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Abstract

Motivation: Adaptive immune receptor repertoire sequencing (AIRR-Seq) offers the possibility of
identifying and tracking B cell clonal expansions during adaptive immune responses. Members of a B
cell clone are descended from a common ancestor and share the same initial V(D)J rearrangement,
but their BCR sequence may differ due to the accumulation of somatic hypermutations (SHMs). Clonal
relationships are learned from AIRR-seq data by analyzing the BCR sequence, with the most common
methods focused on the highly diverse CDR3 region. However, clonally related cells often share SHMs
which have been accumulated during affinity maturation. Here, we investigate whether shared SHMs
in the V and J segments of the BCR can be leveraged along with the CDR3 sequence to improve the
ability to identify clonally related sequences. We develop independent distance functions that capture
shared mutations and CDR3 similarity, and combine these in a spectral clustering framework. Using
simulated data, we show that this model improves both the sensitivity and specificity for identifying clonal
relationships.
Availability: Source code for this method is freely available in the SCOPer (Spectral Clustering for clOne
Partitioning) R package (version 0.2 or newer) in the Immcantation framework: www.immcantation.org
under the CC BY-SA 4.0 license.
Contact: steven.kleinstein@yale.edu

1 Introduction
B cells recognize pathogens through their B cell receptor (BCR). The
ability to recognize and initiate a response to a wide variety of pathogens
depends upon a large population of B cell lymphocytes each of which
expresses a particular receptor for antigen. The diversity of the BCRs (also
referred to as Immunoglobulins, (Igs)) is a result of genetic recombination
and diversification mechanisms. BCRs are comprised of two identical
heavy (IGH) and light (IGL) chain proteins. For IGH-chains diversity
is initially created in the germline via recombination of variable IGHV,
diversity IGHD, and joining IGHJ genes (termed the V(D)J recombination
process (Tonegawa, 1983)). Diversity in IGH is further increased by
addition of P- and N-nucleotides at the IGHV/IGHD and IGHD/IGHJ
boundaries (Alt and Baltimore, 1982; Lafaille et al., 1989; Murphy, 2011).
For IGL, the IGLV gene is rearranged directly to IGLJ gene. The region
where IGHV, IGHD and IGHJ come together in IGH (or IGLV and IGLJ for
IGL) is termed the CDR3, and this high diversity region is often involved
in antigen-binding (Xu and Davis, 2000).

During T-dependent responses, antigen-activated B cells undergo
clonal expansion and acquire additional diversity through somatic

hypermutation (SHM), an enzymatically-driven process introducing point
substitutions into the BCR locus at a rate of ∼ 1/1000 bp/cell division
(McKean et al., 1984; Wood et al., 2001). B cells that acquire mutations
that improve their ability to bind the pathogen are preferentially expanded
leading to affinity maturation of the B cell population over time. Therefore,
SHMs have important consequences for the kinetics (antibody-response),
quality (antigen-specificity), and size (response-signature) of the B cell
clones as the fundamental building blocks of immune repertoires (Kepler
and Perelson, 1993).

Accurate identification of clonal relationships is important, as these
clonal groups form the basis for a wide range of repertoire analysis,
including diversity analysis (Robins et al., 2013; Meng et al., 2017;
Rosenfeld et al., 2018), lineage reconstruction and detection of antigen-
specific sequences (Yaari and Kleinstein, 2015; Tsioris et al., 2015) and
effector functionality (McKean et al., 1984; Sablitzky et al., 1985). One
way to monitor and track the B cell clonal lineages is to perform large-
scale sampling of bulk B cell populations, amplifying, and sequencing the
expressed antibody gene rearrangements by next-generation sequencing
(NGS) (Metzker, 2010). Recent studies by NGS have greatly expanded
our understanding of B cell clonal lineage development in high-throughput
Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) data (Boyd
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Fig. 1. A B cell lineage tree showing the relationships between clonally-related cells. The
germline sequence (diamond) is shown at the root of lineage, and is connected by a single
branch to the most recent common ancestor (MRCA) (square). This branch consists of
mutations that are shared across all members of a clone. Several sub-branches descend
from the MRCA to inferred sequences (triangles) carrying mutations that are shared by
a subset of clone members. Finally, the inferred sequences are connected to observed
sequences (circles) through mutations that are unique to each given observed sequence.
Shared and unique mutations are marked at each branch by horizontal lines and arrowhead-
lines, respectively.

and Joshi, 2015; Rubelt et al., 2017; Vander Heiden et al., 2018).
However, clonal relationships are not directly measured, but they must
be computationally inferred. To this end several computational methods
have been proposed to identify B cell clones from high-throughput AIRR-
seq data (Glanville et al., 2011; Kepler, 2013; Ralph and Matsen IV, 2016;
Gupta et al., 2017; Nouri and Kleinstein, 2018b).

