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Abstract

Transcriptome-wide association studies (TWAS) integrate expression quantitative trait loci1

(eQTLs) studies with genome-wide association studies (GWASs) to prioritize candidate target2

genes for complex traits. Several statistical methods have been recently proposed to improve the3

performance of TWAS in gene prioritization by integrating the expression regulatory information4

imputed from multiple tissues, and made significant achievements in improving the ability to5

detect gene-trait associations. The major limitation of these methods is that they cannot be6

used to elucidate the specific functional effects of candidate genes across different tissues. Here,7

we propose a tissue-specific collaborative mixed model (TisCoMM) for TWAS, leveraging the8

∗Correspondence should be addressed to Jin Liu (jin.liu@duke-nus.edu.sg)

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2019. ; https://doi.org/10.1101/789396doi: bioRxiv preprint 

https://doi.org/10.1101/789396
http://creativecommons.org/licenses/by-nc-nd/4.0/


co-regulation of genetic variations across different tissues explicitly via a unified probabilistic9

model. TisCoMM not only performs hypothesis testing to prioritize gene-trait associations,10

but also detects the tissue-specific role of candidate target genes in complex traits. To make11

use of widely available GWAS summary statistics, we extend TisCoMM to use summary-level12

data, namely, TisCoMM-S2. Using extensive simulation studies, we show that type I error is13

controlled at the nominal level, the statistical power of identifying associated genes is greatly14

improved, and false positive rate (FPR) for non-causal tissues is well controlled at decent levels.15

We further illustrate the benefits of our methods in applications to summary-level GWAS data16

of 33 complex traits. Notably, apart from better identifying potential trait-associated genes, we17

can elucidate the tissue-specific role of candidate target genes. The follow-up pathway analysis18

from tissue-specific genes for asthma shows that the immune system plays an essential function19

for asthma development in both thyroid and lung tissues.20
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Introduction21

Over the last decade, GWASs have achieved remarkable successes in identifying genetic22

susceptible variants for a variety of complex traits [1]. However, the biological mechanisms to23

understand these discoveries remain largely elusive as majority of these discoveries are located in24

non-coding regions [2]. Recent expression quantitative trait loci (eQTLs) studies indicate that25

the expression regulatory information may play a pivotal role bridging both genetic variants26

and traits [3, 4, 5]. Cellular traits in comprehensive eQTL studies can serve as reference data,27

providing investigators with an opportunity to examine the regulatory role of genetic variants on28

gene expression. For example, the Genotype-Tissue Expression (GTEx) Project [6] has provided29

DNA sequencing data from 948 individuals and collected gene-expression measurements of 5430

tissues from these individuals in the recent V8 release.31

Transcriptome-wide association studies (TWAS) has been widely used to integrate the32

expression regulatory information from these eQTL studies with GWAS to prioritize genome-33

wide trait-associated genes [7, 8, 9]. A variety of TWAS methods have been proposed using34

different prediction models for expression imputation, including the parametric imputation35

models, e.g., PrediXcan [7], TWAS [8], CoMM [10] and CoMM-S2 [11], and the nonparametric36

imputation model, e.g., Tigar [12]. These methods have been used for analyzing many complex37

traits with expression profiles from different tissues, successfully enhancing the discovery of38

genetic risk loci for complex traits [13, 9]. To further improve the power of identifying potential39

target genes, two recent studies were proposed by leveraging the substantial shared eQTLs40

across different tissues, i.e., MultiXcan [14] and UTMOST [15]. They use a step-wise procedure41

by first conducting imputation for gene expressions across multiple tissues and then performing42

subsequent association analysis using a multivariate regression that pools information across43

different tissues. Compared to single-tissue methods, these multi-tissue strategies enhance the44

imputation accuracy for gene expression and thus improve the power of identifying potential45

target genes.46

Despite their successes, the existing multi-tissue methods have several limitations. First,47

MultiXcan and UTMOST cannot be used to identify the tissue-specific gene-trait associations.48

Many studies have shown that genes associated with complex traits are always regulated in a49

tissue-specific manner [16, 17, 18, 9]. For example, a recent study across 44 tissues confirmed50

this phenomenon in 18 complex traits [19], implying the persuasive role of tissue-specific51
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regulatory effects in a wide range of complex traits. Using a single-tissue test, one can easily52

reach a false conclusion regarding which tissue that a gene affects traits through. Second, both53

MultiXcan and UTMOST rely on a step-wise inference framework, ignoring the uncertainty in54

the process of expression imputation and thus losing power, especially when cellular-heritability55

is small [10]. Recently, CoMM [10] and its variant for summary-level data, CoMM-S2 [11],56

have been proposed to account for uncertainty in the process of expression imputation. Third,57

MultiXcan and UTMOST do not make efficient use of the shared patterns of eQTLs across58

tissues, where MultiXcan uses principal component analysis (PCA) regularization on the59

predicted expression data, and UTMOST uses penalized regularization on coefficients for60

eQTL effects. A study of GTEx revealed these shared patterns [20], and later many efforts61

have been made to take advantage of them in the analysis for GTEx data. For example,62

Urbut et al. proposed statistical methods for estimating and testing eQTL effects explicitly63

incorporating this extensively tissue-shared patterns [21], shedding light on how to account for64

the tissue-shared eQTLs in statistical modeling successfully.65

To overcome these limitations, we propose a tissue-specific collaborative mixed model66

(TisCoMM) for TWAS, providing a principled way to perform gene-trait joint and tissue-67

specific association tests across different tissues. Our method allows us not only to perform68

hypothesis testing to prioritize gene-trait association but also to uncover the tissue-specific69

role of candidate genes. By conditioning on the trait-relevant tissues, one could largely remove70

the spurious associations due to highly correlated gene expressions among multiple tissues. As71

a unified model, TisCoMM jointly conducts the “imputation” and the association analysis,72

pooling expression regulatory information across multiple tissues explicitly. Furthermore,73

we extend TisCoMM to use summary statistics from a GWAS, namely, TisCoMM-S2. In74

simulations, we show that both TisCoMM and TisCoMM-S2 provide correctly controlled type75

