1	Human blood exposure to <i>Clostridium perfringens</i> epsilon toxin may shed light on
2	erythrocyte fragility during active multiple sclerosis
3	
4	K. Rashid Rumah, ^{a#} Olawale E. Eleso, ^a Vincent A. Fischetti ^a
5	
6	^a The Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University,
7	New York, New York, United States of America
8	
9	Running Head: C. perfringens ETX is hemolytic to human RBCs
10	
11	#Address correspondence to K. Rashid Rumah, rrumah@rockefeller.edu
12	
13	Abstract: 250 words
14	Text: 3,573
15	
15	
16	
17	
17	
18	
19	
17	
20	

21 ABSTRACT

22	During active multiple sclerosis (MS), red blood cells (RBCs) harvested from patients
23	reportedly display increased osmotic fragility and increased cellular volume
24	(macrocytosis). The cause of these abnormalities remains unknown. We have previously
25	proposed that Clostridium perfringens epsilon toxin (ETX) may be a blood-borne trigger
26	for newly forming MS lesions based on its tropism for blood-brain barrier vasculature
27	and CNS myelin. Recently, Gao et al. have reported that ETX binds to and damages
28	human RBCs, leading to hemolysis. Moreover, the authors suggest that purinergic
29	nucleotide (P2) receptor activation amplifies the hemolytic process. Here, we confirm
30	that ETX indeed causes human-specific RBC lysis. However, our data suggest that the
31	hemolytic process is mediated by metal-catalyzed oxidation of the swell-induced,
32	nucleotide-sensitive ICln chloride channel. We use spectrophotometry, flow cytometry
33	and Western blotting to show that ETX targets human RBCs and T lymphocytes via their
34	shared expression of Myelin and Lymphocyte protein (MAL); a protein shown to be both
35	necessary and sufficient for ETX binding and toxicity. ETX likely triggers T cells to
36	release redox-active heavy metals, Cu^+ and Fe^{3+} , via the lysosomal exocytosis pathway,
37	while RBCs likely release these heavy metals via ETX pore formation within the RBC
38	membrane. Extracellular Cu^+ and Fe^{3+} may then amplify hemolysis by oxidizing a
39	previously identified heavy metal-binding site within the ICln channel pore, thus
40	deregulating its normal conductance. Elucidating the precise mechanism of ETX-
41	mediated hemolysis may shed light on the underlying etiology of MS, as it would explain
42	why MS RBC abnormalities occur during active disease.

43

44 IMPORTANCE

45 During active MS, numerous reports suggest that circulating RBCs are larger than normal 46 and fragment more easily. The exact trigger(s) for these RBC abnormalities and for 47 newly forming MS lesions remains unidentified. We have proposed that ETX, secreted 48 by the gut bacterium *Clostridium perfringens*, may be an environmental trigger for newly 49 forming MS lesions. Indeed, ETX has been shown to breakdown the BBB, enter the 50 brain and damage the myelin sheath. Because ETX is typically spread through the 51 circulatory system, we wished to determine how the toxin affects human blood. 52 Provocatively, there has been a recent report that ETX produces cellular abnormalities in 53 human RBCs, reminiscent of what has been described during active MS. In our study, 54 we sought to elucidate the precise mechanism for how ETX causes RBC damage. In 55 addition to triggering BBB breakdown and CNS demyelination, ETX might also explain 56 why RBCs appear abnormal during MS attacks.

57

58 INTRODUCTION

Although typically considered a disease confined to the central nervous system (CNS),
multiple sclerosis (MS) has frequently been shown to cause hematologic abnormalities.
To our knowledge, Waksman provided the lone report of T-lymphocyte abnormalities
during active MS, which entailed cellular enlargement and a decline in circulating T cell

63 numbers [1]. However, there have been numerous reports of red blood cell (RBC)

64 abnormalities during, and up to one week prior to the onset of neurologic symptoms [2-

65 7]. These decades-old RBC studies have described increased RBC volume

66 (macrocytosis) and increased osmotic fragility, which makes hemolysis more likely to

67	occur. Interestingly, Lewin et al. have recently shed additional light on MS-related RBC
68	abnormalities by showing that free hemoglobin, presumably released after hemolysis,
69	correlates with iron deposition along CNS blood vessels. Iron deposition may lead to
70	neuronal toxicity, axonal loss and the progression from relapsing-remitting MS (RRMS)
71	to secondary-progressive MS (SPMS) [8]. Despite the possible relevance to how MS
72	fundamentally progresses, these hematologic abnormalities remain unexplained.
73	
74	We have previously suggested that newly forming MS lesions may be triggered by a gut-
75	derived neurotoxin, Clostridium perfringens epsilon toxin (ETX), which is disseminated
76	via the circulatory system [9-12]. In support of this theory, Wagley et al. have recently
77	identified serological evidence of prior ETX exposure in MS patients from the United
78	Kingdom [13], complementing what we have observed in an American cohort [9].
79	
80	C. perfringens is an anaerobic, spore-forming, gram-positive bacillus that is sub-
81	classified into seven distinct toxinotypes (A-G) based on differential exotoxin production
82	[14]. <i>C. perfringens</i> type A typically colonizes the human gut with a prevalence of 63%
83	among healthy individuals [15], while C. perfringens types B and D, the producers of
84	ETX, are commonly found in the intestines of ruminant animals such as sheep, goats, and
85	cattle but rarely in humans [16]. ETX is a potent neurotoxin secreted as a 33 kDa
86	inactive precursor during the logarithmic growth phase of C. perfringens in the
87	mammalian intestine. This poorly active precursor is cleaved by gut trypsin,
88	chymotrypsin and several other carboxypeptidases [17]. The \sim 27 kDa ETX cleavage
89	product permeablizes the gut epithelium, enters the blood stream and binds to receptors

90	on the luminal surface of brain endothelial cells [9,16]. Once bound to brain
91	microvessels, ETX oligomerizes and forms a heptameric pore in the endothelial cell
92	plasma membrane. Brain endothelial cell damage leads to breakdown of the BBB [16].
93	In addition to its known effects on BBB vasculature, ETX has been found to specifically
94	bind to and damage myelin when incubated with mammalian brain slices [11, 18, 19].
95	This unique ability to interact specifically with the tissues that are damaged in MS, i.e.,
96	the BBB and CNS myelin, makes ETX a promising candidate as an environmental MS
97	trigger.
98	
99	ETX binds to and damages cells that express the tetraspan transmembrane myelin and
100	lymphocyte protein (MAL); relevant cell types containing MAL include the myelin-
100 101	lymphocyte protein (MAL); relevant cell types containing MAL include the myelin- oligodendrocyte unit, blood-brain barrier endothelial cells and circulating CD4+ T-
101	oligodendrocyte unit, blood-brain barrier endothelial cells and circulating CD4+ T-
101 102	oligodendrocyte unit, blood-brain barrier endothelial cells and circulating CD4+ T- lymphocytes [10]. Intriguingly, Gao et al. have recently reported that ETX directly binds
101 102 103	oligodendrocyte unit, blood-brain barrier endothelial cells and circulating CD4+ T- lymphocytes [10]. Intriguingly, Gao et al. have recently reported that ETX directly binds to the human RBC plasma membrane, matures into the ETX pore-complex and triggers
101 102 103 104	oligodendrocyte unit, blood-brain barrier endothelial cells and circulating CD4+ T- lymphocytes [10]. Intriguingly, Gao et al. have recently reported that ETX directly binds to the human RBC plasma membrane, matures into the ETX pore-complex and triggers dose-dependent hemolysis, while sparing RBCs from other species. Furthermore, they
101 102 103 104 105	oligodendrocyte unit, blood-brain barrier endothelial cells and circulating CD4+ T- lymphocytes [10]. Intriguingly, Gao et al. have recently reported that ETX directly binds to the human RBC plasma membrane, matures into the ETX pore-complex and triggers dose-dependent hemolysis, while sparing RBCs from other species. Furthermore, they propose that ETX-mediated hemolysis is amplified by purinergic nucleotide (P2) receptor

In this study, we confirm that ETX indeed binds to and damages human RBCs, likely due to their expression of MAL isoform C. However, our data point to a different nucleotidesensitive system being responsible for amplifying hemolysis. We find that inhibitors of the nucleotide-sensitive, swell-induced chloride channel, ICln, successfully inhibit the hemolytic process.

113

114	Because ETX has only recently garnered interest in its potential to cause human disease,
115	there is a paucity of studies published on how it affects human blood. Gaining insight
116	into how ETX triggers human RBC fragility may provide ancillary support for the ETX-
117	MS hypothesis in light of the fact that MS-associated RBC abnormalities remain
118	unexplained. Furthermore, if ETX is ultimately shown to be involved in triggering new
119	MS lesions, understanding the precise mechanism of toxin-triggered hemolysis may open
120	avenues for novel biomarkers capable of predicting the onset of neurologic symptoms, as
121	RBC abnormalities have been shown to precede clinical relapse in some instances.
122	Considering the recent report that hemolysis may play a critical role in the transition from
123	RRMS to SPMS [8], elucidating how hemolysis occurs may allow for clinical
124	interventions aimed at preventing disease progression and permanent neurological
125	decline.
126	
127	RESULTS
128	Human blood is uniquely sensitive to ETX-mediated hemolysis via MAL expression
129	We first attempted to repeat the finding by Gao et al. that ETX-mediated hemolysis is

130 specific to human blood [20]. We compared the lytic effect of ETX on human blood vs.

131 blood from ruminant animals such as sheep, goats and cows, as these animals are the

132 natural hosts for ETX-secreting *C. perfringens* strains [16]. We also tested guinea pig

133 blood as a non-human, non-ruminant control. Highly purified epsilon protoxin

134 (protoETX), as determined by SDS-PAGE (Supplemental Fig 1) was trypsin activated,

and time-course analysis showed that this activated ETX (15nM) caused hemolysis in

136	PBS-washed whole human blood. However, blood harvested from non-human species
137	was completely refractory (Fig 1a). Importantly, we also determined that trypsin
138	activation was necessary for hemolytic activity, as non-activated protoETX failed to
139	trigger hemolysis (Supplemental Fig 2). Moreover, inhibition of activated ETX with an
140	anti-ETX neutralizing antibody, JL008, inhibited hemolysis in a dose-dependent manner
141	(Supplemental Fig 3). We also confirmed that ETX directly binds human RBCs by
142	incubating cells harvested from human, rhesus macaque, sheep and rat with non-activated
143	protoETX (50nM), which is capable of cellular binding, but is incapable of forming pores
144	within the cell membrane [16]. We visualized human-specific ETX binding by flow
145	cytometry using custom anti-ETX antibody, JL001.2 (Fig 1b).
146	
147	Our previous work has shown that lipid raft protein, MAL (17 kDa, predicted), is both
148	necessary and sufficient for ETX binding and toxicity, thus we sought to determine if
149	human RBCs express MAL. Consistent with MAL's proposed role in ETX toxicity and
150	with previously published RBC membrane proteomic analysis [21], we corroborated that
151	human RBCs indeed express MAL; specifically a shortened isoform predicted to be
152	11kDa, MAL isoform C (Fig 1c). RBCs from refractory species, cow and rat, were both
153	negative for MAL expression. However, we cannot exclude the possibility that the
154	recognition antibody used may be specific for human MAL. Interestingly, there seemed
155	to be a trace expression of full length MAL (open arrowhead) in addition to the dominant
156	band appearing for shortened MAL isoform C (closed arrowhead).
157	

159 P2 receptor agonists and antagonists both inhibit ETX-mediated hemolysis

- 160 While assessing the possible involvement of the P2 purinergic nucleotide receptors in
- 161 ETX-mediated hemolysis (as suggested by Gao et al.), we first exposed PBS-washed
- 162 whole human blood to: i) the irreversible P2 receptor antagonist, oxidized ATP (oxATP);
- ii) P2 receptor agonists ATP and GTP and; iii) UMP, as a poorly interacting nucleotide
- 164 control, before treatment with ETX [22]. Surprisingly, we found that both P2 agonists
- and P2 antagonists inhibited ETX-mediated hemolysis (Fig 2a). Furthermore, we found
- that overnight incubation with oxATP and subsequent washout of this irreversible P2
- 167 inhibitor prior to ETX treatment largely abolished its anti-hemolytic effect (Fig 2b).
- 168 These results led us to search for alternative pathways capable of amplifying ETX-

169 mediated hemolysis in a nucleotide-sensitive fashion.