Antibody diversity is largely dominated by the IGH-chain (Xu and
Davis, 2000). The IGH-chain owes this diversity to the: (1) use of an
IGHD gene, which IGL-chains lack, (2) addition of short palindromic (P)
nucleotides at the IGHV-IGHD and IGHD-IGHJ joints (Lafaille et al.,
1989), (3) insertion of non-templated (N) nucleotides at the IGHV-
IGHD and IGHD-IGHJ joints by terminal deoxynucleotidyl transferase
(TdT) (Alt and Baltimore, 1982), and (4) higher rates of SHM than
IGL-chains (Wood et al., 2001). The IGH-chain junction region (i.e.
complementarity determining region3, CDR3, plus the conserved flanking
amino acid residues) commonly serves as an identifier for clonal inference
methodologies. For instance, sequences whose junctions are identical
or have a high degree of homology (measured by string distance at the
nucleotide level) are often classified as belonging to the same clone
(Hershberg and Prak, 2015). However, to avoid grouping together highly
homologous yet distinct sequences, some studies also separate these
groups by their constituent IGHV- and IGHJ-gene annotations (Zhang
et al., 2015). Many methods also assume that members of a clone
share the same junction length, because SHMs introduced into the BCR
sequence are predominantly point substitutions (McKean et al., 1984;
Kleinstein et al., 2003). In a different approach, probabilistic models
have also been developed to calculate the likelihood of sharing a common
B cell ancestor and subsequently infer clonal grouping (Kepler, 2013;
Ralph and Matsen IV, 2016). Kepler (2013) reconstructs a B-cell clonal
lineage using the posterior distribution over clone members possible
ancestors, and Ralph and Matsen IV (2016) infers the clonally related
sequences using a multi-hidden Markov Model (multi-HMM). However,
both methodologies have complexities that become substantially expensive
for large sequencing datasets. Overall, in practice, a common approach is
to infer clones among sequences with high junction region similarity, as
well as identical junction length and IGHV- and IGHJ-gene usage (referred
to here as a distance-based model) (Hershberg and Prak, 2015).

While distance-based strategies are common among current studies,
clonal relationship inference solely based on the similarity of the junction
region does not leverage the potential information in the V and J segments.
It has been suggested that incorporating shared SHMs in these regions

Distance-Based Matrix, X
Calculates the distance among pairs of 
sequences within each VJ(ℓ)-group.
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Fig. 2. Overview of the SCOPer workflow. First, AIRR-seq data are partitioned into
VJ(`)-groups which contain sequences with the same IGHV gene annotation, IGHJ gene
annotation, and junction length. Next, each VJ(`)-group is subject to a distance-based and
a stress-based calculation. Finally, the outputs of these calculations are combined into a
distance function that is used as the basis for inferring the BCR clonal relationships using
a spectral clustering-based approach.

could improve distance-based clonal inference (Zhou and Kleinstein,
2019). Members of an expanded B cell clone often share specific somatic
mutations and, sometimes, combinations of mutations across BCR.
Mutations may be shared among two or more members of a clone as
a simple result of being passed down during cell division, or may be
positively selected as part of the affinity maturation process (Clarke et al.,
1985; Blier and Bothwell, 1987; Diamond et al., 1992; Coker et al., 2003;
Furuta et al., 2017). This hierarchy of shared mutations can be considered
as the “glue” binding all the members of a B cell clone together and shaping
its lineage tree (Figure 1). This additional IGH-chain information could
be leveraged to refine clonal relationships.

In this study, we investigated whether shared SHM patterns in the
V and J segments of the BCR can be leveraged along with the CDR3
sequence to improve the ability to identify clonally related sequences. This
model is implemented in the new version of SCOPer. The first version
of SCOPer, a spectral clustering-based method for identifying clones
from high-throughput B cell repertoire sequencing data, was presented
in Nouri and Kleinstein (2018b). In the following sections, we discuss
the main steps of the methodology and explain our implementation of the
recent improvements upon the original framework. We further examine
the performance of SCOPer using simulated and experimental datasets.

2 Method
The clonal inference procedure by SCOPer is performed as follows
(Figure 2). First, BCR sequences IGHV and IGHJ genes are identified. This
can be done using various publicly available tools such as IMGT/HighV-
QUEST (Alamyar et al., 2012) or IgBLAST (Ye et al., 2013). Then,
sequences are partitioned into groups that share the same IGHV-gene and
IGHJ-gene (gene-level grouping). The gene-level grouping is based on
the assumption that the identity of germline gene (the clone members
unmutated common ancestor) cannot change through affinity maturation.
Sequences are further assumed to evolve only through point mutation (no
indels), so a sub grouping level is also applied in order to force sequences in
the same clonal family to have identical junction region length (length-level
grouping). Henceforth, we refer to such a group as “VJ(`)-group”. Next,
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each VJ(`)-group is retrieved for inferring the BCR clonal relationships
using spectral clustering-based approach.

2.1 Distance matrix calculation

The distance-based step of SCOPer is focused on the sequencing reads’
junction region. At this step, we generate a symmetric and positive pair-
wise similarity matrix Xij defined by the Hamming distance between
the junction regions corresponding to the ith and jth sequences from a
given VJ(`)-group. This is called the “junction-targeted” distance matrix.
The Hamming distance is defined as the number of positions at which the
corresponding nucleotides are different. The distance matrix can also be
generated from CDR3 region by excluding the three-nucleotide prefix and
suffix from both ends of the junction (i.e. converting junction segment
to CDR3 region). Henceforth, this is called a “CDR3-targeted” distance
matrix.

2.2 Stress matrix calculation

The stress-based step of SCOPer is focused on the IGHV and IGHJ
regions. We develop a model in which the occurrence of a mutation at the
same nucleotide position of a pair of sequences (the so-called “pair-wise
shared mutation”) will be used, accompanying with distance-based step, to
infer their clonal relationship. These shared mutations can take place early
in the clonal expansion, or be positively selected during affinity maturation,
and can be inherited by all, a subset, or at least a pair of the descendants of
a common ancestor (Yaari et al., 2015). The model is implemented so that
a pair of sequences with a higher shared mutation rate is more likely to
belong to the same clone, whereas a pair of sequences with a lower shared
mutation rate are considered more independent from each other. Recall
from continuum mechanics, the pair-wise shared mutations can be loosely
referred to as “stress” which expresses the internal forces that clonally
related sequences exert on each other.

