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Abstract 1

Mosquitoes are important vectors for pathogens of humans and other vertebrate animals. Some aspects 2

of adult mosquito behavior and mosquito ecology play an important role in determining the capacity of 3

vector populations to transmit pathogens. Here, we re-examine factors affecting the transmission of 4

pathogens by mosquitoes using a new approach. Unlike most previous models, this framework considers 5

the behavioral states and state transitions of adult mosquitoes through a sequence of activity bouts. We 6

developed a new framework for individual-based simulation models called MBITES (Mosquito 7

Bout-based and Individual-based Transmission Ecology Simulator). In MBITES, it is possible to build 8

models that simulate the behavior and ecology of adult mosquitoes in exquisite detail on complex 9

resource landscapes generated by spatial point processes. We also developed an ordinary differential 10

equation model which is the Kolmogorov forward equations for models developed in MBITES under a 11

specific set of simplifying assumptions. While infection of the mosquito and pathogen development are 12

one possible part of a mosquito’s state, that is not the main focus. Using extensive simulation using 13

some models developed in MBITES, we show that vectorial capacity can be understood as an emergent 14

property of simple behavioral algorithms interacting with complex resource landscapes, and that relative 15

density or sparsity of resources and the need to search can have profound consequences for mosquito 16

populations’ capacity to transmit pathogens. 17
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1 Background & Introduction 18

Mosquitoes transmit the pathogens that cause malaria, filariasis, dengue, and other diseases that account 19

for approximately 17% of the global burden of infectious diseases [1]. Mosquito-borne pathogens are 20

transmitted while mosquitoes probe or blood feed, so the intensity of transmission and the risk of 21

infection are related to blood feeding behaviors and population density of local populations of vector 22

mosquitoes. Development of concepts and metrics to measure transmission intensity by mosquitoes, such 23

as the entomological inoculation rate (EIR) and vectorial capacity (VC), were motivated by or derived 24

from mathematical models of mosquito-borne transmission [2–6]. Entomologists meanwhile identified 25

and developed field methods to measure some of the parameters that are key determinants of the EIR 26

and VC: mosquito survival, mosquito population density, the overall blood feeding frequency, and human 27

blood index, the ratio of mosquitoes to humans in the area, and the pathogen’s extrinsic incubation 28

period (EIP) [7, 8]. These parameters are also important determinants of vector population responses to 29

vector control interventions, such as insecticide-treated nets, indoor residual spraying, and spatial 30

repellents, to name but a few. These parameters and metrics arise from basic mosquito behavioral 31

algorithms for finding and using resources, avoiding hazards, and adjusting to weather and other factors 32

that characterize mosquito ecology [9, 10]. An important question is how parameters relevant for 33

pathogen transmission and vector control are co-determined by basic behavioral algorithms and 34

genetically determined preferences of each vector species and by the availability and distribution of 35

resources and other ecological factors. 36

The canonical model of the entomological aspects of malaria transmission, called the Ross-Macdonald 37

model, describes changes in the sporozoite rate [4]. The associated formulae for VC and the EIR, which 38

arise from a common conceptual and mathematical basis, summarize transmission intensity in terms of a 39

few parameters (Table 1) [6, 11]. Both formulae count the expected number of events occurring on one 40

human on one day: VC measures the number of infectious bites that would arise from all mosquitoes 41

blood feeding on a typical human, as if that human were perfectly infectious; and the daily EIR 42

measures the number of infectious bites received by a typical human. The number of bites arising must 43

approximately balance the number of bites received, after accounting for time lags (e.g. the EIP), 44

mosquito migration, and imperfect transmission from infected humans. Mathematical formulas for VC 45

and the EIR derived a priori are consequently related by a simple formula [12]. The quantitative logic 46

supporting these metrics is both parsimonious and compelling, and these metrics and associated 47

bionomic parameters form the basis of medical entomology and most models of mosquito-borne pathogen 48

transmission [13]. 49

While the Ross-Macdonald model and associated bionomic parameters are a useful way of summarizing 50
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overall transmission intensity, a weakness of the model is that it does not include many other parameters 51

