike rates in various Hodgkin Huxley (HH) like or Leaky Integrate-and-Fire (LIF)

models are largely independent of morphology.

• Precise spike timing (firing pattern) depends on dendritic morphology.

• NeuroMorpho.Org database-wide analysis of the relation between dendritic morphology

and electrophysiology.

• Our equations set precise input-output relations in realistic dendrite models.

2/57

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2019. ; https://doi.org/10.1101/787911doi: bioRxiv preprint 

https://doi.org/10.1101/787911
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dendritic constancy Cuntz et al.

Abstract 1

Reducing neuronal size results in less cell membrane and therefore lower input conductance. 2

Smaller neurons are thus more excitable as seen in their voltage responses to current injections 3

in the soma. However, the impact of a neuron’s size and shape on its voltage responses to 4

synaptic activation in dendrites is much less understood. Here we use analytical cable theory 5

to predict voltage responses to distributed synaptic inputs and show that these are entirely 6

independent of dendritic length. For a given synaptic density, a neuron’s response depends 7

only on the average dendritic diameter and its intrinsic conductivity. These results remain 8

true for the entire range of possible dendritic morphologies irrespective of any particular 9

arborisation complexity. Also, spiking models result in morphology invariant numbers of 10

action potentials that encode the percentage of active synapses. Interestingly, in contrast to 11

spike rate, spike times do depend on dendrite morphology. In summary, a neuron’s excitability 12

in response to synaptic inputs is not affected by total dendrite length. It rather provides a 13

homeostatic input-output relation that specialised synapse distributions, local non-linearities 14

in the dendrites and synaptic plasticity can modulate. Our work reveals a new fundamental 15

principle of dendritic constancy that has consequences for the overall computation in neural 16

circuits. 17

Introduction 18

Because of their cell-type specific characteristic morphologies, dendritic trees have commonly 19

been assumed to be crucial for a neuron’s intrinsic computations. It has been shown that 20

altering the morphology (Mainen and Sejnowski, 1996; Vetter et al., 2001) or the topology 21

(van Elburg and van Ooyen, 2010; van Ooyen et al., 2002) of neurons while keeping the 22

electrotonic features unchanged has a profound impact on the spiking behaviour of the cell. 23

On the other hand, the morphology of dendrites has been shown to be largely predicted 24

by connectivity rules (Cuntz et al., 2010) rather than by the specific computation that they 25

perform. Also, dendrites were shown to follow general principles that equalise passive (Bird 26

and Cuntz, 2016; Cuntz et al., 2007; Connelly et al., 2016; Jaffe and Carnevale, 1999) and active 27

(Häusser, 2001; Magee, 2000) signal propagation indicating that the blueprints of computation 28

for single neurons might be more stereotypical than previously assumed. In fact, principles of 29

conservative scaling that preserve electrotonic features have been proposed for a number of 30

cell types (Bakken and Stevens, 2011; Bekkers and Stevens, 1990; Cuntz et al., 2013). Similarly, 31
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general morphological scaling laws, have been discovered for dendritic arbours of various 32

sizes (Cuntz et al., 2012; Snider et al., 2010; Teeter and Stevens, 2011). However, it remains 33

unclear how electrotonic and morphological scaling principles relate to one another and how 34

their interplay would affect well-known neuronal computations in dendrites (e.g. Branco et 35

al., 2010; Gabbiani et al., 2002; Poirazi et al., 2003b,a; Single and Borst, 1998). Therefore, we 36

study here the dependence of input-output properties of dendrites on their size and shape. 37

One of the most eminent electrophysiological features of neurons that depend on dendritic 38

shape is the input conductance (Koch et al., 1990; Rall et al., 1967). Smaller cells with smaller 39

input conductances are more excitable for somatic current injections than larger cells because a 40

voltage threshold for spike initiation is reached with a lower input current in accordance with 41

Ohm’s law (Chavlis et al., 2017; Šišková et al., 2014). This relation is true for somatic activation 42

of neurons and its size- and shape-dependence of voltage responses is well understood. 43

However, the corresponding effect of changes in input conductance on voltage responses to 44

distributed synaptic inputs have not been sufficiently studied. Rules identified for current 45

transfer within dendritic arbours (Bird and Cuntz, 2016; Cuntz et al., 2007; London et al., 46

1999; Rall and Rinzel, 1973; Rinzel and Rall, 1974) have allowed the prediction of responses 47

to individual or a few synaptic inputs (Magee, 2000; Williams and Stuart, 2003). Similar 48

rules should be applicable at the level of richer synaptic input but they have not yet been 49

identified. In this work, we specifically address the question how neuronal firing rate and 50

firing patterns are affected by dendritic size and shape in the case of multiple, distributed 51

synaptic inputs. We show that passive electrotonic principles generally render the synaptically 52

driven excitability of neurons invariable to length for the entire range of existing dendritic 53

trees. Since this dendritic constancy principle supports the stability of neuronal spiking, it 54

may complement other well-established synaptic and intrinsic mechanisms of firing rate 55

homeostasis (Turrigiano and Nelson, 2004). 56
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Fig 1. Analytical prediction indicates that responses to distributed synaptic inputs in a cable are inde-
pendent of cable length.
A, Sketch illustrating the impact of a new branch on dendrite length and number of synapses. B, Input
conductance GIN of cables with constant diameters for a wide range of electrotonic lengths. G∞, the input
conductance of a semi-infinite cable and ĜIN , the collapsed total membrane conductance are indicated
by dashed lines for reference. C, Mean steady-state voltage responses to distributed inputs as a function
of electrotonic length. V∞, the response to distributed synapses in the semi-infinite cable and V̂ , the lin-
ear extrapolation of the voltage response at the root and therefore the response in a collapsed cable are
indicated by dashed lines. D, Bottom panel shows steady-state voltage responses at the proximal end to
distributed current injections every µm (straight line, Equation 1) and to synaptic inputs every µm (dashed
line, Equation 1’). Top panel shows the average current transfer versus the ratio of GIN to ĜIN for the
cables of varying lengths from B. Panels B—D were obtained from numerical simulations validating exactly
the results of our analytical calculations.

Results 57

The idea behind this work comes from the simple reasoning that while larger neurons are 58

in principle less excitable they also receive more synapses (Figure 1A). The higher input 59

conductance and resulting decreased excitability might therefore compensate for the increase 60

of effective current the neuron receives through its synaptic inputs. In contrast to most 61

traditional theoretical studies on dendritic integration with their focus on somatic activation 62
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of the cell or activation with few synapses, we therefore focus here on the voltage responses to 63

distributed synaptic inputs. In the following, we first study these relations analytically in the 64

simple passive cable and subsequently move to passive and then active responses in dendritic 65

trees with their full morphology. 66

Analytical calculations for passive cables predict length-invariant responses 67

to distributed synaptic inputs 68

Experimentally, the input conductance that predicts a neuron’s excitability is most typically 69

obtained from somatic current injection with concurrent somatic voltage measurements 70

using Ohm’s law to relate conductance, current and voltage. The corresponding analytical 71

calculations for a simple dendritic cable are readily available from classical cable theory 72

introduced to neuroscience by Wilfrid Rall. Considerations of current spread in a passive 73

cylinder allow one to predict the input conductance GIN for any cable of electrotonic length L 74

measured in terms of λ =
√

Gid
4Gm

, the electrotonic length constant, a distance unit over which 75

the voltage decays to about a third of the proximal voltage (Koch and Segev, 1999; Rushton, 76

1937). Here, the diameter is d, the specific axial conductance is Gi and the specific membrane 77

conductance is Gm. For short cables, GIN increases nearly linearly with L as it approximates 78

the collapsed input conductance ĜIN = GmπdλL of the cable, the total sum of the membrane 79

leak (Figure 1B). At the other extreme, GIN at the proximal sealed end in a semi-infinite cable 80

is G∞ = Gmπdλ, the total conductance of a λ length cylinder since ĜIN = G∞L. For longer 81

cables of electrotonic length L, the input conductance at the proximal end GIN approaches G∞ 82

asymptotically as GIN = G∞ tanh(L) (Figure 1B). More distal patches of membrane therefore 83

contribute less and less to the total proximal input conductance, setting with G∞ a lower 84

bound for the overall excitability of the cell. In all cases, increasing either the diameter d, the 85

specific axial conductance Gi or the specific membrane conductance Gm all increase the input 86

conductance as well as G∞. 87

As mentioned earlier, apart from their larger input conductance, larger cells also receive more 88

synaptic inputs if one considers constant synaptic density. In the case of very short cables, 89

the increase in input conductance is intuitively perfectly compensated by the increase in 90

number of synapses since both scale linearly with L. Interestingly, however, the impact of 91

distal synapses onto voltage at the proximal end diminishes with distance in the very same 92

way as the impact of a distal patch of membrane on the proximal input conductance. The 93
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reference values V∞, the average proximal voltage in response to distributed synapses over the 94

dendritic length of a semi-infinite cable, and V̂ , the voltage response of these synapses when 95

they are collapsed to an isopotential piece of membrane, behave similarly to their respective 96

input conductance counterparts G∞ and ĜIN (Figure 1C). It can be shown analytically (see 97

Methods, “Cable equation for responses to distributed inputs”, Equations 3–7) that, along 98

the entire electrotonic length, input conductance and synaptic currents cancel one another 99

precisely. Correspondingly, the average current transfer throughout the cable, i.e. the fraction 100

of injected synaptic current that reaches the proximal cable end, is equal to the ratio of GIN 101

to ĜIN , i.e. the fraction of overall conductance felt at the proximal cable end (Figure 1D, top 102

panel). 103

The voltage responses to distributed current injections Idist per unit length are therefore 104

equivalent to the total current injected over the entire metric length l = λL of the neuron into 105

its collapsed membrane leak, i.e. 106

Vdist =
Idistl

ĜIN

=
Idist
Gmπd

(1)

(Figure 1D, bottom panel, straight line). From this particular application of Ohm’s law to 107

dendritic trees, the voltage response to distributed inputs is entirely independent of neuronal 108

cable length while it depends only on the specific conductance per surface membrane Gm and 109

the diameter d of the cable as well as Gi, since Idist is defined per unit electrotonic length. This 110

is in stark contrast with voltage responses to proximal “somatic” current injections where 111

