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Abstract 17 

1. Warmer weather caused by climate change poses increasingly grave threats to the 18 

persistence of many species, but animals can modify behavior to mitigate at least some of 19 

the threats posed by warmer temperatures. Identifying and characterizing how animals 20 

behaviorally thermoregulate to avoid the negative consequences of acute heat will be 21 

crucial for predicting animal responses to a warmer future. 22 

2. We used a step-selection function to reveal whether moose (Alces alces), a species known 23 

to be sensitive to heat, mitigate heat via reduced movement, increased visitation to shade, 24 

or increased visitation to water on hot summer days in northeastern Minnesota, USA.  25 

3. Moose reduced movement, sought shade, and traveled nearer to mixed forests and bogs 26 

during periods of heat. Moose used shade far more than water to ameliorate heat, and the 27 

most pronounced changes in behavior occurred between 15˚C and 20˚C. 28 

4. When temperatures are high, moose face tradeoffs between foraging and keeping cool. 29 

Forgoing foraging to avoid overheating may have contributed to recent population 30 

declines in our study area and other areas across the southern edge of moose distribution. 31 

5. Research characterizing the behaviors animals use to facilitate thermoregulation and the 32 

consequences of those behaviors for fitness will aid conservation of heat-sensitive species 33 

in a warming world. Step-selection functions are a promising tool for such analyses. 34 

 35 

Key-words climate change, habitat selection, habitat use, lidar, moose (Alces alces), resource 36 

selection, step-selection function, thermal refugia 37 
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1. Introduction 40 

 Animal performance peaks within a limited range of body temperatures in which 41 

molecular, cellular, and systemic processes operate optimally. Body temperatures outside this 42 

range impose functional constraints on these processes, including reductions in growth, 43 

reproduction, activity, and immune function (Pörtner & Farrell, 2008). Nevertheless, animals 44 

routinely operate in environmental conditions that trigger suboptimal body temperatures (Boyles, 45 

Seebacher, Smit, & McKechnie, 2011; Sunday et al., 2014). This conundrum underlies two long-46 

standing questions in biological research: (1) How can animals mitigate suboptimal thermal 47 

conditions, and (2) how effective are those efforts at mitigation? Rapid and ongoing responses to 48 

global climate change by a multitude of animal species (Hoegh-Guldberg & Bruno, 2010; 49 

Parmesan, 2006; Walther et al., 2002) increase the urgency of answering those questions. 50 

 Animals can loosen the constraints of limited ranges of thermal tolerance by adjusting 51 

their behavior to facilitate thermoregulation. Such behavioral thermoregulation has a long history 52 

of study in biological research (Cowles & Bogert, 1944), but this idea still offers fresh insight 53 

today. Animals can restrict movement to produce less metabolic heat (Broders, Coombs, & 54 

McCarron, 2012; Stelzner, 1988), alter posture to reduce heat gain from insolation or increase 55 

surface area to shed heat (Bartholomew & Dawson, 1979; Luskick, Battersby, & Kelty, 1978), 56 

pant to lose heat via evaporation (Campos & Fedigan, 2009; McCann, Moen, & Harris, 2013), or 57 

visit thermal refugia (spaces that provide refuge from thermal stress caused by extreme 58 

temperatures [e.g., burrows, wallows, shade cover]; Hovick, Elmore, Allred, Fuhlendorf, & 59 

Dahlgren, 2014; Kurylyk, MacQuarrie, Linnansaari, Cunjak, & Curry, 2015; van Beest, Van 60 

Moorter, & Milner, 2012), among other behaviors. Identifying exactly which of these strategies 61 

animals use to behaviorally thermoregulate, how much these strategies buffer against adverse 62 
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impacts of hot weather, and what costs animals incur to use these strategies is crucial for 63 

understanding their ability to increase ranges of thermal tolerance.  64 

 Recent advances in statistical modeling techniques provide opportunity to study 65 

behavioral thermoregulation in new ways. Step-selection functions (hereafter “SSFs”) are a 66 

relatively recent extension of the resource selection function modeling framework that explicitly 67 

incorporates spatial and temporal animal movement characteristics to enable examination of 68 

fine-scale habitat selection and movement behavior at biologically realistic scales (Duchesne, 69 