We begin with identification of the pair-wise mutations. First,
depending on the type of distance matrix calculated in the previous
step (i.e., junction- or CDR3-targeted) the junction or CDR3 region
of the sequences and germlines are masked. Then, for each VJ(`)-
group a single effective germline is generated by building the effective
sequence of all germlines (allele-grouping). This effective germline is
deterministic such that if a position contains different nucleotides, the
effective will be an IUPAC (International Union of Pure and Applied
Chemistry) character representing all of the nucleotides present. Therefore,
the effective germline captures all of the information contained in its
constituents. Finally, in each VJ(`)-group, pairs of sequences are compared
with the group effective germline to identify mutations. Using the effective
germline ensures a fair comparison among all pairs of sequences in a given
group.

We continue with a categorical approach to classify the identified
pair-wise mutations (Figure 3). For each pair of ith and jth sequences
the mutations at each position are flagged with a binary variable and
categorized in three classes: (1) a single mutation which occurs only in
one of the sequences, α(n)

ij , (2) two unique mutations which occur in

both sequences, β(n)
ij , and (3) a shared mutation which occurs in both

sequences, γ(n)ij . Here, the parameter n indicates the position of each
nucleotide along the sequence string. The binary variables are retrieved to
create two matrices. One of the matrices accumulates the total number of
mutations:

Tij =
1

νij

∑
n

(
α
(n)
ij + 2

(
β
(n)
ij + γ

(n)
ij

))
. (1)

A second matrix accumulates the shared mutations:

Hij =
2

νij

∑
n

γ
(n)
ij . (2)

 GLi: ACGTACGTATGTACGTACGTACGTACGTATGTACGT   

 GLj: ACGTATGTATGTACGTACGTACGTACGTATATACGT

 EGL:
 ACGTAYGTATGTACGTACGTACGTACGTATRTACGT  

seqi: ACGTACGAATGTACCTACGTACGAACGTATGCACGT

seqj: ACTTATGAATGTACGTACGTACGCACGTATACACGT

 ij: 001000000000001000000000000000000000

 βij: 000000000000000000000001000000000000

 γij: 000000010000000000000000000000010000

 μij: 0000000μ00000000000000000000000μ0000
(8) (32)

ij ij

Fig. 3. Pair of sequences (seq) are compared with each other and the VJ(`)-group effective
germline (EGL) to identify unique and shared somatic hypermutation events. The effective
germline sequence is determined by IUPAC character representation of all the nucleotides
present at each position across all germlines in a given VJ(`)-group (allele-grouping). Each
nucleotide position of ith and jth sequences is compared with the corresponding nucleotide
position in the effective germline and somatic hypermutation events are flagged with binary
variables: (1) α: a single mutation which occurs only in one of the sequences, (2) β:
two unique mutations which occur in both sequences, and (3) γ: a shared mutation which
occurs in both sequences. The average of the mutabilities of the germlines (GLs) 5-mer
motifs in which a shared mutation occurred at the central position is shown byµ(n)

ij
, where

superscript n indicates the position that mutation occurred. Mutation events are bold and
underlined in the sequences.

Here, Tij is a positive value and always larger than or equal to positive
value Hij . The term νij , average number of informative positions (∈
{A,C,G,T}) in ith and jth sequences, is a normalizing factor used to prevent
the bias toward pairs of sequences with less non-ACGT positions.

We note that mutational biases have been reported (Elhanati et al.,
2015; Yeap et al., 2015) both in the bases that are targeted (Betz et al.,
1993; Shapiro et al., 2003) as well as the substitutions that are introduced
(Smith et al., 1996; Cowell and Kepler, 2000). These intrinsic biases,
combined with the particular codon usage and base composition in BCR
sequences, have critical influence on B cell clonal expansion. The SHM
biases have been summarized by hot- and cold-spot preferential targeting
models (e.g., the WRC/GYW and WA/TW hot-spots, and SYC/GRS cold-
spots, where mutated position is underlined). Hence, the influence of
a pair-wise shared mutation in the identification of clonal relationships
should be constrained based on the micro-sequence context (e.g., a 5-
mer motif in which a mutation occurs at the central position). This is
because the high likelihood of capturing a shared mutation in hot-spots
may bias the clonal inference process. This concern can be addressed by
taking advantage of the “S5F” targeting model (a SHM targeting model
that produces background likelihood of a particular mutation, based on
the surrounding sequence context as well as the mutation itself) for each
of the 1024 possible 5-mer motifs (Yaari et al., 2013). Using the S5F
model, the occurrence of a shared mutation at a SHM hot-spot position is
considered to be less influential than a shared mutation at a cold- or neutral-
spot position, in clonal relationship inference process. Thus, a matrix is
generated whose elements are calculated by averaging the mutabilities
(an effective mutability) of the germlines 5-mer motifs in which a shared
mutation occurred at the central position (Figure 3):

Mij =
∏
n

(
1− µ(n)ij

)
. (3)

Each mutability (µ) is subtracted from one to reverse the scaling direction,
so that the SHMs at hot-spots become less influential.