I error and are more powerful than existing multi-tissue methods. More importantly, our76

methods can be used to test for the tissue-specific role of candidate genes. We illustrate the77

benefits of our methods using summary-level GWAS data in 33 complex traits. Results show78

that our findings have biologically meaningful implications. The follow-up pathway analysis79

from tissue-specific genes for asthma shows that the regulated immune system in both thyroid80

and lung tissues could have significant impact on asthma development.81
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Results82

Method overview83

Our method, TisCoMM, jointly integrates expression regulatory information across multiple84

tissues by considering two models. The first one models the relationship between genetic factors85

and gene expressions across multiple tissues in the eQTL data set,86

Yg = X1gBg + Eg, (1)

where Yg ∈ Rn1×T is expression matrix of n1 samples across T tissues for gene g, X1g ∈ Rn1×Mg is87

the standardized genotype matrix corresponding to Mg nearby single nucleotide polymorphisms88

(SNPs) of gene g in the eQTL data, Bg is an Mg × T matrix of the corresponding effect89

sizes across T tissues and Eg is an n1 × T matrix for random errors from a multivariate90

normal distribution N (0,Ve). Here, Ve captures the correlations among tissues from the same91

individual. Then we assume that phenotypic value z and standardized genotype X2g in GWAS92

are related by93

z = X2gBgαg + ez, (2)

where z is an n2 × 1 vector of phenotypic values, X2g ∈ Rn2×Mg is the standardized genotype94

matrix corresponding to Mg nearby variants of gene g in the GWAS data, αg is a T×1 unknown95

parameter vector of interest that represents the effect sizes of “imputed” gene expression across96

T tissues for gene g, and ez ∼ N (0, σ2) is an n2 × 1 vector of independent errors associated97

with the trait. Our TisCoMM can be depicted as Figure 1, within which Figure 1A illustrates98

the TisCoMM method combing both the expression prediction model (1) and the corresponding99

association model (2) together with data input and output.100

To pool expression regulatory information across relevant tissues, we assume the factorizable101

assumption [22, 23] for Bg = [βjt], j = 1, . . . ,Mg, t = 1, . . . , T . This assumption has been102

empirically validated for GTEx data in an imputation study [24] and Park et al. further103

used this assumption in a multi-tissue TWAS [25]. Here, we assume that the effect size of104

cis-SNP j in tissue t can be factorized by variant-dependent and tissue-dependent components:105

βjt = bjwjt, where bj (variant) is the eQTL effect of cis-SNP j shared in all the T tissues, and106

wjt is the tissue-specific effect size. Thus, we have Bg = diag{b}W. This factorization allows107

us to model the co-regulation of cis-SNPs shared across different tissues explicitly (Figure108

1A, right). To make TisCoMM identifiable, we further assume that bj independently follows109
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a normal distribution N (0, σ2
b ) due to polygenicity and by following the adaptive weighting110

strategy used in [24], the adaptive weight wjt is estimated using the marginal regression of gene111

expression in tissue t on the j-th genetic variant.112

The parameter of our interest in TisCoMM is the vector of effect size αg. To prioritize113

candidate target genes, we conduct hypothesis testing for a joint null, H0 : αg = 0 (Figure114

1B). To further explore the tissue-specific roles of candidate genes, we conduct hypothesis115

testing for each tissue, H0 : αgt = 0, t = 1, . . . , T (Figure 1C). We refer to the two inference116

tasks as the TisCoMM joint test and TisCoMM tissue-specific test, respectively. We develop117

an expectation-maximization (EM) algorithm for parameter estimation by maximizing the118

complete-data likelihood. A parameter expansion technique is further adopted to accelerate119

computational efficiency (see details in Supplementary Text). In contrast to the existing120

two-step TWAS methods, we perform TisCoMM analysis in a unified model by treating b as a121

hidden random variable. Generally, the computational cost for the TisCoMM tissue-specific122

test is O(T ) of that for the TisCoMM joint test. To enable computational efficiency, we only123

conduct the TisCoMM tissue-specific test for candidate genes detected in the joint test, rather124

than for all genes.125

In a single-tissue analysis, it is difficult to explore the tissue-specific role of a candidate126

gene. The disease-associated genes will be identified in all the causal tissues as well as the127

tissues (possibly non-causal) highly correlated with the causal one, because there exist sharing128

patterns for expressions in multiple tissues. By conditioning on the trait-relevant tissues, our129

tissue-specific test could largely remove the spurious discoveries due to correlated expression130

across tissues.131

[Figure 1 about here.]132

Inferring TisCoMM results from GWAS summary statistics133

To make our method widely applicable, we extend TisCoMM to use summary-level GWAS134

data, denoted as TisCoMM-S2. The model details are given in Supplementary Text.135

We observe high concordance between TisCoMM and TisCoMM-S2 results. Figure 2 shows136

the comparison of TisCoMM and TisCoMM-S2 test statistics for ten traits from the Northern137

Finland Birth Cohorts program 1966 (NFBC1966) data set [26] (see Methods section). The138

reference panel was 400 subsamples from the NFBC1966 data set. The high correlation between139
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TisCoMM and TisCoMM-S2 suggests the goodness of detections for trait-associated genes using140

summary-level GWAS data.141

[Figure 2 about here.]142

To test the robustness of TisCoMM-S2, we applied European subsamples from 1000 Genomes143

as the reference panel. Note that the NFBC1966 data set is Finns study, and it is well known that144

Finns have significant genetic differences with other Europeans [27]. Hence, the estimated LD145

did not well match that of the GWAS study. Supplementary Figure S1 shows the performance146

of TisCoMM-S2 using European subsamples as a reference panel data set. Despite the high147

concordance between TisCoMM and TisCoMM-S2 in the null region (Λ > 34.67 = p-values148

