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23 Abstract

24 Self-controlled practice schedules have been shown to enhance motor learning in several 

25 contexts, but their effectiveness in structural learning tasks, where the goal is to eventually learn 

26 an underlying structure or rule, is not well known. Here we examined the use of self-controlled 

27 practice in a novel control interface requiring structural learning. In addition, we examined the 

28 effect of ‘nudging’ – i.e., whether altering task difficulty could influence self-selected strategies, 

29 and hence facilitate learning. Participants wore four inertial measurement units (IMUs) on their 

30 upper body and the goal was to use motions of the upper body to move a screen cursor to 

31 different targets presented on the screen. The structure in this task that had to be learned was 

32 based on the fact that the signals from the IMUs were linearly mapped to the x- and y- position 

33 of the cursor. Participants (N = 62) were split into 3 groups (random, self-selected, nudge) based 

34 on whether they had control over the sequence in which they could practice the targets. To test 

35 whether participants learned the underlying structure, participants were tested both on the trained 

36 targets, as well as novel targets that were not practiced during training. Results showed that 

37 during training, the self-selected group showed shorter movement times relative to the random 

38 group, and both self-selected and nudge groups adopted a strategy of tending to repeat targets. 

39 However, in the test phase, we found no significant differences in task performance between 

40 groups, indicating that structural learning was not reliably affected by the type of practice. In 

41 addition, nudging participants by adjusting task difficulty did not show any significant benefits to 

42 overall learning. These results suggest that although self-controlled practice influenced practice 

43 structure and facilitated learning, it did not provide any additional benefits relative to practicing 

44 on a random schedule in this task. 

45
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49 INTRODUCTION

50 Given that practice time is often limited in real-world tasks, designing practice schedules that 

51 maximize learning within a short period of training is crucial for efficient use of the learner’s 

52 time and effort. A key element in this regard involves determining who is in control of the 

53 practice schedule. In this context, self-controlled practice schedules - i.e. allowing the learner to 

54 determine aspects of practice, has emerged as an important means by which learning can be 

55 facilitated. The benefits of self-controlled practice have been shown to be fairly robust across a 

56 large number of tasks and practice manipulations (1–9), and have been attributed to many 

57 factors, including increased active involvement from the learner (10), increased autonomy (11–

58 13), and the role of informational processes (14). 

59

60 In spite of this evidence for benefits of self-controlled practice in a large number of contexts, its 

61 utility in a specific type of learning -  structural learning (or schema learning) has received 

62 comparatively little attention (15–17). Structural learning in the motor context involves 

63 extraction of a general rule of a mapping during practice, which can then effectively be used for 

64 generalization.  For example, when learning how to drive, the goal of the novice driver is not to 

65 learn specific movements of the steering wheel per se (e.g., turn the wheel by 90 degrees), but to 

66 learn the underlying ‘structure’ or ‘rule’ of how steering wheel movements map on to the 

67 movement of the car. Learning this structure is essential for generalization – i.e., being able to 

68 control the car in novel situations that were never practiced during training. This type of 

69 structural learning becomes even more important in the context of learning to control novel 

70 assistive devices. Consider for example an amputee learning to control a prosthetic arm  using 

71 muscle activity or inertial measurement units (18). In this case, the underlying rule of how the 
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72 body motion/muscle activity maps to motion of the prosthetic arm may not be as intuitive as the 

73 mapping of steering wheel movements to a car’s motion; this situation places an even greater 

74 emphasis on the design of efficient practice schedules to learn this mapping. It is important to 

75 note that even though prior studies on self-controlled practice have used ‘transfer’ tests as a 

76 measure of generalization of learning (3,5), these have been primarily used in rather well-learned 

77 tasks (such as key pressing or throwing) where the underlying schema may already be present 

78 through prior experience. In contrast, our focus in this study was to use a novel virtual task 

79 where the structure could only be learned through practice. 

80

81 One important element for enhancing structural learning is the need for variability in practice 

82 conditions (15,17). However, it is unclear how this variability needs to be incorporated into the 

83 practice schedule. On one hand, there is extensive evidence that practice sequences benefit from 

84 contextual interference – i.e. learning is generally facilitated when task variations are distributed 

85 randomly across trials, instead of being blocked together (19–21). Moreover, there is also 

86 evidence that self-controlled determination of the practice sequence benefits learning (22,23). 