We finalize the stress-based step by calling equations 1, 2, and 3 to
calculate the stress between ith and jth sequences:

Sij =Mij ×N (Tij −Hij |σT )×
(
1−N (Hij |σH)

)
. (4)
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Fig. 4. The stress-based model pulls together clonally-related sequences to improve the
B cell clonal inference process. (A) V(D)J recombination generates a set of highly
diverse (unmutated) sequences with large distances between independent clones (inter-
clonal diversity). (B) Clonal expansion with SHM adds additional diversity, and leads
the sequences to spread out around the initial points of creation (intra-clonal diversity).
Some sequences from independent clones could end up with CDR3s that start to look
similar (dashed-lines), and may lead to false positives in the clonal relationship inference
process. (C) The stress between pairs of sequences, expressed via shared mutations, acts as
a spring that pulls clonally-related sequences toward each other resulting in a more accurate
distinction of local neighborhoods. Black circles indicate observed sequences, while white
circles indicate germlines (GL1 and GL2).

Here, N (x|σ) = exp(−x2/2σ2) is a continuous Gaussian probability
distribution, where parameterσT andσH are the standard deviations of the
T andH matrices capturing the variability of total and shared SHM events
in each VJ(`)-group, respectively. It is important to note that for different
VJ(`)-groups the level of similarity that indicates common clonality may
be different. Therefore, using the Gaussian probability distribution, built
upon the given VJ(`)-group, will make the model capable of adapting itself
to the local level of mutation frequency. We further note that, the stress
becomes non-zero only if the number of pair-wise shared mutations is non-
zero (Hij 6= 0). Conversely, the stress is forced to zero by the third term
of Eq. 4, even though non-shared mutations exist (Tij 6= 0). This way,
we avoid the impact of non-shared mutation rates on the clonal inference
process, and consequently the distance-based part of the SCOPer is fully
in charge to infer the clonal relationships. In practice, the behavior of the
stress function (Eq. 4, ignoring the first term Mij ) comparing two pairs
of sequences can be described as follows:

• if no shared mutations are observed, then the stress Sij is zero,
• if the two pairs have the same total number of mutations, then the pair

which accumulates more shared mutations will have higher stress, and
• if the two pairs have the same number of shared mutations, then the

pair which accumulates less non-shared mutations, will have higher
stress. (Note that Tij is always larger than or equal to Hij ).

2.3 Graph composition and local scaling

The graph construction at the core of SCOPer relies on a quantitative
notion of adaptive local neighborhoods in the dataset, which are encoded
by a symmetric Kernel function. The Kernel function is used to capture
intrinsic data geometries that approximate underlying manifold models
from the data. To construct the kernel graph, first, we generate a weighted-
distance matrix in the form of,

Wij =

{
Xij distance-based model

(1− Sij)Xij stress-based model
. (5)

The model is named “stress-based” when shared mutations are involved
in partitioning clones, otherwise it is named “distance-based”. In stress-
based model, each stress value Sij is subtracted from one to reverse the
scaling direction, so that the pair of sequences with higher stress become
closer to each other, thereby more likely to belong to the same clone. The
stress-based model from Equation 5 can be loosely thought of as Hooke’s
Law (W = κX , where κ = 1 − S), which rules the attraction force
between a pair of sequences using a “spring” with proportionality factor
κ (see Figure 4). In the subsequent step, we generate a fully connected
graph Kernel using a Gaussian similarity function in the form of,

Kij = exp(−W 2
ij/wiwj). (6)

Here, parameters wi and wj are the scaling distances corresponding to
the ith and jth sequences, respectively, which control the width of local
neighborhoods allowing the level of similarity to vary in different parts
of the graph. In this way, the local neighborhoods are determined for
each sequence, instead of selecting an universal scaling parameter for all.
The width of each local neighborhood is identified by a single weighted-
distance value such that sequences inside the neighborhood are more
similar to each other than the outsider sequences. In order to determine
the sequence-to-sequence scaling parameters a self-tuning framework
(Zelnik-Manor and Perona, 2005) (the so-called distance-gap procedure)
is incorporated into SCOPer. The distance-gap procedure determines
the scale parameter wi corresponding to the ith sequence by seeking a
relatively large gap in the set of weighted-distances from ith sequence to
the rest of the sequences. The distance-gap pipeline performs as follows.
First, the set of weighted-distances corresponding to the ith row of the
matrix W is retrieved. Then, a binned Gaussian kernel density estimate
of the weighted-distances is generated using the density function from
the stats R package. Next, the set of extrema of the continuous density
distribution is flagged by finding the weighted-distances at which the first
derivative of the distribution is zero while the second derivative is positive,
indicating a local minimum following a local maximum. Recall from
univariate Calculus that the first and second derivative for some function
f(x) corresponds to the slope of the tangent line and curvature of f at
point x, respectively. Finally, the scale parameter wi associated with ith

sequence is determined as the closest smaller weighted-distance to the
extremum with the lowest density value. If such an extremum were not
found, the scale parameterwi is simply determined as the first largest gap
of the rank-ordered set of entries corresponding to the ith row of the matrix
W .

Local scaling is especially useful when the classification of the B cell
repertoire contains multiple scales (e.g., if one clone is tight, while another

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2019. ; https://doi.org/10.1101/788620doi: bioRxiv preprint 

https://doi.org/10.1101/788620
http://creativecommons.org/licenses/by/4.0/


SCOPer: Spectral Clustering for clOne Partitioning 5

Table 1. Overview of 25 simulated datasets generated by the AbSim R package
(Yermanos et al., 2017). Each B cell clone is generated by one set of randomly
selected unmutated human H-chain germline gene sequences (Giudicelli et al.,
2004) to produce the V(D)J recombination event. Then, the germline undergoes
clonal expansion along a phylogenetic tree in which branching events occur
stochastically. SHM along this tree is modeled using a local sequence context-
dependent model (i.e., “S5F” model from (Yaari et al., 2013)).