170

O₂ and redox-active heavy metals, Cu⁺ and Fe³⁺, are involved in ETX-mediated hemolysis

173 A serendipitous finding, observed upon exposing ETX-treated blood to different

174 experimental conditions, was that atmospheric oxygen is required for hemolysis. One

- 175 concern was that anaerobiosis may be blocking a pathway crucial to ETX-mediated
- 176 hemolysis that is dependent on the electron-transport chain and oxidative
- 177 phosphorylation. To address this, we compared the hemolytic effect of ETX under
- aerobic, anaerobic and sodium azide (10mM) conditions. Sodium azide was used as an
- alternative method to inhibit oxidative phosphorylation in lieu of atmospheric oxygen
- 180 depletion. The results revealed that ETX-mediated hemolysis was inhibited under

181 anaerobic conditions, but not by oxidative phosphorylation inhibition via sodium azide182 blockade (Fig 3a).

183

184	Considering the involvement of ambient O ₂ , we explored various sources of cellular free-
185	radial generation. A potent way for macromolecules to be specifically targeted and
186	damaged in an oxygen-dependent manner is by metal-catalyzed oxidation, where redox-
187	active transition metals coordinate with metal-binding amino acid residues, e.g., cysteine,
188	histidine and methionine, and locally generate reactive oxygen species (ROS) [23].
189	Along these lines, we pre-incubated ETX-treated human blood with the hydrophilic Cu^+
190	chelator, tris-hydroxypropyltriazolylmethylamine (THPTA) and the hydrophilic Fe^{3+}
191	chelator, deferoxamine (DFO), both of which significantly inhibited ETX-mediated
192	hemolysis. In contrast, the Cu ²⁺ chelator, penicillamine (Pncl), and the non-specific
193	metal chelator, citrate, were not effective at inhibiting hemolysis (Fig 3b). As an
194	alternative to "artificial" metal chelators, we also exposed ETX-treated blood to
195	"endogenous" metal chelators, such as the heavy metal-coordinating amino acids,
196	cysteine, histidine and methionine [24], each of which transiently inhibited ETX-
197	mediated hemolysis, cysteine > histidine > methionine. However, the control amino
198	acids, lysine, glutamate and glycine were significantly less effective (Fig 3c).
199	
200	A metal-coordinating protein involved in how the RBC membrane interacts with
201	liberated Cu ⁺ and Fe ³⁺ is likely to bind more than one metallic species, and with varying

affinities. This notion led us to hypothesize that pretreatment of human blood with

203 redox-silent transition metals, such as Ni^{2+} and Mn^{2+} , might protect RBCs from ETX-

204	mediated hemolysis by competing for crucial metal-binding sites on the RBC membrane.
205	Indeed, we observed that both Ni^{2+} and Mn^{2+} significantly inhibited ETX-mediated

206 hemolysis, $Ni^{2+} > Mn^{2+}$. Ca²⁺ also exhibited inhibitory properties, but to a lesser extent

when compared to the redox-silent transition metals (Fig 3d).

208

The heavy metal binding, nucleotide-sensitive ICln chloride channel amplifies ETXmediated hemolysis

The sensitivity of ETX-mediated hemolysis to the presence of nucleotides, ambient
oxygen and the extracellular chelation of redox-active transition metals led us to search

213 the literature for a surface molecule, which may be sensitive to these stimuli. We

214 identified the ubiquitously expressed, outwardly-rectifying ICln chloride channel as a

215 lead candidate. Under normal conditions, the ICln protein is found to be closely

associated with the actin cytoskeleton abutting the inner leaflet of the plasma membrane

217 [25]. Upon cellular swelling, as would be expected from ETX pore formation, ICln

rapidly inserts into the plasma membrane forming a channel that causes intracellular

219 chloride to flow out of the cell, against its diffusion gradient. This outward rectification

allows the cell to decrease its volume, thus avoiding osmolysis [26]. Remarkably, a key

histidine residue, His64, resides within the ICln pore. His64 coordinates with Ni^{2+} to

alter ICln's normal conductance [27]. We hypothesize that this regulatory, heavy metal-

binding residue may be the site at which redox-active Cu⁺ and Fe³⁺, previously liberated

by initial ETX pore formation, bind to and damage this volume-regulating channel. Of

225 note, ICln also possesses distinct Ca^{2+} binding sites, located near the extracellular

226 opening of the channel that allow for conductance inhibition by extracellular Ca^{2+} [27].

228	An alternate name for ICln is chloride channel nucleotide sensitive 1A (CLNS1A). As
229	the name suggests, the presence of extracellular nucleotides also regulates ICln
230	conductance, i.e., ATP and GTP inhibit ICln [28]. To further investigate ICln's potential
231	role in ETX-mediated hemolysis, we tested other distinct classes of ICln inhibitors,
232	namely the chromones (cromolyn and nedocromil) [29], and the cyclamate anion [30];
233	each of which successfully inhibited ETX-mediated hemolysis (Figs 4a and 4b). We
234	tested each class of ICln inhibitor in an aggregate experiment to provide a comparative
235	analysis (Fig 4c). Please note that we omitted the anti-retroviral nucleoside analogue
236	ICln inhibitors, acyclovir and AZT [31] due to poor solubility relative to the other ICln
237	inhibitors. Interestingly, when we assessed RBC ICln expression via Western blot, we
238	observed the occasional appearance of an ICln doublet (open arrowhead), consistent with
239	what has been observed in previous studies [25]. However, the doublet did not correlate
240	with changes in the ETX concentration (Fig 4d).
241	
242	Because other pore-forming toxins that form similarly sized pores, e.g., Staphylococcus
243	aureus alpha toxin, have been reported to cause hemolysis via P2 receptor amplification
244	[32], we explored the possibility that ICln may also be a target for other toxins. Indeed,
245	when we pre-incubated human blood with a large panel of ICln inhibitors and heavy
246	metal chelators, we found that S. aureus alpha toxin also employed the ICln channel,
247	similar to what we had observed for ETX (Fig 4e).
248	
240	

250 T cell lysosomal exocytosis contributes to ETX-mediated hemolysis

251	Because human T-lymphocytes also express MAL [33, 34], we also wanted to explore
252	the possibility that T cells might contribute to ETX-mediated hemolysis. To assess
253	possible leukocyte involvement, we compared the rate of ETX-mediated hemolysis in
254	PBS-washed whole blood to that of PBS-washed RBCs that were leukocyte depleted (Fig
255	5a). The slowed rate of ETX-mediated hemolysis in the case of leukocyte depletion
256	prompted to us to confirm that MAL-expressing CD4+ T cells do indeed bind ETX (Fig
257	5b). In agreement with the literature, ETX binding suggests that human T cells express
258	MAL, while non-malignant B cells do not [35].
259	
260	Blanch et al. have recently determined that ETX forms pores in the membranes of a
261	human T-lymphocyte cell line [36]. Moreover, they demonstrated that T-lymphocyte cell
262	lines are sensitive to ETX toxicity, while B-lymphocyte cell lines are not. We wished to
263	confirm that primary T cells are indeed susceptible to ETX. Therefore, we isolated CD3+
264	T cells and exposed them to ETX (50nM) for 1 hour at 37°C and assessed cell death by
265	propidium iodide (PI) uptake. Isolated CD20+ B-lymphocytes were used as a control
266	lymphocyte population. Results revealed that a subset of human T cells is sensitive to
267	ETX-mediated damage, while human B cells are completely refractory (Fig 5c).
268	
269	One way that nucleated cells can defend against pore-forming toxins is via lysosomal
270	exocytosis [37, 38]. However, this pathway has been described for toxins that form
271	relatively large pores (> 2nm in diameter) in the plasma membrane. For example,
272	streptolysin O allows the influx of Ca ²⁺ , which then triggers the lysosomal exocytosis

273	pathway and lysosomal hydrolase-mediated membrane internalization and repair [37, 39].
274	Toxins similar to ETX that form much smaller pores, such as Staphylococcus aureus
275	alpha toxin, have not previously been reported to trigger lysosomal exocytosis.
276	Nucleated cells exposed to small pore formers are thought to first internalize these toxins
277	and then expel them in a membrane-bound exosome-like form [40]. However, the
278	exocytosis machinery has not been clearly identified. Along these lines, we wished to
279	determine if the lysosomal exocytosis pathway might be involved in how nucleated cells,
280	e.g., human T cells, process small pore-forming toxins such as ETX. Intriguingly, similar
281	to Staphylococcus aureus alpha toxin, ETX has been reported to undergo internalization
282	soon after binding the plasma membrane of nucleated cells [41].
283	
284	Administration of ETX (20nM) to human T cells caused significant surface expression of
284 285	Administration of ETX (20nM) to human T cells caused significant surface expression of lysosome associated membrane protein-1 (LAMP1), a marker for the limiting membrane
285	lysosome associated membrane protein-1 (LAMP1), a marker for the limiting membrane
285 286	lysosome associated membrane protein-1 (LAMP1), a marker for the limiting membrane of the lysosome, and thus a marker for lysosomal exocytosis [39]. To determine if
285 286 287	lysosome associated membrane protein-1 (LAMP1), a marker for the limiting membrane of the lysosome, and thus a marker for lysosomal exocytosis [39]. To determine if normal lysosomal function is required for ETX-mediated lysosomal exocytosis, we
285 286 287 288	lysosome associated membrane protein-1 (LAMP1), a marker for the limiting membrane of the lysosome, and thus a marker for lysosomal exocytosis [39]. To determine if normal lysosomal function is required for ETX-mediated lysosomal exocytosis, we disrupted lysosomal acidification and subsequent function, by exposing ETX-treated T
285 286 287 288 289	lysosome associated membrane protein-1 (LAMP1), a marker for the limiting membrane of the lysosome, and thus a marker for lysosomal exocytosis [39]. To determine if normal lysosomal function is required for ETX-mediated lysosomal exocytosis, we disrupted lysosomal acidification and subsequent function, by exposing ETX-treated T cells to chloroquine, a lysosomotropic agent that strongly suppressed ETX-mediated
285 286 287 288 289 290	lysosome associated membrane protein-1 (LAMP1), a marker for the limiting membrane of the lysosome, and thus a marker for lysosomal exocytosis [39]. To determine if normal lysosomal function is required for ETX-mediated lysosomal exocytosis, we disrupted lysosomal acidification and subsequent function, by exposing ETX-treated T cells to chloroquine, a lysosomotropic agent that strongly suppressed ETX-mediated lysosomal exocytosis (Fig 5d). Chloroquine preferentially accumulates in acidic
285 286 287 288 289 290 291	lysosome associated membrane protein-1 (LAMP1), a marker for the limiting membrane of the lysosome, and thus a marker for lysosomal exocytosis [39]. To determine if normal lysosomal function is required for ETX-mediated lysosomal exocytosis, we disrupted lysosomal acidification and subsequent function, by exposing ETX-treated T cells to chloroquine, a lysosomotropic agent that strongly suppressed ETX-mediated lysosomal exocytosis (Fig 5d). Chloroquine preferentially accumulates in acidic compartments of the cell and prevents acidification because of its protonated basic amine

295 mechanism in the case of anti-Rh sensitized RBCs and engaging monocytes [44]. In this

296	previous study, the drugs colchicine (a microtubule depolymerizing agent), and
297	hydrocortisone hemisuccinate (a corticosteroid), suppressed monocyte-mediated
298	hemolysis. The authors suggested that the anti-hemolytic effect of these drugs was the
299	result of suppressing monocyte lysosomal exocytosis [45]. Similarly, we wished to
300	determine if blockade of lysosomal exocytosis by chloroquine or other inhibitory
301	compounds, colchicine and hydrocortisone hemisuccinate, was sufficient to inhibit ETX-
302	mediated hemolysis. Indeed, we found that each of these compounds inhibited ETX-
303	mediated hemolysis, chloroquine > hydrocortisone > colchicine (Fig 5e).
304	
305	DISCUSSION
306	We have confirmed the findings of Gao et al. that human blood exposure to <i>C</i> .
307	perfringens epsilon toxin results in hemolysis. However, our data extend these findings
308	and suggest that metal-catalyzed oxidation of the nucleotide-sensitive, volume-regulating
309	ICln channel is likely responsible for amplifying the hemolytic process, rather than P2
310	receptor activation. Moreover, we find that ICln may be involved in hemolytic
311	amplification for pore-forming toxins beyond ETX, e.g., S. aureus alpha toxin and
312	perhaps others. An important experimental distinction between this study and that of Gao
313	et al. is the substantial difference in the concentration of ETX used. Our hemolytic
314	assays were conducted at 15nM ETX, while Gao et al. used \geq 100nM ETX [20].
315	
316	We have also shown that human RBCs express a minor MAL isoform (likely MAL
317	isoform C), which would explain why human RBCs are uniquely susceptible to ETX-
318	mediated damage, as compared to RBCs from other species that do not express MAL.