V = I
G∞ tanh(L))

, and length impacts the excitability of a neuron by decreasing V dramatically 112

when increasing L. It is clear, however, that in a realistic setting, excitatory neuronal inputs 113

produce synaptic currents that are distributed over the dendritic tree rather than being somatic. 114

In fact, synaptic currents flow through synaptic conductances that further increase the overall 115

conductance per unit length assuming that synaptic densities are homogeneous and constant. 116

The corresponding voltage responses to distributed synaptic conductances are therefore 117

slightly lower than the ones from current injections. However, also these effects remain 118

independent of total cable length: 119

Vsyn =
Isyn

Gmπd+Gsyn

(1’)

(Figure 1D, dashed line). In conclusion, our analytical calculations and numerical simula- 120

tions reveal a new electrotonic principle of dendritic constancy ensuring an equal impact of 121
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distributed synaptic inputs in a passive cable independent of its length. 122

Fig 2. Passive steady-state model responses to distributed synaptic inputs are independent of dendrite
length, topology and diameter distribution.
Sample morphologies (left), their input conductances (middle panels) and responses to steady-state dis-
tributed inputs (rightmost panels) compared with the prediction from Equation 1. A, Blowfly Lobula Plate
tangential cell (TC) dendrites (red, n = 55) with Gm of 500 µS

cm2 ; B, Dentate gyrus granule cells (GCs) of
rat (light blue, n = 43) and mouse (dark blue, n = 8) with Gm of 26.3 µS

cm2 — differences in the species
come from different average diameters in the two populations; C, Monkey cortical pyramidal cell (PC)
dendrites (green, n = 69) with Gm of 38 µS

cm2 . Each dot corresponds to one morphology; lighter dots are
original morphologies without diameter normalisation. Large darker dots are results for morphologies
with diameters normalised to the average of their respective population; small darker dots are individual
predictions from Equation 1 for each non-normalised morphology with its respective average diameter.
Straight black lines show predictions from Equation 1 using the average diameter of each population of
morphologies and their respective Gm. The dashed lines show the collapsed input conductance ĜIN as it
increases linearly with the total amount of cable.
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Passive responses encode percentage of active synaptic inputs in a manner 123

that is largely independent of branching topology and dendrite length 124

Importantly, the principle of dendritic constancy found in the construction of the simple cable 125

with constant diameter can be generalised to branched and tapered neuronal morphologies. 126

We show this at the example of Lobula Plate tangential cells (TCs, n = 55) in the blowfly, 127

dentate gyrus granule cells (GCs) in rat (n = 43) and mouse (n = 8) and cortical pyramidal 128

cells (PCs, n = 69) in the monkey with their respective Gm under steady-state distributed 129

inputs (Figure 2). These three datasets were chosen to represent a very leaky large cell (TC), 130

a small and electrotonically compact cell (GC) and the most typical cortical cell (PC) from a 131

range of different species. Normalising the average diameters to the overall average diameter 132

d of the respective datasets shows that the steady-state responses are independent of branching 133

patterns and diameter taper (compare larger dark dots with black lines in rightmost panels 134

in Figure 2). In addition, the individual voltage responses of each cell with their original 135

diameters were well predicted by Equation 1 (small dark dots in rightmost panels of Figure 2) 136

with normalised root mean square errors (nRMSE) of 1.3% for TCs, 0.9% for GCs, and 1.2% 137

for PCs. 138

Our prediction also accounts for responses to a smaller proportion of activated synapses, i.e. a 139

lower synaptic density, with voltage responses linearly relating with the percentage of active 140

synapses. However, it is important to show what effect a specific, more clustered, distribution 141

of synapses would have on the overall responses in individual neurons. We therefore titrated 142

for any given percentage of active synapses the two most extreme distributions: We compare 143

voltage responses to the activation of a given proportion of the most distal (Figure 3, solid 144

lines) and, respectively, the most proximal (Figure 3, dashed lines) synapses. Even under such 145

clustering of active synapses, neurons seemed to be able to encode the percentage of active 146

synapses with their root voltages both in the steady-state (Figure 3, middle panels) and in 147

dynamic simulations (Figure 3, right panels) following Equation 1’ that includes the synaptic 148

conductances present in these simulations. Importantly, passive somatic voltage responses 149

reflected the percentage of active synaptic inputs independently of morphological complexity 150

and dendrite length (compare Figure 3A with Figures 3B and C). 151
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Fig 3. Passive model voltage responses follow relative percentage of active synapses even when these
are clustered.
Synapse distributions (left), steady-state responses to partial activation of synapses (middle) and responses
to sample levels of (100%, 75%, 50%, 25% and 0%) in dynamic simulations (rightmost panels). A, B, and C,
each single out one morphology (the one shown on the left) from the populations used in Figure 2 (using
the same colour scheme). Dashed coloured lines are the responses to the most proximal synapses while
solid coloured lines show the responses to the activation of the most distal synapses. The space in between
both responses is shaded. For example, the 25% line means that the 25% most proximal synapses were
active (dashed lines) and in a second simulation the 25% most distal synapses were active (solid lines).
Black dashed lines are predictions from Equation 1’ that include the synaptic conductance. Scale bars show
100µm.

Next, we tested whether the principle of dendritic constancy holds across diverse dendrite 152

branching patterns and sizes in a large number of different cell types. Indeed, our calculation 153

for the steady-state voltage response to distributed inputs in the simple cable yielded good 154

predictions for the wide range of real dendritic morphologies from the July 2016 version of 155

the NeuroMorpho.Org database (Ascoli, 2006). We selected those datasets (223 datasets, 9, 841 156

reconstructions, Table S1) that contained dendritic morphologies with sufficient detail in 157
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all three dimensions and with reconstructed diameters (see Methods). Input conductances 158

and steady-state voltage responses to distributed inputs were calculated after normalising 159

the diameters to an average 1µm and for generic values of Gm of 50 µS
cm2 that are typical for 160

cortical pyramidal cells (Figure 4A). We observed here that very large trees exhibited a trend 161

to smaller voltage responses. We found similar results in morphological models for dendritic 162

trees based on minimum spanning trees (Cuntz et al., 2007, 2010, 2012) covering a very large 163

range of possible complexities and overall sizes in synthetic dendrites (Figure S1). Also, 164

the dynamic responses to synaptic stimulation were well predicted for morphologies from 165

NeuroMorpho.Org using Equation 1’ but very small trees showed strong fluctuations because 166

of the small number of synapses there (Figure 4B). Overall, the responses were faithful to our 167

prediction over a range of four orders of magnitude of dendritic length (nRMSE of 5.1% for 168

the steady state responses compared with Equation 1). 169
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Fig 4. NeuroMorpho.Org database-wide analysis reveals neuronal size and shape invariant passive
model responses to distributed inputs.
A, Voltage responses to distributed inputs with Gm of 50 µS

cm2 in a large selection of all morphologies from
NeuroMorpho.Org (223 datasets, 9, 841 reconstructions, Table S1) after normalisation of average diameters
to 1µm. Larger consistent subgroups are indicated by colours, representative morphology and label.
Unlabelled smaller groups are different shades of grey in the background. The straight line indicates the
analytical prediction from Equation 1 for an unbranched cable. Input conductances GIN (left bottom) and
input resistances RIN (right bottom) are indicated in the same colour code as in the top panel and compared
to the case where the overall membrane was collapsed in ĜIN and R̂IN respectively (dashed lines). B,
Passive dynamic responses and prediction from Equation 1’ (dashed line) in the first morphology of each
of the 223 datasets, similarly to the three morphologies in Figure 3, rightmost panels. Since small worm
neurons (yellow) exhibited large fluctuations around the mean, this panel is shown at two different scales.
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Spike frequency but not temporal sequence of spikes is independent of 170

model dendrite shape and size in response to distributed synaptic inputs 171

So far, we have shown a fundamental aspect of passive normalisation of the neural response 172

to synaptic inputs that seems true for all dendritic morphologies. In the following, we 173

used a classical spiking model of cortical pyramidal cells (Mainen et al., 1995; Mainen and 174

Sejnowski, 1996) to test whether our principle of dendritic constancy translates to active 175

spiking neurons. When incorporated in diverse neuronal morphologies from different cell 176

types, this spiking mechanism was previously shown to exhibit strongly varying spiking 177

patterns for somatic current injections (Figure 5A, top row; similar analysis to the original 178

paper using the model #2488 from ModelDB however with normalised average diameters for 179

a better comparison with our predictions, see Methods) (Mainen and Sejnowski, 1996). To 180

quantify the spiking behaviour in four different cell types we plotted firing rates as a function 181

of injected current into the soma (f-I-curves, Figure 5B, top panel). As expected, the spiking 182

frequency increased with decreasing dendrite size rendering smaller cells more excitable. 183

We used interspike interval (ISI) distributions to characterise the temporal structure of the 184

spike trains (bursting vs. non-bursting) in the different morphologies (Figure 5B, bottom 185

panel, ISI distribution refers to single cell firing). L5 pyramidal cells exhibited bursts of three 186

spikes (as indicated by a larger proportion of short ISIs) and L3 pyramidal cells bursts of 187

two spikes (as indicated by two equal peaks in the ISI distributions). Interestingly, when 188

stimulated by distributed synaptic inputs instead of somatic current injections, the differences 189

in the temporal structure of the spiking (bursting vs. non-bursting) remained dependent on 190

the respective morphology with similar ISI distributions as well as coefficients of variation 191