Simulation Sequences Clones Largest
clone

Unique V
genes

Unique J
genes

sim1 324 331 10 392 2588 96 6

sim2 477 720 5347 2382 96 6

sim3 569 944 4710 2513 94 6

sim4 563 565 3572 3156 93 6

sim5 483 626 7954 2636 95 6

sim6 363 319 7752 3304 95 6

sim7 445 372 7171 2453 95 6

sim8 475 053 5385 2033 95 6

sim9 461 646 6944 3979 95 6

sim10 398 880 6759 4142 95 6

sim11 589 044 3478 2814 92 6

sim12 400 689 8634 2966 96 6

sim13 361 420 8345 2246 96 6

sim14 576 795 3157 2480 92 6

sim15 579 324 3167 2952 92 6

sim16 445 110 8434 2171 95 6

sim17 344 882 8938 2262 97 6

sim18 579 392 3307 2502 94 6

sim19 494 888 6084 2285 96 6

sim20 550 940 4359 2928 93 6

sim21 529 106 4706 3436 95 6

sim22 454 764 6296 3038 95 6

sim23 440 227 5386 3199 95 6

sim24 454 415 5350 4367 95 6

sim25 630 596 3401 3866 94 6

one is sparse). By means of local scaling, the junction sequence similarities
between different clones are lower than the similarities within any single
clone. Therefore, edges between sequences in local neighborhoods are
connected with relatively high kernels (i.e., Kij → 1), while edges
between far away sequences have smaller kernels (i.e., Kij → 0).
This is an important advantage of this methodology, by allowing the
level of sequence similarity to vary in different local neighborhoods
(a biologically plausible assumption), over the methodologies, e.g.
hierarchical clustering-based, that partition sequences using an universal
(fixed) level of similarity over all the sequences.

2.4 Spectral decomposition and clustering

Having defined a scheme to set the graph scale parameters automatically,
following with the calculation of the graph Kernel matrix K, the last
unknown free parameter in the model is the number of clones k, which
is determined by the eigen-decomposition of the Laplacian matrix. First,
the Laplacian matrix L = D −K is calculated, where D is the diagonal
matrix with its ith diagonal element being the sum of ith row of K. Then,
the Laplacian matrix is eigen-decomposed with eigenvalues {0 = λ1 ≤
λ2 ≤ · · · ≤ λm} and corresponding eigenvectors {ψi}mi=1, where
m indicates the number of sequences. Then, the number of clones k is
determined by finding the largest gap within the eigenvalue spectrum (the
so-called “eigen-gap” procedure) at which adding another clone does not
give much better modeling of the data. Finally, we perform k-means
Euclidean distance-based clustering over the k eigenvectors {ψi}ki=1

associated with the smallest k eigenvalues to find the members of each
clone.

3 Bulk B cell simulation and library preparation
Each simulated dataset was generated using the AbSim R package (version
0.2.6) in a B cell single-lineage fashion (Yermanos et al., 2017). Each
B cell clone simulation begins with a random selection from sets of
IGHV, IGHD, and IGHJ germline sequences (Giudicelli et al., 2004) to
produce a unique V(D)J recombination event. Then, clones are made by
introducing mutations using a local nucleotide context-dependent model
(i.e., S5F model from Yaari et al. (2013)), along a phylogenetic tree in
which branching events occur stochastically. This process was repeated to
create a collection of 25 simulated datasets. The size of each repertoire
was sampled from a normal distribution (mean equal to 500k and standard
deviation equal to 50k) and the clone sizes were sampled from a gamma
distribution (shape equal to 0.75, scale equal to 0.75, and amplitude
sampled from a normal distribution with mean equal to 1k and standard
deviation equal to 0.1k). The remaining parameters were set as default.
After simulation was done, the gene segments, including junction segment,
of each simulated sequence were identified using IgBLAST version 1.13.0
(Ye et al., 2013). Then, the outputs were retrieved and tab-delimited
database files were generated using the command line tool MakeDb,
from Change-O (version 0.4.5) (Gupta et al., 2015). Quality checks were
also undertaken to remove non-productive sequences. Specifically, each
sequence was checked to satisfy a set of constraints that the: (1) whole
sequence be annotated as functional, (2) whole sequence contains no
stop codons, and (3) junction is in-frame (i.e. the length is modulo 3).
Sequences which did not meet these criteria were excluded. At this point,
sequences that are identical (i.e. copies that were generated coincidentally)
are grouped together into “unique sequences”. The simulated datasets
were further processed using the SHazaM (version 0.1.11 or newer)
and Alakazam (version 0.2.11 or newer) R packages from Immcantation
framework (www.immcantation.org) resulting in new columns containing
VJ(`)-group identifiers, mutation frequencies, and distance-to-nearest
values (i.e., distribution of normalized Hamming distances from each
junction sequence to its nearest non-identical neighbor in a given VJ(`)-
group). Finally, the outcome was a single tab-delimited file per each
simulated dataset containing the metadata information associated with
each sequence to be used as input to the clonal inference pipeline.

Table 1 presents an overview of 25 simulated datasets used in
this study. Furthermore, the global metrics of the BCR simulated
repertoires, including: (1) junction length distribution, (2) distance-to-
nearest distribution, (3) clonal relative abundance distribution, (4) clone
size distribution, (5) mutation frequency distribution, (6) number of
clones per VJ(`)-group, (7) average pair-wise SHM for clone, and (8)
negative-control test, are presented in Supplementary Figures 1-25A-H,
respectively.