319	Similarly, ETX also damages MAL-expressing human T cells, causing them to undergo
320	lysosomal exocytosis. Our data also show that lysosomal exocytosis contributes to ETX-
321	mediated hemolysis, as evidenced by hemolytic blockade by lysosomal inhibitors such as
322	chloroquine. Considering chloroquine's ability to increase pH in a general fashion, we
323	suspect that it may have a dual effect on inhibiting ETX-mediated hemolysis, as ICln's
324	ion conductance is pH sensitive [27]. Along these lines, we have observed that
325	conducting hemolysis assays in bicarbonate buffer also results in slowed ETX-mediated
326	hemolysis (data not shown). Therefore, the inhibitory action of hydrocortisone and
327	colchicine might more accurately reflect the true contribution of T cell lysosomal
328	exocytosis.
329	
330	To better understand how lysosomal exocytosis might influence ETX-mediated
331	hemolysis, we reviewed the literature and identified that lysosomes serve as storage
332	compartments for redox-active heavy metals such as Cu^+ and Fe^{3+} [46]. For example, the
333	copper transporter ATP7B actively transports Cu^+ into the late endosome, which later
334	fuses with the lysosome [47]. Furthermore, an excess of extracellular copper stimulates
335	lysosomal copper uptake, and the cell can go on to release accumulated copper into the
336	extracellular space via expulsion through the lysosomal exocytosis pathway [48]. For
337	these reasons, we favor the idea that ETX triggers the release of previously stored redox-
338	active heavy metals from the lysosomal compartment of MAL-expressing T cells, which
339	are predominantly of the CD4+ lineage [35]. To help visualize this process, we have
	are predominantly of the CD4+ micage [55]. To help visualize this process, we have

while figure 7 aims to illustrate a more comprehensive schema for ETX-mediatedhemolysis.

343

344	The notion that ICln must first insert into the RBC membrane for metal-catalyzed
345	oxidation to ensue might lead to the prediction that supernatant harvested from ETX-
346	exposed T cells would not be sufficient to trigger ETX-mediated hemolysis, and indeed,
347	we find this to be the case (Supp Fig 4). However, an important caveat to this
348	experiment is that Cu^+ ions are unstable in aqueous solution due to rapid oxidation
349	(oxygen-dependent) and rapid disproportionation (oxygen-independent), and thus must
350	be chelated in the cytosol by chaperones such as glutathione that are largely absent in the
351	extracellular space [49]. This lack of extracellular stability could lead to a proximity
352	requirement for toxin-exposed T cells to have a hemolytic effect on neighboring RBCs.
353	To address this caveat, we transplanted isolated human leukocytes into blood harvested
354	from non-human species, i.e., cow and rhesus macaque; RBCs that have been shown to
355	either lack MAL (cow) or that fail to bind ETX (macaque). ETX-sensitive human
356	leukocytes were unable to trigger hemolysis in non-human RBCs, even when exposed to
357	150nM ETX (Supp Fig 5).

358

In its entirety, this study may help to shed light on how RBCs incur damage during an acute MS relapse because ETX, a blood-borne neurotoxin, has previously been indicated as a potential MS trigger due to its remarkable specificity for BBB vasculature and for CNS myelin [9,10]; the two tissues damaged during each MS attack. The finding that ETX also causes RBC abnormalities, reminiscent of what has been observed during

364	active MS, may further support the ETX-MS hypothesis. Of note, even though we
365	assessed ETX-mediated hemolysis in > 70 study participants, we did not observe any
366	ETX-resistant phenotypes, suggesting that all blood types tested were ETX-susceptible
367	and express MAL. To our knowledge, MAL expression by circulatory cells has not been
368	reported in any non-human species to date, thus blood cell sensitivity to ETX may be an
369	exclusively human trait.
370	
371	Should ETX be conclusively shown to trigger nascent MS lesion formation, ICln
372	insertion into the RBC plasma membrane and surface LAMP1 expression on CD4+ T

cells may lay the groundwork for novel biomarker development. To date, there are no 374 biomarkers that can predict MS disease activity. The identification of such biomarkers 375 may be useful in predicting the onset of neurological symptoms and/or identifying occult

376 disease activity, as is the case for "silent lesions," which are detectable on MRI but yield 377 no observable symptoms [50].

378

373

379 In addition to surface LAMP1 expression, lysosomal exocytosis also causes the release of 380 lysosomal hydrolases into the extracellular milieu, and the enzymatic activity of acid

381 hydrolases such as β -hexosaminidase are commonly used as markers for this cellular

382 process [48]. These enzymes may also be candidate biomarkers for ETX blood exposure

383 and early disease activity in multiple sclerosis.

384

385 Finally, identifying the mechanism by which ETX causes RBC lysis may allow for novel 386 clinical interventions. For example, metal chelation therapy might inhibit hemolysis, thus

387	preventing vascu	lar iron de	position and	l neuronal toxici	ty/axonal loss.	Although

- 388 hemolysis and free hemoglobin have recently been shown to correlate with the transition
- from RRMS to SPMS [8], the root cause of this hemolysis has not yet been identified. C.
- 390 *perfringens* epsilon toxin may adequately explain this phenomenon, in addition to how
- nascent MS lesions form in the absence of an inflammatory infiltrate [9, 51].
- 392

393 MATERIALS AND METHODS

394 Ethics Statement

395 Research protocol RRU-0952 for the collection of samples from individuals with MS and

396 healthy controls was reviewed and approved by the Rockefeller University institutional

397 review board. All participants in the study gave written informed consent.

398

399 Epsilon Toxin

400 His-tagged protoxin was procured from BEI Resources, activated by adding an equal

401 volume of 0.25% trypsin (ThermoFisher) and incubating for 1 hour at 37°C. Trypsin was

402 then inactivated by the addition of 1:1 volume Defined Trypsin Inhibitor (ThermoFisher).

403

404 Blood Sample Collection and Manipulation

- 405 Human blood from healthy adult donors was obtained at the Rockefeller University
- 406 hospital using heparinized tubes. Cow, goat, sheep, rat, guinea pig and rhesus macaque

407	blood and enriched human,	cow and rat RBCs were all	purchased from Innovative

- 408 Research, Inc. All whole blood and enriched RBC samples were centrifuged for 5 mins
- 409 at 600g, the supernatant was aspirated, and the cell pellet was washed with PBS (20x the
- 410 original volume) prior to re-suspension in PBS so as to match the original starting blood
- 411 volume. For experiments using transition metals nickel and manganese, human blood was
- 412 washed as previously described. However, normal saline was used instead of PBS to
- 413 avoid the formation of insoluble $Ni_3(PO_4)_2$ and $Mn_3(PO_4)_2$ salts.
- 414 For the transfer of human leukocytes to the blood of non-human mammals, human blood
- 415 was centrifuged at 600 x g for 5 mins and the plasma layer removed. Pelleted cells were
- suspended in 50 volumes of phosphate buffered saline (PBS), centrifuged at 1000 x g,
- 417 and suspended in RBC lysis buffer (155 mM NH₄Cl, 12 mM NaHCO₃, 0.1 mM EDTA).
- 418 RBCs were allowed to lyse for 5 mins, after which, leukocytes were centrifuged at 600 x
- 419 g for 5 mins. Pelleted leukocytes were washed 3 times in PBS and transferred to washed
- 420 whole cow or whole macaque blood of a similar original volume.

422 Hemolysis Quantitation

- 423 After ETX incubation, cells were pelleted at 600g for 5mins, supernatant was harvested
- 424 and the degree of hemolysis was determined by light absorbance (OD 540nm) using a
- 425 SpectraMax M5 Multi-Mode Microplate Reader (Molecular Devices).

427 Lymphocyte Isolation

- 428 Harvested human blood was incubated with RosetteSep Human T cell enrichment
- 429 cocktail (STEMCELL Technologies) or RosetteSep Human B cell enrichment cocktail
- 430 (STEMCELL Technologies) and then isolated with Ficoll-Paque Plus (GE Healthcare),
- 431 as per the manufacturer's instructions.

432

433 Flow Cytometry Staining and Analysis

434 For protoETX binding, isolated cells were washed 3 times with PBS 1% BSA buffer, and

435 incubated for 2 hours at 4°C with 5% donkey serum (PBS 1% BSA) containing either

436 50nM or 0nM protoETX. Cells were washed 3 times with chilled PBS 1% BSA buffer,

437 and then stained for 1 hour at 4°C with primary antibodies: rabbit anti-ETX (JL001.2,

438 1:1000), mouse anti-CD3 Alexa 660 (eBioscience) 1:200 or mouse anti-CD20 APC

439 (eBioscience) 1:200. After 3 washes with chilled PBS 1% BSA, cells were then

440 incubated with Alexa 488-conjugated donkey anti-rabbit (1:1000, Jackson

441 ImmunoResearch) so as to detect bound JL001.2 antibody, and then thoroughly washed

442 prior to Flow Cytometry analysis. For cytotoxicity assays, isolated lymphocytes were

stained with mouse anti-CD3 Alexa 660 (1:200) or mouse anti-CD20 APC (1:200), and

- 444 propidium iodide (ThermoFisher) 1:500. For lysosomal exocytosis assays, isolated T
- 445 cells were stained with mouse anti-LAMP1 Alexa 488 (ThermoFisher) 1:200. All cells
- 446 were analyzed by Flow Cytometry with BD AccuriC6 at our core facility.

447

448 Western blot Analysis of RBC membrane proteins

449	100μ L of purified RBCs were lysed in 900μ L ammonium chloride RBC lysis buffer for
450	10 mins at 37°C. The cell lysate was centrifuged at $> 16,000$ g for 5 mins, and the pellet
451	was washed 3 times in PBS and re-suspended in $50\mu L$ PBS. An equal volume of $2X$
452	Laemmli sample buffer (Bio-Rad) was added to each sample and the dissolved
453	membranes were stored at -20°C. Thawed samples were diluted 2.5 fold in 1X Laemmli
454	sample buffer prior to SDS PAGE. Proteins were transferred to an Immobilon-P
455	membrane (MilliporeSigma) and probed with either mouse-anti MAL 1:1000 (clone E-1,
456	Santa Cruz Biotechnology, Inc.) or rabbit anti-ICln 1:1000 (PA5-13450, ThermoFisher).
457	HRP-conjugated donkey anti-mouse IgG and donkey anti-rabbit IgG secondaries
458	(Jackson Immunoresearch) were used with the corresponding primary antibody to
459	visualize MAL expression and ICln expression respectively (1:100,000). SuperSignal
460	West Femto Maximum Sensitivity Substrate (ThermoFisher) was used to visualize bound
461	antibody.

462

463 Anaerobiosis

464 Anaerobic experiments were performed in an anaerobic hood (BACTRON Anaerobic465 Chamber).

466

467 Drugs and Compounds

468 All drugs and compounds used in this study were purchased from Sigma Aldrich.

469 470	Statistical Analysis
471	Results are representative of data obtained from repeated independent experiments. Each
472	value represents the mean $\pm SD$ for three replicates. Statistical analysis was performed
473	using the two-tailed Student <i>t</i> -test (GraphPad Software, San Diego, CA, USA).
474	ACKNOWLEDGEMENTS
475	We would like to thank Dr. Timothy Vartanian and Dr. Jennifer Linden for providing the
476	anti-ETX detection antibody, JL001.2, and the anti-ETX neutralizing antibody, JL008.
477	
478	
479	REFERENCES
480	
481	1. Waksman BH. 1981. Current trends in multiple sclerosis research. Immunol
482	Today 2(5):87-93. doi: 10.1016/0167-5699(81)90038-4.
483	
484	2. Plum CM, Fog T. 1959. Studies in multiple sclerosis. I. Changes in the peripheral
485	blood picture and in the bone marrow. Acta Psychiatr Neurol Scand 34 (Suppl
486	128):13-18.
487	
488	3. Laszlo S. Osmotic fragility of the erythrocytes in multiple sclerosis. 1964. Acta
489	Neurol Psychiatr Belg. 64:529-33.
490	

491	4.	Caspary EA, Sewell F, Field EJ. 1967. Red blood cell fragility in multiple
492		sclerosis. Br Med J 2(5552):610-1.
493		
494	5.	Prineas J. 1968. Red blood cell size in multiple sclerosis. Acta Neurol Scand
495		44(1):81-90.
496		
497	6.	Crellin RF, Bottiglieri T, Reynolds EH. 1989. Multiple sclerosis and
498		macrocytosis. Lancet 2(8672):1157.
499		
500	7.	Crellin RF, Bottiglieri T, Reynolds EH. 1990. Multiple sclerosis and
501		macrocytosis. Acta Neurol Scand 81(5):388-91.
502		
503	8.	Lewin A, Hamilton S, Witkover A, Langford P, Nicholas R, Chataway J, et al.
504		2016. Free serum haemoglobin is associated with brain atrophy in secondary
505		progressive multiple sclerosis. Wellcome Open Res 1:10.
506		doi:10.12688/wellcomeopenres.9967.2.
507		
508	9.	Rumah KR, Linden J, Fischetti VA, Vartanian T. 2013. Isolation of Clostridium
509		perfringens type B in an individual at first clinical presentation of multiple
510		sclerosis provides clues for environmental triggers of the disease. PLoS One
511		8(10):e76359. doi: 10.1371/journal.pone.0076359. eCollection 2013.
512		

