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Abstract 11 

Tree detection is a fundamental task in remote sensing for forestry and ecosystem 12 

ecology applications.  While many individual tree segmentation algorithms have been 13 

proposed, the development and testing of these algorithms is typically site specific, with 14 

few methods evaluated against data from multiple forest types simultaneously. This 15 

makes it difficult to determine the generalization of proposed approaches, and limits tree 16 

detection at broad scales. Using data from the National Ecological Observatory Network 17 

we extend a recently developed semi-supervised deep learning algorithm to include 18 

data from a range of forest types, determine whether information from one forest can be 19 

used for tree detection in other forests, and explore the potential for building a universal 20 

tree detection algorithm. We find that the deep learning approach works well for 21 
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overstory tree detection across forest conditions, outperforming conventional LIDAR-22 

only methods in all forest types. Performance was best in open oak woodlands and 23 

worst in alpine forests. When models were fit to one forest type and used to predict 24 

another, performance generally decreased, with better performance when forests were 25 

more similar in structure.  However, when models were pretrained on data from other 26 

sites and then fine-tuned using a small amount of hand-labeled data from the evaluation 27 

site, they performed similarly to local site models. Most importantly, a universal model fit 28 

to data from all sites simultaneously performed as well or better than individual models 29 

trained for each local site. This result suggests that RGB tree detection models that can 30 

be applied to a wide array of forest types at broad scales should be possible.  31 

1. Introduction 32 

Tree detection is a critical step in remote sensing of forested landscapes. Identifying 33 

individual crowns in airborne imagery allows ecologists, foresters, and land managers to 34 

increase the extent of sampling compared to terrestrial surveys. While many LIDAR-35 

based tree segmentation algorithms have been proposed (Aubry-Kientz et al., 2019), 36 

the field has been slow to adopt automated methods due to concerns over accuracy, 37 

transferability and transparency (Vaglio Laurin et al., 2019). As a result, existing 38 

methods are rarely evaluated on multiple forests simultaneously, making it unclear how 39 

they will perform in the novel contexts required for large scale application. The 40 

availability of LIDAR data can also be limiting for large scale application. In contrast, 41 

RGB imagery is more widely available, but relatively few RGB algorithms have been 42 

proposed (González-Jaramillo et al., 2019) due, in part, to challenges with closed 43 

canopies and the diverse appearance of trees across forest types.  44 
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 Current tree segmentation approaches are primarily based on user-defined 45 

algorithms that describe the appearance of trees in a hierarchical sequence of rules. 46 

These rule-based approaches rely on combinations of shape features (Gomes et al., 47 

2018), template matching (Dai et al., 2018), network analysis (Williams et al., 2019), 48 

and watershed routines (Silva et al., 2016) that are applied to either LIDAR point clouds 49 

or RGB photogrammetric imagery (Brieger et al., 2019). By describing the parameters 50 

that define an individual tree, unsupervised algorithms attempt to match these rules 51 

when predicting unlabeled data. This can make applying these algorithms across 52 

different forest types challenging because the rules describing a tree vary depending on 53 

the type of forest, leading to overfitting for a particular geographic area. For example, 54 

some methods use allometric relationships between crown area and tree height to 55 

improve algorithm performance (Coomes et al., 2017; Williams et al., 2019), but these 56 

relationships vary with forest type and species. Recent attempts to mitigate this 57 

variation have used approaches that choose from a pool of potential tree shapes 58 

(Gomes et al., 2018). However, the need to define the full pool of possible tree shapes 59 

before analyzing each new site will be prohibitive over large geographic areas that 60 

incorporate diverse assemblages. As a result of these limitations, most tree detection 61 

algorithms have been applied and tested on similar forest types with little exploration of 62 

how the algorithms generalize to other natural settings. Therefore, despite the intense 63 

work in airborne tree detection over the last decade (Coomes et al., 2017; Heinzel and 64 