87 However, on the other hand, these experiments with self-controlled practice schedules have been 

88 typically done in the context of multiple tasks (such as different sequences), with no underlying 

89 structure connecting these tasks.  A feature of self-controlled learning that may be problematic 

90 here is that although it may benefit autonomy, it typically reduces the random structure of 

91 practice because participants tend to engage in more ‘blocked’ practice by repeating targets (24). 

92 As a result, it may foster more ‘instance-based’ learning (i.e. how to solve a particular variation), 

93 and may potentially be detrimental to ultimately learning the underlying rule or schema. 

94

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2019. ; https://doi.org/10.1101/789644doi: bioRxiv preprint 

https://doi.org/10.1101/789644
http://creativecommons.org/licenses/by/4.0/


6

95 A related issue with respect to self-controlled strategies is whether learning can be further 

96 enhanced by ‘nudging’ (25) – i.e.  given that self-selection strategies could sometimes potentially 

97 be suboptimal because participants may focus on immediate short-term gains in performance 

98 over long-term learning benefits (26), is it possible to push learners to choose more optimal 

99 strategies that benefit learning? In the context of motor behavior, the term ‘nudge’ is closely 

100 related to the concept of ‘constraints’ (Newell, 1986) in that they both attempt to alter behavior, 

101 but with the main difference being that nudges do not ‘forbid’ any options or significantly alter 

102 incentives to choose one option (25). In the current context, given prior evidence that self-

103 controlled practice schedules may encourage too many repetitions of a difficult task (making it 

104 similar to blocked practice), we examined the effect of nudging the learner toward more random 

105 practice by manipulating task difficulty so that the perceived task difficulty across all variations 

106 was similar.

107

108 In this study, we examined the effect of self-controlled practice schedules on structural learning. 

109 We used a novel body-machine interface (BoMI) paradigm (27), where participants had to 

110 control movements of the upper body to control a screen cursor (28). Importantly, this mapping 

111 of upper body movements to cursor motion was designed to be non-intuitive so that participants 

112 could only discover the structure through practice. Practice involved virtual reaching movements 

113 to different targets presented on a screen. We examined whether (i) a self-selected practice 

114 schedule (where participants could control which targets they reached to) was superior compared 

115 to a random practice schedule where participants did not have such control, and (ii) if nudging by 

116 adjusting task difficulty influenced learning relative to self-selected strategies without nudging. 

117

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2019. ; https://doi.org/10.1101/789644doi: bioRxiv preprint 

https://doi.org/10.1101/789644
http://creativecommons.org/licenses/by/4.0/


7

118 METHODS

119 Participants

120 We recruited 62 healthy young adults for this experiment (33 females, 29 males; age 24  4 

121 years). We obtained written informed consent from all participants prior to conducting the 

122 experiment, and procedures were approved by the IRB at Northwestern University and Michigan 

123 State University. 

124

125 Experimental protocol

126 We utilized the experimental design and setup described in earlier studies (28,29) and summarize 

127 the main points for completeness. 

128

129 Four IMUs (3-space, YEI Technology, Ohio, USA) were placed, on the posterior and anterior 

130 ends of the acromioclavicular joint of both sides of the body using Velcro hooks to a customized 

131 vest worn by each participant. Each IMU recorded 2D (roll and yaw) orientation of the segment 

132 it was attached to at a sampling rate of 50 Hz. 

133

134 Participants were asked to stay seated on a chair placed 23” in front of a computer screen. The 

135 chair had a backrest but participants did not have any other restrictions on motion. We performed 

136 an initial calibration to map the IMU signals to the cursor. Briefly, participants performed ‘free 

137 exploration’ movements with their upper body within a comfortable range of motion. We then 

138 performed principal components analysis (PCA) on these data, and extracted the first 2 principal 

139 components – the first controlled the x-axis motion, and the second controlled the y-axis motion.

140
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141 Participants were asked to move their upper body in order to move a cursor and reach a target 

142 presented on the computer screen as fast as possible, and as close to the center of the target as 

143 possible. The circular target (radius 2.2 cm) was placed at a radial distance of 11.5 cm from the 

144 screen center. The cursor had to be inside the target for 500 ms in order for the trial to be 

145 completed. The next target could be selected only after the previous target was reached.