513	10. Rumah KR, Ma Y, Linden JR, Oo ML, Anrather J, Schaeren-Wiemers N, et al.
514	2015. The Myelin and Lymphocyte Protein MAL Is Required for Binding and
515	Activity of Clostridium perfringens ɛ-Toxin. PLoS Pathog 11(5):e1004896. doi:
516	10.1371/journal.ppat.1004896. eCollection 2015 May.
517	
518	11. Linden JR, Ma Y, Zhao B, Harris JM, Rumah KR, Schaeren-Wiemers N, et al.
519	2015. Clostridium perfringens Epsilon Toxin Causes Selective Death of Mature
520	Oligodendrocytes and Central Nervous System Demyelination. MBio.
521	6(3):e02513. doi: 10.1128/mBio.02513-14.
522	
523	12. Rumah KR, Vartanian TK, Fischetti VA. 2017. Oral Multiple Sclerosis Drugs
524	Inhibit the In vitro Growth of Epsilon Toxin Producing Gut Bacterium,
525	Clostridium perfringens. Front Cell Infect Microbiol 7:11. doi:
526	10.3389/fcimb.2017.00011. eCollection 2017.
527	
528	13. Wagley S, Bokori-Brown M, Morcrette H, Malaspina A, D'Arcy C, Gnanapavan
529	S, et al. 2018. Evidence of Clostridium perfringens epsilon toxin associated with
530	multiple sclerosis. Mult Scler 1352458518767327. doi:
531	10.1177/1352458518767327.
532	
533	14. Rood JI, Adams V, Lacey J, Lyras D, McClane BA, Melville SB, et al. 2018.
534	Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe
535	53:5-10. doi: 10.1016/j.anaerobe.2018.04.011. Epub 2018 Apr 20.

537	15. Carman RJ, Sayeed S, Li J, Genheimer CW, Hiltonsmith MF, Wilkins TD, et al.
538	2008. Clostridium perfringens toxin genotypes in the feces of healthy North
539	Americans. Anaerobe. 14(2):102-8. doi: 10.1016/j.anaerobe.2008.01.003. Epub
540	2008 Feb 7.
541	
542	16. Popoff MR. 2011. Epsilon toxin: a fascinating pore-forming toxin. FEBS J
543	278(23):4602-15. doi: 10.1111/j.1742-4658.2011.08145.x. Epub 2011 May 25.
544	Review.
545	
546	17. Freedman JC, Li J, Uzal FA, McClane BA. 2014. Proteolytic processing and
547	activation of Clostridium perfringens epsilon toxin by caprine small intestinal
548	contents. MBio 5(5):e01994-14. doi: 10.1128/mBio.01994-14.
549	
550	18. Dorca-Arévalo J, Soler-Jover A, Gibert M, Popoff MR, Martín-Satué M, Blasi J.
551	2008. Binding of epsilon-toxin from Clostridium perfringens in the nervous
552	system. Vet Microbiol 131(1-2):14-25. doi: 10.1016/j.vetmic.2008.02.015. Epub
553	2008 Mar 4.
554	
555	19. Wioland L, Dupont JL, Doussau F, Gaillard S, Heid F, Isope P, et al. 2015.
556	Epsilon toxin from Clostridium perfringens acts on oligodendrocytes without
557	forming pores, and causes demyelination. Cell Microbiol 17(3):369-88. doi:
558	10.1111/cmi.12373. Epub 2014 Oct 31.

	_	\mathbf{n}
_	L	
- 1	· 1	9

560	20. Gao J, Xin W, Huang J, Ji B, Gao S, Chen L, et al. 2018. Research
561	articleHemolysis in human erythrocytes by Clostridium perfringens epsilon toxin
562	requires activation of P2 receptors. Virulence 9(1):1601-1614. doi:
563	10.1080/21505594.2018.1528842.
564	
565	21. Bryk AH, Wiśniewski JR. 2017. Quantitative Analysis of Human Red Blood Cell
566	Proteome. J Proteome Res 16(8):2752-2761. doi: 10.1021/acs.jproteome.7b00025.
567	Epub 2017 Jul 24.
568	
569	22. Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS. 2011. Activation
570	and regulation of purinergic P2X receptor channels. Pharmacol Rev 63(3):641-83.
571	doi: 10.1124/pr.110.003129. Epub 2011 Jul 7. Review.
572	
573	23. Guedes S, Vitorino R, Domingues R, Amado F, Domingues P. 2009. Oxidation of
574	bovine serum albumin: identification of oxidation products and structural
575	modifications. Rapid Commun Mass Spectrom 23(15):2307-15. doi:
576	10.1002/rcm.4149.
577	
578	24. Rubino JT, Chenkin MP, Keller M, Riggs-Gelasco P, Franz KJ. 2011. A
579	comparison of methionine, histidine and cysteine in copper(I)-binding peptides
580	reveals differences relevant to copper uptake by organisms in diverse
581	environments. Metallomics 3(1):61-73.

583	25. Schwartz RS, Rybicki AC, Nagel RL. 1997. Molecular cloning and expression of
584	a chloride channel-associated protein pICln in human young red blood cells:
585	association with actin. Biochem J 327 (Pt 2):609-16.
586	
587	26. Fürst J, Jakab M, König M, Ritter M, Gschwentner M, Rudzki J, et al. 2000.
588	Structure and function of the ion channel ICln. Cell Physiol Biochem 10(5-
589	6):329-34. Review.
590	
591	27. Fürst J, Bazzini C, Jakab M, Meyer G, König M, Gschwentner M, et al. 2000.
592	Functional reconstitution of ICln in lipid bilayers. Pflugers Arch 440(1):100-15.
593	
594	28. Paulmichl M, Li Y, Wickman K, Ackerman M, Peralta E, Clapham D. 1992. New
595	mammalian chloride channel identified by expression cloning. Nature
596	356(6366):238-41.
597	
598	29. Gschwentner M, Susanna A, Schmarda A, Laich A, Nagl UO, Ellemunter H,
599	Deetjen P, Frick J, Paulmichl M. 1996. ICln: a chloride channel paramount for
600	cell volume regulation. J Allergy Clin Immunol 98(5 Pt 2):S98-101; discussion
601	S105-6. Review.
602	

603	30. Buyse G, Voets T, Tytgat J, De Greef C, Droogmans G, Nilius B, Eggermont J.
604	1997. Expression of human pICln and ClC-6 in Xenopus oocytes induces an
605	identical endogenous chloride conductance. J Biol Chem 272(6):3615-21.
606	
607	31. Gschwentner M, Susanna A, Wöll E, Ritter M, Nagl UO, Schmarda A, et al.
608	1995. Antiviral drugs from the nucleoside analog family block volume-activated
609	chloride channels. Mol Med 1(4):407-17.
610	
611	32. Skals M, Leipziger J, Praetorius HA. 2011. Haemolysis induced by α -toxin from
612	Staphylococcus aureus requires P2X receptor activation. Pflugers Arch
613	462(5):669-79. doi: 10.1007/s00424-011-1010-x. Epub 2011 Aug 17.
614	
615	33. Rancaño C, Rubio T, Correas I, Alonso MA. 1994. Genomic structure and
616	subcellular localization of MAL, a human T-cell-specific proteolipid protein. J
617	Biol Chem 269(11):8159-64.
618	
619	34. Millán J, Puertollano R, Fan L, Rancaño C, Alonso MA. 1997. The MAL
620	proteolipid is a component of the detergent-insoluble membrane subdomains of
621	human T-lymphocytes. Biochem J 321 (Pt 1):247-52.
622	
623	35. Copie-Bergman C, Plonquet A, Alonso MA, Boulland ML, Marquet J, Divine M,
624	Möller P, Leroy K, Gaulard P. 2002. MAL expression in lymphoid cells: further
625	evidence for MAL as a distinct molecular marker of primary mediastinal large B-

626	cell lymphomas. Mod Pathol 15(11):1172-80.
627	
628	36. Blanch M, Dorca-Arévalo J, Not A, Cases M, Gómez de Aranda I, Martínez-
629	Yélamos A, Martínez-Yélamos S, Solsona C, Blasi J. 2018. The Cytotoxicity of
630	Epsilon Toxin from Clostridium perfringens on Lymphocytes Is Mediated by
631	MAL Protein Expression. Mol Cell Biol 38(19). pii: e00086-18. doi:
632	10.1128/MCB.00086-18. Print 2018 Oct 1.
633	
634	37. Idone V, Tam C, Goss JW, Toomre D, Pypaert M, Andrews NW. 2008. Repair of
635	injured plasma membrane by rapid Ca2+-dependent endocytosis. J Cell Biol
636	180(5):905-14. doi: 10.1083/jcb.200708010. Epub 2008 Mar 3.
637	
638	38. Tam C, Flannery AR, Andrews N. 2013. Live imaging assay for assessing the
639	roles of Ca2+ and sphingomyelinase in the repair of pore-forming toxin wounds. J
640	Vis Exp (78):e50531. doi: 10.3791/50531.
641	
642	39. von Hoven G, Rivas AJ, Neukirch C, Meyenburg M, Qin Q, Parekh S, et al. 2017.
643	Repair of a Bacterial Small β -Barrel Toxin Pore Depends on Channel Width.
644	MBio 8(1). pii: e02083-16. doi: 10.1128/mBio.02083-16.
645	
646	40. Husmann M, Beckmann E, Boller K, Kloft N, Tenzer S, Bobkiewicz W, et al.
647	2009. Elimination of a bacterial pore-forming toxin by sequential endocytosis and

648	exocytosis. FEBS Lett 583(2):337-44. doi: 10.1016/j.febslet.2008.12.028. Epub
649	2008 Dec 25.
650	
651	41. Nagahama M, Itohayashi Y, Hara H, Higashihara M, Fukatani Y, Takagishi T,
652	Oda M, Kobayashi K, Nakagawa I, Sakurai J. 2011. Cellular vacuolation induced
653	by Clostridium perfringens epsilon-toxin. FEBS J 278(18):3395-407. doi:
654	10.1111/j.1742-4658.2011.08263.x. Epub 2011 Aug 16.
655	
656	42. Schultz KR, Gilman AL. 1997. The lysosomotropic amines, chloroquine and
657	hydroxychloroquine: a potentially novel therapy for graft-versus-host disease.
658	Leuk Lymphoma 24(3-4):201-10. Review.
659	
660	43. Pasquier B. 2016. Autophagy inhibitors. Cell Mol Life Sci 73(5):985-1001. doi:
661	10.1007/s00018-015-2104-y. Epub 2015 Dec 11. Review.
662	
663	44. Fleer A, Koopman MG, von dem Borne AE, Engelfriet CP. 1978. Monocyte-
664	induced increase in osmotic fragility of human red cells sensitized with anti-D
665	alloantibodies. Br J Haematol 40(3):439-46.
666	
667	45. Fleer A, van Schaik ML, von dem Borne AE, Engelfriet CP. 1978. Destruction of
668	sensitized erythrocytes by human monocytes in vitro: effects of cytochalasin B,
669	hydrocortisone and colchicine. Scand J Immunol 8(6):515-24.
670	

671	46.	. Blaby-Haas CE, Merchant SS. 2014. Lysosome-related organelles as mediators of
672		metal homeostasis. J Biol Chem 289(41):28129-36. doi:
673		10.1074/jbc.R114.592618. Epub 2014 Aug 26.
674		
675	47.	. Polishchuk EV, Concilli M, Iacobacci S, Chesi G, Pastore N, Piccolo P, et al.
676		2014. Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain
677		copper homeostasis. Dev Cell 29(6):686-700. doi: 10.1016/j.devcel.2014.04.033.
678		Epub 2014 Jun 5.
679		
680	48.	. Peña K, Coblenz J, Kiselyov K. 2015. Brief exposure to copper activates
681		lysosomal exocytosis. Cell Calcium 57(4):257-62. doi:
682		10.1016/j.ceca.2015.01.005. Epub 2015 Jan 12.
683		
684	49.	Johnson DK, Stevenson MJ, Almadidy ZA, Jenkins SE, Wilcox DE, Grossoehme
685		NE. 2015. Stabilization of Cu(I) for binding and calorimetric measurements in
686		aqueous solution. Dalton Trans 44(37):16494-505. doi: 10.1039/c5dt02689j.
687		
688	50.	. Traboulsee A. 2007. MRI relapses have significant pathologic and clinical
689		implications in multiple sclerosis. J Neurol Sci 256 Suppl 1:S19-22. Epub 2007
690		Mar 7. Review.
691		
692	51.	. Barnett MH, Prineas JW. 2004. Relapsing and remitting multiple sclerosis:
693		pathology of the newly forming lesion. Ann Neurol 55(4):458-68.