(cv) (Figure 5C, bottom panel). However, the numbers of spikes were equalised and were 192

independent of dendritic tree size irrespective of the frequency of stimulation (Figure 5A, 193

bottom traces, and Figure 5C, top panel). The equalised passive voltage responses predicted 194

by our dendritic constancy (Figure 5C, rightmost panel, bottom traces, subthreshold) were 195

transformed into equal number of spikes in the active model (Figure 5C, rightmost panel, top 196

traces). Taken together, in response to distributed synaptic inputs, spike numbers (frequencies) 197

were independent of morphology while spike times (as reflected in the temporal structure 198

of the spiking in the form of bursting vs. non-bursting) remained affected by morphological 199

properties of dendrites in line with previous observations by Mainen and Sejnowski (1996) for 200

responses to somatic current injections. 201
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Fig 5. Neuron size- and shape-invariant responses to distributed inputs in spiking neurons.
Simulations using the spiking mechanism by Mainen and Sejnowski (1996) in their four sample morphologies
of L3 aspiny (dark orange), L3 pyramidal (green), L4 stellate (dark blue), and L5 pyramidal (pink) cells
after normalising the diameters. A, Sample voltage traces for 0.25nA current injections into the soma (top,
similar to Figure 1 in the original work; see Methods) and distributed synaptic inputs at 1Hz (bottom). B,
Firing rate vs. current injection in the soma and C, responses to distributed synaptic inputs for the same four
cases. Sample subthreshold (bottom, 0.25Hz) and suprathreshold (top, 1Hz; truncated spikes at dashed
line) synaptic activation in the four morphologies are shown in the rightmost panels. Interspike interval (ISI)
distributions are shown below the respective panels for 40sec simulations at indicated current injections and
synaptic activation with corresponding coefficients of variation (cv). Note the two peaks in ISI distributions
of L3 and L5 pyramidal cells indicative of their bursting. Colours indicate the different morphologies from
A throughout the figure.
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In order to verify that the results in the model by Mainen and Sejnowski were not model- 202

specific, we performed similar simulations in two distinct well-established active models 203

of CA1 pyramidal cells by Jarsky et al. (2005) and Poirazi et al. (2003b). We integrated the 204

corresponding active ion channel models into the set of all good reconstructions of hippocam- 205

pal pyramidal cell morphologies (n = 105) from NeuroMorpho.Org after normalising their 206

diameters to 1µm (Figure 6A). The model by Jarsky et al. has previously been used to study 207

the separate effects of inputs from Schaffer collaterals (SC) and the perforant path (PP) (Jarsky 208

et al., 2005). This gave us the opportunity to compare our results for distributed inputs over 209

the entire dendrite with results for inputs that were clustered in a more realistic manner 210

according to their anatomical (layer-specific) origin. In this case we compared stimulating 211

all synapses with 1Hz (Figure 6B, black dots) and, separately, only synapses impinging on 212

the basal dendrites (Figure 6B, red dots) or on the distal apical dendrite and tuft region 213

(Figure 6B, cyan dots). Remarkably, in all cases, the firing rates were independent of neuron 214

size. Again, the number of spikes was indicative of the percentage of active synapses scanned 215

in a similar manner to Figure 3 (Figure 6B, rightmost panel). In particular, the corresponding 216

input-output functions were almost identical when measured in two different sample mor- 217

phologies of radically different total dendritic length (Figure 6B, rightmost panel, compare 218

both sets of solid and dashed lines). 219

A second model of CA1 pyramidal cells by Poirazi et al. (2003b) has become archetypal for 220

compartmentalised computations in dendrites. Similarly to the model by Jarsky et al., we 221

incorporated the ion channel models by Poirazi et al. into the NeuroMorpho.Org collection 222

of hippocampal pyramidal cell morphologies and subjected the individual compartmental 223

models to various combinations of distributed synaptic inputs. The model by Poirazi et 224

al. produced large dendritic events that were distinct from the somatic action potentials 225

(Figure 6C, voltage traces red – dendrite vs black – somatic). Intriguingly, both numbers 226

of somatic spikes and large dendritic events were independent of total dendritic length 227

(Figure 6C, left lower and upper panels respectively). 228
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Fig 6. Dendritic constancy in two active models of hippocampal CA1 pyramidal neurons including
dendritic spikes and clustered inputs.
A, All 105 morphologies of rat hippocampal pyramidal cells from NeuroMorpho.Org that passed our manual
curation criteria (Colours are random). B, CA1 pyramidal cell model by Jarsky et al. (2005) with its responses
to distributed synaptic inputs 500pS, 1Hz in the set of all 105 morphologies. Black dots show spiking
responses to activation of all synapses while red (basal) and cyan (apical) show responses to activation
of subregions of the dendrite as indicated in the sketch on the left. Rightmost panel shows spike output
analysis for selective activation of a subset of all most proximal (dashed line) and most distal synapses (solid
line). Since roughly 50% of synapses were active in both the basal and apical stimulations, corresponding
values of the curve for proximal (red) and distal (cyan) synapses are highlighted in the rightmost panel as
well as values for all synapses (black). The two sets of curves (two dashed, two solid lines, respectively)
represent two morphologies of radically different size (10mm vs. 15mm of total dendritic length). See next
page.
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Fig 6. (continued) The shaded area highlights the range of responses in clustered synapses for the mor-
phology shown in the inset. C, CA1 pyramidal cell model by Poirazi et al. (2003b) driven by distributed
synaptic inputs 500pS, 1Hz in the set of all selected 105 hippocampal pyramidal cell morphologies from
NeuroMorpho.Org. Top row, Large dendritic events (red dots) were measured at the branch with highest y
value respectively and detected after low pass filtering the local voltage signal there with a Gaussian filter
with variance of 100ms (see dashed line). Bottom row, Somatic events (black dots) as measured directly
from the somatic voltage, shown for one sample morphology. Rightmost panels show resulting frequency of
somatic (black, bottom) and dendritic (red, top) events with one point each per morphology as a function of
total dendritic length.

Spiking reset converts constant membrane voltage into constant spike rates 229

The results from the active compartmental models pose the question as to why the con- 230

stant voltages transform into constant numbers of spikes. Such a transformation could be 231

a consequence of each spike essentially shunting and resetting the entire neuron (Häusser, 232

2001) while erasing its voltage history. Under these assumptions, a leaky integrate-and-fire 233

(LIF) (Stein, 1965) mechanism coupled to the dendrite could help elucidate the constancy of 234

spike numbers. We chose to implement a LIF that resets the voltage throughout the entire 235

dendritic tree after passing a threshold voltage at the dendrite’s root. Incorporating such a 236

spiking mechanism in the four cell types of Figure 2, yielded an output spiking frequency 237

that was indeed independent of dendritic length (Figure 7A) for any given synaptic input 238

frequency. In fact, the entire input-output (IO) curves were essentially independent of the 239

morphology (Figure 7B). We then derived an analytical solution for the transformation of 240

variable synaptic input activity into firing rate output (see Methods, Equations 10–22). In line 241

with our numerical LIF simulation results (Figure 7A, and B), the mean analytical voltage 242

response to stochastic inputs in a uniform cable was independent of length. The variance of 243

the subthreshold voltage response decayed to a constant for dendrites of total electrotonic 244

length greater than one. Our analytical predictions for the IO relationship (Brunel and Hakim, 245

1999) are 246

R−1 = τ

∫ ∞
0

1

z
e
−z2

2

(
ez

vth−µv
σv − ez

vre−µv
σv

)
dz (2)

with firing rates R for subthreshold voltage mean µv and standard deviation σv impinging 247

on a membrane with time constant τ , firing threshold vth, and voltage reset vre. R always 248

converges to constant values for cable lengths longer than the electronic length (see Methods, 249

Equations 10–22, Figure 7B bold black lines). Importantly, R is practically independent of 250

dendritic length, if the mean afferent drive is sufficiently strong and so the output firing rate 251
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is less dependent on fluctuations (as seen in Figure 7A). In our case in Figure 7B, the specific 252

membrane conductance in the different cell types determined the slope of the IO curves with 253

a very sharp slope in the leaky blowfly TC that in reality produces spikelets and shallower 254

curves in the other cell types with lower conductivity through the membrane. Interestingly, 255

the percentage of active synapses was encoded in the number of spikes (Figure 7C) in analogy 256

to the voltages in Figure 3 (compare with IO curves in Figure 7B). Again, this was true even 257

for clustered synapses (plots show most distal synapses as solid lines vs. most proximal 258

synapses as dashed lines). 259
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Fig 7. Spiking responses to distributed inputs in leaky integrate-and-fire (LIF) neurons with realistic
dendritic morphologies as the source of leak indicate that voltage reset throughout the entire dendritic
tree contributes to spike rate constancy.
LIF mechanism in its simplest form (without adding soma or axon, the LIF resets the voltage in the entire
dendrite after spiking) introduced into the dendritic root of the cell types from Figure 2 with the same
colours and membrane properties. A, Top row, Sample spike trains for 10 different TC, 5 rat GC, 5 mouse GC
and 10 monkey PC dendritic morphologies are shown underneath the corresponding morphologies. Bottom
row, Firing rates are shown with error bars (standard deviation, invisible in GCs and PCs) for one selected
input frequency for each cell type are shown as a function of length. B, Input-Output (IO, Frequency of
synaptic activation vs. spiking frequency) plots for all available morphologies for TCs (left), mouse and rat
GCs (middle) and monkey PCs (right). Respective cable calculations from Equation 2 that are independent
of length are shown as bold black lines. C, Responses to selective activation of the most proximal (dashed
lines) and most distal (solid lines) synapses in the dendrite. The areas between these two extreme scenarios
for clustered synapses are shaded.
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Similarly, incorporating the LIF mechanism into the dendritic morphologies of the Neuro- 260