Huber, 2018; Jakubowski et al., 2013; Li et al., 2012; Williams et al., 2019), there 65 

remains no clear consensus on best practices (Aubry-Kientz et al., 2019). 66 
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 Within the field of computer vision, there has been a broad shift away from rule-67 

based approaches (i.e., user-designed features) towards approaches that learn features 68 

from data using deep learning neural networks (Agarwal et al., 2018). There have been 69 

few attempts to use learned features in tree detection (Dai et al., 2018) due to the need 70 

for a large amounts of labeled training data, which is often difficult or impossible to 71 

collect in ecological contexts.  Overall, generalization of deep learning algorithms across 72 

applications in airborne remote sensing remains a challenging task (Zhu et al., 2017). A 73 

typical neural network has millions of parameters and is therefore at risk of overfitting 74 

when using small datasets. Given the diversity of trees, finding general features will 75 

require a combination of large training datasets and algorithmic approaches that allow 76 

the neural networks to learn the combination of features that characterize trees across 77 

forest types.  78 

 Weinstein (et al. 2019) recently developed a deep learning approach for tree 79 

detection using RGB data that has the potential to address these requirements for 80 

identifying trees across forest types. The semi-supervised method first uses 81 

unsupervised LIDAR-based tree detection (e.g., Silva et al. 2016) to generate millions of 82 

labeled trees that are used to pretraining of the neural network. This pretraining stage is 83 

followed by retraining the network based on a small number of high-quality hand-84 

annotations. This addresses the need for large training data by generating millions of 85 

annotations of moderate quality for model pretraining and the method has been shown 86 

to perform well on a single oak woodland site. Due to its deep learning architecture, this 87 

method has the potential to learn general features of trees across forest types, but this 88 

remains an untested possibility.  89 
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 Here we build on Weinstein et al. (2019) explore the potential of this tree 90 

detection method to generalize across sites by evaluating its performance on a range of 91 

forest types, assessing the transferability of tree features across forest types, and 92 

exploring the possibility of building a single unified tree detection model. Our aim is to 93 

test a deep learning approach 1) for identifying trees in four different forest types when 94 

trained on that forest type (‘within-site’); 2) for identifying trees when trained on data 95 

from other forest types (‘cross-site’); 3) for combining pretraining data from other sites 96 

with hand-annotated data from a new site (‘transfer learning’); and 4) for comparing the 97 

performance of a within-site model to a universal model fit to data on all forest types 98 

simultaneously (‘universal’). We also explore the sensitivity of the self-supervised 99 

method to the number of hand annotations, to determine the amount of time-intensive 100 

work needed to produce accurate results. By answering these questions, we will 101 

improve our understanding of the potential for universal tree detection methods and 102 

potentially advance RGB-based tree detection from algorithm development to large 103 

scale application for better understanding forests at scale. 104 

METHODS 105 
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 106 

Figure 1. Conceptual workflow of proposed approach for airborne detection of individual 107 

tree crowns. Pretraining data is generated by overlaying predicted trees from a LIDAR-108 

based unsupervised algorithm on to RGB imagery. These RGB images are used to 109 

pretrain a deep learning neural network. The resulting model is retrained based on RGB 110 

hand-annotations.   111 

DATA COLLECTION AND SITE DESCRIPTIONS 112 

The aerial remote sensing data products were provided by the National Ecology 113 

Observation Network (NEON) Airborne Observation Platform. We used the NEON 2018 114 

“classified LiDAR point cloud” data product (NEON ID: DP1.30003.001) and the 115 

“orthorectified camera mosaic” (NEON ID: DP1.30010.001). The LiDAR data consist of 116 

3D spatial point coordinates with an average of 4-6 points/m2. These data provide high 117 

resolution information about crown shape and height. The RGB data are a 1km x 1km 118 

mosaic of individual images with a cell size of 0.1 meters. All data are publicly available 119 

on the NEON Data Portal (http://data.neonscience.org/). For hand-annotations, we 120 

selected two 1km x 1km RGB tiles and used the program RectLabel 121 

al 

B 

8 
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(https://rectlabel.com/) to draw bounding boxes around each visible tree. For a count of 122 

tree annotations per site, see Table 1. All code for this project is available on GitHub 123 

(https://github.com/weecology/DeepLiDAR) and archived on Zenodo, and all 124 

annotations are available as part of the forthcoming NEON Tree Benchmark 125 

(https://github.com/weecology/NeonTreeEvaluation).  126 

 We selected four sites from the NEON network to capture a range of canopy 127 

complexity and forest types. The ‘Oak Woodland’ is the San Joaquin Experimental 128 