Fortin, & Rivest, 2015; Forester, Im, & Rathouz, 2009; Thurfjell, Ciuti, & Boyce, 2014). SSFs 70 

have primarily been used to model habitat selection (Thurfjell et al., 2014), but recent theoretical 71 

development has demonstrated that they can also be used to explicitly model movement behavior 72 

that changes in both space and time in relation to landscape features (Avgar, Potts, Lewis, & 73 

Boyce, 2016; Ladle et al., 2019; Prokopenko, Boyce, & Avgar, 2017). By including interaction 74 

terms between temperature, habitat covariates, and movement rates within SSFs, temperature-75 

dependent animal behaviors—including both resource selection and movement rates—can be 76 

explicitly quantified. 77 

 We evaluated behavioral thermoregulation using the SSF framework in moose (Alces 78 

alces), a well-known heat-sensitive species. Moose have undergone substantial population 79 

declines across much of their southern range due in part to climate change (Lenarz, Nelson, 80 

Schrage, & Edwards, 2009; Monteith et al., 2015; Rempel, 2011). Moose experience heat stress 81 

starting at temperatures as low as 14˚C (Renecker & Hudson, 1986) or 17˚C (McCann et al., 82 

2013) during the summer. Moose prevent heat stress on hot days by using water, shade, and 83 

decreased activity to shed heat via conduction and reduced exposure to radiation from the sun 84 

(Belovsky, 1981; Broders et al., 2012; Dussault et al., 2004; McCann, Moen, Windels, & Harris, 85 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2019. ; https://doi.org/10.1101/790048doi: bioRxiv preprint 

https://doi.org/10.1101/790048
http://creativecommons.org/licenses/by/4.0/


5 
 

2016; Street, Rodgers, & Fryxell, 2015). At coarse spatial and temporal scales, moose select for 86 

thermal cover (e.g., dense canopy in conifer forests) during periods of high temperatures 87 

(Demarchi & Bunnell, 1995; Melin et al., 2014; Schwab & Pitt, 1991; Street et al., 2016; van 88 

Beest et al., 2012; but see Lowe, Patterson, & Schaefer, 2010). However, earlier studies have not 89 

established the relative importance of multiple different heat amelioration strategies (e.g., 90 

seeking shade vs. reducing movement vs. visiting water) or identified thresholds at which moose 91 

behavioral thermoregulation alters habitat selection. 92 

 To evaluate how moose modify fine-scale habitat selection and movement patterns as 93 

temperatures increase, we used an SSF to assess effects of temperature on movement and 94 

resource selection. We examined empirical support for a single model consisting of temperature 95 

and interactions with variables likely to be important for moose thermoregulation. This model 96 

enabled us to test three hypotheses on how moose alter behavior to thermoregulate when it is hot: 97 

(1) moose decrease movement rates to decrease metabolic heat production, (2) moose increase 98 

use of shade to decrease heat gain from solar radiation, or (3) increase use of water to increase 99 

heat loss via conduction, convection, and evaporation. 100 

 101 

2. Materials and Methods 102 

2.1 Study area.  103 

 We conducted our study in northeastern Minnesota, USA (Fig. 1). Federal, state, county, 104 

and tribal public lands managed for timber harvest and recreation make up >80% of property 105 

ownership in the area. The region is a sub-boreal transition zone between northern hardwood 106 

forests in the south to Canadian boreal forests in the north (Pastor & Mladenoff, 1992). Upland 107 

forests are primarily composed of white, red, and jack pine (Pinus strobus, P. resinosa, and P. 108 
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banksiana), aspen (Populus tremuloides), paper birch (Betula papyrifera), and balsam fir (Abies 109 

balsamea). Black spruce (Picea mariana), tamarack (Larix laricina), and northern white cedar 110 

(Thuja occidentalis) dominate wet lowland forests. Mean minimum and maximum temperatures, 111 

respectively, are -16.5˚C and -5.5˚C for the month of January and 12.6˚C and 24.0˚C for the 112 

month of July at the Beaver Bay weather station on the southern edge of our study area (National 113 

Oceanic and Atmospheric Administration). Snow cover is typically present from December to 114 

April, with mean annual snowfall ranging between 150 – 240 cm (Minnesota Department of 115 