Morpho.Org database (with a uniform specific membrane conductance, see Figure 4) yielded 261

invariant IO curves over a very large range of morphologies. Only the IO curves from tiny 262

worm neurons (yellow) and very large spinal cord motoneurons (red) deviated from the re- 263

maining curves (Figure 8A, LIF model, compare also these results with analytical predictions 264

from Equation 2). In the same morphologies, we also showed spike number invariance using 265

an adaptive exponential LIF (AdExpLIF) (Brette and Gerstner, 2005) for two specific temporal 266

patterns of spikes typically seen in compartmental models, a bursting mode and spiking mode 267

with spike frequency adaptation (Figure 8B and C, AdExpLIF model). Overall, LIF based 268

spiking models were consistent with the dendritic constancy of passive voltage responses to 269

distributed synaptic inputs transforming into constant spike numbers that were independent 270

of dendritic length or shape. 271
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Fig 8. NeuroMorpho.Org database-wide spiking responses to distributed inputs in leaky integrate-
and-fire (LIF) and adaptive exponential LIF (AdExpLIF) neurons are independent of dendritic size and
shape.
Similar panels as in Figure 7A and B but for all morphologies from Figure 4 with the respective membrane
properties used there: Sample voltage traces in sample morphologies for all seven morphological cate-
gories (left panels), firing rates in response to a given input frequency (middle panels, input frequency is
indicated), and IO curves (right panels). Colours as in Figure 4 in increasing dendrite size: Yellow (worm
neurons); orange (nitergic neurons); cyan (hippocampal granule cells); pink (retinal ganglion cells); blue
(cortical pyramidal cells); green (hippocampal pyramidal cells); red (cat motoneurons). A, Regular leaky
integrate-and-fire (LIF) spiking mechanism incorporated in all dendritic morphologies. Similarly to Figure 7,
calculations from Equation 2 are shown as a bold black line. B, Adaptive exponential LIF (AdExpLIF) that
includes an additional channel for spike frequency adaptation and results in less regular spiking. C, Long
time constant in the adaptation channel of the AdExpLIF for testing our dendritic constancy theory under
extreme burst firing.
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Discussion 272

In this work, we used analytical methods to demonstrate a general principle of dendritic 273

constancy regarding the voltage and spiking responses to distributed synaptic inputs. Synaptic 274

inputs effectively encounter an apparent input conductance in the soma (i.e. the transfer 275

conductance) corresponding to the collapsed membrane leak of the entire dendrite onto the 276

soma. As a consequence, more synaptic currents in larger cells are precisely compensated by 277

the additional dendritic leak. Our dendritic version of Ohm’s law (Equation 1 and Equation 1’ 278

as well as Equation 2 for spikes with variable inputs) is independent of morphological 279

features and spiking mechanisms and predicts isoelectrotonic behaviour for anatomically 280

distinct dendritic trees shaped by species-specific scaling (Beining et al., 2017; Cuntz et al., 281

2013), developmental expansion (Mckay and Turner, 2005) or neurodegenerative shrinkage 282

(Platschek et al., 2016). Finally, our simulations in a classical model by Mainen and Sejnowski 283

(1996), as well as other established spiking models (Jarsky et al., 2005; Poirazi et al., 2003b) 284

and LIF models showed that synaptic stimulation in different dendritic trees leads to similar 285

responses in terms of firing rates but not patterns (spike times). This was true for uniformly 286

activated synapses but also to a large degree for clustered synapses, so much so, that the 287

somatic firing rate allowed for an approximate estimation of the percentage of active synapses 288

independent of their dendritic location. Taken together, our analytical and numerical results 289

imply that the principle of voltage and spike rate constancy is general since it holds in all 290

(branched and unbranched) dendritic arbours activated by distributed synaptic conductances. 291

Limitations for dendritic constancy 292

What are the assumptions and limitations of our computational analysis? First, dendritic 293

constancy will be affected by a number of dendritic features. The voltage responses do depend 294

on the specific membrane conductances and average dendritic diameters. While average 295

dendritic diameters do not seem to vary much in the NeuroMorpho.Org database (Figure S2), 296

Gm values are known to vary between cell types (Borst and Haag, 1996) (Figures 2, 3 and 7) 297

and also within cell types (e.g. Garden et al., 2008). In addition, the somatic membrane 298

leak affects the dendritic constancy results when somata are very large compared to the 299

overall dendritic membrane if their diameters are not normalised together with the dendrites 300

(i.e. if they do not scale with dendrite length) and if they do not receive synaptic inputs 301

(Figures S2 and S3). 302
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Second, in our analysis, we assumed uniform kinetics, conductances and reversal potentials 303

of synaptic inputs. In this respect, it would be interesting to further explore models with 304

variations in distance-dependent synaptic properties (Häusser, 2001; Magee and Cook, 2000) 305

as well as democratising effects on distal synapses (London and Segev, 2001; Rudolph and 306

Destexhe, 2003). Here, we show for a distance-dependent linear gradient of maximal synaptic 307

conductance (increasing with dendritic path length from the root) that dendritic constancy 308

is preserved in the hippocampal CA1 pyramidal cell model by Jarsky et al. and in the 309

NeuroMorpho.Org morphologies (Figures S4A and B). Furthermore, our analytical solutions 310

predict that dendritic constancy applies also to inhibitory synapses with negative reversal 311

potentials (same models, Figures S5A and B). However, the effects of layer-specific somatic 312

or dendritic inhibition, introducing local or distant shunts (Gidon and Segev, 2012) and their 313

interaction with active channels (see below) need to be studied in detail. 314

Third, it also remains unclear how dendritic non-linearities such as dendritic NMDA or 315

calcium spikes would operate in the context of our dendritic constancy principle. Such 316

non-linear computations would include dendritic integration features known to play a role 317

depending on relative locations of synaptic inputs (Branco et al., 2010; Cuntz et al., 2003; 318

Poirazi et al., 2003b; Polsky et al., 2004). Surprisingly, our active cortical and hippocampal 319

models exhibited dendritic constancy (without requiring any specific tuning) of spike numbers 320

and even in the numbers of dendritic active events in the model by Poirazi et al. (Figures 6C). 321

However, many further aspects related to dendritic voltage-dependent channels remain to 322

be explored. For instance, potassium channels and H-channels are capable of affecting local 323

synaptic potentials as well as backpropagating spikes (Chen et al., 2006; Magee, 1999). It 324

would be intriguing to test how these channels shape dendritic constancy for synchronous or 325

asynchronous, clustered or distributed synaptic inputs. 326

Fourth, it remains to be determined how dendritic constancy might interact with recently 327

described homeostatic plasticity of the axon initial segment (AIS) in the form of activity- 328

dependent changes in its location and length and in the distribution of its ion channels (Adachi 329

et al., 2015; Kuba, 2012). Decreased or increased synaptic activity can induce homeostatic 330

lengthening or shortening of the AIS with a compensatory increase or decrease in neuronal 331

excitability respectively (Evans et al., 2015; Kuba et al., 2010). However, the effect of AIS 332

length or location on excitability is more complex and depends on neuronal size (Gulledge 333

and Bravo, 2016). Therefore, further computational and experimental analyses are needed to 334
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better understand the link between the neuron’s size and shape invariant excitability that we 335

describe here and AIS plasticity. 336

Of particular interest is our observation that spike times rather than spike numbers remained 337

affected by morphological properties of dendrites in a similar manner to responses to somatic 338

current injections (Mainen and Sejnowski, 1996). Our simulations revealed that in the case of 339

synaptic stimulation, both dendritic constancy as well as variability in firing patterns were 340

maintained at the same time in active models of four different reconstructed cortical cell types. 341

Although two cortical cell models displayed regular firing and the other two bursting, all 342

of them generated similar firing rates. The somatic bursting behaviour has been previously 343

explained as a consequence of delayed dendritic depolarisations and subsequent return 344

currents from dendrites, arising due to two key factors: (1) moderate coupling resistance 345

between somatic and dendritic regions in combination with (2) separated distributions of 346

fast and slow active channels in soma and dendrites (Mainen and Sejnowski, 1996). Our 347

synaptically driven simulations confirmed and extended these analyses by showing that 348

the electrotonic mechanisms of dendritic constancy are able to normalise spike numbers in 349

cells with different dendritic sizes and shapes without disrupting the active burst generating 350

mechanisms. It is tempting to speculate that dendritic constancy could support homogeneous 351

spike-rate coding across different morphologies while at the same time allowing for cell- 352

type specific spike-time coding. In other words, dendritic constancy may facilitate neuronal 353

computations by maintaining stable firing rates while keeping variability of spike patterns 354

(Denève and Machens, 2016; Denève et al., 2017; Gjorgjieva et al., 2016). 355

Clinical relevance of dendritic constancy 356

The dendritic constancy principle could be of clinical relevance. Changes in dendritic size and 357

shape are hallmarks of many neurological disorders, including chronic stress (Conrad et al., 358

2017), stroke (Brown et al., 2010; Qin et al., 2014) and neurodegeneration (Šišková et al., 2014; 359

Spires and Hyman, 2004). Whereas dendritic atrophy caused by direct damage to a neuron is 360

considered part of the disease process (Šišková et al., 2014), dendritic remodelling occurring 361

in disconnected brain areas, i.e. network damage, is most likely homeostatic and restorative in 362

nature. For example, the perforant pathway to the dentate gyrus degenerates in aged humans 363

and in Alzheimer´s disease (Leal and Yassa, 2013; Yassa et al., 2010). As a consequence, 364

the target neurons of this pathway – dentate granule cells – retract their dendrites. This 365
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dendritic retraction is caused by denervation and not by the disease itself (Einstein et al., 366

1994). Experimental animal data have shown that such denervated and retracted granule cells 367

(Vuksic et al., 2011) eventually achieve synapse densities on their dendrites comparable to 368

pre-denervation levels (Steward et al., 1988). In that case, the input conductance as well as 369

the number of synapses with additional unit length would likely cancel each other out. The 370

dendritic tree has fine-tuned itself to achieve firing rate homeostasis (Platschek et al., 2016, 371

2017). We show here that this feature is not specific to dentate granule cells and that synaptic 372

excitability of neurons is size-invariant for all dendritic trees due to a general electrotonic 373

principle. Thus, transneuronal dendritic remodelling appears to play a homeostatic role in 374

maintaining information throughput in a partially damaged network. 375

Practical consequences for computational modelling and input-output com- 376

putation of neurons 377

Equations 1 and 1’ allow for quantitative predictions of voltage responses to distributed 378

synaptic inputs. This can be helpful for tuning large-scale morphologically realistic com- 379

partmental models (e.g. Markram et al., 2015) because by setting synaptic conductances to 380

a specific value, it is possible to achieve a target voltage (and corresponding spike numbers 381

from Equation 2). Thus, dendritic constancy simplifies the estimation of a neuron’s behaviour 382

within a network. For instance, for a given synaptic conductance, the frequency of synap- 383

tic activation required to reach a particular membrane voltage can be computed. From the 384

perspective of network computations, the principle of dendritic constancy can be viewed 385

as a mechanism for preserving stable neuronal activity in the circuit (as done in Figure 7). 386