> 5× 10−6), the test statistics of TisCoMM-S2 in the non-null region are much more significant149

than TisCoMM.150

Simulation151

Methods for comparison To detect gene-trait association, we compared the performance of152

three methods in the main text: (1) our TisCoMM and TisCoMM-S2 implemented in the R153

package TisCoMM; (2) MultiXcan and S-MultiXcan implemented in the MetaXcan package154

available at http://gene2pheno.org/; (3) UTMOST available at https://github.com/Joker-155

Jerome/UTMOST/. To detect the tissue-specific effect, we compared the performance of Tis-156

CoMM tissue-specific test with three single-tissue methods that include (1) CoMM available at157

https://github.com/gordonliu810822/CoMM; (2) PrediXcan available at http://gene2pheno.org/;158

(3) TWAS relies on the BSLMM [28] implemented in the GEMMA [28] software. All methods159

were used with default settings. We conducted comprehensive simulations to gauge the per-160

formance of each method better by performing gene-trait joint and tissue-specific tests across161

different tissues.162

Simulation settings In detail, we considered the following simulation settings. We set163

{n1, nr, n2} = {400; 400; 5, 000} as the sample size for eQTL data, GWAS data and reference164

panel data. We first generated the genotype data for Mg = 400 cis-SNPs from a multivari-165

ate normal distribution assuming an autoregressive correlation with parameter ρ. We then166

discretized each SNP to a trinary variable {0, 1, 2} by assuming Hardy-Weinberg equilibrium167

and a minor allele frequency randomly selected from a uniform [0.05, 0.5] distribution. The168

genotype correlation was varied at ρ = {0.2, 0.5, 0.8}. All three genotype matrices, X1g,Xrg,169
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and X2g, for eQTL data, GWAS data and reference panel data, respectively, are generated in170

this manner.171

To generate multi-tissue gene expressions, we considered different cellular-level heritability172

levels (h2
c) and sparsity levels (s). These are key parameters to describe the genetic architecture173

of gene expression [29]. The cellular-level heritability represents the proportion of variance174

of the gene expression that can be explained by genotype, while sparsity represents the175

proportion of genetic variants that are associated with the gene expression. First, SNP effect176

size Bg = diag{b}W is generated. Specifically, we simulated SNP effect size b from a standard177

normal distribution, and randomly selected 10%, 50% or 100% of the SNPs to have non-zero178

tissue-specific effect W for gene expressions in all T tissues, while simulated their effects from a179

standard normal distribution. We then simulated errors Eg from a normal distribution, where180

their variances were chosen according to h2
c , and the covariance structure was autoregressive181

with ρe = 0.5 . Here we set h2
c = 0.025, 0.05, 0.1, 0.2, 0.4. Afterward, we simulated a multi-tissue182

eQTL data set assuming Yg = X1gBg + Eg.183

To simulate a quantitative trait, we generated nonzero entries of αg from a uniform184

distribution and ez from a normal distribution. The variance σ2 was chosen according to the185

tissue-level heritability h2
t = Var(X2gBgαg)

Var(z)
. Here we set h2

t = 0 for null simulations and type I186

error control examination and h2
t = 0.01 for non-null simulations and power comparisons.187

Simulation I: Testing gene-trait associations We focus on the detection of trait-associated188

genes in the first set of simulations. Here, we compared TisCoMM and TisCoMM-S2 with189

three different multi-tissue methods that include MultiXcan, S-MultiXcan, and UTMOST.190

We set T = 10, and all tissues are causal. For each scenario, we run 5,000 replicates. We191

first examined type I error control of different methods under the null. Results are shown in192

Supplementary Figures S2 – S6. By comparing the distribution of p-values with the expected193

uniform distribution, we observe that all methods provide well-controlled type I errors.194

Next, we examined the power of different methods under the alternative hypothesis, as shown195

in Figure 3. We observe that the performance of all five methods improves with the increment196

of cellular heritability. In general, the summary-level methods (TisCoMM-S2 and S-MultiXcan)197

perform similarly to their counterparts in individual-level data. Moreover, TisCoMM and198

TisCoMM-S2 have better performance than other alternative methods when cellular heritability199

is relatively small (h2
c = 0.025, 0.05, 0.1), and comparable performance when cellular heritability200
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is large. Finally, we observe that although our model favors dense eQTLs, it was robust to the201

sparsity level s. Specifically, the power of TisCoMM and TisCoMM-S2 in the setting where202

10% of cis-SNPs have non-zero effects on gene expression are similar to the setting where all203

cis-SNPs have non-zero effects.204

[Figure 3 about here.]205

Simulation II: Testing tissue-specific effects We focus on the detection of tissue-specific effects206

in the second set of simulations. Here, we compared the TisCoMM tissue-specific test with the207

single-tissue methods including CoMM [10], PrediXcan [7], and TWAS[8] under the alternative208

hypothesis with fixed tissue heritability h2
t = 0.01 and fixed sparsity s = 0.1. We considered209

three tissues T = 3 and varied the number of causal tissues to simulate different levels of tissue210

specificity of a trait. Specifically, we considered settings with one (αg2 = αg3 = 0) and two211

causal tissues (αg3 = 0), respectively. To allow correlated gene expression in the GWAS, the212

nonzero of tissue-specific effect W was generated with rows drawn from a multivariate normal213

distribution, with AR correlation parameter ρW = 0.2, 0.5, 0.8. A large value of ρW implies a214

higher correlation among columns of X2gBg. Other sittings are similar to Simulation I.215

We repeated the whole process 1,000 times. We calculated statistical power and false216

positive rate (FPR) as the proportion of p-values reaching the significance level in causal217

tissues and non-causal tissues, respectively. Specifically, we set the significance level at 0.05/3218

for all considered methods. Figure 4 shows simulation results for the case that one tissue is219

causal. We observe that in all settings, the TisCoMM tissue-specific test has comparable or220

slightly inferior power, as shown in Figure 4A, compared to the single-tissue methods, but221

much smaller FPR (Figure 4B).As expected, the statistical power of all methods increases222

with cellular heritability (h2
c). However, the FPR of single-tissue methods substantially inflates223

while that of TisCoMM tissue-specific test remains at the same level. Furthermore, the FPR of224