146

147 The experiment consisted of a virtual center-out reaching task divided into 11 blocks: pre-test, 

148 training blocks 1-4, mid-test, training blocks 5-8, and the post-test. During the testing blocks, the 

149 target appeared three times in each of eight directions (4 cardinal directions, 4 diagonals), 

150 resulting in 24 trials per testing block. During the training blocks, the target appeared only along 

151 the four cardinal directions, for a total of 20 trials per training block. The number of trials at each 

152 target depended on the group that the participant was assigned to. The task was custom-made on 

153 Matlab® software (Mathworks Inc., Natick, MA, USA).

154

155

156

157 Experimental design

158 Participants were divided into one of three groups to test three different practice schedules: 1) 

159 Random (20 participants), 2) Self-selected (21 participants), 3) Nudge (21 participants). All 

160 groups completed the same pre-, mid-, and post-test blocks; however, the type of training given 

161 during the training blocks differed across the three groups (Fig 1). 

162
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163 The Random group had the four practice targets presented in a randomized manner during each 

164 training block trial i.e. participants had no control over which target to practice on each trial. 

165 There was also a constraint that all 4 targets had to be performed at least once before a target 

166 could repeat. In the Self-selected group, participants were allowed to choose which of the four 

167 training targets they wanted to move their cursor to in each trial. At the start of each trial, 

168 participants were shown all 4 targets simultaneously on the screen and participants subsequently 

169 decided which target they wanted to move to for that trial. In the Nudge group, participants also 

170 had the choice of which target they wanted to practice moving to (similar to the Self-selected 

171 group); however, the size of the targets presented on the screen differed to make the perceived 

172 difficulty of all targets relatively equal (i.e. difficult targets were made larger in size, and easier 

173 targets smaller in size).  Based on a participant’s performance in the pre-test, we computed their 

174 mean normalized Euclidean error for each of the 4 cardinal targets at 1 second into the 

175 movement. Then, for training blocks 1 to 4, the target for which the error was biggest was made 

176 to appear bigger than usual (25% increase in radius), and the target for which the error was 

177 smallest was made to appear smaller than usual (25% decrease in radius). The remaining two 

178 targets stayed at the usual size. For training blocks 5 to 8, the same procedure was repeated based 

179 on the Euclidean errors from the mid-test.

180

181 ----- Insert Figure 1 about here -----

182

183 Data Analysis

184 All data processing and analyses were conducted using Matlab (Mathworks® Inc., Natick, MA, 

185 USA).
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186

187 Task performance

188 The primary performance outcome measure was movement time, which was determined to be 

189 the time it took the cursor to leave the center of the screen and reach the target successfully i.e. 

190 stay inside the target for 500 ms. Reduction in movement time was an indication of improved 

191 task performance. Because participants could not proceed to the next target without reaching the 

192 prior target in our protocol, no spatial error metrics were computed.

193

194 A secondary performance measure was the normalized path length, which showed how quickly 

195 participants learned to make smooth, straight movements of the cursor to the target. The 

196 normalized path length was measured as the distance traveled by the cursor divided by the 

197 straight-line distance between the screen center and the target. Reduction in normalized path 

198 would indicate straighter paths, with a value of 1 indicating a perfect straight line.

199

200 Strategy

201 Since the self-selected groups were given the freedom to choose the target(s) they wanted to 

202 practice on, and the Nudge group was chosen to make the ‘difficult’ target easier (by making it 

203 bigger in size), we quantified the strategy that participants used by (i) calculating the number of 

204 times they selected the ‘difficult’ target and (ii) calculating the probability of repeating a target 

205 (which examines the degree to which practice was ‘blocked’).

206

207 Statistical analysis
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208 Training. To first establish that participants improved during training, we used a 2 x 3 (Block x 

209 Group) repeated measures ANOVA, where Block (Training blocks 1 & 8) was the within-

210 subjects factor and Group (Random/Self-selected/Nudge) was the between-subjects factor.

211

212 Test. To assess structural learning, we used a 3 x 3 (Block x Group) repeated measures ANOVA 

213 separately on each of the performance outcome measures during the testing block. Block 

214 (Pre/Mid/Post) was the within-subjects factor, and Group was the between-subjects factor. For 

215 post hoc comparisons, we primarily focused on two comparisons related to our aims – (i) self-

216 selected vs. random (to examine the effect of self-controlled strategy), and (ii) self-selected vs. 

217 nudge (to examine the effect of nudging). 

218

219 Violations of sphericity were corrected with the Greenhouse-Geisser correction when needed. 

220 Significance levels were set at P < 0.05. All statistical analyses were performed in JASP (30).

221

222

223

224

225 Results

226

227 Data from three participants were removed from the data analysis due to incomplete data sets or 

228 errors in the calibration files. Therefore, the final sample size was 19 participants for the random 

229 group, 19 for the self-selected group and 21 from the nudge group.