Natural Resources). 116 

 117 

2.2 Animal Capture and GPS Telemetry 118 

 We captured moose by darting them from helicopters (Quicksilver Air, Inc., Fairbanks, 119 

Alaska, USA) during the winters of 2011 and 2012. Darts used to sedate moose contained 1.2 ml 120 

(4.0 mg ml-1) carfentanil citrate and 1.2 ml (100 mg ml-1) xylazine HCl, and we used 7.2 ml (50 121 

mg ml-1) naltrexone HCl and 3 ml (5 mg ml-1) yohimbine HCl as antagonists (Lenarz et al., 122 

2009; Roffe, Coffin, & Berger, 2001). We fitted immobilized moose with global positioning 123 

system (GPS) collars (Lotek Wireless, Inc., Newmarket, Ontario, Canada). Animal capture and 124 

handling protocols met American Society of Mammalogists recommended guidelines (Sikes & 125 

Animal Care and Use Committee of the American Society of Mammalogists, 2011) and were 126 

approved by the University of Minnesota Animal Care and Use Committee (Protocol Number: 127 

1309-30915A). 128 

 Collars were programmed to record locations every 20 minutes and to drop off moose at 129 

the end of expected battery life (2 years). We retained GPS locations with 3-D fixes or 2-D fixes 130 

with dilution of precision values ≤ 5 (Lewis, Rachlow, Garton, & Vierling, 2007) and removed 131 
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locations that were not biologically possible (i.e., removing locations where the distance between 132 

locations would have exceeded the distance a moose could have moved in a 20-minute period, 133 

assuming a maximum speed of 30-km/hour). Data used in this analysis include only locations 134 

between May 1 and September 31—dates that coincide with average daily maximum 135 

temperatures above the threshold believed to induce heat stress for moose (Renecker & Hudson, 136 

1986). Location and activity data within 2 weeks of death or collar failure were censored from 137 

our data, and only full months of data were used in analysis. One hundred fifty-three moose-138 

months of 24 moose were used in final analysis. 139 

 140 

2.3 Model Covariates 141 

 Because shade is difficult to directly calculate over large areas at fine scales and varies at 142 

any given location on daily and annual cycles, we used canopy vegetation density as a proxy for 143 

shade. Canopy vegetation density was estimated using airborne lidar data. Lidar is an active, 144 

laser-based remote sensing technology that provides detailed information on topography and 145 

vegetation structure (Davies & Asner, 2014; Vierling, Vierling, Gould, Martinuzzi, & Clawges, 146 

2008). Lidar data were collected over our entire study area during leaf-off conditions in May 147 

2011 as part of the Minnesota Elevation Mapping project (Minnesota Geospatial Information 148 

Office). Lidar data were collected from a fixed wing airplane at an altitude of 2,000-2,300 m 149 

above ground level using discrete-return laser scanning systems (ALS60, ALS70, or Optech 150 

GEMINI). Side overlap was 25% with a scan angle of ± 20°. Nominal point spacing and pulse 151 

density varied due to incomplete overlap of adjacent flight-lines. Average nominal pulse density 152 

was 1 pulse/m2. We calculated height of discrete returns above ground by subtracting ground 153 

elevation based on a lidar-derived Digital Elevation Model from the return elevation. Lidar data 154 
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met National Standard for Spatial Database Accuracy standards and had a vertical accuracy 155 

RMSE of 5.0 cm and a horizontal accuracy of 1.16 m. 156 

 We estimated canopy vegetation density as the proportion of all returns that were ≥ 3 m 157 

above ground. Lidar-derived canopy vegetation density estimates were summarized in a 30 x 30 158 

m grid that aligned with National Land Cover Database (NLCD) raster data to ensure 159 

consistency across data layers in GIS.  We used FUSION software to create the lidar-derived 160 

canopy vegetation density raster (McGaughey, 2016). For the sake of simplicity, we hereafter 161 

refer to canopy vegetation density as “shade”. 162 

 Land cover types were determined using the 2011 National Land Cover Database 163 

(NLCD) (Homer et al., 2015). NLCD is a remotely sensed dataset of 16 land cover classes 164 

created from Landsat Thematic Mapper with 30 m spatial resolution. We extracted 5 vegetation 165 

cover types that may offer thermal refuge—woody wetland, hereafter called bog; emergent 166 

herbaceous wetland, hereafter called marsh; open water; conifer forests; and mixed forests. Each 167 

of these cover types offers different amounts of thermal refuge via different mechanisms (Table 168 