TisCoMM tissue-specific test does not vary with correlations among expressions across multiple225

tissues (ρW ) while that of single-tissue methods increase with ρW . The similar pattern could226

be observed for the case that two tissues are causal (Supplementary Figure S7). These results227

demonstrate the usefulness of TisCoMM tissue specific test in exploring the tissue-specific role228

of genes.229

[Figure 4 about here.]230
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Real Data Applications231

We performed multi-tissue TWAS analysis for summary-level GWAS data in 33 complex232

traits (see Supplementary Table S1 for details), including 15 traits from Gamazon et al. [19]233

and 18 traits from the UK Biobank. Hereafter we refer to as NG traits and UKB traits,234

respectively. These traits can be roughly divided into four categories, including metabolites235

(e.g., HDL-C, LDL-C and fasting glucose), autoimmune diseases (e.g., asthma, Crohn’s disease236

and macular degeneration), psychiatric/neurodegenerative disorders (e.g., Alzheimer’s disease,237

major depression disorder, and psychiatric disorder), and cardiovascular disorders (e.g., coronary238

artery disease and peripheral vascular disease). The Genotype-Tissue Expression (GTEx)239

Project [6] reported eQTL in 48 tissues, where the number of genes in each tissue ranges from240

16,333 to 27,378. In the analysis, we extracted cis-SNP that are within either 500 kb upstream241

of the transcription start site or 500 kb downstream of the transcription end site.242

In a single-tissue analysis, there are two different strategies to select a tissue for TWAS: one243

uses expressions from the most biologically related tissue while the other selects a tissue with244

the largest number of available individuals [9]. To select multiple tissues for TisCoMM-S2, there245

exists a trade-off between biological relevance and its corresponding sample size for each tissue.246

In [19], it provides the most biologically related tissues and thus we used trait-relevant tissues247

for the NG traits from Supplementary Table 2 in [19]. In detail, for each trait, a set of tissues248

with significant enrichment p-values (after Bonferroni correction) was identified, and a subset249

with more than 100 overlapped samples [30] was chosen for further analysis in TisCoMM-S2.250

On the other hand, although methods like LD score regression [17] can be used for the UKB251

traits, it is difficult to balance the tissue relevance and sample size for each tissue. To make252

efficient use of the GTEx data set, we used six tissues with the largest number of overlapped253

samples for the UKB traits.254

The analysis for each trait based on its GWAS summary statistics together with the eQTL255

data from multiple tissues can be done around 100 min on a Linux platform with 2.6 GHz Intel256

Xeon CPU E5- 2690 with 30720 KB cache and 96 GB RAM (0nly 10∼12 GB RAM used) on257

24 cores.258
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TisCoMM-S2 joint test provides statistically powerful results of disease relevant259

genes260

To prioritize trait-associated genes, we compared TisCoMM-S2 with other two multi-tissue261

TWAS methods, i.e., S-MultiXcan and UTMOST. Both alternative methods take advantage of262

prediction models to impute gene expressions. The prediction models used here were Elastic263

Net models trained on 48 GTEx tissues. See Table 1 and 2 for the summary of detections across264

different approaches for the 15 NG and 18 UKB traits, respectively. Generally, TisCoMM-S2
265

identifies more genome-wide associations than S-MultiXcan and UTMOST in most traits. In266

detail, TisCoMM-S2/S-MultiXcan/UTMOST identified 3,058/2,008/1,769, and 443/338/277267

genome-wide significant genes in all the NG traits and UKB traits, respectively. Their qq-plots268

of p-values are shown in Supplementary Figures S8 – S11 and plots for their genomic inflation269

factors are shown in Supplementary Figure S12. As case study examples, we carefully examined270

the results for late-onset Alzheimer’s disease (LOAD) and asthma.271

LOAD results After Bonferroni correction, TisCoMM-S2/S-MultiXcan/UTMOST identified272

92/71/70 genome-wide significant genes, respectively, with 45 overlapping genes (17 of them are273

known LOAD GWAS genes). Here we define known LOAD GWAS gene as the ones reported274

in GWAS catalog. The qq-plots for associations in these three approaches are shown in Figure275

5A. Among the 92 candidate target genes identified by TisCoMM-S2, 24 of them are previously276

known LOAD GWAS genes, which are annotated in the Manhattan plot in Figure 5A. These277

include genes on the chromosome (CHR) 2 (BIN1 ), CHR 6 (CD2AP), CHR 7 (EPHA1 ), CHR278

8 (CLU ), CHR 11 (PICALM, CCDC89, MS4A2, MS4A6A), CHR 16 (IL34 ) , and CHR 19279

(STK11 and APOE region). Moreover, TisCoMM-S2 also identified 35 genes that were not280

significant in neither S-MultiXcan nor UTMOST, and four of them are known LOAD GWAS281

genes, including IL34 (p-value =1 × 10−6), PTK2b (p-value =1.4 × 10−9), EPHX (p-value282

=4.7× 10−8) and STK11 (p-value = 7.2× 10−7).283

Among all novel genes for LOAD identified by TisCoMM-S2, some of them were identified284

to be LOAD-related genes based on other computational models (e.g., MAP3K2) while some285

of them have not been directly linked to LOAD yet, but have been proven to be important286

regulators in different regions of the neuron system (e.g., STMN4, EED and APC2). MAP3K2287

is 200kb downstream of B1N1, a reported LOAD risk gene [31] that was also genome-wide288

significant in our joint test (p-values for both B1N1 and MAP3K2 < 10−10). MAP3K2 belongs289
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to the serine/threonine protein kinase family and has been previously identified as a member290

of the Alzheimer’s disease susceptibility network [32]. STMN4 (p-value < 10−10) encodes the291

known protein that exhibits microtubule-destabilizing activity. The expression levels of this292

gene in mouse neurons have been shown to change significantly after different exposure of293

cortical nerve cells to the Aβ peptide [33]. The expression of STMN4 in zebrafish has also been294

shown to have an important role in regulating neurogenesis in the neural keel stage [34]. EED295