230 Task performance
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231 Movement Time

232 Training. Training resulted in decreases in movement time, and a group difference. There was a 

233 significant main effect of block (F(1,56) = 92.74, P < .001), which indicated a decrease in 

234 movement time from the first to the last block, and a main effect of group (F(2,56) = 3.165, P = 

235 .050). Planned comparisons showed that the random group had longer movement times than the 

236 self-selected group (P = .017), but there were no differences between the self-selected and nudge 

237 groups (P = .415). The block x group interaction was not significant (F(2,56) = 2.720, P = .075).

238

239 Test.  All three groups exhibited a reduction in movement time over the course of the 

240 experiment, but there were no group differences (Figure 2A). There was a significant main effect 

241 of block (F(1.051,58.849) = 99.6, P < .001). Post hoc tests using the Bonferroni correction 

242 showed that movement time reduced significantly (P < 0.001) across the three testing blocks. 

243 There was no significant main effect of group (F(2,56) = 0.016, P = .984), or block x group 

244 interaction (F(2.102,58.849) = 0.046, P = .96). Splitting the movement times by target direction 

245 showed similar trends in both the cardinal and diagonal directions (Figure 2B).

246

247

248 Path Length. 

249 Training.  Training resulted in decreases in path length, but no group differences. There was a 

250 significant main effect of block (F(1,56) = 53.63, P < .001), which indicated a decrease in path 

251 length from the first to the last block. The main effect of group (F(2,56) = 1.663, P = .199), and 

252 the block x group interaction (F(2,56) = 1.756, P =  .182) were not significant.

253
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254 Test. Similar to the movement time results, there was a decrease in path length i.e. cursor 

255 trajectories became straighter with practice, but there were no group differences (Figure 3). 

256 There was a significant main effect of block (F(1.042,58.348) = 68.062, P < 0.001), indicating 

257 that movement trajectories became significantly straighter over the course of testing. The main 

258 effect of group (F(2,56) = 0.416, P = 0.662), and block x group interaction (F(2.084,58.348) = 

259 0.183, P = 0.842) were not significant. 

260

261 ---- Insert Figures 2 and 3 about here ----

262

263 Practice Strategy in Self-controlled groups

264 For the analysis of practice strategy which involved only the self-selected and nudge groups, we 

265 did not have full target sequence data from one participant in the self-selected group– therefore 

266 all analyses are reported for the remaining 39 participants (18 self-selected, 21 nudge)

267

268 When we examined the probability of choosing the ‘difficult target’, we found that overall both 

269 self-controlled groups showed lower than 25% probability of selection, indicating that they 

270 tended to avoid the difficult targets (one sample t-test, P =.009 in blocks 1-4, P < .001 in blocks 

271 5-8). There was a Block x Group interaction (F(1,37) = 7.010, P = .012). Analyses of the 

272 interaction showed that the Nudge group chose the ‘difficult’ target more often initially in 

273 learning and then decreased this frequency with practice, whereas the Self-selected group did not 

274 have a significant change in the frequency of the selection of difficult target with  practice. The 

275 main effects of Block (F(1,37) = 0.371, P = .546) and Group (F(1,37) = 0.008, P = .928) were 

276 not significant.
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277

278 When we examined the structuring of practice (in terms of whether they chose a more ‘blocked’ 

279 or ‘random’ schedule), we found that overall both self-controlled groups showed more 

280 repetitions than the random group (which had 0% by definition). There was a main effect of 

281 block (F(1,37) = 7.212, P = .011) indicating that participants tended to block practice more 

282 initially during practice (i.e. blocks 1-4) compared to later in practice (blocks 5-8). The main 

283 effect of group (F(1,37) = 0.813, P =.373) and the block x group interaction (F(1,37) = 3.208, P  

284 = .081) was not significant.

285

286 Finally, to examine if the practice strategy in terms of target repetitions affected performance, we 

287 correlated the number of repetitions in all 8 training blocks and correlated to it the movement 

288 time at the post-test. We found a positive correlation (r = 0.483, P = .002, 95% CI: [0.198 

289 0.693]) indicating that more repetitions during practice (i.e. more blocked practice) was 

290 associated with increased movement time (i.e. lower task performance). 

