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Abstract 18 

Context 19 

Warmer weather caused by climate change poses increasingly serious threats to the persistence 20 

of many species, but animals can modify behavior to mitigate at least some of the threats posed 21 

by warmer temperatures. Identifying and characterizing how animals modify behavior to avoid 22 

the negative consequences of acute heat will be crucial for understanding how animals will 23 

respond to warmer temperatures in the future. 24 

 25 

Objectives 26 

We studied the extent to which moose (Alces alces), a species known to be sensitive to heat, 27 

mitigates heat on hot summer days via multiple different behaviors: (1) reduced movement, (2) 28 

increased visitation to shade, (3) increased visitation to water, or (4) a combination of these 29 

behaviors.  30 

 31 

Methods 32 

We used GPS telemetry and a step-selection function to analyze movement and habitat selection 33 

by moose in northeastern Minnesota, USA. 34 

 35 

Results 36 

Moose reduced movement, used areas of the landscape with more shade, and traveled nearer to 37 

mixed forests and bogs during periods of heat. Moose used shade far more than water to 38 

ameliorate heat, and the most pronounced changes in behavior occurred between 15˚C and 20˚C.  39 

 40 
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Conclusions 41 

Research characterizing the behaviors animals use to facilitate thermoregulation will aid 42 

conservation of heat-sensitive species in a warming world. The modeling framework presented 43 

in this study is a promising method for evaluating the influence of temperature on movement and 44 

habitat selection. 45 

 46 
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Introduction 52 

 Physiological performance peaks within a limited range of body temperatures in which 53 

molecular, cellular, and systemic processes operate optimally. Body temperatures outside this 54 

range impose functional constraints on these processes, including reductions in growth, 55 

reproduction, activity, and immune function (Pörtner and Farrell 2008). Nevertheless, animals 56 

routinely operate in environmental conditions that trigger suboptimal body temperatures (Boyles 57 

et al. 2011; Sunday et al. 2014). This conundrum underlies two long-standing questions in 58 

biological research: (1) How do animals mitigate suboptimal thermal conditions, and (2) how 59 

effective are those efforts at mitigation? Rapid and ongoing responses to global climate change 60 

by a multitude of animal species (Walther et al. 2002; Parmesan 2006; Hoegh-Guldberg and 61 

Bruno 2010) increase the urgency of answering these questions. 62 

 Animals can relax the constraints of limited ranges of thermal tolerance by modifying 63 

their behavior to reduce heat gain and dissipate heat at high temperatures. Such behavioral 64 

thermoregulation has a long history of study in biological research (Cowles and Bogert 1944), 65 

but this idea still offers fresh insight today. Animals can restrict movement to produce less 66 

metabolic heat (Stelzner 1988; Broders et al. 2012), alter posture to reduce heat gain from 67 

insolation or increase surface area to shed heat (Luskick et al. 1978; Bartholomew and Dawson 68 

1979), pant to lose heat via evaporation (Campos and Fedigan 2009; McCann et al. 2013), or 69 

visit thermal refugia (spaces that provide refuge from thermal stress caused by extreme 70 

temperatures [e.g., burrows, wallows, shade cover]; van Beest et al. 2012; Hovick et al. 2014; 71 

Kurylyk et al. 2015), among other behaviors. Identifying exactly which of these strategies 72 

animals use to behaviorally thermoregulate, how much these strategies buffer against adverse 73 

impacts of hot weather, and what costs animals incur to use these strategies is crucial for 74 
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understanding their ability to increase ranges of thermal tolerance, which in turn increases our 75 

understanding of how animals may adapt (or not) to increasing temperatures in a warmer future. 76 

 Recent advances in statistical modeling techniques provide opportunity to study 77 

behavioral thermoregulation in new ways. Step-selection functions (hereafter “SSFs”) are an 78 

extension of the resource selection function modeling framework that explicitly incorporates 79 

spatial and temporal animal movement characteristics to enable examination of fine-scale habitat 80 

selection and movement behavior at biologically realistic scales (Forester et al. 2009; Thurfjell et 81 

al. 2014; Duchesne et al. 2015). SSFs have primarily been used to model habitat selection 82 

(Thurfjell et al. 2014), but recent theoretical development has demonstrated that they can also be 83 

used to explicitly model movement behavior that changes in both space and time in relation to 84 

landscape features (Avgar et al. 2016; Prokopenko et al. 2017; Ladle et al. 2019). By including 85 

interaction terms between temperature, habitat covariates, and movement rates within SSFs, the 86 

relative importance of temperature-dependent animal behaviors—including both resource 87 

selection and movement rates—can be quantified in a single model. 88 

 We used the SSF modeling framework to examine behavioral thermoregulation in moose 89 