1). Each cover type also offers different amounts of forage. Since moose primarily eat the leaves 169 

of deciduous shrubs and saplings < 3 m tall during summer, forage quantity decreases as the 170 

amount of shade and proportion of conifers increases. We calculated the distance of each pixel in 171 

our study area from each of our chosen land cover types using ArcMap 10.4 (Esri, Redlands, 172 

California, USA). 173 

 Temperature data used to define our study period were obtained from two weather 174 

stations within our study area (KBFW in Silver Bay and KCKC in Grand Marais; MesoWest), 175 

which report temperatures at 20-minute intervals. Moose locations were individually matched 176 

with the nearest weather station (by distance) and nearest temperature recording (by time). 177 
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Moose locations were on average 33 km from the nearest weather station and 7 mins from the 178 

closest recorded weather observation in time. 179 

 180 

2.4 Statistical Analysis 181 

 We used a step-selection function (SSF) to model moose resource selection and 182 

movement behavior. For our SSF, we selected available points using a parameterized Weibull 183 

distribution of step lengths and the observed distribution of turn angles of the animals in our data 184 

set. We paired 20 available locations to each used location (i.e., 21 points per stratum). Our final 185 

data set contained 311,521 steps taken by 24 moose. We used conditional logistic regression to 186 

fit the SSF containing our variables of interest (listed in Table 1) and interactions between each 187 

variable and ambient temperature. We included step length (i.e., distance between consecutive 188 

fixes) both to reduce bias in selection estimates (Forester et al., 2009) and to explicitly model its 189 

interaction with another variable of interest (Avgar et al., 2016; Ladle et al., 2019; Prokopenko et 190 

al., 2017). Interaction coefficients detail how temperature influences step length and selection of 191 

cover types at differing temperatures. Because step lengths vary in a regular pattern over the 192 

course of each 24-hour period (Fig. A1), we adjusted step lengths prior to inclusion in the model 193 

by subtracting the observed step length from the average step length at each given time of day. 194 

Failure to adjust for crepuscular activity peaks could lead to consistent positive bias in movement 195 

rates at low (morning) and intermediate (evening) temperatures. We included one-way 196 

interactions between each covariate and temperature (˚C). Because temperature was constant 197 

within strata, it was considered only as an interaction term. The full final model is listed below: 198 

 199 
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Use ~ Shade + dBog + dMarsh + dWater + dConifer + dMixed + StepLength + Temp*Shade + 200 

Temp*dBog + Temp*dMarsh + Temp*dWater + Temp*dConifer + Temp*dMixed + 201 

Temp*StepLength, 202 

 203 

where “*” denotes interactions between variables. We used generalized estimating equations 204 

(GEEs) to obtain robust standard errors among animal-days that reduce Type I error caused by 205 

pseudoreplication (Craiu, Duchesne, & Fortin, 2008; Duchesne, Fortin, & Courbin, 2010; Fortin 206 

et al., 2005), and checked to ensure that VIFs between main effects were adequately low 207 

(Dormann et al., 2013). We then conducted k-fold (k=5) cross-validation on our final model and 208 

calculated Spearman rank correlation (mean of 50 replications) to evaluate model fit (based on 209 

the methods of Fortin et al., 2009). Finally, we rarified data to 1-, 2-, and 4-hour intervals to 210 

determine the minimum interval between GPS locations required to detect biologically 211 

significant interactions. All analyses were conducted using R statistical software (R Core Team, 212 

2018). 213 

 214 

3. Results 215 

3.1 Moose Movement and Resource Selection 216 

 We found empirical support for four interaction terms (StepLength*Temp, Shade*Temp, 217 

Bog*Temp, MixedForest*Temp) in our step-selection function (Table 2), indicating that 218 

temperature significantly altered movement rate and selection for shade, bog, and mixed forest. 219 