291

292 ---- Insert Figure 4 here ----

293

294 DISCUSSION

295 The goal of the study was to address the role of self-controlled practice in a structural learning 

296 task. Participants learned to control a novel interface which required motion of the upper body to 

297 move a screen cursor to different targets. Participants trained on a set of targets, and we 

298 examined structural learning during test phases that involved generalization to novel targets. We 

299 examined if (i) a self-selected practice schedule resulted in better learning compared to a random 
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300 practice schedule where participants did not have control, and (ii) if nudging by adjusting task 

301 difficulty influenced learning relative to a self-selected strategy without nudging.

302

303 For the first question, our results showed that although the self-controlled group exhibited shorter 

304 movement times early during training, there were no statistically significant differences between 

305 the random and self-controlled group during the test conditions (which was our measure of 

306 structural learning). This was true both for the training and test targets, indicating that the groups 

307 did not differ either in retention or generalization. One trivial possibility for these non-significant 

308 results is simply that any potential differences between groups was eliminated by a ‘floor effect’ 

309 in terms of the performance – i.e. movement times had reduced to a minimum possible limit by 

310 the end of training. However, we consider this unlikely as an explanation since the mid-tests 

311 (which were done in the middle of the training session) also showed the same patterns as the 

312 post-test.

313

314 These results are somewhat inconsistent with a majority of experiments on self-controlled 

315 practice that have demonstrated beneficial learning effects (13,31).  A critical difference from 

316 these prior studies is that the current study focused on structural learning – i.e., practicing 

317 variations so that the focus was not simply on improving performance in the trained tasks, but 

318 also on learning the underlying structure in order to generalize to other targets.  In contrast, prior 

319 studies on practice sequencing with self-controlled practice have typically employed different 

320 task variations, with no underlying rule or structure connecting these task variations (22,23). In 

321 the context of structural learning, self-controlled practice may create a potential tradeoff – 

322 participants may tend to focus excessively on improving performance on the training targets (as 
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323 indicated by the increased repetition and avoidance of the difficult targets in the Strategy 

324 analyses), however, this focus on short-term performance may result in more ‘blocked’ practice, 

325 which could negate some of the other benefits of self-controlled practice. Supporting this claim, 

326 we found a positive correlation between the number of repetitions and the final movement time 

327 on the post-test, indicating that participants who self-selected a more ‘blocked’ practice schedule 

328 showed worse task performance in the post-test. These results suggest that self-controlled 

329 practice schedules may not always be optimal in terms of practice structure, especially in the 

330 context of learning novel tasks. Approaches such as ‘restricted’ self-control, where participants 

331 face a mix of self-controlled and experimenter-imposed conditions may provide the optimal 

332 learning environment in such cases (8) 

333

334 For the second question, we used a Nudge group that was designed to follow a practice schedule 

335 similar to that of the self-selected group, but with the target sizes presented during the training 

336 blocks adjusted based on performance on the preceding testing block. Specifically, by making 

337 the more difficult targets appear easier (and vice versa), we anticipated that we could ‘nudge’ 

338 participants into achieving a more even distribution of repetitions across all targets; hence, 

339 addressing the issue of instance-based learning previously described. Results showed that the 

340 Nudge group did successfully alter the strategy relative to the Self-selected group in terms of 

341 increasing the choice of the difficult target initially in learning. However, our results showed no 

342 reliable effect of this manipulation on any of the performance metrics relative to the Self-selected 

343 group which was not nudged. One reason for this null result might be that we only evaluated 

344 target difficulty twice during the entire practice schedule - at the onset of practice and at the 

345 halfway mark (i.e. at the pre-test and mid-test). A more frequent update of task difficulty (e.g., 
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346 once per training block) may have been more effective to ensure that participants were practicing 

347 on the most difficult target for them at that time. Also, we adjusted target sizes by a fixed amount 

348 based simply on the rank-ordering of the Euclidean error (i.e. without considering the magnitude 

349 of the differences). Using a more sophisticated method - for e.g. by using Fitts’ law (32) to 

350 control the index of difficulty - may provide a better manipulation that is more uniform across 

351 participants. Given that the Nudge group had an effect on the strategy used, this strategy of 

352 ‘nudging’ participants toward specific choices deserves greater attention in future motor learning 

353 studies since control of the choice architecture provides a way to use the experimenter’s 

354 knowledge of optimal learning strategies and guide the learner toward better strategies while still 

355 retaining their autonomy.