(Alces alces), a species known to be sensitive to heat. Moose have undergone substantial 90 

population declines across much of their southern range due in part to climate change (Lenarz et 91 

al. 2009; Rempel 2011; Monteith et al. 2015). Moose experience heat stress starting at 92 

temperatures as low as 14˚C (Renecker and Hudson 1986) or 17˚C (McCann et al. 2013) during 93 

the summer. Moose prevent heat stress on hot days by using water, shade, and decreased activity 94 

to shed heat via conduction and reduced exposure to radiation from the sun (Belovsky 1981; 95 

Dussault et al. 2004; Broders et al. 2012; Street et al. 2015; McCann et al. 2016). At coarse 96 

spatial and temporal scales, moose select for thermal cover (e.g., dense canopy in conifer forests) 97 
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during periods of high temperatures (Schwab and Pitt 1991; Demarchi and Bunnell 1995; van 98 

Beest et al. 2012; Melin et al. 2014; Street et al. 2016; but see Lowe et al. 2010). However, 99 

earlier studies have not established the relative importance of multiple different heat amelioration 100 

strategies (e.g., seeking shade vs. reducing movement vs. visiting water) or identified thresholds 101 

at which behavioral thermoregulation alters habitat selection. 102 

 To evaluate how moose modify fine-scale habitat selection and movement patterns as 103 

temperatures increase, we used an SSF to assess the effects of temperature on movement and 104 

resource selection. We examined empirical support for a single model consisting of temperature 105 

and interactions with variables likely to be important for moose thermoregulation. This model 106 

enabled us to quantify the importance of several ways moose may alter behavior to 107 

thermoregulate when it is hot: moose (1) decrease movement rates to decrease metabolic heat 108 

production, (2) increase use of shade to decrease heat gain from solar radiation, (3) increase use 109 

of water to increase heat loss via conduction, convection, and evaporation, or (4) use some 110 

combination of each of these.  111 

 112 

Materials and Methods 113 

Study area  114 

 We conducted our study in northeastern Minnesota, USA (Fig. 1). Federal, state, county, 115 

and tribal public lands managed for timber harvest and recreation make up >80% of property 116 

ownership in the area. The region is a sub-boreal transition zone between northern hardwood 117 

forests in the south to Canadian boreal forests in the north (Pastor and Mladenoff 1992). Upland 118 

forests are primarily composed of white, red, and jack pine (Pinus strobus, P. resinosa, and P. 119 

banksiana), aspen (Populus tremuloides), paper birch (Betula papyrifera), and balsam fir (Abies 120 
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balsamea). Black spruce (Picea mariana), tamarack (Larix laricina), and northern white cedar 121 

(Thuja occidentalis) dominate wet lowland forests. Mean minimum and maximum temperatures, 122 

respectively, are -16.5˚C and -5.5˚C for the month of January and 12.6˚C and 24.0˚C for the 123 

month of July at the Beaver Bay weather station on the southern edge of our study area (National 124 

Oceanic and Atmospheric Administration). Snow cover is typically present from December to 125 

April, with mean annual snowfall ranging between 150 – 240 cm (Minnesota Department of 126 

Natural Resources). 127 

 128 

Animal Capture and GPS Telemetry 129 

 We captured moose by darting them from helicopters (Quicksilver Air, Inc., Fairbanks, 130 

Alaska, USA) during the winters of 2011 and 2012. Darts used to sedate moose contained 1.2 ml 131 

(4.0 mg ml-1) carfentanil citrate and 1.2 ml (100 mg ml-1) xylazine HCl, and we used 7.2 ml (50 132 

mg ml-1) naltrexone HCl and 3 ml (5 mg ml-1) yohimbine HCl as antagonists (Roffe et al. 2001; 133 

Lenarz et al. 2009). We fitted immobilized moose with global positioning system (GPS) collars 134 

(Lotek Wireless, Inc., Newmarket, Ontario, Canada). Animal capture and handling protocols met 135 

American Society of Mammalogists recommended guidelines (Sikes and Animal Care and Use 136 

Committee of the American Society of Mammalogists 2011) and were approved by the 137 

University of Minnesota Animal Care and Use Committee (Protocol Number: 1309-30915A). 138 

 Collars were programmed to record locations every 20 minutes and to drop off moose at 139 

the end of expected battery life (2 years). We retained GPS locations with 3-D fixes or 2-D fixes 140 

with dilution of precision values ≤ 5 (Lewis et al. 2007) and removed locations that were not 141 

biologically possible (i.e., removing locations where the distance between locations would have 142 

exceeded the distance a moose could have moved in a 20-minute period, assuming a maximum 143 
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speed of 30-km/hour). Data used in this analysis include only locations between May 1 and 144 