(p-value =5.7× 10−7) encodes a Polycomb protein, which plays a starring role as an important296

modulator of hippocampal development [35]. APC2 (p-value = 1.3× 10−6) is preferentially297

expressed in postmitotic neurons and involved in brain development through its regulation of298

neuronal migration and axon guidance [36]. We annotate these four genes in red in Figure 5A.299

Validation of these potential target genes requires further functional studies. The list of300

significant gene-trait associations of TisCoMM-S2, S-MultiXcan, and UTMOST can be found301

in Supplementary Table S2. To replicate our findings in another independent data set, we used302

the summary statistics from the GWAS by proxy (GWAX [37], the sample size is 114,564). Our303

replication rate was high (Supplementary Table S3), where 31 out of 92 genes were successfully304

replicated under the Bonferroni-corrected significance threshold and the numbers of replicated305

genes raised to 44 under a relaxed p-value cutoff of 0.05.306

Asthma results After Bonferroni correction, TisCoMM-S2/S-MultiXcan/UTMOST identified307

200/157/140 genome-wide significant genes, respectively, with 98 overlapping genes in all three308

methods (and 21 of them are known asthma GWAS genes). The qq-plots for associations309

in these three approaches are shown in Figure 5B. Among all 200 candidate target genes310

identified by TisCoMM-S2, 31 of them are known asthma GWAS genes, which is annotated311

in the Manhattan plot in Figure 5B, including genes on CHR 2 (IL1RL1/IL18R1 ), CHR 5 (312

TSLP/WDR36, RAD50 ), CHR 6 (HLA-DR/DQ regions, MAP3K7 ), CHR 9 (IL33 ), CHR 11313

(C11orf30, LRRC32), CHR 15 (SMAD3 ), and CHR 17 (genes from the 17q21 asthma locus).314

Also, TisCoMM-S2 identified 56 genes that were not significant in neither S-MultiXcan nor315

UTMOST, and two of them are known asthma GWAS genes, which are PSORS1C1 (p-value316

=2.2× 10−7), and MAP3K7 (p-value =3× 10−7).317

Among all novel loci for asthma identified by TisCoMM-S2, PDCD1LG2 was shown to318

have essential roles in modulating and polarizing T-cell functions in airway hyperreactivity319

[38]. Validating causal role of this gene in asthma requires further investigation. The list of320
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significant gene-trait associations of TisCoMM-S2, S-MultiXcan, and UTMOST can be found321

in Supplementary Table S4. We annotate these two genes in red in Figure 5B.322

To replicate our findings in another independent data set, we used the summary statistics323

from TAGC European-ancestry GWAS [39] (the sample size is 127,669). Our replication rate324

was high (Supplementary Table S5), where 179 out of 200 genes were successfully replicated325

under the Bonferroni-corrected significance threshold and the numbers of replicated genes326

raised to 189 under a relaxed p-value cutoff of 0.05.327

TisCoMM-S2 tissue-specific test infers gene effects in causal tissues328

To demonstrate the utility of the TisCoMM-S2 tissue-specific test, we applied the tissue-specific329

test to all identified 92 candidate genes of LOAD and 200 candidate genes of asthma by using330

the TisCoMM-S2 joint test, and compared analysis results with those from CoMM [10, 11].331

Table 3 shows the distributions of identified tissues with which candidate genes are associated332

in LOAD and asthma, respectively (see details in Supplementary Tables S6 and S7). Among333

all identified candidate genes respectively for both LOAD and asthma, 76.1% and 81.5% were334

significant in less than two tissues using TisCoMM-S2 while 70.7% and 60% were significant335

in all six tissues using CoMM-S2. The most plausible explanation is that compared to the336

multivariate perspective of our TisCoMM-S2 tissue-specific test, single-tissue approaches, e.g.,337

CoMM-S2, tend to have larger tissue bias and more inflation in significant findings [9]. Suppose338

a gene is causal in tissue A but not in tissue B, and its expressions in tissues A and B are339

correlated. In a single-tissue test, the association can be spuriously significant for tissue B340

because of the similar gene expression pattern observed in both tissues. By performing a341

tissue-specific test for this gene in tissue B conditioned on tissue A, the significant spurious342

association will be largely excluded.343

[Table 1 about here.]344

To demonstrate the tissue-specific role of candidate genes inferred by TisCoM-S2 tissue-345

specific test for LOAD and asthma, respectively, we plot the volcano plots in Supplementary346

Figure S13, where the x-axis is the effect size showing in log scale, the y-axis is −log10 of the347

p-value from tissue-specific test, and the size of points reflect the cellular-heritability in each348

tissue. Known GWAS genes are also annotated. Next, we explored the tissue-specific effects of349
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some well-replicated genes that are identified by the TisCoMM-S2 joint test for LOAD and350

asthma, respectively.351

LOAD results The well-replicated risk gene APOE [40] and its 50Kb downstream CLPTM1352

have been identified by the TisCoMM-S2 joint test. Moreover, the TisCoMM-S2 tissue-specific353

test identified CLPTM1 to be significantly associated with LOAD in all four tissues (artery354

aorta, esophagus mucosa, nerve tibial, and skin sun-exposed lower leg with tissue-specific355

p-values < 4.9 × 10−7), but APOE to be only significantly associated with LOAD in artery356

aorta (tissue-specific p-value =8.3× 10−9) and nerve tibial (tissue-specific p-value =1.2× 10−8).357