Intuitively, adding new synapses to a spiking network model would create more spikes. Even 387

one additional spike can dramatically alter network dynamics (London et al., 2010). However, 388

dendritic constancy is one possible mechanism to prevent this from happening, because the 389

cell’s number of output spikes depends on the relative number of active synapses and not on 390

their absolute number. This means that increasing the number of synapses while adjusting 391

the morphology accordingly would effectively not change the total number of spikes in the 392

network. 393

In summary, our principle of dendritic constancy serves as an equalising homeostatic mech- 394

anism on which dendritic non-linearities and synaptic plasticity can operate (London and 395

Häusser, 2005; Turrigiano, 2017). It creates a passive backbone for the conservation of excitabil- 396
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ity converting a neuron to a reliable size- and synapse number-independent “summing point” 397

within the network (Segev and London, 2000) but at the same time, it allows for more complex 398

computations with active dendrites (Schmidt-Hieber and Nolan, 2017). Because dendritic con- 399

stancy is based on basic electrotonic properties, it applies to all neurons receiving distributed 400

excitatory or inhibitory inputs. This simple and universal principle has previously been over- 401

looked because most studies focused on neuronal firing activated by somatic current injections 402

or by few synaptic inputs instead of distributed synaptic stimulation. Dendritic constancy 403

becomes apparent after leaving the “somatocentric” and embracing the “synaptocentric” view 404

of a neuron’s input-output transformation. 405
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(Mathworks Inc, 2015b, 2017b and 2018b) using our own open-source software package, 422
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the TREES toolbox (Cuntz et al., 2010) (www.treestoolbox.org, Interim version). TREES 423

toolbox functions are marked in italic and end with a tree suffix throughout the Methods 424

section. Active compartmental model simulations were done in NEURON (Carnevale and 425

Hines, 2004) using our new software T2N to communicate with the TREES toolbox in Matlab 426

(Beining et al., 2017). All results were further analysed in Matlab. All dendritic morphologies 427

were downloaded from www.NeuroMorpho.Org (Ascoli, 2006) in July 2016. The active model 428

for the spiking mechanism by Mainen and Sejnowski (1996) for Figure 5 used model #2488 429

from ModelDB (Hines et al., 2004). The LIF and adaptive exponential leaky integrate-and-fire 430

(AdExpLIF) models (Brette and Gerstner, 2005) using realistic dendritic leak in Figures 7 and 8 431

were implemented in Matlab. All new functions (cgin tree, LIF tree, LIF FR tree, 432

AdExpLIF tree) will be made available as part of the TREES toolbox on publication at www. 433

treestoolbox.org via Github. The code and data for all figures will be made available at 434

https://zenodo.org/ on publication. The code was tested on various operating systems. 435

Individual methods are detailed in the following but can best be appreciated in the actual 436

Matlab scripts. 437

Cable equation for responses to distributed inputs. 438

The voltage response at distance x along a closed cable of length l due to current of magnitude 439

Iapp injected at the root (Rall, 1959, 1962) is 440

v(x) = v0

[
cosh

(
l−x
λ

)
cosh

(
l
λ

) ] , (3)

where λ is the electrotonic length constant and v0 is the voltage at the root: 441

v0 =
coth

(
l
λ

)
G∞

Iapp. (4)

As transfer resistance is symmetric in dendrites (Koch and Segev, 1999; Rall et al., 1967; 442

Rushton, 1937) this also gives the voltage vx(0) at the root due to current injection at a distance 443

x 444

vx(0) =
Iapp
G∞

[
cosh

(
l−x
λ

)
sinh

(
l
λ

) ] . (5)

To find the total voltage V for currents injected along the entire cylinder, we require the 445
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integral over all synaptic sites 446

V =
Iapp

G∞ sinh
(
l
λ

) ∫ l

0

cosh

(
l − x
λ

)
dx. (6)

V =
λIapp
G∞

=
Iapp
Gmπd

. (7)

Morphologies for passive electrotonic simulations. 447

Simple cables (12.5µm—12.5mm length in 12.5µm steps) of constant 1µm diameter (Figures 1B– 448

D) or various dendritic morphologies (Figures 2–4) were resampled to constant 1µm internode 449

resolution (using resample tree). Individual datasets used in combination with specific 450

membrane properties were from blowfly Lobula Plate tangential cells (TCs, n = 55) (Cuntz 451

et al., 2008) (Figures 2A and 3A, Gm = 500 µS
cm2 ), rat (Rihn and Claiborne, 1990) (n = 43) 452

and mouse (Schmidt-Hieber et al., 2007) (n = 8) dentate gyrus granule cells (GCs, Fig- 453

ures 2B and 3B, Gm = 26.3 µS
cm2 ) and monkey cortical pyramidal cells (Luebke et al., 2015; 454

Coskren et al., 2015) (PCs, n = 69, Figures 2C and 3C, Gm = 38 µS
cm2 ). The three datasets were 455

also used in the context of leaky integrate-and-fire (LIF) spiking models in Figures 7. Dendrite 456

morphologies from the entire NeuroMorpho.Org database were used for Figures 4 and 8 457

by manual curation of all existing archives to select those with sufficient diameter profiles, 458

sufficient depth information in z, sufficiently high-quality reconstructions and no sudden 459

jumps in z (selection, 223 datasets, 9, 841 reconstructions, see Table S1). The selected archives 460

were sorted by cell types into the following categories in decreasing order of total cable 461

length: Spinal cord motoneurons (red), hippocampal pyramidal cells (green), neocortical 462

pyramidal cells (blue), retinal ganglion cells (pink), hippocampal granule cells (cyan), nitrergic 463

neurons (orange), C. elegans neurons (yellow), and other (different shades of grey per dataset). 464

These categories were chosen as representatives for the possible scales of dendrites rather 465

than because they corresponded to consistent cell types. All dendrite morphologies were 466

normalised to a given average diameter (to the average diameters in their specific archives for 467

Figures 2 and 7 and to 1µm for Figures 4 and 8). 468

Passive steady-state measures for dendritic morphologies. 469

The collapsed input conductance was measured by summing up the leak conductance over 470

the entire membrane surface of the dendrite using the function surf tree. The resulting 471
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calculation is made available in the new TREES toolbox function cgin tree. Remaining 472

electrotonic features are all readily available from the electrotonic signature (sse tree) as 473

introduced previously (Cuntz et al., 2010). Briefly, all membrane and axial conductances are 474

arranged according to the tree’s adjacency matrix and the current transfer between all nodes is 475

obtained by taking the inverse of the resulting conductance matrix. Local input resistances are 476

then found on the diagonal of this electrotonic signature since current there is injected in the 477

same node as the voltage is measured. Voltage responses to distributed inputs are simply the 478

sum over the column or row of the electrotonic signature since the matrix is symmetric and 479

the system is linear. While this method simulates steady-state distributed current injections, 480

synaptic conductances associated with batteries according to their specific reversal potentials 481

can be simulated instead (using the syn tree function). The passive results were obtained in 482

their purest form in dendrites without the associated somata and axons. Only for Figures S3 483

was the effect of somata explored in detail (see below). 484

Passive dynamic responses to distributed synaptic conductances. 485

Synaptic inputs were simulated as a Poisson process inducing synaptic conductances at a 486

given frequency per synapse. The dynamics of the conductance trace was given by the 487

form Gsyn = Gscale

(
e
− t
τ1 − e−

t
τ2

)
with a rise time constant of τ2 = 0.5ms and a decay time 488

constant of τ1 = 2.5ms. Gscale was set using Equation 1 to ensure that the integral over time 489

of the synaptic conductance profile produced the same voltage as the steady state cases 490

(compare Figure 2 rightmost panels with rightmost panels in Figure 3) at an input frequency 491

of 5Hz per synapse. Our novel TREES toolbox function LIF tree was used without a 492

voltage threshold for spiking in the case of the passive dynamic responses. LIF tree injects 493

distributed synapses into the conductance matrix that defines the dendritic tree in a time- 494

resolved dynamic manner and produces local voltage responses throughout the dendrite. In 495

Figures 3 and 4 the voltage time courses at the dendritic root were plotted for a subset of 496

morphologies (the ones shown in Figure 3 and the first morphology in each of the 223 datasets 497

in Figure 4) for better clarity. 498

Effect of soma size on dendritic constancy — analytical treatment. 499

Consider an electrotonically compact soma of radius R attached to a dendritic cable of length l 500

and radius r. The intrinsic properties are given by the specific conductance of the intracellular 501
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medium Gi and membrane conductance Gm. The soma has a leak conductance of Gs(R) = 502

4πR2Gm. The voltage along the cable due to a current injection of magnitude Iapp at the soma 503

is given by 504

v(x) =

[
Iapp

G∞
(
1 +Gs(R) tanh

(
l
λ

))] cosh
(
l−x
λ

)
cosh

(
l
λ

) (8)

for λ =
√

Gid
4Gm

, the electrotonic length constant of the cable, and G∞ = πGid
2

4λ
, the semi-infinite 505

conductance. Note that this derivation relies on a self-consistent description of the root voltage 506

v0 due to the current flowing into the dendrite. Due to the symmetry of transfer resistance, 507

this is also the voltage induced at the soma by current injection at a site x. Consider the total 508

somatic response VTot to distributed synaptic currents: 509

VTot =

∫ l

0

v(x)dx;

VTot =

∫ l

0

[
Iapp

G∞
(
1 +Gs(R) tanh

(
l
λ

))] cosh
(
l−x
λ

)
cosh

(
l
λ

) dx;

VTot =
Iapp
πdGm

[
tanh

(
l
λ

)
Gs(R) + tanh

(
l
λ

)] . (9)

It can be seen that the term in brackets determines the deviation from dendritic constancy. 510