September 31—dates that coincide with average daily maximum temperatures above the 145 

threshold believed to induce heat stress for moose (Renecker and Hudson 1986). Location and 146 

activity data within 2 weeks of death or collar failure were censored from our data, and only full 147 

months of data were used in analysis. Our analysis included 153 moose-months from 24 moose. 148 

Moose were adults at capture except for one moose that was a yearling (1.8 years old), and 17 of 149 

24 moose were females. 150 

 151 

Model Covariates 152 

 Because shade is difficult to directly calculate over large areas at fine scales and varies at 153 

any given location on daily and annual cycles, we used canopy vegetation density as a proxy for 154 

shade. Canopy vegetation density was estimated using airborne lidar data. Lidar is an active, 155 

laser-based remote sensing technology that provides detailed information on topography and 156 

vegetation structure (Vierling et al. 2008; Davies and Asner 2014). Lidar data were collected 157 

over our entire study area during leaf-off conditions in May 2011 as part of the Minnesota 158 

Elevation Mapping project (Minnesota Geospatial Information Office). Lidar data were collected 159 

from a fixed wing airplane at an altitude of 2,000-2,300 m above ground level using discrete-160 

return laser scanning systems (ALS60, ALS70, or Optech GEMINI). Side overlap was 25% with 161 

a scan angle of ± 20°. Nominal point spacing and pulse density varied due to incomplete overlap 162 

of adjacent flight-lines. Average nominal pulse density was 1 pulse/m2. We calculated height of 163 

discrete returns above ground by subtracting ground elevation based on a lidar-derived Digital 164 

Elevation Model from the return elevation. Lidar data met the National Standard for Spatial 165 
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Database Accuracy and had a vertical accuracy RMSE of 5.0 cm and a horizontal accuracy of 166 

1.16 m. 167 

 We estimated canopy vegetation density as the proportion of all returns that were ≥ 3 m 168 

above ground. Lidar-derived canopy vegetation density estimates were summarized in a 30 x 30 169 

m grid that aligned with National Land Cover Database (NLCD) raster data to ensure 170 

consistency across data layers in GIS.  We used FUSION software to create the lidar-derived 171 

canopy vegetation density raster (McGaughey 2016). For the sake of simplicity, we hereafter 172 

refer to lidar-derived canopy vegetation density as “shade”. 173 

 Vegetation cover types were determined using the 2011 National Land Cover Database 174 

(NLCD) (Homer et al. 2015). NLCD is a remotely sensed dataset of 16 land cover classes 175 

created from Landsat Thematic Mapper with 30 m spatial resolution. We extracted 5 vegetation 176 

cover types that may offer thermal refuge—woody wetland, hereafter called bog; emergent 177 

herbaceous wetland, hereafter called marsh; open water; conifer forests; and mixed forests. Each 178 

of these cover types offers different amounts of thermal refuge via different mechanisms (Table 179 

1). Each cover type also offers different amounts of forage. Since moose primarily eat the leaves 180 

of deciduous shrubs and saplings < 3 m tall during summer, forage quantity decreases as the 181 

amount of shade and proportion of conifers increases. Selection of cover types may be dependent 182 

on proximity to other cover types, and GPS error may lead to underestimation of selection of 183 

cover types covering small areas (Conner et al. 2003; Martin et al. 2018). We therefore 184 

calculated the Euclidean distance of each pixel in our study area from each of our chosen 185 

vegetation cover types using ArcMap 10.4 (Esri, Redlands, California, USA). Euclidean 186 

distances were 0 when an animal was within the land cover type of interest. 187 
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 Temperature data were obtained from two weather stations within our study area (KBFW 188 

in Silver Bay and KCKC in Grand Marais; MesoWest; Fig. A1). These stations are operated by 189 

the National Oceanic and Atmospheric Administration according to national standards and report 190 

temperatures at 20-minute intervals. Moose locations were individually matched with the nearest 191 

weather station (by distance) and nearest temperature recording (by time). Moose locations were 192 

on average 33 km from the nearest weather station and 7 minutes from the closest recorded 193 

weather observation in time. 194 

 195 

Statistical Analysis 196 

 We used a step-selection function (SSF) to model moose resource selection and 197 

movement behavior. For our SSF, we selected available points using a parameterized Weibull 198 

distribution of step lengths and the observed distribution of turn angles of the animals in our data 199 

set. We paired 20 available locations to each used location (i.e., 21 points per stratum). Our final 200 

data set contained 311,521 steps taken by 24 moose. We used conditional logistic regression to 201 

fit the SSF containing our variables of interest (listed in Table 1) and interactions between each 202 

variable and ambient temperature. We included step length (i.e., distance between consecutive 203 

fixes) both to reduce bias in selection estimates (Forester et al. 2009) and to explicitly model its 204 

interaction with another variable of interest (Avgar et al. 2016; Prokopenko et al. 2017; Ladle et 205 

al. 2019). Interaction coefficients detail how temperature influences step length and selection of 206 

cover types at differing temperatures. Because step lengths vary in a regular pattern over the 207 

course of each 24-hour period (Fig. A2), we adjusted step lengths prior to inclusion in the model 208 

by subtracting the observed step length from the average step length at each given time of day. 209 