Range, California. The site contains live oak (Quercus agrifolia), blue oak (Quercus 129 

douglasii) and foothill pine (Pinus sabiniana) forest. The majority of the site has a single-130 

story canopy with mixed understory of herbaceous vegetation. The “Mixed Pine” site is 131 

Teakettle Canyon, California (37.00583, -119.00602) which contains red fir (Abies 132 

magnifica) and white fir (Abies concolor), jeffrey pine (Pinus jeffreyi) and Lodgepole 133 

Pine (Pinus contorta). The “Alpine” site is Niwot Ridge Mountain Research Station, 134 

Colorado (40.05425, -105.58237). This high elevation site (3000m) is near treeline with 135 

clusters of subalpine fir (Abies lasciocarpa) and englemann spruce (Picea engelmanii). 136 

Finally, the “Eastern Deciduous” site is the Mountain Lake Biological Station, Virginia 137 

(37.37828, -80.52484). Here the dense canopy is dominated by red maple (Acer 138 

rubrum) and white oak (Quercus alba). Each site presents its own challenges, with 139 

broad flat-topped trees in the Oak Woodland, tight clusters of trees in the Mixed Pine 140 

forest, thin conifers in the Alpine forest, and completely connected crowns in the 141 

Eastern Deciduous forest.  142 

 For each site, we manually annotated training tiles using the program RectLabel 143 

(Table 1). Training tiles were selected at random from the NEON data portal. At higher 144 
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tree density sites, we cropped the 1km2 tiles to create more tractable sizes for hand-145 

annotation. To enforce a minimum size threshold for tree annotations, we compared the 146 

hand-annotations to a LiDAR canopy height model and removed any trees less than 3m 147 

in height. The resulting annotations were compared to the LiDAR point cloud for further 148 

assessment. No attempt was made to delineate understory trees that were not visible in 149 

the RGB imagery.  150 

 For model evaluation, we used the NEON “tower” plots, which are a set of 151 

40x40m plots placed throughout each site. For the Eastern Deciduous site, it was 152 

difficult to determine tree boundaries in both the RGB and LiDAR images. For this site, 153 

we overlaid a 1m resolution three-band hyperspectral composite image to highlight 154 

differences among co-occurring tree species in the area. The composite image came 155 

from NEON’s orthorectified surface reflectance (ID: DP1.30006.001) and contained 156 

bands in the infrared (940nm), red (650nm), and blue (430nm) spectrum. This allowed 157 

us to more accurately annotate the training and evaluation data in the closed canopy 158 

conditions. 159 

LIDAR TREE DETECTION 160 

We tested three existing unsupervised LiDAR algorithms (Dalponte and Coomes, 2016; 161 

Li et al., 2012; Silva et al., 2016), as implemented in the lidR R package (Roussel and 162 

David Auty, 2019), as both a comparison to the semi-supervised approach, and as 163 

potential algorithms to generate tree labels for the self-supervised portion of the 164 

workflow. We selected the best performing method (Silva et al., 2016) to create initial 165 

tree predictions in the LiDAR point cloud. This approach uses a canopy height model 166 

and an allometry of tree height to crown width to cluster the LiDAR cloud into individual 167 
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trees. We used a canopy height model of 0.5m horizontal resolution to generate local 168 

treetops and an allometry of 90% of crown diameter to height for deciduous forests 169 

(Oak Woodland and Eastern Deciduous) and 20% of crown diameter to height for the 170 

coniferous forests (Mixed Pine and Alpine). LiDAR algorithms perform segmentation on 171 

a per-point basis, so we converted the output to a bounding box that covered the entire 172 

set of LiDAR points assigned to each tree to create training data equivalent to the hand 173 

annotated bounding boxes.  174 
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Table 1. The number of tree annotations used for semi-supervised pretraining, 175 
retraining and evaluation. Pretraining annotations are generated automatically using a 176 
LiDAR-based unsupervised algorithm.  Training and evaluation annotations were hand-177 
drawn. 178 