We did not detect empirical support for interactions between temperature and distance to marsh, 220 

temperature and distance to open water, or temperature and distance to conifer forest. Of these 221 

variables with interaction terms whose 95% CIs overlapped zero, only the main effect for 222 
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distance to conifer forest was significant. Regardless of temperature, moose selected areas 223 

further from conifer forest (RSS = 1.553; 95% CI = 1.133-2.130). The main effects for distance 224 

to marsh and distance to open water were not significant. Moose neither selected nor avoided 225 

areas near marsh or open water. 226 

 Moose decreased movement rates at hotter temperatures (Fig. 2A). Mean standardized 227 

step length was below 0 m at all temperatures above 20˚C. In other words, the mean step length 228 

at each temperature above 20˚C was below the overall mean step length (controlling for time of 229 

day). At each standardized step length > 0 m (i.e., steps that were longer than average), the odds 230 

of moose taking a step of that length was higher at 0˚C than at 15˚C, and higher at 15˚C than at 231 

30˚C. At 0˚C, the odds that moose would move 100 m more than average in 20 minutes were 232 

substantially higher (RSS = 1.074; 95% CI = 1.025-1.126) than at 15˚C (RSS = 0.849; 95% CI = 233 

0.777-0.928), which were in turn substantially higher than at 30˚C (RSS = 0.672; 95% CI = 234 

0.590-0.765). 235 

 Moose spent more time in shade at hotter temperatures (Fig. 2B). Relative selection 236 

strength increased with increasing vegetative cover at 30˚C, while it decreased with increasing 237 

vegetative cover at 0˚C and 15˚C, indicating that moose sought shade at high temperatures while 238 

avoiding it at lower temperatures. At 0˚C, the odds that moose would move into a pixel with 239 

75% vegetative cover were substantially lower (RSS = 0.265; 95% CI = 0.239-0.295) than at 240 

15˚C (RSS = 0.640; 95% CI = 0.523-0.782), which were in turn substantially lower than at 30˚C 241 

(RSS = 1.542; 95% CI = 1.148-2.073).  242 

 Despite avoiding bogs at colder temperatures, moose traveled closer to bogs at hotter 243 

temperatures (Fig. 2C). The odds that moose were far from bogs was higher at 0˚C (RSS = 244 
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1.407; 95% CI = 1.177-1.681 at 500 m) than at 15˚C (RSS = 0.818; 95% CI = 0.577-1.160 at 500 245 

m), and higher at 15˚C than at 30˚C (RSS = 0.476; 95% CI = 0.283-0.800 at 500 m). 246 

 Moose selected for shorter distances to mixed forest when it was hot than when it was 247 

cold (Fig. 2D). The odds that moose were far from mixed forest was higher at 0˚C (RSS = 1.064; 248 

95% CI = 0.888-1.274 at 500 m) than at 15˚C (RSS = 0.795; 95% CI = 0.560-1.127 at 500 m) or 249 

30˚C (RSS = 0.594; 95% CI = 0.353-0.998 at 500 m), though odds did not significantly differ 250 

between 15˚C and 30˚C. 251 

 252 

3.2 Model validation 253 

K-fold cross-validation of our model demonstrated that our model was substantially better than 254 

random at predicting where moose moved—the mean Spearman rank correlation coefficient was 255 

0.47 for observed steps. 256 

 257 

3.3 Effects of temporal scale on interactions 258 

The interactions we found in our data diminish substantially if GPS locations are rarified so that 259 

locations occur at longer intervals. If our 20-min GPS data are rarified to 1-hr, 2-hr, and 4-hr 260 

intervals and used to fit the same SSF, interactions become progressively less biologically 261 

meaningful (Fig. A2). As the intervals increase, differences across temperatures for step length, 262 

shade, and distance to bog become minimal. Differences across temperatures for distance to 263 

mixed forest shrink, but more gradually. This pattern of weakening interactions as intervals 264 

between GPS locations increase indicates that fine-scale data may be required to detect 265 

behavioral mitigation strategies by moose using step-selection functions. 266 

 267 
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4. Discussion 268 

 Moose altered both movement and habitat selection to behaviorally thermoregulate 269 

during hot periods. Moose reduced movement and increased use of shade, bogs, and mixed forest 270 

at high heat, even while avoiding shade and bogs at cooler temperatures (Fig. 2). This pattern 271 

links previous findings of separate studies. First, moose prefer to forage in areas with low canopy 272 

cover because canopy cover is generally inversely related to forage availability (Lone et al., 273 