A small value of Gs(R) is key as tanh is bounded by one. Figures S3 plots the relationship 511

between somatic radius R and dendritic constancy for different electrotonic lengths l
λ

and the 512

relationship between the electrotonic length l
λ

and dendritic constancy for somatic radii R. 513

Spiking model by Mainen and Sejnowski. 514

We used our new tool T2N (Beining et al., 2017) to port the existing model for the spiking 515

mechanism by Mainen and Sejnowski (1996) #2488 from ModelDB (Hines et al., 2004) to 516

our TREES toolbox package in Matlab. In T2N, calculating spike frequency vs. current 517

injections or vs. synaptic input frequencies using different dendritic morphologies becomes 518

easy to implement. The required simulations are distributed automatically on the available 519

computing cores and the entire toolset from the TREES toolbox becomes available to better 520

edit and analyse dendritic trees and the resulting simulation variables. The code is available 521

but, briefly, the simulations ran 40sec with a time step of 0.05ms and a pre-run for 200ms. 522
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The initial voltage was set to −70mV , which was a close match for resting voltages for the 523

four different morphologies. The voltage was calculated every 50µm and a current injection 524

electrode was inserted into the root or synapse point processes into every node (separated 525

by 1µm). Morphologies from the original model were translated into TREES toolbox and 526

resampled to 1µm internode distances. The dendritic diameters were normalised to 1µm and 527

soma with axon divided into axon hillock, initial segment, nodes of Ranvier and myelinated 528

segments were added as in the original model with the respective ion channel conductances. 529

Implicit spines were modelled according to the original model for the current injections 530

but even the L3 aspiny cell was implemented as spiny in all cases for better comparison. 531

Responses to distributed synaptic inputs were modelled with Exp2Syn point processes with 532

rise time constant of τ2 = 0.2ms and decay time constant of τ1 = 2.5ms driven by NetStim 533

point processes in artificial point neurons under Poisson process conditions (noise 1) and 534

following a given input frequency. The random seeds for the NetStim process were set to be 535

independent for different synapses. 536

CA1 pyramidal cell spiking models. 537

Electrotonic compartmentalisation and location dependent ion channel distributions allow for 538

separate non-linear integration of inputs in different regions of dendrites. In order to check 539

how these conditions affect our results, we studied two models of CA1 pyramidal cells that 540

are known to produce dendritic spikes. The dendritic arborisation of pyramidal cells follows 541

a laminar structure that generally reflects the different main excitatory afferents impinging 542

on their dendrites from different brain regions. This distinctive structural organisation is 543

also manifested in the way the electrotonic properties and active channels are distributed. 544

Therefore, it was necessary to define how non-uniform channel distributions scale in the 545

different morphologies. 546

Jarsky et al. 2005 model. 547

We ported the model by Jarsky et al. (2005) to T2N in a similar manner as with the model by 548

Mainen and Sejnowski. This model includes four active conductances: a voltage-gated Na+
549

conductance, a delayed rectifier K+ conductance, a proximal A-type K+ conductance, and a 550

distal A-type K+ conductance with a higher half-inactivation voltage. These conductances 551

were distributed as a function of path distance from the soma. The Na+ and the delayed 552
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rectifier K+ conductance were modelled following a uniform distribution, the weak excitability 553

version of the model by Jarsky. The A-type K+ current was modelled with the experimentally 554

reported six-fold increase in conductance along the apical dendrites resulting in variable 555

slopes of the linear increase between soma and tuft in different morphologies. The apical 556

dendrites were divided with borders along the apical trunk to contain 3.14% (proximal apical), 557

36.27% (medial apical), 68.90% (distal) and 100% (tuft) of the total apical length respectively. 558

These divisions occurred at path distances of around 100µm, 300µm and 500µm. 559

Poirazi et al. 2003 model. 560

The model by Poirazi et al. (2003b) was also ported to T2N, and similarly adapted to apply 561

to different pyramidal cell morphologies. The model consists of a wide variety of active and 562

passive membrane mechanisms (see the online supplement in Poirazi et al., 2003b), including 563

17 types of ion channels, most of them non-uniformly distributed along the somato-dendritic 564

axis. The apical trunk stems were divided according to laminar depth from soma to stratum 565

lacunosum-moleculare (> 68.90% from the total apical dendrite length, similarly as in the 566

model by Jarsky) and the ion channel distributions were rescaled accordingly. The apical 567

trunk dendrites that bifurcate within the stratum radiatum giving rise to two or more main 568

apical dendrites were also considered as the apical trunk region. Similarly to the original 569

Poirazi model, a peritrunk region was defined as the first 50µm in path length from every 570

oblique branch that extended away from the apical trunk. The remaining apical branches 571

were considered as the apical region with a further distinction of more distal dendrites, 572

located beyond a laminar depth away from the soma of 300µm (distal apical) and 350µm (tuft). 573

The passive parameters and channel densities were similar to the Poirazi model, except for 574

axial conductances being distributed uniformly and the leak reversal potential being fixed to 575

−70mV rendering slightly different resting potentials for each cell morphology. 576

Integrate-and-fire spiking model with passive dendrite leak. 577

Dynamic LIF spiking responses for all morphologies in Figures 2–4 were obtained using the 578

LIF tree function in a similar way as for passive dynamic responses (see above). In the case 579

of the LIF responses, synaptic conductances were set using Equation 1’ to reach −60mV at 580

the dendrite root when activated at 1Hz. By then setting the voltage threshold of the LIF 581

mechanism in the dendrite root to −60mV we ensured that spiking started around 1Hz input 582
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frequency (Figure 7B). Spikes were generated throughout the dendrite when the threshold 583

was reached at the dendritic root, resetting the voltage everywhere to −70mV . Morphologies 584

from NeuroMorpho.Org were used in their pure dendritic form (without soma or axon) and 585

after normalising dendritic diameters for each population. 586

Adaptive exponential integrate-and-fire spiking model with passive den- 587

drite leak. 588

Since the simple LIF is generally not able to reproduce the variety of temporal firing patterns 589

that occur in real neurons we extended it by an adaptation current in combination with an 590

exponential activation term (Brette and Gerstner, 2005), while preserving passive parameters. 591

This also allowed us to test yet another spiking mechanism for our theory of dendritic 592

constancy. Instead of a fixed threshold for spike initiation, action potentials in the adaptive 593

exponential leaky integrate-and-fire (AdExpLIF) are generated through a positive, exponential 594

feedback in the voltage of the dendritic root Vroot, given by the differential equation dVroot
dt

= 595

∆T · e
(
Vroot−VT

∆T

)
. By setting the slope factor to ∆T = 2mV and the threshold to VT = −60mV 596

we made sure that spiking started around 1Hz input frequency similar to our LIF simulations. 597

The exponential activation term in the soma makes precise processing of fast fluctuating inputs 598

during synaptic bombardment possible (Fourcaud-Trocmé et al., 2003), as spike initiation is 599

not instantaneous in contrast to the LIF. The upswing of the potential beyond −60mV grows 600

rapidly to infinity, which is why the exact numerical threshold for a voltage reset has almost 601

no influence on spike timing and was set to Vthres = 10mV in all simulations. Altering the 602

parameters of spike initiation had no effects on the constancy of spike numbers with respect to 603

morphology (> 50mV ). The adaptation current w acted as a negative feedback on the voltage 604

in each segment of the dendritic tree and was given by: 605

τ
dw

dt
= a(w − EL)− w. (10)

Once the dendritic root reached Vthres, the voltage in each node was reset to Vreset = −70mV 606

in the case of spike frequency adaptation. Increasing the reset voltage to −60mV induced 607

bursting. After a spike was triggered, the variable w was increased by an amount b in all 608

segments, which was b = −60fA in the adaptation and bursting neuron model. Depending on 609

b, the bursting neuron elicited several spikes in a short period of time until w counterbalanced 610

the exponential activation term, resulting in a longer ISI in between bursts. In case of the 611
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bursting model, the time constant was set to 30ms. Increasing the time constant to τ = 100ms 612

in combination with a high value of b resulted in spike frequency adaptation. 613

Stochastic inputs: Subthreshold voltage moments. 614

Consider a sealed dendrite of physical length l with electrotonic length constant λ. The voltage 615

time course at the proximal end due to a single brief injection of current of magnitude a at 616

electrotonic position 0 ≤ x ≤ l is given by 617

ε(x, t) =
aλe−

t
τ

l

[
1

2
+
∞∑
n=1

cos
(nπx

l

)
e−(nπλl )

2 t
τ

]
. (11)

This is plotted in Figure S6A (dashed lines). Given that synapses are uniformly distributed 618

over [0, l], the expected (ensemble) value of ε at a given time t, 〈ε(t)〉, is given by 619

〈ε(t)〉 =

∫ L

0

ε(x, t)P [x]dx =
ae−

t
τ

2L
(12)

where we have written L = l
λ

for the electrotonic length. The voltage above rest at the soma, 620

neglecting for the moment a threshold-rest mechanism, is given by a sum of independent 621

synaptic inputs 622

v(t) =
∑
{xi,ti}

ε (xi, t− ti)χ[ti,∞)(t) (13)

where the times ti are given by a Poisson process of rate rλl, the locations xi are uniformly 623

distributed along the dendrite, and χ[ti,∞)(t) is the indicator function of the interval [ti,∞). 624

The subthreshold steady-state mean voltage above rest 〈v〉 can be found by taking expectations 625

〈v〉 = rλL

∫ ∞
0

1

L

∫ L

0

ε(x, t)dxdt =
arλτ

2
(14)

This is independent of L. Similarly, the subthreshold variance in v can be written as 626

V ar(v) = rλL

∫ ∞
0

1

L

∫ L

0

ε2(x, t)dxdt =
a2rλτ

8
coth(L) (15)

where the coth(L) term approaches 1 in the limit of large L (Figure S6B, dashed lines). 627
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Stochastic inputs: Subthreshold voltage moments for synaptic currents. 628

The above calculations give the voltage impulse response at the soma. If a synapse has its 629

own time course ζ(t) (with ζ(t) = 0 for t < 0), then the somatic voltage above rest is given 630

instead by 631

v(t) =
∑
{xi,ti}

ζ ∗ ε (xi, t− ti)χ[ti,∞)(t) (16)

where ζ ∗ ε(x, t) =
∫ t
0
ζ(θ)ε (x, t− θ) dθ represents convolution in time. A typical synaptic filter 632

is modelled as a difference of exponentials with timescales τf and τs such that 633

ζ(t) =
e
− t
τf − e−

t
τs

τf − τs
(17)

Note that each term in the series form of ε(x, t) can be written as cne−
t
τn for some coefficient 634

cn and timescale τn as defined above (with cn typically dependent on input location x). Then 635

each such term convolves with ζ(t) to give 636

cnτn
τs − τf

(
e−

t
τn

(
τf

τf − τn
− τs
τs − τn

)
−

(
τfe
− t
τf

τf − τn
− τse

− t
τs

τs − τn

))
(18)

if τf , τs 6= τn. In the case that one of τf = τn or τs = τn (without loss of generality let τf = τn) 637

the form is instead 638

cn
τs − τn

((
τsτn
τs − τn

)(
e−

t
τn − e−

t
τs

)
− te−

t
τn

)
(19)

with an additional synaptic filter alongside the dendritic filter given by Equation 11, the 639

difference in somatic voltage responses to proximal and distal inputs is reduced even for 640

synapses that are fast compared to the membrane time constant (Figure S6A). 641

The subthreshold mean is unchanged from the instantaneous case as
∫∞
0
ζ(θ)dθ = 1, and the 642

subthreshold variance can be computed by squaring the above terms, integrating t from 0 to 643

∞ and x from 0 to l, and summing the infinite series. The result is cumbersome to write in 644

full, but can be plotted in Figure S6B. The variance is lower in the case of the synaptic filter 645

compared to instantaneous current injection. 646

35/57

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2019. ; https://doi.org/10.1101/787911doi: bioRxiv preprint 

https://doi.org/10.1101/787911
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dendritic constancy Cuntz et al.