On the other hand, CoMM-S2 significantly identified both APOE and CLPTM1 in all four358

tissues (p-values ≤ 10−10) but failed to identify the difference of tissue-specific role for these359

two genes. We further investigate the molecular functions of LOAD associated genes in each360

tissue. In each of tested tissues in LOAD, there are about 40 tissue-specific genes. It is difficult361

to carry out a proper pathway analysis with such limited gene sets. So we classified the genes362

into seven functional groups based on which molecular functions they belong to. As shown363

in Figure 6A and 6B, majority (> 62%) of LOAD-associated genes belonged to binding and364

catalytic activity, and a small portion of significant LOAD genes were transcription factors365

suggesting that many regulation processes are going on at both protein and mRNA levels in366

different tissues.367

According to our tissue selection strategy, above tissue-specific test for LOAD was conducted368

on four non-brain tissues (enriched tissues). To further investigate the gene expression changes369

in the well-studied disease tissues, three more brain regions (hippocampus, frontal cortex, and370

cerebellar hemisphere) were selected for another tissue-specific analysis for LOAD. Because it is371

known that hippocampus is one of the first brain regions to be affected by Alzheimer’s disease372

and related to the memory lost [41], markers such as Aβ in frontal cortex can be used to predict373

future Alzheimer’s disease [42], and cerebellum is affected in the final stage of the disease and374

related to cognitive decline [43]. The joint test conducted on brain regions revealed 105 LOAD375

associated genes, of which 73 were identified in the enriched tissues (Figure S14A), and the376

other 32 genes were uniquely identified in brain regions (Figure S14B). The most significant377

gene uniquely identified in brain regions is KLC3 according to the joint test (p-value < 10−10),378

which is within 50kb downstream of APOE. Moreover, it is significantly associated with LOAD379

in hippocampus region only, but not the other two brain regions according to the tissue-specific380
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test (Figure S14B). Thus, we propose KLC3 as one of the potential novel targets for LOAD in381

hippocampus.382

Asthma results We take identified genes ORMDL3 and GSDMB in the 17q21 asthma locus383

as an example, because these two genes have been mentioned as asthma susceptibility locus384

by many studies, a comprehensive review was written by Stein et al. [44]. The original385

finding of ORMDL3 was observed in one GWAS study, and have been further validated in386

a mouse model [45]. The TisCoMM-S2 tissue-specific test identified both ORMDL3 and387

GSDMB to be significantly associated with asthma only in lung tissue (see the volcano plot388

in Supplementary Figure S14B, tissue-specific p-values for these two genes are 1.7× 10−3 and389

7.1× 10−7, respectively). However, CoMM-S2 identified both ORMDL3 and GSDMB in all six390

tissues (p-values ≤ 10−10) but failed to identify the relevant tissues with which these two genes391

are causally related to asthma. We further conducted pathway analysis using DAVID [46] on392

six sets of asthma-associated genes in all six tissues (thyroid, lung, artery tibial, muscle skeletal,393

adipose subcutaneous, and skin sun-exposed lower leg), respectively. As listed in Figure 6B,394

all three significant pathways in thyroid tissue belonged to the immune system, and the only395

significant pathway in lung tissue was immune response. However, no significant pathways were396

detected in the other four tissues. Among asthma-associated genes in immune response (first397

row in Figure 6C and 6D), the majority of them were shared between thyroid and lung, and398

located in the MHC region on CHR 6 including several HLA genes and LST1. Our pathway399

analysis suggests that nearly the same set of immune genes in thyroid and lung are responsible400

for asthma development.401

[Figure 5 about here.]402

[Figure 6 about here.]403

Discussion404

Despite the substantial successes of TWAS and its variants, the existing multi-tissue methods405

have several limitations, e.g., incapability to identify the tissue-specific effect of a gene, igno-406

rance of imputation uncertainty, and failure to efficiently use tissue-shared patterns in eQTLs.407

To overcome these limitations and provide additional perspectives over tissue-specific roles408

of identified genes, we have proposed a powerful multi-tissue TWAS model, together with a409
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computationally efficient inference method and software implementation in TisCoMM. Specifi-410

cally, we have developed a joint test for prioritizing gene-trait associations and a tissue-specific411

test for identifying the tissue-specific role of candidate genes. Conditioned on the inclusion412

of trait-relevant tissues, the tissue-specific test in TisCoMM can mostly remove the spurious413

associations in a single-tissue test due to high correlations among gene expression across414

tissues. We have also developed a summary-statistic-based model, TisCoMM-S2, extending the415

applicability of TisCoMM to publicly available GWAS summary data. Using both simulations416

and real data, we examined the relationship between TisCoMM and TisCoMM-S2. Our results,417

as shown in Figure 2, show that the test statistics from TisCoMM and TisCoMM-S2 are highly418

correlated (R2 > 0.95). We further analyzed summary-level GWAS data from 33 traits with419

replication data for Alzheimer’s disease and asthma. Overall, the findings from TisCoMM-S2
420

are around 30% more than those from S-MultiXcan or UTMOST while qq-plots from these421

studies show that there are no apparent inflations. To replicate our findings for Alzheimer’s422

disease and asthma, we applied TisCoMM-S2 to independent data sets for each disease. Results423

show that replication rates for Alzheimer’s disease and asthma are high.424

We further inferred the tissue-specific effects of identified genes using the TisCoMM-S2
425

tissue-specific test. By classifying these genes into seven functional groups, we observed that426

majority (62%) of LOAD-associated genes were related to binding and catalytic activity while427

a small portion was from transcription factors suggesting active regulation processes at both428

protein and mRNA level in different tissues. We also observed about 40 LOAD-associated429

genes in each non-brain tissues. The significance of these genes could be due to the exclusion430

of LOAD-relevant tissues, e.g., brain tissues. To fill this gap, we further conducted one more431

analysis on three brain regions, and identified 32 brain specific genes. For asthma, genes432

ORMDL3 and GSDMB were identified to be significantly associated with asthma only in433

lung tissue using TisCoMM-S2 tissue-specific test. However, single-tissue analysis (CoMM-S2)434

identified both genes significant in all six tested tissues. Further pathway analysis shows that435

all three significant pathways for thyroid tissue belong to the immune system and the only436

significant pathway for lung tissue was immune response. The majority of shared genes between437

thyroid and lung tissues are located in the MHC region on CHR 6, including several HLA genes438

and LST1. The proteins encoded by HLA genes are known as antigens. In combination with439

antigen-presenting cells (e.g., macrophages and dendritic cells), they play an essential role in the440
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activation of immune cells as well as airway inflammation in response to asthma-related allergens441