2014). Second, moose prefer to use bed sites under dense forest canopy in wet lowland forests 274 

during the day (McCann et al., 2016), where moose have access to less forage but more 275 

protection against heat gain from solar radiation and more capacity to lose heat to the ground via 276 

conduction. Moose therefore face a steep tradeoff during periods of heat—areas that are good for 277 

foraging are not good for avoiding heat. Selection for shade and shorter step lengths as 278 

temperatures increase indicates that moose forego foraging in favor of bedding down under 279 

shade as temperatures increase. Earlier studies have documented moose shifting activity to 280 

cooler evenings and nights on hot days (Dussault et al., 2004; Montgomery et al., 2019), which is 281 

consistent with this trade-off. 282 

 The vegetation cover types used more by moose during warm weather further indicate 283 

that moose face a tradeoff between foraging and thermoregulation during periods of heat. In 284 

general, moose are more likely to find greater quantities of forage in cover types that do not 285 

provide thermal cover, while cover types that provide thermal cover are less likely to provide 286 

forage. For example, upland mixed forest has some available forage, but forage availability is 287 

highest in this cover type in young forests with little canopy cover. Similarly, bogs in Minnesota 288 

are largely populated by black spruce, tamarack, and alder, all of which can provide thermal 289 

cover but are unpalatable for moose. Birch (Betula spp.) and willow (Salix spp.) are more 290 
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palatable and occasionally grow in bogs in Minnesota, but rarely at densities high enough to 291 

compensate for unpalatable species dominating the canopy layer.  292 

 During hot weather, moose used shade far more than water to ameliorate heat. Moose are 293 

commonly observed in bodies of water, and anecdotal evidence suggests that moose use water to 294 

shed heat (Demarchi & Bunnell, 1995; Schwab & Pitt, 1991). Our analysis, however, indicates 295 

that moose do not often use open water and marsh to mitigate heat stress; they prefer to seek 296 

shadier land cover types. Nevertheless, they do increase use of woody bogs—where both shade 297 

and some water are usually available—as temperatures increase. This is consistent with a 298 

previous study (McCann et al., 2016) that found that moose prefer bed sites with both canopy 299 

cover and relatively high soil moisture.  300 

 Frequent GPS locations enabled us to detect this pattern and may explain why previous 301 

attempts to characterize moose movement patterns failed to reveal a clean relationship between 302 

temperature and movement rates (Dussault et al., 2004; Montgomery et al., 2019). Moose spend 303 

about half of their day foraging during the summer, with foraging bouts interspersed by periods 304 

of rumination at bed sites. Periods of rest and rumination are typically distinct and occur at 305 

regular intervals of roughly 2 hours (Moen, Pastor, Cohen, & Schwartz, 1996; Renecker & 306 

Hudson, 1989). As the interval between GPS locations increases, the chance that both 307 

ambulatory foraging bouts and stationary ruminating bouts are aggregated into a single GPS fix 308 

increases, which homogenizes step lengths (Moen et al., 1996). Frequent GPS locations reduce 309 

the probability of this happening. Indeed, if our location data is rarified to 1-, 2-, and 4-hour 310 

intervals, interactions between temperature and movement rates are progressively reduced (Fig. 311 

A2). Because many species have idiosyncratic movement behaviors, movement studies may 312 
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require intervals between GPS locations within a specific range to answer some research 313 

questions. 314 

 Our analysis can directly inform management and conservation actions for wildlife. 315 

Moose populations at the southern edge of their distribution (including our study area) have 316 

undergone dramatic declines in the past decade. Our results suggest that in a warmer future 317 

proximity to shade will strongly influence habitat suitability for moose in areas with abundant 318 

forage due to timber harvest and other anthropogenic disturbance. Moose will likely benefit from 319 

management action to explicitly promote maintenance of shade near large patches of forage. 320 

Because moose prioritize shade over forage when it is hot, moose will likely not feed in large 321 

forest openings on hot days (though moose may feed in unshaded forest openings at night 322 

[Dussault et al., 2004]). Moose will likely spend more time foraging in forest openings with 323 

patches of canopy cover than in large homogeneous forest openings. For example, most of the 324 

forage in large clearcuts may be inaccessible to moose during hot periods unless the clearcuts 325 

contain “reserve patches”, or interior islands or fingers of forest extending into the clearcut. 326 