Forest Type Pretraining 
Annotations 

Training 
Annotations 

Evaluation 
Annotations 

Oak Woodland 550,905 2,533 293 

Mixed Pine 2,522,855 3,405 747 

Alpine 3,121,036 9,730 1,699 

Eastern Deciduous 3,131,283 1,231 489 

SEMI-SUPERVISED DEEP LEARNING 179 

We used our previously developed self-supervised algorithm for RGB-based tree 180 

identification (Weinstein et al. 2019). This method uses the Retinanet one-stage object 181 

detector (Gaiser et al 2017) with a Resnet-50 classification backbone, which allows 182 

pixel information to be shared at multiple scales, from individual pixels to groups of 183 

connected objects. We used a Resnet-50 classification backbone pretrained on the 184 

ImageNet dataset (He et al., 2016). Since the entire 1km RGB tile cannot fit into GPU 185 

memory, we cut each tile into 40m by 40m windows with an overlap of 5% (n=729). The 186 

order of tiles and windows were randomized before training to minimize overfitting 187 

among epochs. To reduce potential spatial autocorrelation in tree appearance between 188 

evaluation plots and pretraining data, we removed any training tiles within 1km of an 189 

evaluation tile. Using the pool of unsupervised LiDAR-based tree predictions, we 190 

pretrained the network with a batch size of 20 on 2 Tesla K80 GPU for 5 epochs. To 191 

align these unsupervised classifications with the ImageNet pretraining weights, we 192 

normalized the RGB channels by subtracted the ImageNet mean from each channel. 193 

We then retrained the network using the hand-annotated data for 40 epochs. For more 194 

details of this semi-supervised approach see Weinstein et al. (2019). 195 
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MODEL EVALUATION 196 

Using the evaluation plots, we chose two metrics to assess model performance. For 197 

comparison with the existing LiDAR-only implementations, we used precision and recall 198 

statistics with a bounding box marked as true positive if it had an intersection-over-union 199 

(IoU) of greater than 0.5. Intersection-over-union is the ratio of the area of bounding box 200 

overlap to the area of bounding box union between the predicted tree crown and the 201 

visually annotated crowns in the evaluation data. For each bounding box prediction, the 202 

deep learning model reports a confidence score between 0 and 1. To transform these 203 

scores into precision and recall statistics, we need to define a threshold of box scores to 204 

accept. As we lower the threshold for acceptance, a greater number of trees will be 205 

captured, but at the expense of decreased precision. To highlight this relationship, we 206 

showed the performance of the deep learning approach across all bounding box 207 

probability thresholds between 0 and 1 with an interval of 0.1.  208 

 While IoU precision and recall are intuitive statistics, they are reported separately 209 

and do not capture differences in bounding box confidence scores. When comparing the 210 

different generalization approaches, it is useful to have a single metric to compare. We 211 

used the Average Precision (AP) metric commonly used for object detection tasks in 212 

computer vision, which is the area under the precision-recall curve computed at the 11 213 

fixed 0.1 intervals between 0 and 1 (Lin et al., 2017).   214 
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ASSESSING GENERALIZATION, TRANSFERABILITY, AND UNIVERSAL MODEL FIT 215 

 216 

Figure 2. Approaches to geographic generalization in semi-supervised model training: 217 

1) ‘Within-site’ training in which training data from site 1 is used to predict site 1; 2) 218 

‘Cross-site’ training in which training data from site 1 is used to predict site 2; 2) 219 

‘Transfer learning’ in which a model is first trained on site 1 data, followed by finetuning 220 

on site 2 training data, and 3) ‘Universal’ model in which training data from both site 1 221 

and site 2 are used to predict evaluation data from site 2. 222 
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To assess generalization among sites, we performed three types of experiments that 223 

used different combinations for hand-annotations and pretraining data (Figure 2). The 224 

first experiment is to use pretraining and hand-annotated data to predict the evaluation 225 

data from the same site (‘within-site’). The next setup is to use the pretraining data and 226 

hand-annotated from the same site to predict the evaluation data from a different site 227 

(‘cross-site’). For example, using each of the within-site models, we can test the ability 228 

for a model to predict tree conditions in each of the other geographic sites, creating a 229 

matrix of cross-site predictions. To assess generalization without local pretraining data, 230 

we tested a model training using pretraining data from all other sites, but hand 231 

annotations from the same site as the evaluation data (‘transfer-learning’). For example, 232 

the transfer learning model for Oak Woodland used the hand-annotations from Oak 233 