Failure to adjust for crepuscular activity peaks could lead to consistent positive bias in movement 210 
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rates at low (morning) and intermediate (evening) temperatures. We included one-way 211 

interactions between each covariate and temperature (˚C). Because temperature was constant 212 

within strata, it was considered only as an interaction term. The full final model is listed below: 213 

 214 

Use ~ Shade + dBog + dMarsh + dWater + dConifer + dMixed + StepLength + Temp*Shade + 215 

Temp*dBog + Temp*dMarsh + Temp*dWater + Temp*dConifer + Temp*dMixed + 216 

Temp*StepLength, 217 

 218 

where “*” denotes interactions between variables. We used generalized estimating equations 219 

(GEEs) to obtain robust standard errors among animal-days that reduce Type I error caused by 220 

pseudoreplication (Fortin et al. 2005; Craiu et al. 2008; Duchesne et al. 2010), and checked to 221 

ensure that VIFs between main effects were adequately low (O’Brien 2007; Dormann et al. 222 

2013). We then conducted k-fold (k=5) cross-validation on our final model and calculated 223 

Spearman rank correlation (mean of 50 replications) to evaluate model fit (based on the methods 224 

of Fortin et al. (2009). Finally, we rarified data to 1-, 2-, and 4-hour intervals to determine the 225 

minimum interval between GPS locations required to detect biologically significant interactions. 226 

All analyses were conducted using R statistical software (R Core Team 2018). 227 

 228 

Results 229 

Moose Movement and Resource Selection 230 

 We found empirical support for four interaction terms (StepLength*Temp, Shade*Temp, 231 

Bog*Temp, MixedForest*Temp) in our step-selection function (Table 2), indicating that 232 

temperature significantly altered movement rate and selection for shade, bog, and mixed forest. 233 
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We did not detect empirical support for interactions between temperature and distance to marsh, 234 

temperature and distance to open water, or temperature and distance to conifer forest. Of these 235 

variables with interaction terms whose 95% CIs overlapped zero, only the main effect for 236 

distance to conifer forest was significant. Regardless of temperature, moose selected areas 237 

further from conifer forest (RSS = 1.553; 95% CI = 1.133-2.130). The main effects for distance 238 

to marsh and distance to open water were not significant. Moose neither selected nor avoided 239 

areas near marsh or open water. Habitat use by moose was consistent throughout our study 240 

period (i.e., month-to-month changes in distance to vegetation cover types were small; Fig. A3). 241 

 Moose decreased movement rates at hotter temperatures (Fig. 2A). The mean step length 242 

at all temperatures above 20˚C was below the overall mean step length controlling for time of 243 

day. At each standardized step length > 0 m (i.e., steps that were longer than average for a given 244 

time of day), the odds of moose taking a step of that length was higher at 0˚C than at 15˚C, and 245 

higher at 15˚C than at 30˚C. At 0˚C, the odds that moose would move 100 m more than average 246 

in 20 minutes were substantially higher (RSS = 1.074; 95% CI = 1.025-1.126) than at 15˚C (RSS 247 

= 0.849; 95% CI = 0.777-0.928), which were in turn substantially higher than at 30˚C (RSS = 248 

0.672; 95% CI = 0.590-0.765). 249 

 Moose spent more time in shade at hotter temperatures (Fig. 2B). Relative selection 250 

strength increased with increasing vegetative cover at 30˚C, while it decreased with increasing 251 

vegetative cover at 0˚C and 15˚C, indicating that moose sought shade at high temperatures while 252 

avoiding it at lower temperatures. At 0˚C, the odds that moose would move into a pixel with 253 

75% vegetative cover were substantially lower (RSS = 0.265; 95% CI = 0.239-0.295) than at 254 

15˚C (RSS = 0.640; 95% CI = 0.523-0.782), which were in turn substantially lower than at 30˚C 255 

(RSS = 1.542; 95% CI = 1.148-2.073).  256 
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 Despite avoiding bogs at colder temperatures, moose traveled closer to bogs at hotter 257 

temperatures (Fig. 2C). The odds that moose were far from bogs was higher at 0˚C (RSS = 258 

1.407; 95% CI = 1.177-1.681 at 500 m) than at 15˚C (RSS = 0.818; 95% CI = 0.577-1.160 at 500 259 

m), and higher at 15˚C than at 30˚C (RSS = 0.476; 95% CI = 0.283-0.800 at 500 m). 260 