694	Figure Legends
695	
696	Fig 1. ETX causes human-specific hemolysis via human RBC MAL expression.
697	a) Washed whole human, cow, sheep, goat and guinea pig blood was suspended in PBS
698	and incubated with 15nM ETX at 37°C, and sampled over 24 hours. Data shown are
699	from experiments performed in triplicate. Error bars represent standard deviations, and
700	asterisks indicate that results are statistically significant compared with refractory guinea
701	pig blood (dark blue); Student's <i>t</i> -test, $*P < 0.0001$. b) Human, rhesus macaque, rat and
702	sheep RBCs were incubated with non-toxic protoETX (50nM) for 2 hours at 4°C. Toxin
703	binding was detected via flow cytometry using custom anti-ETX antibody, JL001.2.
704	Data shown are from a single experiment and are representative of 3 independent
705	experiments, using 3 distinct blood donors. c) Human, cow and rat RBC membranes were
706	analyzed for MAL expression by Western blot (left). RBC membranes harvested from
707	additional human donors were also analyzed (right). The open arrowhead signifies full
708	length MAL, while the closed arrowhead signifies the shortened MAL isoform.
709	
710	Fig 2. Extracellular nucleotides inhibit ETX-mediated hemolysis.
711	a) Washed whole human blood was pre-incubated with oxidized ATP (oxATP), ATP,
712	GTP and UMP (10mM each) prior to ETX exposure (15nM) at 37°C, and sampled over
713	24 hours. Data shown are from experiments performed in triplicate. Error bars represent
714	standard deviations, and asterisks indicate that results are statistically significant

715 compared with PBS vehicle control (gray); Student's *t*-test, *P < 0.0002. **b**) Washed

vhole human blood was exposed to the irreversible P2 receptor inhibitor, oxATP,

717	overnight at 37°C. OxATP was either allowed to remain in the suspension buffer
718	(oxATP 10mM) or washed out. All samples were then incubated with ETX (15nM) at
719	37°C, and sampled over 24 hours. Data shown are from experiments performed in
720	triplicate. Error bars represent standard deviations, and asterisks indicate that results are
721	statistically significant compared with PBS vehicle control (green); Student's <i>t</i> -test, $*P <$
722	0.0002.
723	
724	Fig 3. Oxygen and redox-active transition metals, Cu ⁺ and Fe ³⁺ , are integral to ETX-
725	mediated hemolysis. a) Washed whole human blood was suspended in PBS and
726	exposed to 15nM ETX at 37°C under anaerobic conditions, aerobic conditions or co-
727	incubated with sodium azide (10mM) and sampled over 24 hours. Data shown are from
728	experiments performed in triplicate. Error bars represent standard deviations, and
729	asterisks indicate that results are statistically significant compared with aerobic control
730	(green); Student's <i>t</i> -test, $*P < 0.0001$.
731	b) Washed whole human blood was exposed to ETX (15nM) at 37°C over 24 hours, and
732	co-incubated with metal chelators (5mg/mL each), deferoxamine (DFO), THPTA,
733	penicillamine (Pncl), citrate or PBS buffer control. Data shown are from experiments
734	performed in triplicate. Error bars represent standard deviations, and asterisks indicate
735	that results are statistically significant compared with PBS vehicle control (gray);
736	Student's <i>t</i> -test, $*P < 0.0003$. c) The inhibitory effects of endogenous metal chelating
737	amino acids (5mg/mL each), cysteine, histidine and methionine were compared to that of
738	non-chelating amino acids (5mg/mL each), lysine, glutamate and glycine. All samples

739 were exposed to ETX (15nM) at 37°C and sampled over 30 mins. Data shown are from

740	experiments performed in triplicate. Error bars represent standard deviations, and
741	asterisks indicate that results are statistically significant compared with glycine (farthest
742	right); Student's <i>t</i> -test, $*P < 0.01$. d) Washed whole human blood was suspended in
743	isotonic saline with or without divalent cations (15mM each), Ni^{2+} or Mn^{2+} (redox-silent
744	transition metals) or Ca^{2+} (alkaline earth metal), and assessed for inhibition of ETX-
745	mediated hemolysis (15nM ETX at 37°C) over 24 hours. Data shown are from
746	experiments performed in triplicate. Error bars represent standard deviations, and
747	asterisks indicate that results are statistically significant compared with NaCl vehicle
748	control (green); Student's <i>t</i> -test, $*P \le 0.0003$.
749	
750	Fig 4. Inhibitors of the nucleotide-sensitive, heavy metal-binding ICln chloride
751	channel block pore forming toxin-mediated hemolysis. a) Washed whole human blood
752	was pre-incubated the chromone class of ICln inhibitors, cromolyn and nedocromil
	1
753	(5mg/mL) prior to ETX exposure (15nM at 37°C), and sampled over 24 hours. Data
753 754	
	(5mg/mL) prior to ETX exposure (15nM at 37°C), and sampled over 24 hours. Data
754	(5mg/mL) prior to ETX exposure (15nM at 37°C), and sampled over 24 hours. Data shown are from experiments performed in triplicate. Error bars represent standard
754 755	(5mg/mL) prior to ETX exposure (15nM at 37°C), and sampled over 24 hours. Data shown are from experiments performed in triplicate. Error bars represent standard deviations, and asterisks indicate that results are statistically significant compared with
754 755 756	(5mg/mL) prior to ETX exposure (15nM at 37°C), and sampled over 24 hours. Data shown are from experiments performed in triplicate. Error bars represent standard deviations, and asterisks indicate that results are statistically significant compared with PBS vehicle control (green); Student's <i>t</i> -test, * $P < 0.0004$. b) Washed whole human
754 755 756 757	(5mg/mL) prior to ETX exposure (15nM at 37°C), and sampled over 24 hours. Data shown are from experiments performed in triplicate. Error bars represent standard deviations, and asterisks indicate that results are statistically significant compared with PBS vehicle control (green); Student's <i>t</i> -test, * $P < 0.0004$. b) Washed whole human blood was pre-incubated with the ICln inhibitor, cyclamate anion (154mM) or acetate as
754 755 756 757 758	(5mg/mL) prior to ETX exposure (15nM at 37°C), and sampled over 24 hours. Data shown are from experiments performed in triplicate. Error bars represent standard deviations, and asterisks indicate that results are statistically significant compared with PBS vehicle control (green); Student's <i>t</i> -test, * $P < 0.0004$. b) Washed whole human blood was pre-incubated with the ICln inhibitor, cyclamate anion (154mM) or acetate as a control organic anion (154mM) prior to ETX exposure (15nM at 37°C), and sampled
754 755 756 757 758 759	(5mg/mL) prior to ETX exposure (15nM at 37°C), and sampled over 24 hours. Data shown are from experiments performed in triplicate. Error bars represent standard deviations, and asterisks indicate that results are statistically significant compared with PBS vehicle control (green); Student's <i>t</i> -test, * $P < 0.0004$. b) Washed whole human blood was pre-incubated with the ICln inhibitor, cyclamate anion (154mM) or acetate as a control organic anion (154mM) prior to ETX exposure (15nM at 37°C), and sampled over 24 hours. Data shown are from experiments performed in triplicate. Error bars

763	inhibitors, ATP, oxATP, cromolyn (5mg/mL each); sodium cyclamate (154mM); and
764	NiCl ₂ (15mM) prior to ETX exposure (15nM at 37°C), and sampled over 24 hours. Data
765	shown are from experiments performed in triplicate. Error bars represent standard
766	deviations, and asterisks indicate that results are statistically significant compared with
767	the NaCl control (blue); Student's <i>t</i> -test, $*P < 0.0001$. d) Human RBC membranes were
768	analyzed for differential ICln expression in the setting of increasing ETX concentrations
769	by Western blot analysis. Arrowheads signify individual components of the ICln
770	monomer (closed) and its doublet (open). Data shown are from a single experiment and
771	are representative of 3 independent experiments, using 3 distinct blood donors. e)
772	Washed whole human blood was exposed to P2 receptor inhibition (green asterisks *), a
773	full panel of ICln inhibitors (red asterisks *) and redox-active metal chelators (blue
774	asterisks *) prior to being exposed to a hemolytic dose of S. aureus alpha-toxin (525nMa
775	at 37°C) and sampled over 24 hours. Data shown are from experiments performed in
776	triplicate. Error bars represent standard deviations, and black asterisks indicate that
777	results are statistically significant compared with the NaCl as a control for $NiCl_2$ and
778	NaCyclamate, and PBS as a vehicle control for all nucleotides and metal chelators;
779	Student's <i>t</i> -test, $*P < 0.0007$.
700	

Fig 5. Leukocytes contribute to hemolysis via ETX-triggered T cell lysosomal exocytosis.

a) Leukocyte-depleted human blood was washed and suspended in PBS, incubated with

15nM ETX at 37°C and sampled over 24 hours. Hemolysis was compared to that of

washed whole human blood incubated under the same experimental conditions. Data

786	shown are from experiments performed in triplicate. Error bars represent standard
787	deviations, and asterisks indicate that results are statistically significant compared with
788	human blood (blue); Student's <i>t</i> -test, $*P < 0.0001$. b) Isolated B cells, T cells and
789	human RBCs were incubated with non-toxic protoETX (50nM) for 2 hours at 4°C. Toxin
790	binding was detected via flow cytometry using custom anti-ETX antibody, JL001.2.
791	Data shown are from a single experiment and are representative of 3 independent
792	experiments, using 3 distinct blood donors. c) Isolated T and B cells were exposed
793	activated ETX (50nM) for 1 hour at 37°C and assessed for membrane integrity by
794	propidium iodide (PI) uptake. Data shown are from a single experiment and are
795	representative of 3 independent experiments, using 3 distinct blood donors. d) Isolated T
796	cells were exposed to activated ETX (20nM) for 1 hour at 37°C with or without the
797	lysosomotropic agent, chloroquine (ChlQ). Data shown are from a single experiment and
798	are representative of 3 independent experiments, using 3 distinct blood donors. e)
799	Washed whole human blood was suspended in PBS and incubated with different
800	inhibitors of lysosomal exocytosis, chloroquine, hydrocortisone hemisuccinate and
801	colchicine, 4 hours prior to ETX administration. All samples were then treated with ETX
802	(15nM), incubated at 37°C, and sampled over 24 hours. Data shown are means and SD
803	from a single experiment and are representative of 3 independent triplicate experiments.
804	Asterisks indicate that results are statistically significant compared with PBS vehicle
805	control (purple); Student's <i>t</i> -test, $*P < 0.005$.
806	
807	

809 Fig 6. A schematic illustration of ETX-mediated lysosomal exocytosis

- 810 1) Epsilon toxin (ϵ) binds to the T cell plasma membrane via its cellular receptor
- 811 (possibly Myelin And Lymphocyte protein, MAL). 2) Seven ETX subunits form a pre-
- 812 pore complex at the cell surface. 3) The heptameric pre-pore matures into a
- 813 transmembrane pore (cylinder). 4) Pore formation triggers membrane invagination and
- endosome formation. 5) As the late endosome matures, ETX-containing intraluminal
- 815 vesicles (ILV) begin to form. Concurrently, cytosolic Cu⁺ ions are being transported into
- 816 the late endosome via the ATP7B copper transporter. 6) Upon becoming a mature
- 817 lysosome, fusion occurs between the lysosomal membrane and the plasma membrane,
- 818 resulting in lysosomal exocytosis. Lysosomal exocytosis releases exosome-like, ETX-
- 819 containing microparticles (Exo), similar to what has previously been described for toxins
- 820 that form small pores (< 2nm in diameter) such as *S. aureus* alpha toxin [40], into the
- 821 extracellular space. In addition to releasing ETX-containing microparticles, redox-active
- heavy metals stored in the lysosome such as Cu^+ are also released.
- 823

824 Fig 7. A schematic illustration of ETX-mediated RBC lysis

1) Epsilon toxin (ϵ) binds to the human RBC membrane via a cellular receptor (possibly

- 826 MAL isoform C). 2) Oligomerized toxin forms a pore and inserts into the RBC
- 827 membrane, allowing unregulated influx of ions and water. 3) Cellular swelling causes
- rapid insertion of the ICln chloride channel as a countermeasure to resist osmolysis,
- resulting in the efflux of ions and water. 4) The ETX pore facilitates the release of
- intracellular redox-active heavy metals from both the T cell (Cu^+) and RBC cytosol
- (Fe^{3+}) . 5) Extracellular heavy metals bind to and damage the ICln pore in an oxygen-

832 dep	endent fashion.	6)	Metal-cataly	/zed	oxidation	of the	e ICln	pore	results	in a	deregu	ılated
---------	-----------------	----	--------------	------	-----------	--------	--------	------	---------	------	--------	--------

- 833 channel that allows ions and water to flow down their diffusion gradient resulting in
- eventual osmolysis.
- 835

836 Supplemental Fig 1. SDS PAGE analysis of His-tagged protoETX

- His-tagged prototoxin (BEI Resources) was diluted in PBS and combined with 2X
- laemmli sample buffer (1:1 volume), heated at 90°C for 6 minutes and subjected to
- 839 electrophoresis on a 4-12% Bis-Tris gel. Proteins were stained using a colloidal blue
- 840 protein staining kit.
- 841

842 Supplemental Fig 2. ProtoETX requires trypsin activation to gain hemolytic

- 843 activity.
- 844 Washed whole human blood was exposed to trypsin activated ETX (15nM) or non-toxic
- 845 protoETX (15nM), incubated at 37°C, and sampled over 24 hours. Data shown are means
- and SD from a single experiment and are representative of 3 independent triplicate
- 847 experiments. Asterisks indicate that results for protoETX (blue) are significant different

848 when compared to active ETX (red); Student's *t*-test, *P < 0.0001.