Woodland, but the pretraining data for Alpine, Mixed Pine, and Eastern Deciduous. 234 

Finally, to test the potential for a universal model, we tested a model pretrained on all 235 

sites, followed by retraining on all hand-annotations. We then compared this model with 236 

each of the within-site model to test whether the addition of data from other sites 237 

improved predictions of trees from the same site. 238 

SENSITIVITY TO THE NUMBER OF HAND-ANNOTATIONS 239 

Collecting a sufficient number of training samples will often be a bottleneck in 240 

developing supervised methods in airborne imagery. It is therefore useful to test the 241 

number of local training samples needed to achieve peak performance. We performed a 242 

sensitivity study by training models using different proportions of training data. We 243 

selected 5%, 25%, 50% and 75% of the total hand-annotations to compare to the full 244 

dataset for the within-site results for each site. We reran this experiment five times to 245 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 2, 2019. ; https://doi.org/10.1101/790071doi: bioRxiv preprint 

https://doi.org/10.1101/790071
http://creativecommons.org/licenses/by-nc-nd/4.0/


account for the random subsampling of annotations. In addition, we ran the evaluation 246 

plots for the pretraining model only (i.e. 0% hand-annotated data) to assess whether the 247 

addition of hand-annotated data improved the within-site pretraining.  248 

RESULTS  249 

Based on the highest performing probability cutoff (Figure 4), within-site predictions 250 

ranged from 0.60 recall and 0.75 precision in Mixed Pine to 0.34 recall and 0.55 251 

precision in Alpine. The Oak Woodland and Mixed Pine sites consistently performed 252 

better than the Eastern Deciduous and Alpine sites. Visual inspection of the results 253 

showed that the vast majority of false positives were positively identified trees, but 254 

whose crown boundaries were either too large or too small for the intersection-over-255 

union score of 0.5. Repeated training runs for each model showed relatively little 256 

variance, despite heterogeneity in tree types at all sites (Figure 4).  257 
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258 

Figure 4. For each site, results of our proposed workflow compared to three existing 259 
LiDAR-only implementations from the commonly used lidR package. The proposed 260 
approach was evaluated at each of the 0.1 probability score intervals between 0-1. The 261 
probability threshold of the best performing model in our approach, calculated by f-262 
score, is shown in black. Error bars show the variance in recall and precision based on 263 
five runs of hand-annotation training for each site.  264 

 The semi-supervised deep learning approach significantly outperformed the 265 

available LiDAR-only implementations from the lidR R package at all sites (Roussel and 266 

David Auty, 2019) (Figure 4). When comparing model performance with the Silva et al. 267 

(2016) algorithm used to generate the pretraining data, the deep learning model was 268 

more successful at delineating complex crown boundaries and avoiding clumping 269 

together small trees with narrow gaps (Figure 5). For the Oak Woodland site, the deep 270 

d 
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learning model was better able to capture crown area for the flat-topped canopy and 271 

avoided erroneously labeling bushes as trees. For the Eastern Deciduous site, the deep 272 

learning model more accurately found trees in the closed canopies, despite strong 273 

overlap in bounding box predictions and similarity in neighboring tree appearance. The 274 

Alpine site was the worst performing model, and many small trees were missed. This is 275 

likely due to the minimum anchor box size in the object detector and the arbitrary cutoff 276 

at 3m height for defining a ‘Tree’ class in the Alpine training data. To view predictions 277 

overlaid on each of the plots for the within-site models, see supplemental dataset S1.  278 
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Figure 5. Example predictions for the LiDAR-only pretraining algorithm, and the deep 280 
learning detection network trained within-site.  281 

 When applying a model fit at one site to make predictions at other sites, we found 282 

generalization of the single-site models to be weak (Figure 7 A-E). Tree stems were 283 

often correctly identified among sites with similar forest conditions (Coniferous versus 284 

Deciduous), but the resulting crown boundaries were rarely accurate (Figure 6 – “Cross-285 