4 Results

4.1 Pair-wise shared SHM are enriched in B cell clones

Clonally related cells will share SHMs that were accumulated by common
ancestors over the course of clonal expansion. However, cells from distinct
clones are also expected to share mutations at some positions, such as
SHM hot-spots. Therefore, we sought to evaluate the degree to which pair-
wise shared mutations were enriched in B cell clones. For each simulated
dataset, the pair-wise shared SHM matrixH was generated for each B cell
clone by comparing the IGHV and IGHJ regions of each pair of sequences
with the relevant germline sequence. Then, the average of the upper
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Fig. 5. Integrating information from CDR3 similarity (distance-based) and shared mutations in the V and J segments (stress-based) improves clonal relationship inference. The spectral
clustering-based framework was applied to identify clonally-related sequences in 25 simulated datasets (diamonds) generated via AbSim R package (Yermanos et al., 2017) (Table 1).
Performance was assessed by calculating (A) sensitivity, (B) specificity, and (C) precision via applying the distance-based approach on the junction (ham-junc) and CDR3 (ham-cdr3)
regions, as well as the integrated distance- and stress-based approaches on the junction (ham-shm-junc) and CDR3 (ham-shm-cdr3) regions. Mean performance is indicated by the
solid bars, while the error bars define one standard deviation. The asterisks (∗) indicate p < 0.001 by paired t-test (note: the t-test has been performed only for the cases of interest.).

triangular elements was calculated (note thatH is a symmetric matrix). We
found that pair-wise shared SHMs could be identified in ∼ 95% of non-
singleton B cell clones (i.e., clones with more than one member) across all
simulated datasets. The non-singleton clones without shared mutations
tended to be small (with < 5 members), so the chance of observing
pair-wise shared mutations is lower (Supplementary Figures 1-25C).

We next sought to test whether this high rate of pair-wise SHM
sharing was specific to clonally-related sequences. We generated a set
of artificial clones (negative controls) by randomly sampling sequences
across known clones. Specifically, for each clone from the 100 largest
VJ(`)-groups (covering ∼ 30% of the total reads), we generated a set of
1000 negative controls with the same size as the given clone. We note
that since sampling was performed within each VJ(`)-group, the negative
controls were generated from sequences with the same junction length,
IGHV, and IGHJ genes as the given clone, thus resulting in a conservative
control experiment. Then, for each clone and corresponding set of negative
controls, the pair-wise shared SHM matrixH was generated by comparing
the IGHV and IGHJ regions of each pair of sequences with the relevant
germline sequence. We performed this analysis for all simulated datasets
and calculated the average of the upper triangular elements ofH . We found
that the true clones exhibited significantly (p < 0.001) higher pair-wise
shared SHM rates (on average ∼ 16 ± 6 mutations per clone) compared
with the set of negative controls (on average∼5±1mutations per negative
control), with a percentage difference of ∼ 105% on average across all
simulated datasets (Supplementary Figures 1-25H). Overall, these results
support the idea that the pair-wise shared SHM frequency can be leveraged
as a biometric (fingerprint) in the clonal relationship inference process.

4.2 The stress-based method improves the sensitivity,
specificity, and precision of clonal relationship inference

The original distance-based model for identification of B cell clones used
by SCOPer measures distance using the junction region of the BCR (Nouri
and Kleinstein, 2018b). The junction includes the CDR3 along with the
two flanking amino acids (one 5′ that is encoded by IGHV, and one 3′ that
is encoded by IGHJ) (Lefranc, 2014). As the two flanking positions are
highly conserved, we sought to determine whether they were necessary to
include in the distance measure. Indeed, we hypothesized that including
these positions could even lead to decreased performance, as they are
likely to be identical across independent clones and will have increasing
influence on the distance for clones with shorter junction lengths.

To test this hypothesis, we compare the performance of distance-
based model (equation 5) using either the junction-targeted (termed as
ham-junc) or CDR3-targeted (termed as ham-cdr3) methodologies.
Using simulated data, performance was quantified using the measures
of sensitivity, specificity, and precision. The sensitivity (true positive
rate) of each method is defined as the fraction of all sequence pairs
from the same clone that were correctly inferred by the method, while
specificity (true negative rate) is defined as the fraction of pairs of unrelated
sequences that were successfully inferred by the method to be in different
clones. Finally, the precision (positive predictive value) of each method
is defined by measuring how often inferred clonal relative sequence pairs
are truly clonally related. We found that both models inferred the clonal
relationships with high sensitivity, specificity, and precision with values
of > 94.0% on average across all simulated datasets. However, each of
the measures of accuracy were significantly (p < 0.001) improved when
distance was based on the CDR3 region, rather than the junction region
(Figure 5). Thus, the conserved positions flanking the CDR3 should not
be used to define the distance between sequences.

We next asked whether incorporating shared SHMs into the procedure
lead to even better performance. We thus characterized the performance
of stress-based model (equation 5) using CDR3-targeted (termed as
ham-shm-cdr3) methodology. Including shared SHM with the stress-
based model improved measures of sensitivity, specificity, and precision
to & 97% on average across all simulated datasets. For the sake
of completeness, we also characterized the performance of stress-
based model using junction-targeted (termed as ham-shm-junc)
methodology. Consistent with our analysis of the distance-based method,
we found that using the junction rather than the CDR3 region led to a
significant (p < 0.001) decrease in performance (Figure 5).

These results indicate that the best performance within the spectral
clustering-based framework is achieved when the stress-based model was
accompanied with a CDR3-targeted distance method. Overall, when
the original SCOPer methodology (ham-junc) is compared to the
new stress-based model (ham-shm-cdr3), a ∼ 3% improvement in
the sensitivity, ∼ 2.5% improvement in the specificity, and ∼ 1%

improvement in the precision was achieved on average across all simulated
datasets (Figure 5).