356

357 There are a few caveats that need to be addressed –first, we did not have a yoked group in this 

358 study which would have received the same order of targets as that chosen by the self-controlled 

359 groups. The yoked group is considered the standard control group in several self-controlled 

360 practice studies and allows for isolating the effect of ‘autonomy’; however, in the context of our 

361 research question being whether it is critical for the learner to have control over the practice 

362 sequence during learning, the appropriate control group is the random group which did not have 

363 control over the sequence. The utility of the yoked group as a control group arises only in cases 

364 where the self-control group outperforms the random group; this is because the yoked group can 

365 be used to distinguish if the benefit of self-control is due to the choice of a better practice 

366 sequence (in which case self-control should be similar to yoked) or the fact that the self-control 

367 group has autonomy (in which case self-control should be better than yoked). However, in the 

368 current study, there was no evidence of the self-control group outperforming the random group. 
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369 In addition, from a practical standpoint, the random group serves a better control group because 

370 it would likely be the default practice schedule for learning this task. A second caveat is that our 

371 measures of learning were all within the same day from pre-test to post-test, similar to an 

372 ‘immediate’ retention test. Although it is possible that an immediate retention test is  likely 

373 affected by ‘temporary’ effects indicative of a learning-performance distinction (33), these 

374 temporary effects usually differentially affect one group only when the manipulation has a 

375 drastic effect on performance (e.g. fatigue or guidance). In our case, the manipulation did not 

376 have any effects on performance even during learning, which makes it unlikely that temporary 

377 effects differentially affected one group. In any case, inference from the current work is 

378 primarily about short-term ‘within-session learning’, and not about long-term retention or 

379 consolidation.  A third caveat was that we did not have other measures of motivation or 

380 perceptions of competence (11,34), and so we have restricted our discussion mostly to task 

381 performance.

382

383 In summary, we found that although self-controlled practice schedules had distinct effects on 

384 practice strategy, self-controlled practice schedules did not provide any additional performance 

385 benefits relative to a random experimenter-determined practice schedule in a structural learning 

386 task.  Understanding how to enhance structural learning of complex control interfaces may be a 

387 critical step in developing better practice schedules both for novel human-computer interfaces as 

388 well as for current assistive devices. 

389
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476

477 Figure 1. Schematic of experimental setup (left) and protocol (right). Participants wore IMUs 

478 (indicated by the little rectangles on the shoulders) and learned to move a screen cursor to 

479 different targets presented on the screen. Three groups of participants (Random, Self-selected, 

480 Nudge) practiced the task in a single session. In the eight training blocks (Training 1-8), only the 

481 cardinal direction targets were presented. In the three test blocks (Pre/Mid/Post), both cardinal 

482 and diagonal direction targets were presented to assess generalization and structural learning.

483

484

485
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486

487 Figure 2. (A) Average movement time as a function of practice for the three groups. All groups 

488 decreased their movement time with practice but there were no statistically significant 

489 differences in movement time across the three groups during the test blocks. (B) Movement time 

490 in the test blocks split by target direction (cardinal/diagonal). Both directions showed similar 

491 changes with practice, indicating structural learning. 

492
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493

494 Figure 3. Normalized path length as a function of practice for the three groups. Path length 

495 reduced significantly over the course of the experiment, indicating straighter paths. However, 

496 similar to the movement time results, there was no significant difference between groups during 

497 the test blocks.

498
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499

500 Figure 4. Practice strategies used by the Self-selected, and Nudge groups. (A) Practice of the 

501 difficult target. The Nudge group, which had its difficult target increased in size, showed a 

502 higher probability of practicing the difficult target relative to the Self-selected group early on in 

503 practice (Blocks 1-4), but this difference disappeared with later in practice. (B) Number of 

504 repetitions during practice. Both Self-selected and Nudge groups showed increased repetition 

505 early in practice. However, the Self-selected group showed an increased tendency for blocked 

506 practice (i.e. larger number of repetitions) early in practice, but this changed in the later blocks of 

507 practice. (C) Correlation between frequency of repetitions (computed over all 8 blocks of 

508 practice) and the movement time on the post-test. A positive correlation indicated that more 

509 repetition during training (i.e., a more blocked practice schedule) was associated with higher 

510 movement times on the post-test.

511

512

513

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2019. ; https://doi.org/10.1101/789644doi: bioRxiv preprint 

https://doi.org/10.1101/789644
http://creativecommons.org/licenses/by/4.0/