Site”). The one exception was the prediction of Alpine evaluation plots using a model 286 

built from the Mixed Pine site. This model outperformed all other cross-site experiments 287 

and was superior even to the Alpine within-site model. 288 

 Combining local hand-annotated data with unsupervised pretraining data from 289 

the other three sites demonstrated good transferability, with performance almost as 290 

good as using local pretraining data. The transfer learning experiments performed better 291 

than cross-site predictions for every site. This suggests that the pretraining model 292 

allows for generalized features that can be fine-tuned to local conditions.  293 

 Fitting a single universal model using data from all sites resulted in the best 294 

predictions for every individual site. The Average Precision of the Eastern Deciduous 295 

site improved from 0.44 to 0.54 (22%), Mixed Pine from 0.56 to 0.59 (5.4%), Alpine from 296 

0.24 to 0.26 (8.3%) and Oak Woodland from 0.6 to 0.61 (1.6%). Visual inspection of 297 

predictions for the Mixed Pine site illustrates why the universal model improves 298 

performance. In Figure 7B, the within-site model (Mixed Pine) erroneously labels a large 299 

boulder in the bottom right hand corner of the image as a tree. This error was made in 300 

all other cross-site models, except for Oak Woodland. In the Universal model, this error 301 
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was not made, suggesting that the universal model learned information about the 302 

background from other sites to improve predictions. 303 

304 

Figure 6. Comparison single-site, cross-site, transfer, and universal model performance 305 
based on Average Precision (AP). Single site predictions are on the bolded diagonal of 306 
the cross-site section and represent fitting and predicting on the same site. Cross-site 307 
predictions are for models trained on the one site (listed on the left side of the results 308 
matrix) and evaluated on a second site (listed across the bottom of the results matrix). 309 
Transfer learning takes a model pretrained on all sites except the focal site and 310 
retrained using the hand-annotations of the evaluation site.  The universal model uses 311 
pretraining and hand-annotation data from all sites. 312 

 

e 
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 313 

Figure 7. A sample evaluation plots from the Mixed Pine site predicted by a model built 314 
from training data from the same site, from each other site, and a universal model. 315 
Ground truth boxes are shown in green (A). Individual trees with a predicted probability 316 
greater than 15% are shown in black (B-E). The universal model (F) built from all 317 
annotations slightly outperformed all other models, including the model trained only from 318 m 
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the Mixed Pine site. For example, the boulder in the bottom right corner is incorrectly 319 
classified as a tree by the models trained from Mixed Pine, Alpine, and Eastern 320 
Deciduous sites, but is correctly ignored in the Oak Woodland and Universal models. 321 

 Assessment of the number of hand-annotations needed to improve model 322 

performance, indicated that while some hand-annotated data was important at all sites, 323 

the number of hand-annotated trees needed to improve model performance was 324 

typically relatively small. For example, the recall in the Mixed Pine site was < 0.2 with no 325 

hand-annotated data and was over 0.6 using approximately 2000 hand labeled crowns. 326 

Only minimal gains in performance occurred using up to an additional 2000 hand-327 

annotated crowns. Overall, the shape of the ablation curves suggest that the model is 328 

fairly robust and needs only approximately 1000 crowns in most cases to create a 329 

model close to full performance. The exception is the Alpine model, which improved by 330 

more than 30% after 3,000 crowns. In general, the precision was more robust than 331 

recall, suggesting that the hand annotations mostly improve the predictions of crown 332 

boundaries rather than additional tree locations.   333 

 334 

no 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 2, 2019. ; https://doi.org/10.1101/790071doi: bioRxiv preprint 

https://doi.org/10.1101/790071
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 8. Sensitivity curves of the proportion of hand-annotation training data for each 335 
site. Values indicate the number of trees in the training dataset for each cutoff. Shaded 336 
area is the range of results from rerunning the analysis five times for each site. Note 337 
that due to the random sampling among runs, the exact number of trees will vary 338 
slightly. For simplicity, we show the mean number of training trees for each threshold. 339 