 Moose selected for shorter distances to mixed forest when it was hot than when it was 261 

cold (Fig. 2D). The odds that moose were far from mixed forest was higher at 0˚C (RSS = 1.064; 262 

95% CI = 0.888-1.274 at 500 m) than at 15˚C (RSS = 0.795; 95% CI = 0.560-1.127 at 500 m) or 263 

30˚C (RSS = 0.594; 95% CI = 0.353-0.998 at 500 m), though odds did not significantly differ 264 

between 15˚C and 30˚C. 265 

 266 

Model validation 267 

K-fold cross-validation of our model demonstrated that our model was substantially better than 268 

random at predicting where moose moved—the mean Spearman rank correlation coefficient was 269 

0.47 for observed steps. 270 

 271 

Effects of temporal scale on interactions 272 

The interactions we found in our data diminish substantially if GPS locations are rarified so that 273 

locations occur at longer intervals. When 20-min interval GPS data are rarified to 1-hr, 2-hr, and 274 

4-hr intervals and used to fit the same SSF, interactions become progressively less biologically 275 

meaningful (Fig. A4). As the intervals increase, differences across temperatures for step length, 276 

shade, and distance to bog become minimal. Differences across temperatures for distance to 277 

mixed forest shrink, but more gradually. 278 

 279 
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Discussion 280 

 In this paper, we developed a modeling framework to test multiple competing (but not 281 

mutually exclusive) hypotheses on behavioral responses by animals to heat. We used this 282 

framework to model behavioral responses by moose, an ungulate known to be sensitive to heat. 283 

Moose altered both movement and habitat selection to behaviorally thermoregulate during hot 284 

periods. Moose reduced movement and moved nearer to or stayed within shade, bogs, and mixed 285 

forest at high heat, even while avoiding shade and bogs at cooler temperatures (Fig. 2). This 286 

pattern links previous findings of separate studies. First, moose prefer to forage in areas with low 287 

canopy cover because canopy cover is generally inversely related to forage availability (Lone et 288 

al. 2014). Second, moose prefer to use bed sites under dense forest canopy in wet lowland forests 289 

during the day (McCann et al. 2016), where moose have access to less forage but more 290 

protection against heat gain from solar radiation and more capacity to lose heat to wet ground via 291 

conduction. Moose therefore face a steep tradeoff during periods of heat—areas that are good for 292 

foraging may not be good for avoiding heat. Selection for shade and shorter step lengths as 293 

temperatures increase indicates that moose forego foraging in favor of bedding down under 294 

shade as temperatures increase. Earlier studies have documented moose shifting activity to 295 

cooler evenings and nights on hot days (Dussault et al. 2004; Montgomery et al. 2019), which is 296 

consistent with this trade-off.  297 

 The vegetation cover types used more by moose during warm weather further indicate 298 

that moose face a tradeoff between foraging and thermoregulation during periods of heat. In 299 

general, moose are more likely to find greater quantities of forage in cover types that do not 300 

provide thermal cover, while cover types that provide thermal cover are less likely to provide 301 

forage. For example, upland mixed forest has some available forage, but forage availability is 302 
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highest in this cover type in young forests with little canopy cover. Similarly, bogs in Minnesota 303 

are largely populated by black spruce, tamarack, and alder, all of which can provide thermal 304 

cover but are unpalatable for moose. Birch (Betula spp.) and willow (Salix spp.) are more 305 

palatable and occasionally grow in bogs in Minnesota, but rarely at densities high enough to 306 

compensate for unpalatable species dominating the canopy layer.  307 

 Further studies would be helpful for demonstrating how common trade-offs between 308 

thermoregulation and foraging are among ungulates. Reductions in activity during periods of 309 

heat are widespread among ungulates, having been documented in a diverse array of ungulates 310 

that include moose, mule deer (Odocoileus hemionus; Sargeant et al. 1994), bighorn sheep (Ovis 311 

canadensis; Alderman et al. 1989), Alpine ibex (Capra ibex; Aublet et al. 2009; Mason et al. 312 

2017), Alpine chamois (Rupicapra rupricapra; Mason et al. 2014), common eland (Taurotragus 313 

oryx; Shrestha et al. 2014), black wildebeest (Connochaetes gnou; Vrahimis and Kok 1993), blue 314 

wildebeest (Connochaetes taurinus; Shrestha et al. 2014), impala (Aepycerus melampus; 315 

Shrestha et al. 2014), and greater kudu (Tragelaphus strepsiceros; Owen-Smith 1998). 316 