849

850 Supplemental Fig 3. Neutralizing anti-ETX monoclonal JL008 inhibits ETX-

- 851 mediated hemolysis in a dose-dependent manner. a) Washed whole human blood was
- pre-incubated with a neutralizing anti-ETX rabbit monoclonal (JL008) at varying
- 853 concentrations $(10^{-2}, 10^{-3} \text{ and } 10^{-4})$ and compared to a rabbit isotype control antibody (Rb
- 854 IgG), and PBS vehicle control. All samples were treated with ETX (15nM), incubated at

855 37°C, and sampled over 24 hours. Data shown are means and SD from a single

856 experiment and are representative of 3 independent triplicate experiments. Asterisks

857 indicate that results are statistically significant compared with PBS vehicle control (light

- 858 blue); Student's *t*-test, *P < 0.0007.
- 859

860 Supplemental Fig 4. Supernatant from ETX-exposed human T cells is not sufficient

to trigger hemolysis. Human T cell isolates were treated with ETX (30nM) at 37°C for

862 1 hour in PBS buffer (1% BSA). Supernatant was harvested and unbound ETX was

863 neutralized with anti-ETX rabbit monoclonal, JL008 (10⁻²). Alternatively, the supernatant

864 was incubated with a control rabbit isotype control antibody, Rb IgG (10^{-2}) . Supernatants

were added to washed whole human blood and incubated at 37°C, and sampled over 24

866 hours. Data shown are means and SD from a single experiment and are representative of

3 independent triplicate experiments. Asterisks indicate that results are statistically

868 significant compared with the positive control, 30nM ETX (purple); Student's *t*-test, **P* <

869 0.0001.

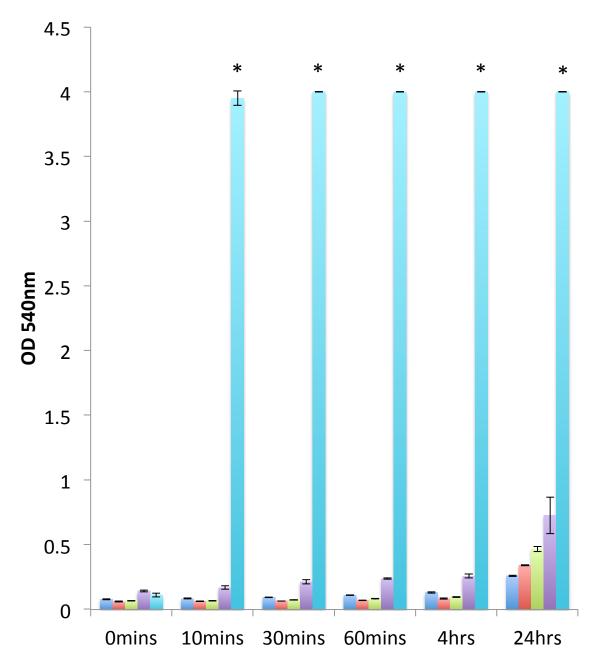
870

871 Supplemental Fig 5. Transfer of human leukocytes into non-human, ETX-resistant

872 blood, fails to confer ETX hemolytic sensitivity. Human leukocytes were isolated and

transferred into washed whole cow or whole rhesus macaque blood, incubated with

150nM ETX at 37°C, and sampled over 24 hours. Data shown are means and SD from a


single experiment and are representative of 3 independent triplicate experiments.

876 Asterisks indicate that results are statistically significant compared with ETX (150nM)

treated, washed whole human blood (blue); Student's *t*-test, *P < 0.0001.

39

Figure 1a

- Guinea Pig Whole Blood-15nMe
- Goat Whole Blood-15nMe
- Sheep Whole Blood-15nMe
- Cow Whole Blood-15nMe
- Human Whole Blood-15nMe

Figure 1b

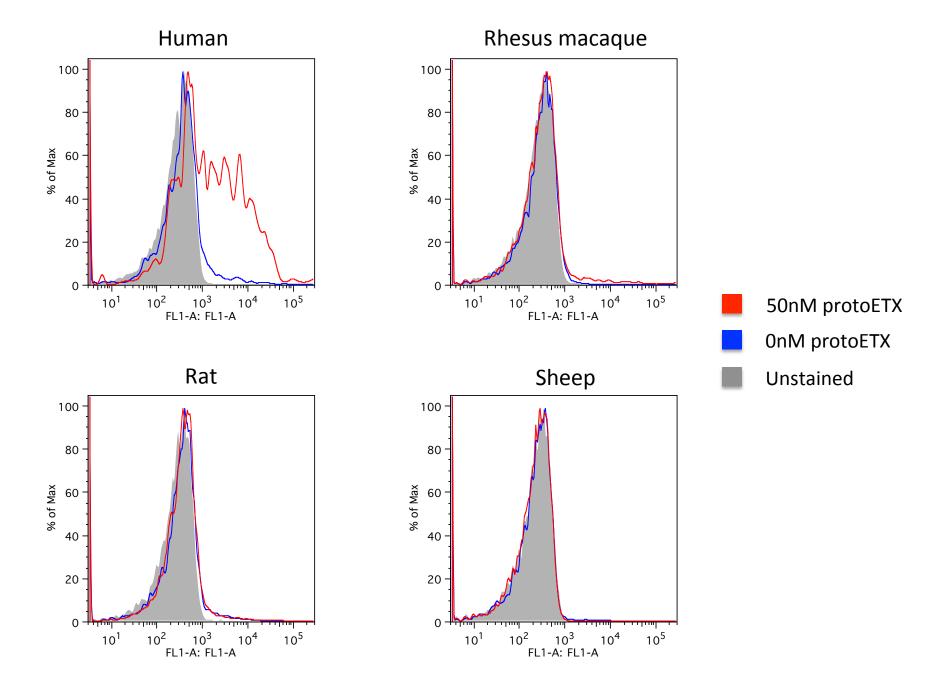


Figure 1c

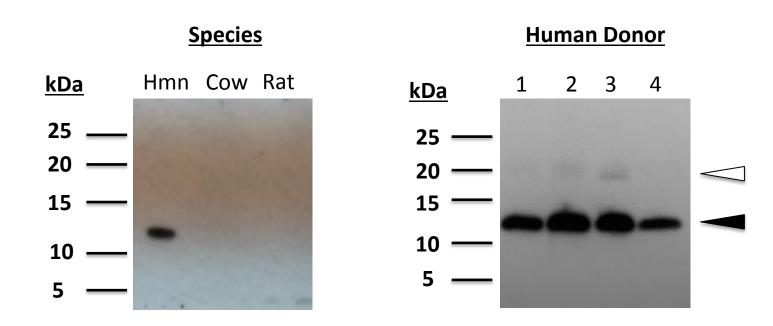


Figure 2a

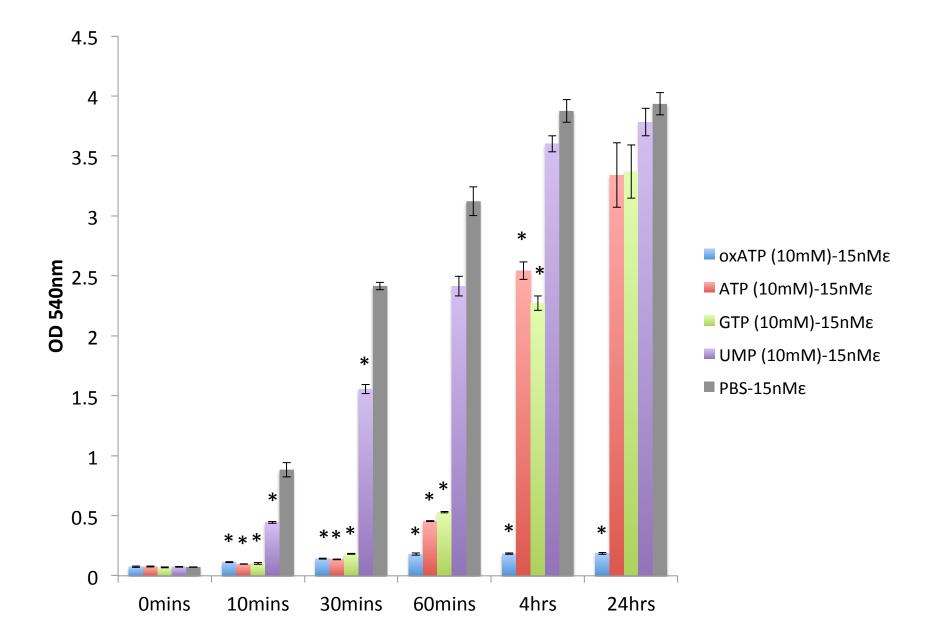
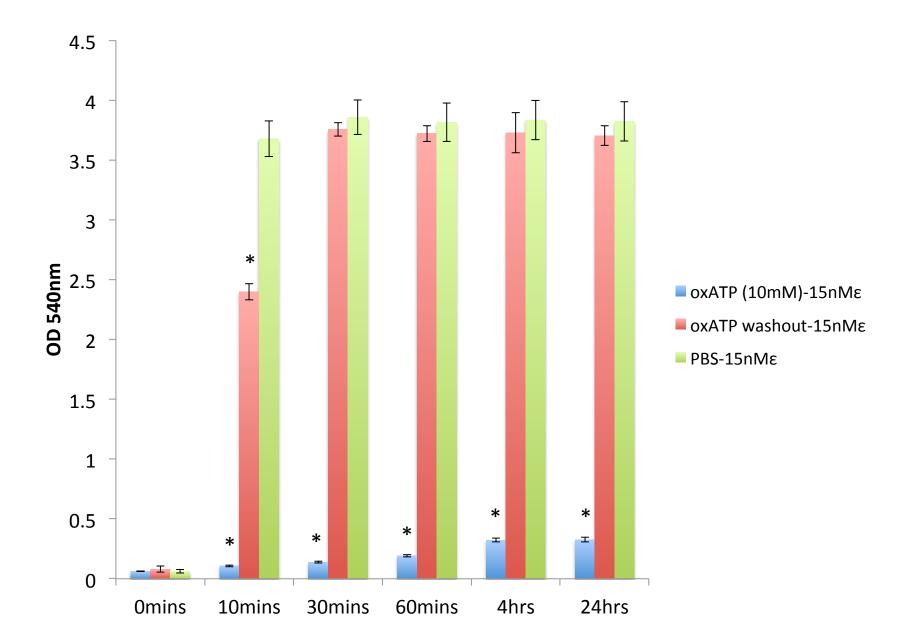