To better understand how the stress-based method improves the
performance of the clonal relationship inference, we examined its
operation in detail using one of the identified VJ(`)-groups with 42 unique
sequences. As these are simulated data, we know that these sequences
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Fig. 6. The stress-based approach improves clonal inference by pulling clonally-related sequences toward each other. The spectral clustering-based method was applied to infer the clonal
relationships among 42 sequences from a given VJ(`)-group. These sequences belong to two clones, one consisting of 41 sequences (diamonds), and the other only one sequence (triangle).
Clonal relationships were inferred (indicated by filled colors) via the CDR3-targeted distance-based approach (ham-cdr3) leading to two clones (Inferred-1 and Inferred-2) (A), and also
in conjunction with the stress-based approach (ham-shm-cdr3) again leading to two clones (Inferred-1 and Inferred-2) (C). For visualization, the sequences were embedded in 2D space
using the qgraph function from the qgraph R package, where the thickness of each edge indicates the inverse of the pair-wise ham-cdr3 (A) and ham-shm-cdr3 distances (C).
Pair-wise distances were normalized by the CDR3 length and compared in log scale (B).

are comprised of two clones, one consisting of 41 sequences, and the
other of only one sequence. Comparing the clonal relationships using
the CDR3-targeted distance-based method alone (ham-cdr3) and the
CDR3-targeted distance-based method along with stress-based method
(ham-shm-cdr3), we find that both methodologies inferred two clones.
However, CDR3-targeted distance-based method failed to accurately infer
the clonal relationships of one of the sequences, which resulted in one
false positive and multiple false negatives (Figure 6A). On the other hand,
when the stress among sequences was expressed using the pair-wise SHMs
(on average ∼ 23 ± 8 mutations were counted per pair, from which
∼7±5mutations were shared), the clonally-related sequences were pulled
toward each other whereas the singleton remained separated, thereby the
performance of the local scaling procedure was improved (Figure 6B).
Hence, the ham-shm-cdr3 method resulted in no false relationships in
this particular case (Figure 6C).

Along with simulated data, we also evaluated the performance of the
ham-shm-cdr3 method by estimating specificity using experimental
BCR sequencing data from 58 individuals with acute dengue infection
(Parameswaran et al., 2013). By definition, clones cannot span different
individuals. To estimate specificity, we combine data from multiple
individuals, use our proposed method to identify clonal relationships,
and then count the frequency of clones that are (incorrectly) inferred to
be shared across individuals (Gupta et al., 2017). We use the procedure
proposed in (Nouri and Kleinstein, 2018a). First, one of the individuals
(the dataset with largest number of unique sequences) was chosen as the
“base”. Next, a single sequence was chosen randomly from each of the
remaining individuals and added to the sequencing data from the base
individual. Specificity was then defined by how often the sequences from
non-base individuals were correctly determined to be singletons. Any
grouping of these sequences into larger clones must be a false positive.
This procedure was then repeated for 100 cycles. The results indicated
that the ham-shm-cdr3 method has a high specificity with a value of
∼96.0% on average across all cycles. Thus, combining shared SHMs in
the V and J segments of the BCR can be leveraged along with the CDR3
sequence to identify clonally related sequences with high specificity in
experimental data.

4.3 The SCOPer algorithm is efficiently parallelized

Computational efficiency is an important property, considering the recent
growth in the size of typical BCR repertoires (Soto et al., 2019; Briney
et al., 2019). Using the distance-based method we found that clonal
partitioning∼480±85 k simulated sequences (the average repertoire size
used in this study) took ∼ 30 ± 5 min, but when the stress-based model
was involved the partitioning took ∼ 160 ± 15 min. This assessment
was performed on a Linux computer with a 2.20 GHz Intel processor
and 32 GB RAM. There are two main factors that drive this increased
computational cost. In our current implementation, clonal inference is
performed on the set of unique sequences (i.e., sequences with distinct
nucleotide sequences). When using a distance-based model that considers
only the junction or CDR3, the chance of having identical sequences
in each VJ(`)-group is high (on average across all simulated datasets
∼ 60% of CDR3s are unique per each VJ(`)-group). This decreases the
computational cost of the algorithm. In contrast, when using the stress-
based model, the V and J segments are also relevant, allowing fewer
sequences to be combined into identical groups (i.e., leading to more
unique sequences). The computational cost increases with this increasing
number of sequences n. Specifically the eigen-decomposition algorithm,
which is scaled by O(3n2) (we note that the targeted matrix, to be
spectrally decomposed, is symmetric which improves the computational
cost significantly). Furthermore, the pair-wise SHM analysis brings
additional computational complexity. For instance, the computational
complexity of generating the pair-wise shared SHM matrix H algorithm
is O(n2). This run time will be summed up by the pair-wise distance
matrixX with the same computational complexity. However, the SCOPer
distributed implementation facilitates the clonal inference process by
parallelizing the computation and greatly reducing the running time. In
our current implementation, the parallelization is achieved by distributing
the clonal inference process from each VJ(`)-group of sequences across
processing cores dynamically. The parallelization is possible on cores from
a single workstation or on high-performance computing (HPC) cluster
facilities. For instance, using only five cores in parallel decreased the
running time to∼44± 11 min, a∼4-fold improvement, for partitioning
∼ 480 ± 85 k sequences. Our benchmarks across all simulated data sets
demonstrate good scalability resulting in a speedup, defined as the time it
takes the stress-based algorithm to execute with one processor divided by
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the time it takes to execute in parallel, that is linear to the number of cores
(<10) utilized (Figure 7).