[47, 48]. Based on our tissue-specific test, TNF that is a well-studied asthma gene [49, 50]442

was explicitly identified to be associated with asthma in lung tissue. The positive correlation443

between TNF expression and asthma in lung confirmed our previous understanding of TNF444

activation in asthma, promoting airway inflammation and airway hyperresponsiveness. On445

the other hand, LTA was specifically regulated in thyroid tissue. It is a cytokine produced by446

lymphocytes, and also known as a regulator of lipid metabolism [51]. Another immune gene447

regulated individually in thyroid tissue is NCR3, which mediates the crosstalk between natural448

killer cells and dendritic cells [52]. However, it remains unclear how the alteration of LTA and449

NCR3 in thyroid could lead to asthma development.450

Despite the utility of TisCoMM to perform gene-trait association analysis in a tissue-specific451

manner, it is primarily designed to test genes with direct effects from cis-eQTL. Recently,452

an omnigenic model was proposed to better understand the underlying mechanism of so-453

called polygenicity in complex traits [53]. Liu et al. [54] further provided a theoretical model454

to understand complex trait architecture by partitioning genetic contributions into direct455

effects from core genes and indirect effects from peripheral genes acting in trans. Most works456

from TWAS identify core genes with direct effects. How to effectively interrogate peripheral457

genes with indirect effects essentially remains an open question. As high-throughput data are458

continuously generating for a much larger sample size with more precision, TisCoMM sheds459

light on how to integrate useful data for the desired analysis effectively.460

Methods461

Model settings462

Conventionally, both single-tissue and multi-tissue TWAS methods proceed by conducting a463

prediction model in Equation (1) followed by a subsequent association analysis in Equation (2),464

where a steady-state gene expression is imputed from X2gB̂g and B̂g is estimated in the first465

prediction model, e.g., PrediXcan, MultiXcan, S-MulitXcan, and UTMOST. However, this466

imputation strategy ignores the uncertainty in the process of expression imputation. Here, we467

describe the individual-level data version of TisCoMM by jointly analyzing models (1) and (2),468

and extensions to summary statistics will be discussed in the Supplementary Text. Assume469

D1 = {Yg,X1g} denote the reference transcriptome data set of gene g for n1 samples over470
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T tissues, where Yg is the n1 × T expression matrix for this gene over T tissues, and X1g is471

the corresponding n1 ×Mg standardized genotype matrix for Mg cis-SNPs within this gene.472

Denote the GWAS data D2 = {z,X2g}, where z is an n2 × 1 vector of phenotypic values, X2g473

is the corresponding n2×Mg standardized genotype matrix for Mg cis-SNPs. Since we conduct474

hypothesis testing sequentially or parralelly for each gene, we will omit the subscript g in all475

the expression that has dependence on gene g to simplify notations. Our model becomes476

Y = X1B + E, z = X2Bα + ez, (3)

where α ∈ RT , E ∼ MN (0, Im,Ve), and ez ∼ N (0, σ2In). Note that we assume D1 and D2477

are centered and thus intercepts can be omitted.478

To estimate the tissue-specific eQTL effects, we need to first estimate an M × T coefficient479

matrix B. To reduce the number of parameters, we follow an adaptive weighting scheme480

[22, 23, 24]: we regress the gene expression in tissue type t on the jth eQTL and let the481

marginal eQTL effect be the adaptive weight, wjt. Specifically, we assume the joint eQTL482

effect size βjt can be decomposed into variant-dependent components bj and tissue-specific483

components wjt: βjt = bjwjt. That is, B = diag{b}W. Similar strategies have been applied to484

model tissue-shared patterns [24, 21]. Let yi, x1i and wj denote the ith row of Y, X1 and W,485

respectively. Our model can be written as486

yi|b ∼ N
(∑

j

x1ijbjwj,Ve

)
,

zi|b ∼ N
(
α>(

∑
j

x2ijbjwj), σ
2
)
,

bj ∼ N (0, σ2
b ).

Denote θ = (α, σ2
b , σ

2,Ve)
T the vector for all model parameters. We need to estimate487

parameters and maker inference for α. Both the TisCoMM joint test and tissue-specific test488

are based on likelihood ratio tests. The joint test for gene-trait associations can be formally set489

up as H0 : α = 0 verses H1 : α 6= 0. The corresponding likelihood ratio test statistic is given by490

Λ = 2
[
log Pr(y, z|X1,X2; θ̂)− log Pr(y, z|X1,X2; θ̂α=0)

]
,

where θ̂ is the vector of parameter estimates under the full model, and θ̂α=0 is the vector of491

estimates under the constrain α = 0. Similarly, the tissue-specific test for the tissue-specific492

effect can be formally set up as H0 : αt = 0 verses H1 : αt 6= 0. The corresponding likelihood493
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ratio test statistic is given by494

Λt = 2
[
log Pr(y, z|X1,X2; θ̂)− log Pr(y, z|X1,X2; θ̂αt=0)

]
,

where θ̂αt=0 is the vector of parameter estimates under αt = 0.495

For statistical inference, we developed an expectation-maximization (EM) algorithm accel-496

erated by expanding parameters [55]. Details of updating equations for each parameter and497

the corresponding algorithm can be found in Supplementary Text.498

GWAS data499

The NFBC1966 data set500

The NFBC1966 data set consists of ten traits and 364,590 SNPs from 5402 individuals [26],501

including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density502

lipoprotein cholesterol (LDL-C) and triglycerides (TG), inflammatory marker C-reactive protein,503

markers of glucose homeostasis (glucose and insulin), body mass index (BMI) and blood pressure504

(BP) measurements (systolic and diastolic BP). Quality control procedures are conducted505

following similar steps to Shi et al. [56]. Specifically, individuals with missing-ness in any506

of the traits and with genotype missing call-rates > 5% were excluded. We excluded SNPs507

with minor allele frequency (MAF) < 1%, missing call-rates > 1%, or failed Hardy-Weinberg508

equilibrium. After quality control filtering, 172,412 SNPs from 5123 individuals were available509

for downstream analysis.510

The tissues used in TisCoMM and TisCoMM-S2 were the same, and the six tissues with the511

largest number of overlapped individuals were used. The summary statistics for TisCoMM-S2
512

were calculated using PLINK [57].513

Summary-level GWAS data514

We obtained summary statistics from GWASs for 33 traits, including 15 traits from [19] and 18515

traits from the UK Biobank. Details of these traits can be found in Supplementary Table S1.516