Figure 2b

Figure 3a

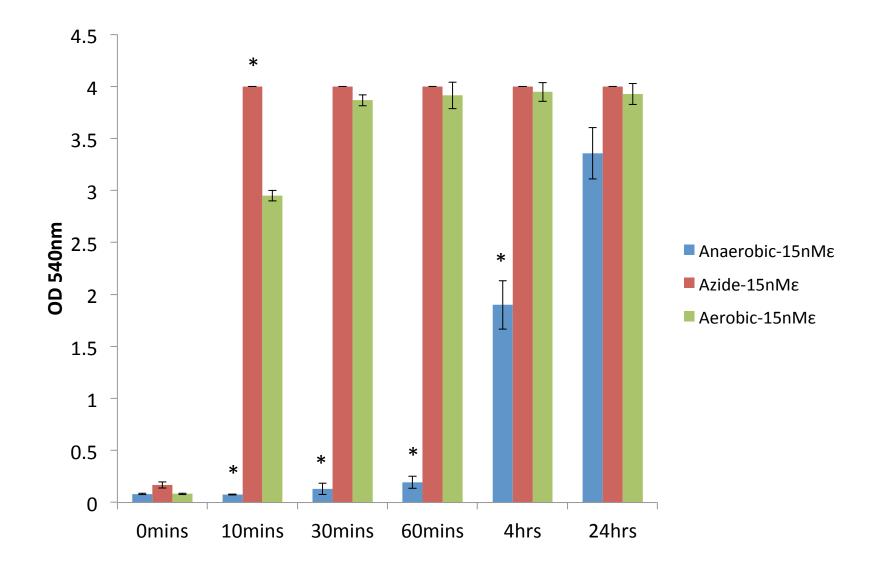


Figure 3b

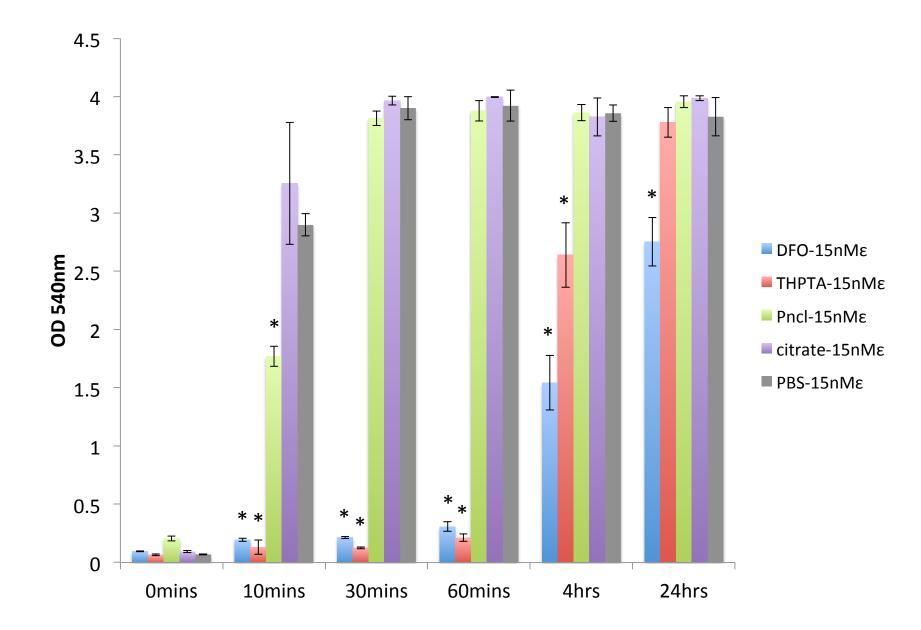


Figure 3c

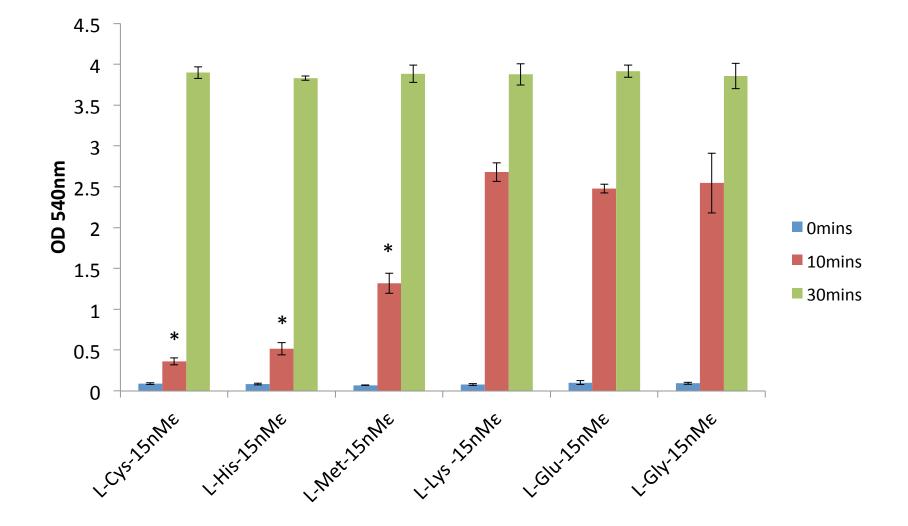


Figure 3d

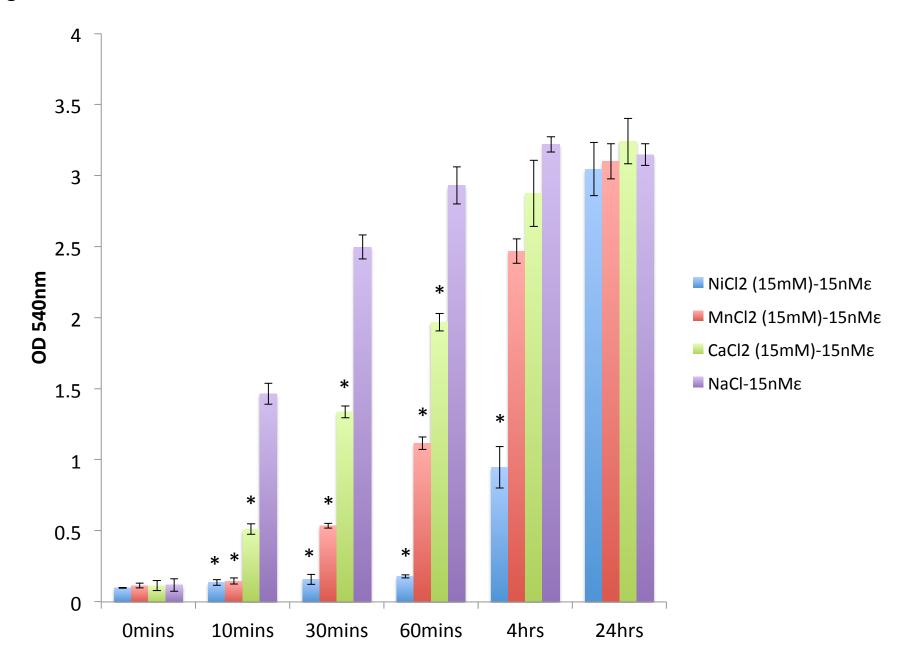


Figure 4a

- Nedocromil (5mg/ml)-15nMε
 Cromolyn (5mg/ml)-15nMε
- PBS-15nΜε

Figure 4b

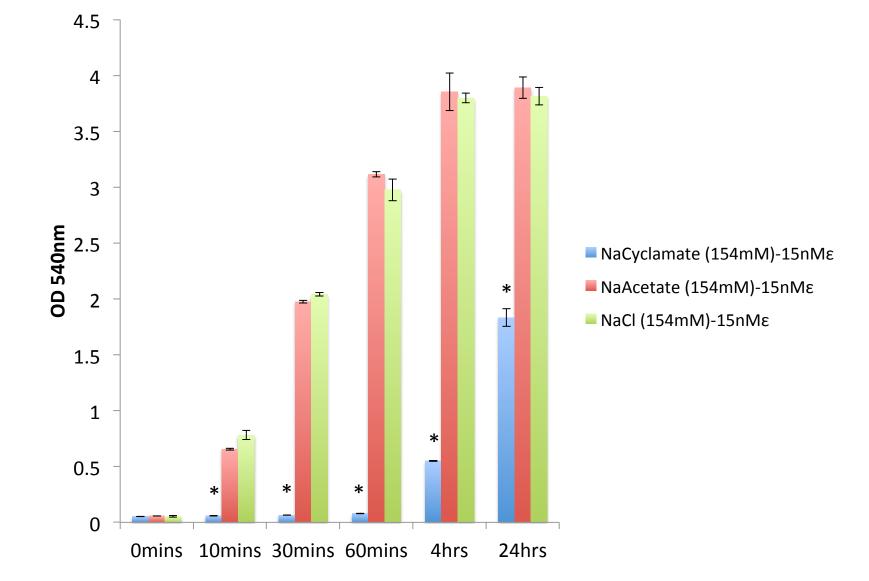


Figure 4c

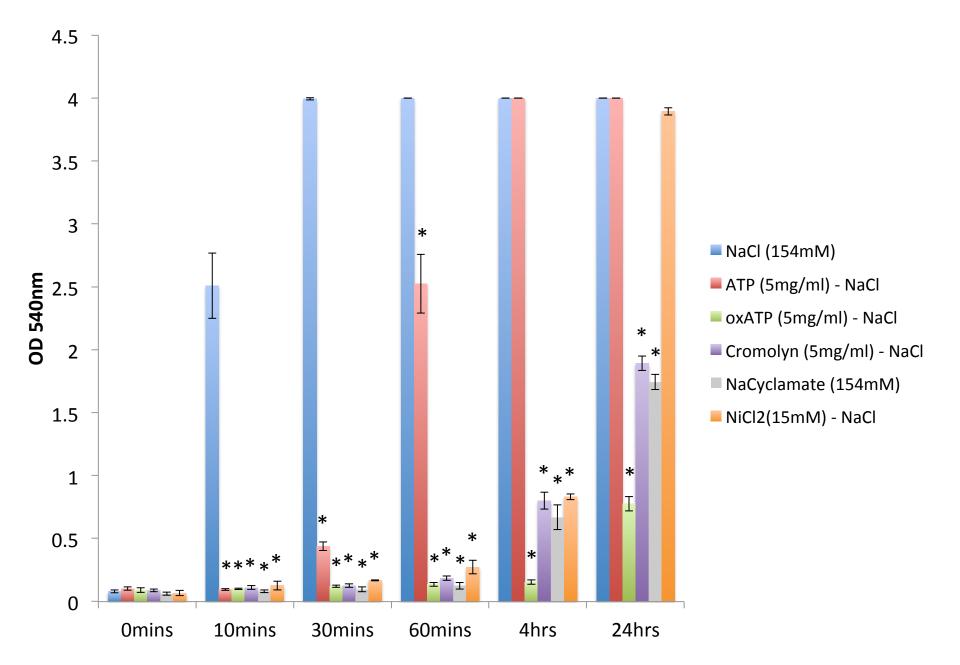
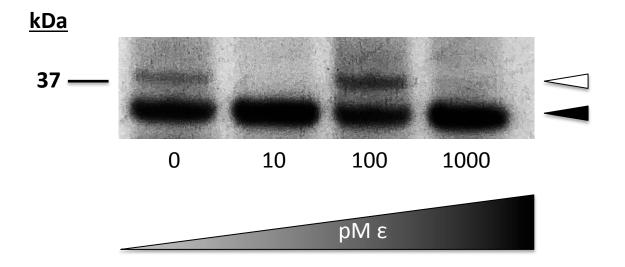