These reserve patches will likely be most helpful for moose if they consist of bog or mixed 327 

forest.  328 

 Because we did not measure fitness or any proxy for it, it remains unclear how effective 329 

these behavioral strategies will be at reducing population declines under climate change. 330 

Although behavioral thermoregulation mitigates some metabolic costs of hot weather, forgoing 331 

foraging to avoid high body temperatures may result in decreased fat reserves, lower fitness, and 332 

ultimately in population declines compared to a cooler baseline scenario where moose do not 333 

need to behaviorally thermoregulate. However, identifying patterns of behavior allows 334 

researchers to explicitly test for fitness consequences in subsequent studies. For example, 335 
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identification of “green wave surfing” behavior (by which animals migrate along paths of rapidly 336 

greening forage) in migratory ungulates (Aikens et al., 2017; Merkle et al., 2016) allowed 337 

researchers to later show that better green wave surfers had higher body fat and increased 338 

reproductive success (Middleton et al., 2018). Our study could be used as a foundation for 339 

further analyses along these lines, or to parameterize mechanistic models of moose energetic 340 

balances under various climate scenarios, land management strategies, or disturbance regimes to 341 

project the outcomes of conservation actions taken to benefit moose. Future studies should 342 

characterize fitness consequences associated with reduced movement and increased time spent in 343 

areas with low forage availability during warm periods. 344 

 Our analysis demonstrates that advances in animal tracking, remote sensing, and 345 

modelling techniques allow us to study responses by free-ranging animals to weather in the field 346 

at finer scales than previously possible. SSFs in particular are a valuable tool to answer questions 347 

concerning behavioral responses by free-ranging animals to changes in weather in a relatively 348 

simple and intuitive way. Because SSFs estimate selection conditionally at each GPS location, 349 

each location or step can be connected with a distinct time and spatial location, enabling 350 

inference on how animals change movement and habitat selection behavior in space and time in 351 

response to specific stimuli. SSFs have been used to characterize animal movements in relation 352 

to landscape features, such as grizzly bear response to human activity (Ladle et al., 2019) and elk 353 

and African wild dog response to roads (Abrahms et al., 2016; Prokopenko et al., 2017). 354 

Likewise, SSFs can characterize changes in movement behavior and habitat use in response to 355 

differences in temperature. Similar analyses will be increasingly important on a warming planet, 356 

and continued advances in animal tracking and remote sensing technologies will allow us to 357 

study such behavior at finer scales and for many more species than have been studied in the past. 358 
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 In conclusion, moose altered both movement and habitat selection to behaviorally 359 

thermoregulate during hot periods by reducing movement rates and increasing use of shaded 360 

vegetation cover types that they avoid at cooler temperatures. Moose did not regularly use water 361 

sources that lack canopy cover to shed heat. Moose face a tradeoff between forage and thermal 362 

cover at high temperatures and forego foraging in favor of seeking thermal cover. Behavior 363 

changed at thresholds near (though somewhat above) previously documented heat stress 364 

thresholds (McCann et al., 2013; Renecker & Hudson, 1986): step lengths decreased at 365 

temperatures above 20˚C, and selection patterns for shade cover reversed above 15˚C. Future 366 

research characterizing strategies for behavioral thermoregulation and consequences of those 367 

strategies for fitness will aid conservation in a warming world, for both moose and other heat-368 

sensitive species. 369 
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Figures 570 

Fig. 1. The physical characteristics of the surrounding environment greatly influence the thermal landscape for animals. Fig. 1A 571 

represents an environment (conifer forest) where heat gain may be decreased by reducing exposure to radiation, Fig. 1B represents an 572 

environment (marsh) where heat loss may be increased by conduction, and Fig. 1C represents an environment (clear cut) that offers 573 

neither relief from radiation nor opportunities to disperse heat via conduction. Moose likely face tradeoffs between forage availability 574 

and thermal relief. 575 

 576 
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Fig. 2. Interaction plots showing relationships for significant interactions between temperature and relative selection strengths (RSS) 578 

of variables of interest (A: Step length and temperature, B: Shade and temperature, C: Distance to bog and temperature, D: Distance to 579 