DISCUSSION 340 

Airborne tree detection promises to unlock ecological and forestry data at 341 

unprecedented spatial extents compared to traditional ground surveys. To turn remote 342 

sensing data into ecological information, there is a need for a unified tree detection 343 

model that can be applied to a broad array of forest conditions. Using a semi-supervised 344 

deep learning approach, we trained individual tree detection models for four geographic 345 

sites and studied the transferability of tree features among forest types. Our results 346 

show significant improvements over commonly used LiDAR-only implementations. 347 

Despite challenging conditions including overlapping canopies and a range of 348 

acquisition environments, the proposed approach holds promise for automated tree 349 

location and size detection at scale. On average across sites, the universal model 350 

correctly identified crown extent with approximately 65% recall and 70% precision. The 351 

remaining false positives were almost always correctly detected individual trees, but 352 

whose crown boundaries did not meet the intersection over union score of greater than 353 

0.5.  354 

 One goal was to assess the proposed crown detection approach in variety of 355 

canopy conditions to better understand which factors limit performance. We find 356 

performance is best in open environments with large, well-spaced, trees as in the Oak 357 

Woodland site. We had anticipated the performance of the algorithm would be worst at 358 
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the closed canopy Eastern Deciduous site. However, it was at the Alpine site that the 359 

algorithm had the poorest performance, suggesting that short dense trees, rather than 360 

complex, interconnected tree boundaries are the biggest challenge. One possible 361 

explanation is that the trees in the Alpine site are more sensitive to the resolution of the 362 

RGB image due to their small size. Since we use an evaluation metric of intersection-363 

over-union of 0.5, a difference of one pixel is inconsequential for large trees but may 364 

push small trees under the threshold for predicted positive.  365 

One of the advantages of deep learning approaches to tree detection is the potential 366 

to learn cross-site features. We conducted three types of generalization experiments to 367 

assess the transferability among forest types. The first was to use models trained from 368 

one site to predict an unseen site. Prediction to unseen conditions is a challenging task 369 

in computer vision, especially when the sites were specifically chosen to represent 370 

distinct forest types. Overall, we saw a significant decrease in performance between 371 

cross-site and within-site models. This means that generalization between two forest 372 

types without local training data remains unlikely to provide acceptable results. The one 373 

exception was the prediction of the Alpine site, which had superior performance when 374 

predicted by the Mixed Pine site, rather than using the Alpine hand annotations. This 375 

may stem from the difficulty of hand annotating the small trees that are common in the 376 

Alpine site. It is possible that the model was better at transferring the features from the 377 

large conifers in Mixed Pine to the smaller conifers in Alpine than a human was in 378 

annotating the crown boundaries in Alpine. A second possibility is that the significant 379 

heterogeneity in the pretraining data for the Alpine site led to poor results. The LiDAR-380 

based pretraining algorithm did not perform well at this site, with consistent under-381 
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segmentation among small trees. It is possible that the superior quality of the pretraining 382 

data at the Mixed Pine site allowed for better predictions in the Alpine site, compared to 383 

using lower quality data from the same site.  384 

To provide the model with more information on local tree conditions, we conducted 385 

transfer learning experiments to assess whether models pretrained at other sites could 386 

be used in conjunction with training data from a local to site to fine tune the model to 387 

that site. We find that building from existing models of tree detection is a promising 388 

avenue towards cross-site generalization. Adding only a small amount of local training 389 

data greatly increased performance and nearly recovered performance of the within-site 390 

model. The results were mostly logical; combining pretraining from a deciduous site 391 

(e.g. Oak Woodland) to predict another deciduous site (e.g. Eastern Deciduous) is 392 

better than using pretraining from a coniferous site (e.g. Alpine). This opens up the 393 

possibility of regional tree detection models that connect ecotypes based on their 394 

dominant canopy structure and species.  395 

 The ultimate goal of the proposed approach is to move toward a single unified 396 

model that can produce individual tree predictions in a variety of ecosystems. Our 397 

analysis shows promising results for a universal model trained from all pretraining and 398 

hand annotations from every site. In all sites, a universal model provided equivalent or 399 

better predictions than a within-site model, with improvements of up to 20% in one site. 400 