Nevertheless, the relative importance of reducing activity is not often compared directly to other 317 

strategies used by ungulates to reduce heat stress, and reductions in activity may not always 318 

result in reduced foraging opportunity, which depends on landscape structure (i.e., distance 319 

between foraging sites and bed sites with adequate thermal cover).  320 

 Studies on the contexts in which tradeoffs between foraging and thermoregulation 321 

become particularly acute will also be important in a warming future. Environment and 322 

nutritional condition may play a role in shaping such tradeoffs. For example, North American elk 323 

(Cervus canadensis) prioritize reducing thermoregulatory costs over forage quality in low-324 

elevation desert populations but not in high-elevation mountain populations, and individuals with 325 
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low fat reserves prioritize reducing thermoregulatory costs over forage quality most strongly 326 

(Long et al. 2014). Body size may also play a role in modulating tradeoffs between foraging and 327 

thermoregulation. Adult male Alpine ibex, which are substantially larger than females, reduce 328 

time spent foraging more than females when it is hot (Aublet et al. 2009). Common eland and 329 

blue wildebeest reduce afternoon activity all year round, but smaller impala reduce afternoon 330 

activity only during the summer (Shrestha et al. 2014). The effects of environmental variation, 331 

nutritional condition, or body size on thermoregulatory behavior could be answered in larger data 332 

sets using our modeling framework by building SSFs for each individual and testing for 333 

statistical effects of a variable of interest (e.g., fat reserves, body size) on the RSS of a variable 334 

of interest (e.g., step length at a given high temperature). 335 

 Determining the relative importance of features on the landscape for mitigating heat 336 

stress will also be important in a warming future. In our study, moose used shade far more than 337 

water to ameliorate heat during hot weather. Moose are commonly observed in bodies of water, 338 

and anecdotal evidence suggests that moose use water to shed heat (Schwab and Pitt 1991; 339 

Demarchi and Bunnell 1995). Our analysis, however, indicates that moose do not often use open 340 

water and marsh to mitigate heat stress; they prefer to seek shadier vegetation cover types. 341 

Nevertheless, they do increase use of woody bogs—where both shade and some water are 342 

usually available—as temperatures increase. This is consistent with a previous study (McCann et 343 

al. 2016) that found that moose prefer bed sites with both canopy cover and relatively high soil 344 

moisture. Other ungulates may use different features of the landscape to mitigate heat stress. For 345 

example, mountain goats (Oreamnos americanus) move nearer to persistent snow cover during 346 

hot weather, but do not seek shade (Sarmento et al. 2019). Step-selection functions that include 347 
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interactions with temperature offer a simple way to test for the relative importance of a wide 348 

variety of different landscape features for thermoregulation. 349 

 Frequent GPS locations enabled us to detect responses to heat by moose and may explain 350 

why previous attempts to characterize moose movement patterns failed to reveal a strong 351 

relationship between temperature and movement rates (Dussault et al. 2004; Montgomery et al. 352 

2019). Moose spend about half of their day foraging during the summer, with foraging bouts 353 

interspersed by periods of rumination at bed sites. Periods of rest and rumination are typically 354 

distinct and occur at regular intervals of roughly 2 hours (Renecker and Hudson 1989; Moen et 355 

al. 1996). As the interval between GPS locations increases, the chance that both ambulatory 356 

foraging bouts and stationary ruminating bouts are aggregated into a single GPS fix increases, 357 

which homogenizes step lengths (Moen et al. 1996). Frequent GPS locations reduce the 358 

probability of this happening. Indeed, if our location data is rarified to 1-, 2-, and 4-hour 359 

intervals, effect sizes of interactions between temperature and movement rates are progressively 360 

reduced (Fig. A4). Because many species have idiosyncratic movement behaviors, movement 361 

studies may require intervals between GPS locations within a specific range to answer research 362 

questions concerning animal movement. This is an important consideration for researchers 363 

planning studies of animal movement. Researchers should carefully consider the frequency of 364 

GPS locations before deploying GPS collars and recognize that GPS data that is too sparse may 365 

not be suitable for studies of some movement behaviors. 366 

 Our analysis can directly inform management and conservation actions for wildlife. 367 

Many moose populations at the southern edge of their distribution (including our study area) 368 

have undergone dramatic declines in the past decade. Our results suggest that in a warmer future 369 

proximity to shade will strongly influence habitat suitability for moose in areas with abundant 370 
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forage due to timber harvest and other anthropogenic disturbance. Moose will likely benefit from 371 

management action to explicitly promote maintenance of shade near large patches of forage. 372 

Because moose prioritize shade over forage when it is hot, moose will likely not feed in large 373 

forest openings on hot days (though moose may feed in unshaded forest openings at night 374 

[Dussault et al. 2004]). Moose will likely spend more time foraging in forest openings with 375 

patches of canopy cover than in large homogeneous forest openings. For example, most of the 376 

forage in large clearcuts may be inaccessible to moose during hot periods unless the clearcuts 377 

contain “reserve patches”, or interior islands or fingers of forest extending into the clearcut. 378 