mixed forest and temperature). High temperatures decrease the odds of longer step lengths, increase the odds of seeking shade, and 580 

increase the odds of traveling in bogs and mixed forest. In some cases (A, B, and C), patterns of behavior at low temperatures reversed 581 

into patterns of the opposite behavior at high temperatures (e.g., moose strongly avoid shade at 0˚C while strongly selecting for shade 582 

at 30˚C). 583 
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Tables 585 

Table 1. Variables incorporated in the step-selection function of moose movement and habitat selection and justification for inclusion 586 

in the model. 587 

Name Variable Description 

Shade Canopy Vegetation Density Proportion of all lidar returns above 3 meters; analogous to canopy vegetation density, a 

proxy for shade 

dBog Distance to Bog Distance to woody wetlands; included in analyses because bogs have both canopy cover 

and ground moisture 

dMarsh Distance to Marsh Distance to emergent herbaceous wetlands; included in analyses because moose are 

often observed in marshes, and water can disperse heat via conduction, convection, and 

evaporation 

dWater Distance to Open Water Distance to open water; included in analyses because moose are often seen in bodies of 

water, which can disperse heat via conduction, convection, and evaporation 

dConifer Distance to Conifer Forest Distance to conifer forest; included in analyses because conifer forest contains localized 

thick canopy cover 

dMixed Distance to Mixed Forest Distance to mixed forest; included in analyses because conifers offer localized thick 

canopy cover while deciduous trees offer foraging opportunities 

StepLength Step Length Distance between a moose location and the location immediately prior; included in 

analyses to account for bias in the parametric distribution of step lengths used to 

characterize available points and to estimate how temperature affects movement rates 

Temp Temperature Temperature at the nearest NOAA weather station at the time of a location; included in 

analyses to estimate how temperature affects habitat use and movement rates 
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Table 2. Coefficient estimates, standard errors, relative selection strengths, 95% confidence intervals, and p-values for the step-

selection function. Bold variables denote significance at α = 0.05. 

Variable Coefficient Robust SE RSS RSS LCL RSS UCL p 

Shade -0.174 0.007 0.840 0.829 0.852 <0.001 

dBog 0.728 0.182 2.071 1.450 2.956 <0.001 

dMarsh -0.055 0.108 0.947 0.767 1.169 0.612 

dWater 0.057 0.106 1.058 0.860 1.302 0.592 

dConifer 0.440 0.161 1.553 1.133 2.130 0.006 

dMixed 0.169 0.184 1.184 0.825 1.699 0.359 

StepLength 3.025 0.242 20.603 12.831 33.082 <0.001 

Shade*Temp 0.008 0.000 1.008 1.007 1.009 <0.001 

dBog*Temp -0.072 0.012 0.930 0.909 0.952 <0.001 

dMarsh*Temp 0.004 0.007 1.004 0.990 1.019 0.558 

dWater*Temp -0.004 0.007 0.996 0.982 1.010 0.589 

dConifer*Temp -0.009 0.010 0.991 0.972 1.011 0.388 

dMixed*Temp -0.039 0.012 0.962 0.940 0.984 0.001 

StepLength*Temp -0.156 0.014 0.855 0.832 0.879 <0.001 
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Appendix A: Supplementary Data 

Fig. A1. Lowess regression of mean step length across times of day (20 min. increments). The gray ribbon represents the 95% 

confidence interval for the regression line. Moose movement rates varied slightly but consistently over the course of the day, with 

movement rates peaking during crepuscular periods. The area within the dotted rectangles represents the range of civil sunrise and 

sunset at the centroid of our study area during our study period (determined using the NOAA Solar Calculator tool 

[https://www.esrl.noaa.gov/gmd/grad/solcalc/]). 
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Fig A2. Interaction plots showing relationships for significant interactions between temperature and relative selection strengths (RSS) 

of variables of interest (A: Step length and temperature, B: Shade and temperature, C: Distance to bog and temperature, D: Distance to 

mixed forest and temperature) at progressively longer intervals between GPS locations (1: 20-minute, 2: 1-hour, 3: 2-hour, and 4: 4-

hour). Patterns in the selection strength of interactions progressively weaken as the interval between GPS locations increases, in part 

explaining why other studies have not found consistent effects of temperature on moose movement. 
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