Given that the sites were selected to be as different as possible, and encompass a 401 

range of tree canopy conditions, this result highlights the ability of convolutional neural 402 

networks to learn flexible deep features. We expect that as more sites are included, the 403 

universal model will continue to improve. This means that a way forward is to combine 404 
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pretraining from as many sites as possible. Given that each NEON site has millions of 405 

trees, and there are dozens of sites with trees collected annually, there is a possibility of 406 

pretraining on continental scale. Further work is needed to know the balance between 407 

the number of training images per site and the number of sites to most efficiently train 408 

generalized features. 409 

In addition to universal model development, transferring knowledge beyond the 410 

NEON sites may be useful for many applied problems. It is currently unknown to what 411 

extent features learned from the 0.1 m resolution data used here can be applied to 412 

lower resolution satellite data (Karlson et al., 2014) or higher resolution UAV data 413 

(Brieger et al., 2019). Cross resolution training has not been fully explored in 414 

environmental remote sensing, but Li et al., (2018) recently showed that deep learning 415 

networks can learn scale invariant land classifications that can be matched among data 416 

sources. Given the ability to collect virtually unlimited pretraining data using our semi-417 

supervised approach, NEON sites can be seen as an ideal training sources for RGB 418 

tree models that could then be applied to other data types.   419 

 Our semi-supervised deep learning method uses LiDAR-based pretraining and 420 

RGB deep learning to perform individual tree segmentation (Weinstein et al. 2019). The 421 

NEON Airborne platform also collects hyperspectral information that may improve 422 

generalization across sites with similar species composition. Due to foliar and physical 423 

properties, tree species often have distinct spectral signatures which may facilitate 424 

distinguishing adjacent tree crowns. Hyperspectral features for tree species 425 

classification are relatively common (e.g. Maschler et al., 2018), but few papers have 426 

focused on integrating hyperspectral data into tree detection alongside other sensors. 427 
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Hyperspectral data is available for all NEON sites, and we utilized a three-band 428 

composite image to assist in annotating the Eastern Deciduous site (Figure 9), 429 

illustrating the usefulness of hyperspectral data to distinguish adjacent tree crowns with 430 

human vision. Choosing the best way to represent high-dimensional hyperspectral data 431 

in conjunction with the LiDAR and RGB data is non-trivial and will be important for 432 

improvements in individual tree detection at broad scales. 433 

 434 

Figure 9. Composite hyperspectral image and corresponding RGB image for the 435 
Eastern Deciduous site. The composite image contained near infrared (940nm), red 436 
(650nm), and blue (430nm) bands. Forests that are difficult to segment in RGB imagery 437 
may be more separable in hyperspectral imagery due to the differing foliar chemical 438 
properties of co-occurring trees.  439 

 Methods to extract ecological information from airborne sensors are maturing 440 

due to advancements in computer vision, data availability and sensor quality. Given our 441 

results, what are the strengths and limitations ecologists should consider when adding 442 

airborne-derived data? Our results, and prior works (Aubry-Kientz et al., 2019), suggest 443 

that small and subcanopy trees will likely be overlooked. We therefore expect that 444 

studies in which the results are driven by the upper canopy, sun-exposed trees will 445 

benefit the most from remote sensing at broad scales. For example, the total amount of 446 

biomass in most forests depends strongly on the largest trees and will be less sensitive 447 
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to potential non-detections of smaller subcanopy trees (Asner et al., 2012, Stegen et al. 448 

2011, Bastin et al. 2018). The inclusion of RGB data may benefit existing large-scale 449 

LiDAR-based studies of tree growth (Caughlin et al., 2016), taxonomy (Féret and Asner, 450 

2012) and disturbance (Garcia Millan and Sanchez-Azofeifa, 2018), since improved 451 

individual segmentation will lead to a more accurate matching of individual trees to 452 

metadata on taxonomy and health status. Studies of post-landscape disturbance, such 453 

as post-fire, will be aided by the broader perspective of airborne data, as well having 454 

significantly reduced risk compared to field surveys in recently burned forests. Most 455 

disturbances, such as fire and windstorms, alter the size distribution of forests, including 456 

large trees, and thus our approach can provide valuable, detailed landscape scale 457 

information about disturbance intensity and impacts (Kamoske et al., 2019). To address 458 

these questions, we envision a future in which airborne data on tree locations and sizes 459 

are a complement to local field surveys in broadening the scale of sampling in complex 460 

landscapes. 461 
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