Figure 4d

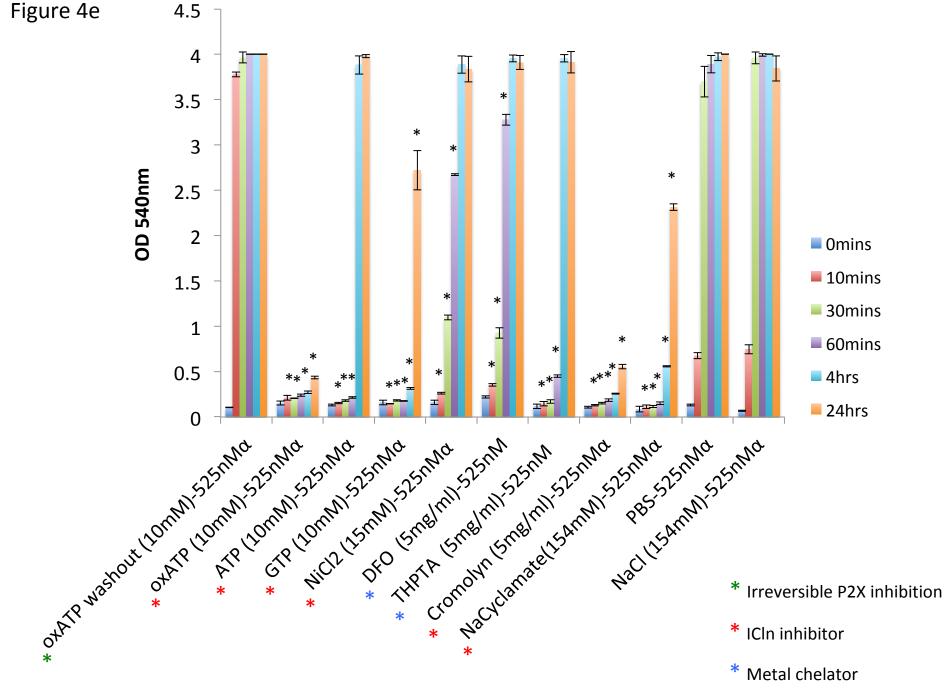


Figure 4e

Figure 5a

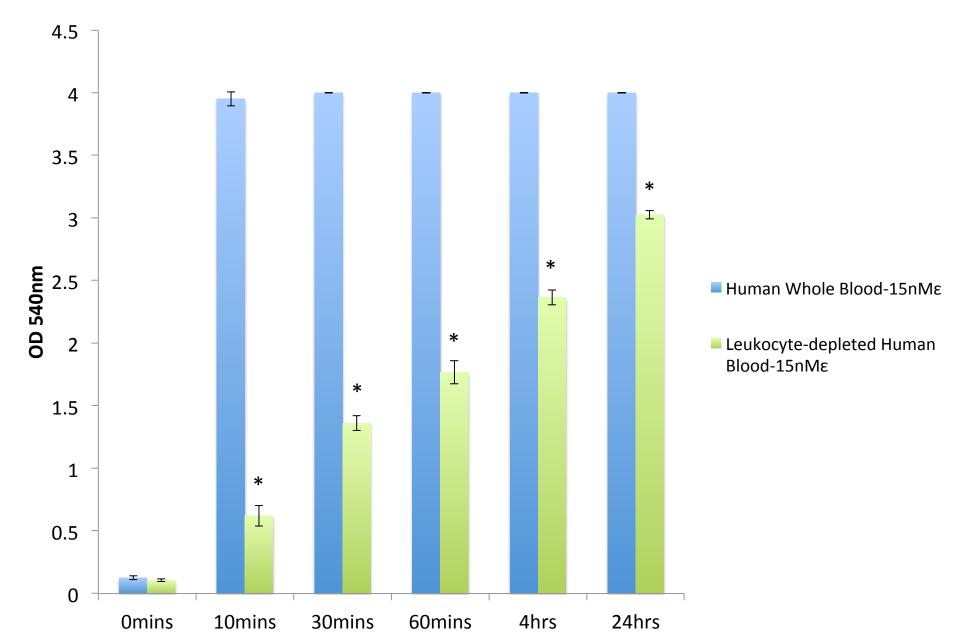
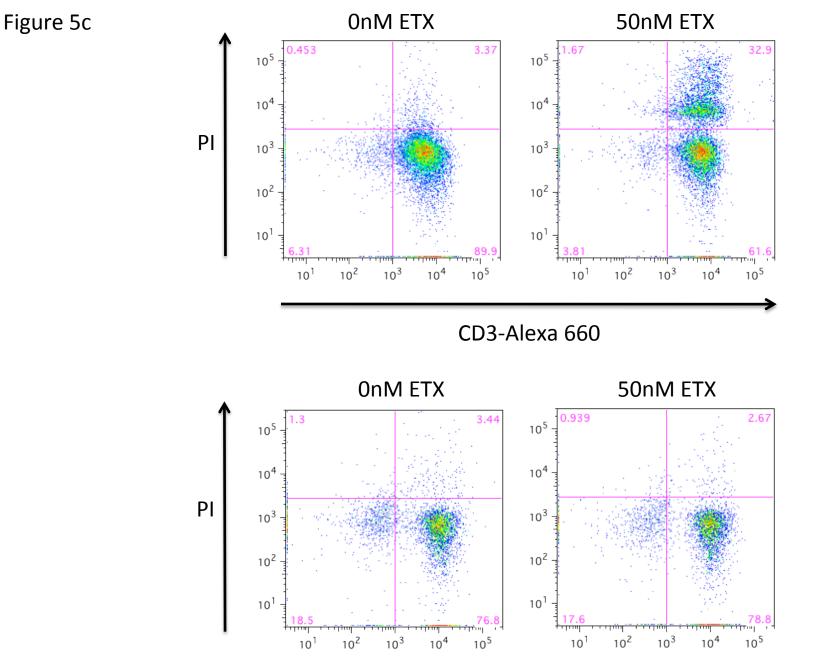



Figure 5b

CD20-APC

T cells

B cells

Figure 5d

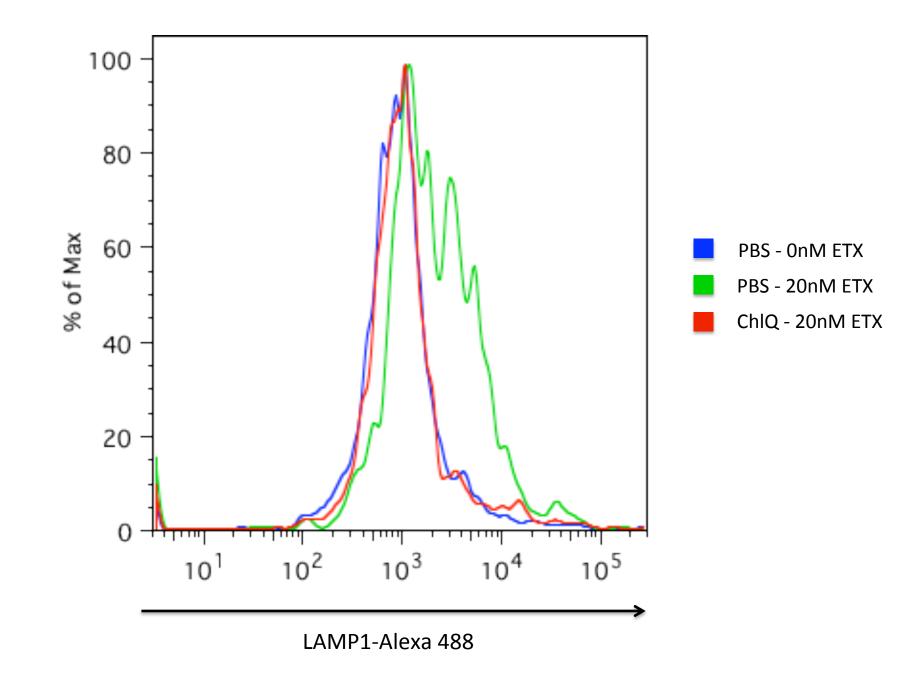
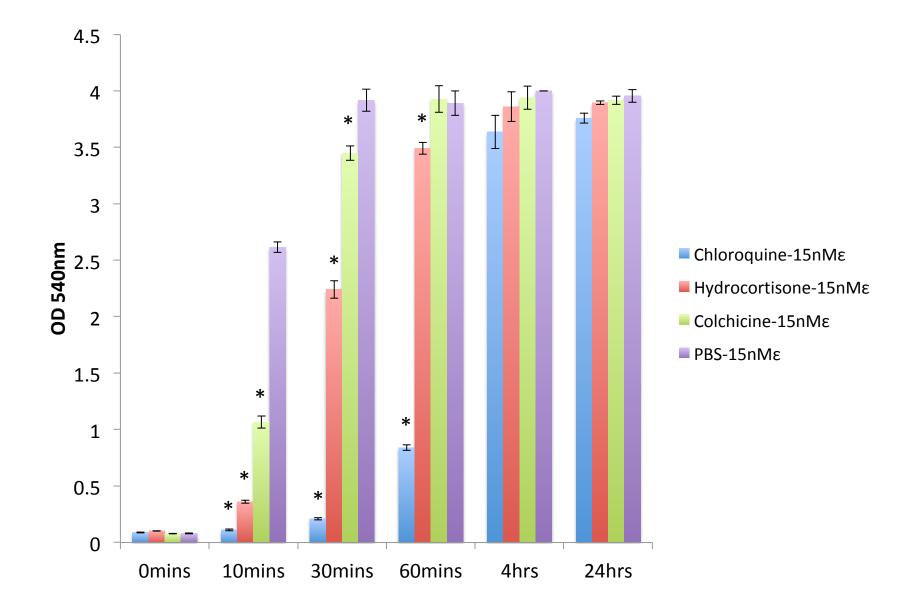
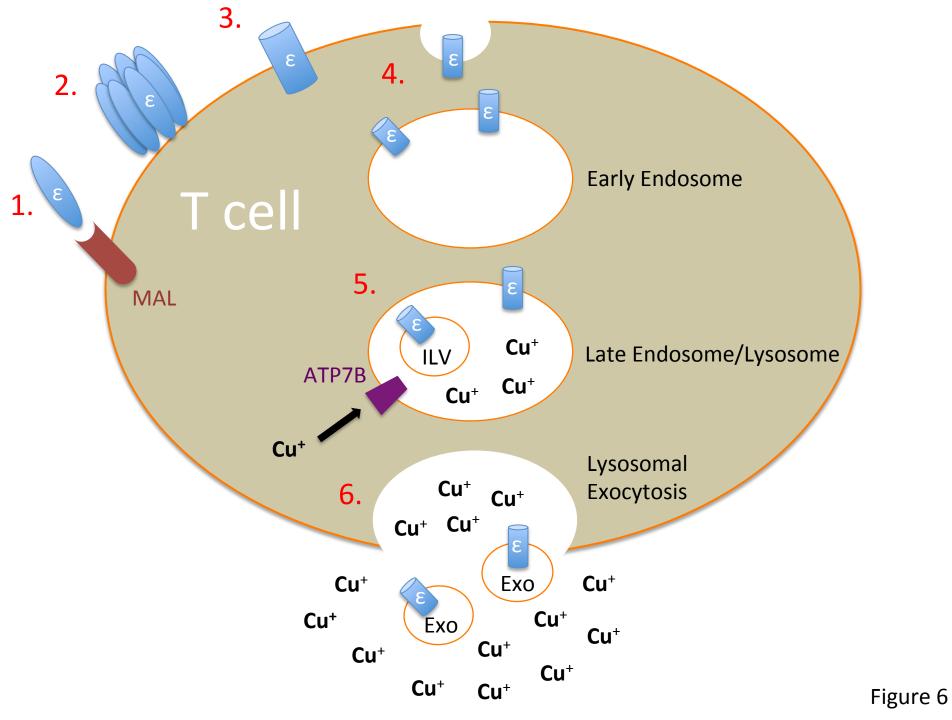
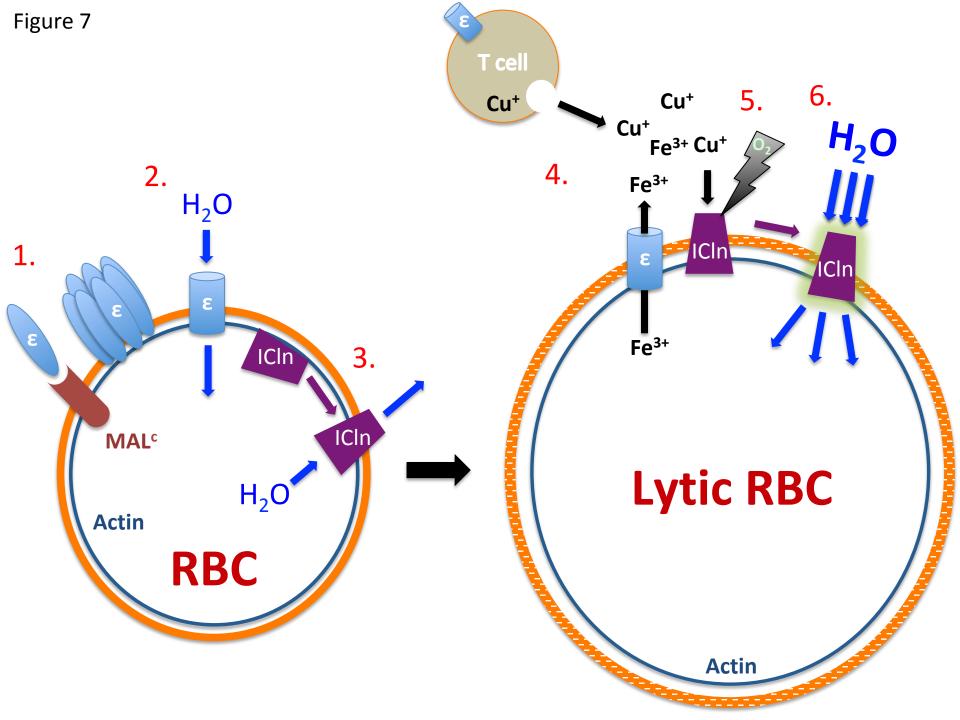





Figure 5e