In the main text, we discussed LOAD and asthma. Analyses results for other traits can be517

found in Supplementary Text.518
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GTEx eQTL Data519

Th GTEx data including genotype and RNA-seq data are obtained from dbGaP with accession520

number phs000424.v7.p2. Processed gene-expression data are available on the GTEx portal521

(https://gtexportal.org/home/). In the eQTL data, we removed SNPs with ambiguous alleles522

or MAF less 0.01.523

We used two different strategies to select tissues used in our real data analysis. For the524

15 NG traits, we obtained the top enriched tissues for each trait according to Supplementary525

Table 2 in [19], and a subset of tissues with sample sizes larger than 100 was kept. For the526

UKB traits, we used the six tissues with the largest number of overlapped individuals.527

Reference panel528

Due to the absence of genotype data using summary statistics, we use reference samples to529

estimate the LD structures R among SNPs in the study samples. Since diseases and traits530

considered in our real data application are for European population cohorts, we choose to use531

European subsamples from the 1000 Genome Project as a reference panel.532

Let Xr denote the genotype matrix for cis-SNPs in the reference panel. To estimate the533

LD matrix R, we adopt a simple shrinkage method as follows. We first calculate the empirical534

correlation matrix R̂emp = [rjk] ∈ RM×M with rjk =
X>

rjXrk√
(X>

rjXrj)(X>
rkXrk)

, where Xrj the jth535

column of Xr. To make the estimated correlation matrix positive definite, we apply a simple536

shrinkage estimator [58]: R̂ = τRemp + (1− τ)IM , where τ ∈ [0, 1] is the shrinkage intensity.537

In real data application, we fixed the shrinkage intensity at 0.95 both for simplicity and538

computational stability.539

Web Resources540

TisCoMM is available at https://github.com/XingjieShi/TisCoMM/.541

PrediXcan, MultiXcan and S-MultiXcan are available at http://gene2pheno.org/.542

UTMOST is available at https://github.com/Joker-Jerome/UTMOST/.543

CoMM is available at https://github.com/gordonliu810822/CoMM.544

Known trait-associated genes are available at the NHGRI-EBI GWAS Catalog https://www.ebi.ac.uk/gwas/.545

Summary statistics from UK Biobank is available at http://geneatlas.roslin.ed.ac.uk/.546

URLs for summary statistics from Gamazon et al. [19] are summarized in Supplementary Table547
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Figure 1: TisCoMM workflow. A. Two sets of TisCoMM input matrices are highlighted in
green and blue separately (left). The probabilistic graphical model for TisCoMM is shown in
the middle, which integrates gene expressions and models the co-regulation of cis-SNPs across
different tissues explicitly. µg and µz denote expectations of gene expression in eQTL and
phenotype in GWAS, respectively. The decomposition of the B matrix is illustrated on the
right-hand side of the figure. B. The TisCoMM joint test for all genes to prioritize candidate
causal genes. See more details of L(θ) in Methods section. The example outputs (right) are
shown as Manhattan plots for 33 traits. C.The TisCoMM tissue-specific test for all candidate
genes to explore the tissue-specific roles of candidate genes. The example outputs (right) are
shown as heatmaps which summarize the tissue-specific effect of each gene. Significance level,
effect size, and heritability are converted into background color, circle color, and circle size.
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Figure 2: Comparison of TisCoMM and TisCoMM-S2 results in NFBC1966 traits. The reference
panel is subsamples from the NFBC1966 data set. The summary-based method shows similar
results to the individual-based method. The blue rectangle indicates the null region.
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Figure 3: TisCoMM joint test outperforms the other multi-tissue methods. The number of
replicates is 5,000. In each subplot, the x-axis stands for the SNP heritability level, and the
y-axis stands for the proportion of significant genes within 5,000 replicates.
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(A) Power (B) False Positive Rate (FPR)

Figure 4: The comparison of the TisCoMM tissue-specific test and the single-tissue association
tests under the alternative hypothesis with one causal tissue. A. The power of TisCoMM
tissue-specific test and the single tissue methods with Bonferroni correction applied. B. The
corresponding false positive rates under each setting.
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(A) LOAD

(B) Asthma

Figure 5: TisCoMM-S2 results for LOAD and asthma. The reference panel is European
subsamples from 1000 Genome. In each row, the two panels show the qq-plot (left) and
Manhatton plot (right).
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Figure 6: A. Each pie chart corresponding to a different tissue shows the percentage of LOAD-associated genes in each molecular
function group (from gene ontology). B. The x-axis of the heatmap represents the union of LOAD-associated genes in 3 function
groups (binding, catalytic activity, and transcription factor). The y-axis represents different tissue types. In each cell, the
background color (shades of gray) indicates the significance level, the circle size indicates the heritability, and the color inside
each circle indicates the effect size. C. Pathway analysis of asthma-associated genes in thyroid and lung. Pathway analysis was
done using a web-based software DAVID, testing the enrichments of asthma-associated genes in biological processes (from gene
ontology). Significant pathways were selected if gene count ≥ 5 and Benjamini-Hochberg (BH) corrected p-value ≤ 0.05. The
asthma-associated genes are highlighted in blue. D. The x-axis of the heatmap represents the asthma-associated genes in the
immune response pathway. And all the other settings are the same as the one used in part B.
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Table 3: Distributions of tissues in which the candidate genes’ associations arise in LOAD and
asthma.

trait #tissues 0 1 2 3 4 5 6

LOAD
TisCoMM-S2 5 28 37 17 5 - -

CoMM-S 6 5 7 9 65 - -

Asthma
TisCoMM-S2 37 68 58 28 6 3 0

CoMM-S 20 11 5 5 9 30 120
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