5 Conclusion
B cell clonal diversity is introduced through two main mechanisms. The
first occurs during maturation in the bone marrow by random joining
of germline-encoded V, D, and J heavy chain genes (or V and J light
chain genes) combined with the action of exonucleases and terminal
deoxynucleotidyl transferase, which add diversity at the recombination
boundaries. This diversity acts as a fingerprint that can be used to
separate distinct clones based on the distance between their junction (or
CDR3) nucleotide sequence (inter-clonal diversity). Subsequently, upon
encountering cognate antigen, B cells can enter a germinal center and
undergo further diversification through SHM and affinity maturation. The
accumulation of SHMs has the effect of spreading out the sequences of
B cell clonal variants around their initial points of creation (intra-clonal
diversity). A significant challenge in the clonal relationships inference
problem is to define meaningful metrics which can leverage inter-clonal
diversity to recognize sequences that are part of independent clones
(specificity), while also modeling intra-clonal diversity to recognize the
variants that are clonally-related (sensitivity).

We developed an unsupervised learning algorithm based on spectral
clustering that provides a framework for the inference of B cell clonal
relationships. This method combines CDR3 similarity with shared SHM
profiles in the V and J segments to capture both inter- and intra-
clonal diversification. We showed that the inclusion of pair-wise shared
SHM patterns improves the methods ability to identify clonally related
sequences. Overall, the method determines B cell clones by: (1) common
IGHV- and IGHJ-gene calls, (2) identical or similar CDR3 nucleotide
sequences, and (3) shared somatic hypermutation patterns in the V and J
regions.

In the absence of gold standard experimental data with known clonal
relationship between sequences, the validation was performed using B
cell simulations which offer a mechanism to generate data where the
underlying clonal groups are known. However, using experimental data
we also reported a measure of specificity based on the frequency of clones
that are predicted to be shared across individuals.

The influence of SHM hot- and cold-spot biases in the clonal inference
process have been incorporated using an SHM targeting model (first
term in equation 4). The analysis described here uses the S5F targeting
model for SHM that was previously constructed (Yaari et al., 2013).
However, while hot- and cold-spot biases are generally conserved across
individuals, these intrinsic biases can be altered by age (Hoehn et al.,
2019), and may also differ across species (Cui et al., 2016). Clonal
identification could be improved by using a data-specific targeting model
that can be built using toolkits available in the Immcantation framework
(www.immcantation.org). The S5F model seeks to avoid the biases
introduced by selection, and rather seeks to capture only the intrinsic biases
introduced by the activation-induced cytidine deaminase (AID) binding
preferences and error-prone DNA repair in a 5-mer micro-sequence context
(Yaari et al., 2013). Future improvements to the SHM targeting model, such
as including effects beyond motif-specificity (MacCarthy et al., 2009), may
also improve clonal relationship inference.

While the methodology presented here was developed and tested
for sequencing data from the H chain only, cutting-edge technologies,
including single-cell sequencing, provide paired IGH- and IGL-chain data
(DeKosky et al., 2015; Macosko et al., 2015; Briggs et al., 2017). These
paired data can be incorporated into the proposed method by extending the
criteria for the initial grouping of sequences (i.e., VJ(`)-groups) to include
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Fig. 7. The SCOPer algorithm can be run efficiently on multiple cores. The speedup,
defined as the time it takes the algorithm to execute with one processor divided by the
time it takes to execute in parallel, was calculated for the (ham-shm-cdr3) method for
different numbers of processing cores. In each case, speedup was calculated as the average
across 25 simulated data sets (with error bars showing the standard deviation). Evaluation
was carried out on a Linux computer with a 2.20 GHz Intel processor and 32 GB RAM.
The linear fit is shown by a dashed line, while the ideal speedup is shown by the dot-dash
line.

the same IGHV-gene, IGHJ-gene, IGH-CDR3 length, IGLV-gene, IGLJ-
gene, and IGL-CDR3 length. BCR clonal inference can then be carried
out as before on these more refined groups. The low diversity of the IGL-
chain junction region makes it unlikely that including this region in the
clustering will provide a significant performance improvement (Zhou and
Kleinstein, 2019).

The definition of clone used in this work is based on the assumption
that SHM introduces only point substitutions into the BCR sequence.
However, it has been shown that insertions and deletions (indels) can also
be introduced at a low frequency (<2-3%) (Smith et al., 1996; Ohlin and
Borrebaeck, 1998; Wilson et al., 1998; de Wildt et al., 1999; Briney et al.,
2012; Hwang et al., 2017). Distance functions that allow for sequences of
different lengths could be used to identify clonally related sequences that
differ by indels (leading, for example, to sequences with different CDR3
lengths). However, these must be rigorously tested.

The methods described in this study have been implemented in the
SCOPer (Spectral Clustering for clOne Partitioning) R package, which
provides a computational framework to explore multiple approaches
to infer clonal relationships in AIRR-seq data. This implementation
of SCOPer is freely available as part of the Immcantation framework
(www.immcantation.org) under the CC BY-SA 4.0 license. The input and
output formats of SCOPer conform to the Change-O (Gupta et al., 2015)
and AIRR (Vander Heiden et al., 2018) file standard, and thus the method
can be used seamlessly as part of the Immcantation tool suite, including
methods for B cell clonal lineage reconstruction, lineage topology analysis,
clonal diversity analysis, and other advanced repertoire analyses linked to
the clonal landscape.

6 Data availability
The simulated data are accessible at http://clip.med.yale.edu/papers/Nouri2019A.
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