and metrics that are important for pathogen transmission dynamics, the measurement of transmission, 52

and responses to vector control. These include metrics for heterogeneous biting [14], the spatial 53

dimensions of transmission or control [15–17], contact rates with and quantitative responses to various 54

kinds of vector control deployed in myriad combinations and at various coverage levels [18], 55

environmental factors that affect variance in the number of mosquitoes caught [19], and nuances of 56

behavior affecting the accuracy of various field methods [8]. Models describing effect sizes of vector 57

control rely on assumptions about the way interventions alter the basic bionomic parameters [20], but 58

there has been very little theory developed to understand either what contextual factors determine 59

baseline bionomic parameters or how contextual factors influence the effect sizes of control [21]. What is 60

needed is a synthetic framework for weighing heterogeneity: spatial and temporal heterogeneity in the 61

availability of hosts and the rates of blood feeding on humans; heterogeneity in the availability of 62

habitats, egg laying, and mosquito population dynamics; age-specific mosquito mortality; mating and the 63

availability of mates; energetics, sugar feeding and the availability of sugar sources; and the risks and 64

costs associated with searching for all these resources. Understanding and quantifying the 65

inter-dependency of mosquito behavior on hazards and resources through observation presents enormous 66

challenges. 67

One way to forge a new synthesis is to model mosquito behavior at its most irreducible level and in 68

extreme detail; here we present a new framework for building individual-based models based on the 69

concept of an “activity bout”. A bout is initiated when a mosquito launches itself in the air to do 70

something and ends after a mosquito has landed, rested, and is about to launch itself into the air again. 71

It includes a sequence of events which may be of varying duration depending on factors both internal 72

and external to the mosquito. In the models we present here, the bout is the atomic unit of mosquito 73

activities, and it is linked to the conception of a behavioral state space, which is affected by the 74

mosquito’s current physiological state. This behavioral state depends on cues about the local ecology 75

and past events that determine what activity the mosquito is intent on accomplishing at any given time, 76

such as seeking to blood feed or oviposit. Success and survival through each bout depend on context and 77

chance; probabilities are affected by the resources and hazards in its vicinity, the cues it uses to find 78

those resources, its efficiency in using those resources, and other factors such as vector interventions that 79

kill mosquitoes or alter their behavior to suppress transmission. From a basic description of mosquito 80

behavioral states, it is clear that mosquito activity and behavioral state transitions depend not only on 81

the mosquito’s biology, but also on the distribution of nearby blood hosts and other resources, as well as 82

elements of local ecology and vector control. 83

To understand how ecology and behavior jointly affect transmission, we developed behavioral state 84
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models for mosquitoes to show how the values of bionomic parameters in the Ross-Macdonald model 85

arise from basic mosquito behavioral algorithms in response to ecology. These models consider a 86

behavioral state space and model the dynamic transitions between states as they follow the biological 87

imperatives of their state and succeed or fail depending on the availability of local resources and other 88

factors. MBITES (Mosquito Bout-based and Individual-based Transmission Ecology Simulator) is a 89

framework for building individual-based simulation models of mosquito behavioral activity bouts in 90

exquisite detail. Simulated mosquito activities are implemented as algorithms executing atomic bouts 91

and behavioral transitions in response to resources that are organized on spatially explicit landscapes. 92

MBDETES (Mosquito Bout-based Differential Equation-based Transmission Ecology Simulator) is a 93

differential equation based model of behavioral state transitions. MBDETES is more analytically 94

tractable than MBITES. Under a restricted set of assumptions, some MBITES models can be 95

represented as a continuous-time Markov process, for which MBDETES is the set of master equations. 96