Stochastic inputs: Subthreshold characteristic functions and firing rate ap- 647

proximation. 648

The firing rate can in principle be calculated exactly from the expected time for the stochastic 649

process (Equation 13) to first reach the firing threshold vth from the voltage reset vre. Given 650

a uniform initial voltage v0 (which decays with timescale τ ), the random variable V{T,v0} 651

describes the voltage T seconds later. The characteristic function φv(s, T, v0) = E
[
e−sV{T,v0}

]
of 652

V{T,v0} is given by (Rice, 1944) 653

φv(s, T, v0) = exp

[
−rl

(∫ T

0

1− Ex
[
e−s[ε(x,t)]

]
dt

)
+ v0e

−T
τ

]
(20)

where the expectation Ex is over synaptic locations x. This can be inverted to give the 654

probability distribution fv of V{T,v0}. An additional integral transform over T , ψv(ρ, v0) = 655

E
[
e−ρTfv

]
, allows the moment generating function MFP (t) of the first-passage time density 656

to be written as (Siegert, 1951) 657

MFP (t) =
ψv(−ρ, vre)
ψv(−ρ, vth)

(21)

The mean first-passage time, and hence the output firing rate, could then be extracted from 658

dMFP

dt
|t=0. 659

In practice, the above procedure is numerically sensitive and the following approximation is 660

robust to the high cumulative input rates typically seen across an entire dendritic tree. Taking 661

the subthreshold voltage mean µv and standard deviation σv allows the firing rate R to be 662

accurately approximated (Alijani and Richardson, 2011) using the equation from Brunel and 663

Hakim (1999) 664

R−1 = τ

∫ ∞
0

1

z
e−

z2

2 (ezzth − ezzre) dz (22)

where zth = vth−µv
σv

and zre = vre−µv
σv

. This is plotted as a function of dendrite length in 665

Figure S6B and as a function of input firing rate in Figure S6C. 666

Combining the above equations, the output firing rate R can be written, in the case of instan- 667

taneous synapses, in terms of intrinsic quantities as 668
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R−1 =
C

Gm

∫ ∞
0

1

z
e−

z2

2

[
e
z
√

2λGm

rlC coth l
λ

(
2πdGmvth
Idist

− rlC
λGm

)
− e

z
√

2λGm

rlC coth l
λ

(
2πdGmvre
Idist

− rlC
λGm

)]
dz (23)

where, as before, C is the specific capacitance, Gm is the membrane conductivity, l is the 669

dendrite length, d is the average diameter, λ =
√

Gid
4Gm

is the electrotonic length, Gi is the axial 670

conductivity, and Idist is the current induced by a single synapse. Additionally, r is the rate of 671

synaptic activation per µm, and vre and vth are the reset and threshold voltages respectively. 672

In the case of filtered synapses, there is not a compact form for R and Equation 22 is used 673

directly with the subthreshold mean and variance as derived above. The code to calculate 674

R analytically can be found in the function LIF FR tree for synaptically filtered current 675

injections. 676
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London M, Roth A, Beeren L, Häusser M, Latham PE (2010) Sensitivity to perturbations in 777

vivo implies high noise and suggests rate coding in cortex. Nature 466:123–127. 778

London M, Segev I (2001) Synaptic scaling in vitro and in vivo. Nature Neuroscience 4:853–855. 779

Luebke JI, Medalla M, Amatrudo JM, Weaver CM, Crimins JL, Hunt B, Hof PR, Peters A (2015) 780

Age-related changes to layer 3 pyramidal cells in the rhesus monkey visual cortex. Cerebral 781

Cortex 25:1454–1468. 782

Magee (1999) Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons. 783

Nature Neuroscience 2:508–514. 784

Magee JC (2000) Dendritic integration of excitatory synaptic input. Nature Reviews Neuro- 785

science 1:181–190. 786

Magee JC, Cook EP (2000) Somatic EPSP amplitude is independent of synapse location in 787

hippocampal pyramidal neurons. Nature Neuroscience 3:895–903. 788

Mainen ZF, Joerges J, Huguenard JR, Sejnowski TJ (1995) A model of spike initiation in 789

neocortical pyramidal neurons. Neuron 15:1427–1439. 790

Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model 791

neocortical neurons. Nature 382:363–366. 792

Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, Ailamaki 793

A, Alonso-Nanclares L, Antille N, Arsever S, Kahou GAA, Berger TK, Bilgili A, Buncic N, 794

Chalimourda A, Chindemi G, Courcol JD, Delalondre F, Delattre V, Druckmann S, Dumusc 795

R, Dynes J, Eilemann S, Gal E, Gevaert ME, Ghobril JP, Gidon A, Graham JW, Gupta A, 796

Haenel V, Hay E, Heinis T, Hernando JB, Hines M, Kanari L, Keller D, Kenyon J, Khazen G, 797

Kim Y, King JG, Kisvarday Z, Kumbhar P, Lasserre S, Le Bé JV, Magalhães BRC, Merchán- 798
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Supporting information 878

Fig S1. Steady-state passive responses to distributed inputs in synthetic dendrites are independent of
dendrite length and shape.
Similar analysis as in Figure 4 but for 10, 000 synthetic dendritic trees obtained using extended minimum
spanning trees that reproduce many features of real dendrites (Cuntz et al., 2010). These cover a wide range
of tree complexities as well as overall sizes (see Methods).
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Fig S2. Distributions of diameters in somata and dendrites of the NeuroMorpho.Org database.
A, Distribution of soma radii in NeuroMorpho.Org. Not every cell had well-reconstructed somata explaining
the tail of very small radii. High-quality soma reconstructions were not an inclusion criterion for this
study that focuses on dendritic trees in the main text. B, Distribution of average dendrite diameters after
resampling to 1µm internode distances to weigh each location in the dendritic tree homogeneously.
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Fig S3. Effect of soma size on dendritic constancy.
See next page
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Fig S3. (continued) A, Analytical calculations of relative deviation from dendritic constancy (compared to
100%) as a function of somatic radius for different lengths of dendrite (top panel) and as a function of length
for different somatic radii (bottom panels). Used cables had 1µm diameter, specific membrane conductance
Gm = 50 µS

cm2 and specific axial resistance of Ri = 100Ωcm. B, Similar calculation for the NeuroMorpho.Org
database as Figure 4A but with appended somata that do not receive synaptic inputs (see Methods for more
details). Here, colours indicate the radius of the appended soma.
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Fig S4. Effect of inhomogeneous distance-dependent synapse weights on dendritic constancy.
In these plots, synapses were scaled from 0.8× to 1.2× in a linear relation with distance (path length) from
soma. A, Analogous to Figure 6B, the model by Jarsky et al. (2005) with inhomogeneous synapse weights. B,
Analogous to Figure 8A, the LIF model in NeuroMorpho.Org morphologies with inhomogeneous synapse
weights.
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Fig S5. Effect of inhibitory synapses on dendritic constancy.
In these plots, 20% of all synapses were randomly selected to have a reversal potential of −80mV , which
renders them inhibitory synapses. A, Analogous to Figure 6B, the model by Jarsky et al. (2005) with 20%
inhibitory synapses. B, Analogous to Figure 8A, the LIF model in NeuroMorpho.Org morphologies with
20% inhibitory synapses.
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Fig S6. Transformation of voltage fluctuations into spikes.
A, Voltage response as a function of time at the proximal end of a sealed dendrite of electrotonic length 1 to
an instantaneous (dashed lines) and synaptically filtered (double exponential τrise = 0.5ms, τdecay = 2.5ms,
solid lines) current injection with magnitude a = 1. Blue lines show responses at 0.2 and yellow lines at
0.8 electrotonic distance. The time constant of the membrane was τ = 20ms. B, Top panel, subthreshold
proximal voltage variance as a function of electrotonic length for different input rates per unit electrotonic
length: 200, 300, 400, and 500Hz. a = 2.5 and τ = 20ms. Bottom panel, firing rate as a function of
electrotonic length for different input rates per unit electrotonic length: 200, 300, 400, and 500Hz. a = 2.5
and τ = 20ms. As in A, dashed lines for instantaneous and solid lines for filtered current injections. C,
Output firing rate as a function of afferent rate for dendrites of different electrotonic lengths: 0.1, 1, and
10, 000. a = 2.5 and τ = 20ms. As in A, dashed lines for instantaneous and solid lines for filtered current
injections.
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Table S1. Selected datasets from NeuroMorpho.Org