These reserve patches will likely be most helpful for moose if they consist of bog or mixed 379 

forest.  380 

 Some measure of fitness (or a proxy for fitness) would make it possible to directly link 381 

behavioral strategies to a population-level response to large-scale drivers like climate change. 382 

Although behavioral thermoregulation mitigates some metabolic costs of hot weather, forgoing 383 

foraging to avoid high body temperatures may result in decreased fat reserves, lower fitness, and 384 

ultimately in population declines compared to a cooler baseline scenario where moose do not 385 

need to behaviorally thermoregulate. Although we did not link behavior to fitness in this study, 386 

identifying and quantifying patterns of behavior allows researchers to explicitly test for effects 387 

on fitness in subsequent studies. For example, development of conceptual and modeling 388 

frameworks to identify and quantify “green wave surfing” behavior (by which animals migrate 389 

along paths of rapidly greening forage) in migratory ungulates (Bischof et al. 2012; Merkle et al. 390 

2016; Aikens et al. 2017) allowed researchers to later quantify a connection between green wave 391 

surfing and fitness (Middleton et al. 2018). Our study could be used as a foundation for further 392 

analyses along these lines, or to parameterize mechanistic models of moose energetic balances 393 
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under various climate scenarios, land management strategies, or disturbance regimes to project 394 

the outcomes of conservation actions taken to benefit moose. 395 

 Our analysis demonstrates that advances in animal tracking, remote sensing, and 396 

modelling techniques allow us to study responses by free-ranging animals to weather in the field 397 

at finer scales than previously possible. SSFs in particular are a valuable tool to answer questions 398 

concerning behavioral responses by free-ranging animals to changes in weather in a relatively 399 

simple and intuitive way. Because SSFs estimate selection conditionally at each GPS location, 400 

each location or step can be connected with a distinct time and spatial location, enabling 401 

inference on how animals change movement and habitat selection in space and time in response 402 

to specific stimuli. SSFs have been used to characterize animal movements in relation to 403 

landscape features, such as grizzly bear response to human activity (Ladle et al. 2019) and elk 404 

and African wild dog response to roads (Abrahms et al. 2016; Prokopenko et al. 2017). Likewise, 405 

SSFs that incorporate interactions between temperature and other variables of interest can 406 

characterize changes in movement behavior and habitat use in response to differences in 407 

temperature. 408 

 In conclusion, moose altered both movement and habitat selection to behaviorally 409 

thermoregulate during hot periods by reducing movement rates and increasing use of shaded 410 

vegetation cover types that they avoided at cooler temperatures. Moose did not regularly use 411 

water sources that lack canopy cover to shed heat. Moose face a tradeoff between forage and 412 

thermal cover at high temperatures and forego foraging in favor of seeking thermal cover. 413 

Behavior changed at thresholds near (though somewhat above) previously documented heat 414 

stress thresholds (Renecker and Hudson 1986; McCann et al. 2013): step lengths decreased at 415 

temperatures above 20˚C, and selection patterns for shade reversed above 15˚C. Future research 416 
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characterizing strategies for behavioral thermoregulation and consequences of those strategies 417 

for fitness will aid conservation in a warming world, for both moose and other heat-sensitive 418 

species. 419 
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Figures 644 

Fig. 1 The physical characteristics of the surrounding environment greatly influence the thermal landscape for animals. Fig. 1A 645 

represents an environment (conifer forest) where heat gain may be decreased by reducing exposure to radiation, Fig. 1B represents an 646 

environment (marsh) where heat loss may be increased by conduction, and Fig. 1C represents an environment (clear cut) that offers 647 

neither relief from radiation nor opportunities to disperse heat via conduction. Moose likely face tradeoffs between forage availability 648 

and thermal relief. 649 

 650 

  651 
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Fig. 2 Interaction plots showing relationships for significant interactions between temperature and relative selection strengths (RSS) of 652 

variables of interest (A: Step length and temperature, B: Shade and temperature, C: Distance to bog and temperature, D: Distance to 653 

mixed forest and temperature). High temperatures decrease the odds of longer step lengths, increase the odds of seeking shade, and 654 

increase the odds of traveling in bogs and mixed forest. In some cases (A, B, and C), patterns of behavior at low temperatures reversed 655 

into patterns of the opposite behavior at high temperatures (e.g., moose strongly avoid shade at 0˚C while strongly selecting for shade 656 

at 30˚C). 657 

 658 
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Tables 659 

Table 1 Variables incorporated in the step-selection function of moose movement and habitat selection and justification for inclusion 660 

in the model. 661 

Name Variable Description 

Shade Canopy Vegetation Density Proportion of all lidar returns above 3 meters; analogous to canopy vegetation density, a 

proxy for shade 

dBog Distance to Bog Distance to woody wetlands; included in analyses because bogs have both canopy cover 

and ground moisture 

dMarsh Distance to Marsh Distance to emergent herbaceous wetlands; included in analyses because moose are 

often observed in marshes, and water can disperse heat via conduction, convection, and 

evaporation 

dWater Distance to Open Water Distance to open water; included in analyses because moose are often seen in bodies of 

water, which can disperse heat via conduction, convection, and evaporation 

dConifer Distance to Conifer Forest Distance to conifer forest; included in analyses because conifer forest contains localized 

thick canopy cover 

dMixed Distance to Mixed Forest Distance to mixed forest; included in analyses because conifers offer localized thick 

canopy cover while deciduous trees offer foraging opportunities 

StepLength Step Length Distance between a moose location and the location immediately prior; included in 

analyses to account for bias in the parametric distribution of step lengths used to 

characterize available points and to estimate how temperature affects movement rates 

Temp Temperature Temperature at the nearest NOAA weather station at the time of a location; included in 

analyses to estimate how temperature affects habitat use and movement rates 
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Table 2 Coefficient estimates, standard errors, relative selection strengths, 95% confidence intervals, and p-values for the step-

selection function. Bold variables denote significance at α = 0.05. 

Variable Coefficient Robust SE RSS RSS LCL RSS UCL p 

Shade -0.174 0.007 0.840 0.829 0.852 <0.001 

dBog 0.728 0.182 2.071 1.450 2.956 <0.001 

dMarsh -0.055 0.108 0.947 0.767 1.169 0.612 

dWater 0.057 0.106 1.058 0.860 1.302 0.592 

dConifer 0.440 0.161 1.553 1.133 2.130 0.006 

dMixed 0.169 0.184 1.184 0.825 1.699 0.359 

StepLength 3.025 0.242 20.603 12.831 33.082 <0.001 

Shade*Temp 0.008 0.000 1.008 1.007 1.009 <0.001 

dBog*Temp -0.072 0.012 0.930 0.909 0.952 <0.001 

dMarsh*Temp 0.004 0.007 1.004 0.990 1.019 0.558 

dWater*Temp -0.004 0.007 0.996 0.982 1.010 0.589 

dConifer*Temp -0.009 0.010 0.991 0.972 1.011 0.388 

dMixed*Temp -0.039 0.012 0.962 0.940 0.984 0.001 

StepLength*Temp -0.156 0.014 0.855 0.832 0.879 <0.001 
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Appendix A: Supplementary Data 

Fig. A1 Comparison of temperatures at the two weather stations used in this study (KCKC in Grand Marais and KBFW in Silver Bay). 

The red line indicates a 1:1 relationship. Temperatures at KCKC followed the regression line 1.74 + 0.821*KBFW, where “KBFW” 

indicates the temperature at the KBFW station. R2 = 0.881 for the regression equation. Temperatures were thus slightly warmer at 

KCKC at very low temperatures (less than ~2˚C), but usually slightly cooler (e.g., when it was 30˚C at KBFW, the expected 

temperature at KCKC was 26.4˚C). Variation in temperature on the landscape was thus much smaller than temperature across the day 

or summer. 
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Fig. A2 Lowess regression of mean step length across times of day (20 min. increments). The gray ribbon represents the 95% 

confidence interval for the regression line. Moose movement rates varied slightly but consistently over the course of the day, with 

movement rates peaking during crepuscular periods. The area within the dotted rectangles represents the range of civil sunrise and 

sunset at the centroid of our study area during our study period (determined using the NOAA Solar Calculator tool 

[https://www.esrl.noaa.gov/gmd/grad/solcalc/]). 
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Fig. A3 Boxplots showing monthly changes in distance to cover types of interest (A: Distance to bog, B: Distance to marsh, C: 

Distance to water, D: Distance to conifer forest, E: Distance to mixed forest). Month-to-month differences in habitat use are small, 

indicating that patterns observed from our SSF reflect habitat selection throughout our study period and are not influenced by one-time 

phenological events occurring during our study period (e.g., parturition movements by females during May, or the emergence of 

aquatic plants during June). 
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Fig. A4 Interaction plots showing relationships for significant interactions between temperature and relative selection strengths (RSS) 

of variables of interest (A: Step length and temperature, B: Shade and temperature, C: Distance to bog and temperature, D: Distance to 

mixed forest and temperature) at progressively longer intervals between GPS locations (1: 20-minute, 2: 1-hour, 3: 2-hour, and 4: 4-

hour). Patterns in the selection strength of interactions progressively weaken as the interval between GPS locations increases, in part 

explaining why other studies have not found consistent effects of temperature on moose movement. 
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