Lab Species Region Cell type
Acsady rat ventral thalamus modulated

Alvarez rat spinal cord motoneuron
Amaral rat hippocampus pyramidal
Araujo proechimys hippocampus pyramidal-like
Araujo rat hippocampus pyramidal
Ascoli mouse spinal cord motoneuron
Ascoli rat basal forebrain choline acetyltransferase (ChAT)-

positive
Ascoli rat basal forebrain neuropeptide Y (NPY)-positive
Ascoli rat hippocampus not reported
Avendano rat brainstem Intersubnuclear neuron
Barrionuevo rat hippocampus pyramidal
Bartos mouse hippocampus basket
Bartos mouse hippocampus dendritic targeting
Bartos mouse hippocampus perisomatic targeting
Bianchi chimpanzee neocortex pyramidal
Bikson rat neocortex not reported
Bikson rat neocortex pyramidal
Blackman mouse neocortex basket
Blackman mouse neocortex pyramidal
Brown rat neocortex multipolar
Brown rat neocortex neurogliaform
Brown rat neocortex pyramidal
Brown rat neocortex tripolar
Brumberg mouse neocortex pyramidal
Burke cat spinal cord motoneuron
Cameron cat spinal cord motoneuron
Cameron rat brainstem motoneuron
Cauli rat neocortex neuropeptide Y (NPY)-positive
Cauli rat neocortex bipolar
Cauli rat neocortex pyramidal
Chalupa mouse retina ganglion
Chmykhova frog spinal cord motoneuron
Chmykhova turtle spinal cord motoneuron
Cho mouse hippocampus granule
Claiborne rat hippocampus granule
Claiborne rat hippocampus pyramidal
Collin pouched lamprey retina ganglion
Cossart-Bernard rat hippocampus oriens-lacunosum moleculare
Cossart-Bernard rat hippocampus perforant pathway-associated
Cossart-Bernard rat hippocampus perisomatic targeting
Cossart-Bernard rat hippocampus Schaffer-collateral associated
Cossart-Bernard rat hippocampus trilaminar
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Lab Species Region Cell type
Cox drosophila

melanogaster
peripheral nervous
system

multidendritic-dendritic ar-
borization (DA)

De Koninck rat neocortex pyramidal
Del Negro mouse myelencephalon non-glutamatergic
Dendritica guinea pig cerebellum Purkinje
Dendritica rat basal ganglia dopaminergic
Dendritica rat cerebellum Purkinje
Dendritica rat neocortex pyramidal
Destexhe cat neocortex pyramidal
Destexhe rat dorsal thalamus thalamocortical
Dusart mouse cerebellum Purkinje
Esclapez rat hippocampus pyramidal
Feldmeyer rat neocortex fast-spiking
Feldmeyer rat neocortex horizontal
Feldmeyer rat neocortex inverted
Feldmeyer rat neocortex multipolar
Feldmeyer rat neocortex pyramidal
Feldmeyer rat neocortex tangential
Franca rat neocortex nitrergic
Fukunaga mouse main olfactory bulb mitral
Fukunaga mouse main olfactory bulb tufted
Fyffe cat spinal cord Ia inhibitory
Fyffe cat spinal cord motoneuron
Fyffe cat spinal cord Renshaw
Fyffe cat spinal cord spinocerebellar
Garcia-Cairasco rat hippocampus granule
Gonzalez-Burgos monkey neocortex basket
Gonzalez-Burgos monkey neocortex double bouquet
Gonzalez-Burgos monkey neocortex neurogliaform
Gonzalez-Burgos monkey neocortex pyramidal
Gonzalez-Burgos mouse neocortex basket
Gonzalez-Burgos mouse neocortex pyramidal
Groen rat hippocampus pyramidal
Gulyas rat hippocampus calbindin (CB)-positive
Gulyas rat hippocampus cholecystokinin (CCK)-positive
Gulyas rat hippocampus calretinin (CR)-positive
Gulyas rat hippocampus pyramidal
Gulyas rat hippocampus parvalbumin (PV)-positive
Hajos mouse hippocampus Chandelier
Halnes mouse thalamus GABAergic
Hay rat neocortex pyramidal
Helmstaedter rat neocortex not reported
Helmstaedter rat neocortex pyramidal
Henckens rat amygdala pyramidal
Henckens rat amygdala stellate
Henckens rat hippocampus pyramidal
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Lab Species Region Cell type
Henckens rat neocortex pyramidal
Henny rat basal ganglia dopaminergic
Irintchev rat brainstem motoneuron
Jacobs bottlenose dolphin neocortex aspiny
Jacobs bottlenose dolphin neocortex pyramidal-like
Jacobs chimpanzee cerebellum basket
Jacobs chimpanzee cerebellum Golgi
Jacobs chimpanzee cerebellum granule
Jacobs chimpanzee cerebellum Lugaro
Jacobs chimpanzee cerebellum stellate
Jacobs clouded leopard cerebellum basket
Jacobs clouded leopard cerebellum granule
Jacobs clouded leopard cerebellum Lugaro
Jacobs clouded leopard cerebellum stellate
Jacobs elephant cerebellum basket
Jacobs elephant cerebellum Golgi
Jacobs elephant cerebellum Lugaro
Jacobs elephant cerebellum stellate
Jacobs giraffe cerebellum basket
Jacobs giraffe cerebellum Golgi
Jacobs giraffe cerebellum granule
Jacobs giraffe cerebellum Lugaro
Jacobs giraffe cerebellum stellate
Jacobs giraffe neocortex crab-like
Jacobs giraffe neocortex neurogliaform
Jacobs giraffe neocortex pyramidal
Jacobs human cerebellum basket
Jacobs human cerebellum Golgi
Jacobs human cerebellum granule
Jacobs human cerebellum Lugaro
Jacobs human cerebellum stellate
Jacobs human neocortex pyramidal
Jacobs humpback whale cerebellum basket
Jacobs humpback whale cerebellum Golgi
Jacobs humpback whale cerebellum granule
Jacobs humpback whale cerebellum Lugaro
Jacobs humpback whale cerebellum stellate
Jacobs humpback whale neocortex aspiny
Jacobs humpback whale neocortex pyramidal-like
Jacobs humpback whale neocortex sternzelle
Jacobs manatee cerebellum basket
Jacobs manatee cerebellum stellate
Jacobs minke whale neocortex aspiny
Jacobs minke whale neocortex pyramidal
Jacobs minke whale neocortex pyramidal-like
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Lab Species Region Cell type
Jacobs Siberian tiger cerebellum basket
Jacobs Siberian tiger cerebellum Golgi
Jacobs Siberian tiger cerebellum granule
Jacobs Siberian tiger cerebellum Lugaro
Jacobs Siberian tiger cerebellum stellate
Jaeger rat basal ganglia not reported
Jaeger rat cerebellum glutamatergic
Jaffe rat hippocampus not reported
Jaffe rat hippocampus pyramidal
Johnson domestic pig hippocampus granule
Johnston rat hippocampus pyramidal
Jonas rat hippocampus basket
Kim mouse hippocampus pyramidal
Kisvarday cat neocortex pyramidal
Kole rat hippocampus pyramidal
Korngreen rat neocortex pyramidal
Krieger mouse neocortex pyramidal
Kubota rat neocortex basket
Lai mouse basal ganglia medium spiny
Lee mouse amygdala pyramidal
Lee mouse hippocampus granule
Lien rat hippocampus dendritic targeting
Lien rat hippocampus perisomatic targeting
Luebke monkey neocortex pyramidal
Luzzati guinea pig basal ganglia Neuroblast
Luzzati mouse basal ganglia Neuroblast
Mailly rat basal ganglia dopaminergic
Markram rat neocortex basket
Markram rat neocortex bipolar
Markram rat neocortex bitufted
Markram rat neocortex Chandelier
Markram rat neocortex Descending
Markram rat neocortex double bouquet
Markram rat neocortex horizontal
Markram rat neocortex Martinotti
Markram rat neocortex neurogliaform
Markram rat neocortex not reported
Markram rat neocortex pyramidal
Markram rat neocortex Small
Markram rat neocortex stellate
Martone mouse cerebellum Purkinje
Maxwell cat spinal cord spinocerebellar
Meyer rat neocortex pyramidal
Meyer rat neocortex stellate
Miller salamander retina ganglion
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Lab Species Region Cell type
Mizrahi mouse main olfactory bulb periglomerular
Mustaparta-
Lofaldli

moth antennal lobe olfactory

Nolan mouse entorhinal cortex stellate
Nusser rat main olfactory bulb deep short axon
Nusser rat main olfactory bulb external tufted cell (ETC)
OpenWorm C. elegans pharyngeal ner-

vous system
motoneuron

OpenWorm C. elegans pharyngeal ner-
vous system

pharyngeal

OpenWorm C. elegans somatic nervous
system

amphid

OpenWorm C. elegans somatic nervous
system

motoneuron

OpenWorm C. elegans somatic nervous
system

not reported

OpenWorm C. elegans somatic nervous
system

ring

OpenWorm C. elegans somatic nervous
system

somatic

Poorthuis mouse neocortex pyramidal
Poria mouse retina ganglion
Povysheva rat neocortex not reported
Rhode cat brainstem vertical
Rose cat spinal cord motoneuron
Santhakumar rat hippocampus semilunar granule
Sjostrom mouse neocortex basket
Sjostrom mouse neocortex Martinotti
Sjostrom mouse neocortex pyramidal
Smith rat ventral striatum aspiny
Smith rat ventral striatum medium spiny
Smith-Koizumi rat myelencephalon inspiratory
Soltesz mouse hippocampus pyramidal
Somogyi rat hippocampus basket
Spruston rat hippocampus not reported
Spruston rat hippocampus pyramidal
Staiger rat neocortex pyramidal
Staiger rat neocortex stellate
Strettoi mouse retina ganglion
Svoboda rat neocortex pyramidal
Sztarker locust optic Lobe somatic
Tepper mouse basal ganglia tyrosine-hydroxylase-positive
Timofeev cat neocortex pyramidal
Timofeev cat ventral thalamus thalamocortical
Todd rat spinal cord projection neuron
Turner rat hippocampus dendritic targeting
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Lab Species Region Cell type
Turner rat hippocampus granule
Turner rat hippocampus pyramidal
Turner rat hippocampus total molecular layer projecting
Vervaeke mouse cerebellum Golgi
Vuksic mouse hippocampus granule
Wearne-Hof monkey neocortex pyramidal
Wittner guinea pig hippocampus pyramidal
Zaitsev monkey neocortex pyramidal
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