Since MBDETES describes the expected behavior of some MBITES models, we use the two frameworks 97

for mutual verification through both simulation and analysis. 98

These two bout-based behavioral state models make it possible to investigate how behavioral algorithms 99

and resource distributions affect local decisions and give rise to the parameters that are widely 100

acknowledged to be important for pathogen transmission. Through Monte Carlo simulation of models 101

developed in MBITES, it is possible to compute any quantity describing adult mosquito reproductive 102

success or capability to act as effective pathogen vectors and, through careful in silico analysis, to learn 103

what factors determine their values. To this end, MBITES provides algorithms to compute from 104

simulation output: lifespans, metrics of mosquito dispersal from the natal aquatic habitat, number of 105

lifetime blood hosts (stability index), the length of a feeding cycle, survival through one feeding cycle, 106

blood feeding rate, entomological inoculation rate (EIR), egg production & dispersal, vectorial capacity 107

(VC), and the spatial scales over with VC is dispersed. By summarizing models according to these values, 108

we can map these behavioral models to regularly discussed and estimated metrics that are the target of 109

inference and control in many intervention studies. We show how the classical mosquito bionomic 110

parameters used by the Ross-Macdonald model arise from mosquito behavioral algorithms in their 111

ecological context, but we also describe their distribution and spatial dimensions. These behavioral state 112

models thus provide a way of synthesizing more than a century of studies that have observed and 113

measured aspects of individual mosquito behavior in a variety of contexts, from laboratory through the 114

field. 115
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2 MBITES 116

MBITES is a framework for building individual-based simulation models for adult mosquito behavior 117

and ecology; for each mosquito, MBITES samples events and outputs a lifetime trajectory through 118

behavioral state space as well as spatial location. The framework accommodates differences in behavioral 119

algorithms and life-history traits across species, different ecological contexts, and different purposes. To 120

make it useful as a research tool, some pre-defined behavioral states are optional. An important feature 121

of MBITES is a resource landscape can be configured to suit any situation. MBITES has a modular 122

design: several functions can be called to model each biological or ecological process, and it is 123

comparatively easy to add, remove or modify new functions or features. Mathematical and 124

computational details, including functional forms and some options are documented in the code. 125

MBITES is under active development and it is being maintained with version control. This document 126

describes MBITES version 1.0. The code was written in R and C [22]. Source code for MBITES are 127

released at a permanent GitHub archive (https://github.com/dd-harp/MBITES/tree/v1.0/MBITES); 128

configuration files for simulations in this paper have been archived at a separate GitHub archive 129

(https://github.com/dd-harp/MBITES/tree/v1.0/scripts). 130

2.1 The Landscape 131

MBITES simulates mosquito behavior on a set of points in space called haunts, small areas where 132

mosquitoes can rest between long range search flights. Resources may be present at some of these haunts. 133

Landing spots within a haunt are represented as a set of micro-sites. The set of points and associated 134

resources is called the landscape. 135

Each adult mosquito emerges from one of these haunts and moves among the haunts throughout its life 136

as it searches for and utilizes the resources it needs. In this manuscript we consider only two types of 137

resources. First, blood feeding haunts are places where vertebrate animals are typically found such that 138

mosquitoes could take a blood meal, which could include the area around a family dwelling or other 139

structure, a field where farming occurs, or an outdoor spot where humans or other vertebrate animals 140

are found. Second, some haunts include aquatic habitats where mosquitoes attempt to lay eggs. In this 141

manuscript we do not consider density-dependent dynamics in aquatic habitats, as our focus is on the 142

behavioral algorithms that structure how cohorts of mosquitoes behave after emergence. We 143

acknowledge the possibility and importance of nonlinear dependence in adult mosquito behaviors, such 144

as the choice of where to oviposit, and competition for resources by larval mosquitoes in aquatic habitats. 145
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However, we feel confident in presenting the current set of adult behavioral algorithms as an initial step, 146

to be followed up with development of detailed aquatic algorithms which will incorporate such dynamics; 147

the modular design patterns we have used in MBITES allows for such development to be feasible and 148

transparent. 149

Two other types of resources included in MBITES, which will be described in detail in future 150

manuscripts, are sugar sources and mating sites. Each haunt may have one or more resource type and 151

more than one of each type of resource; more than one potential blood host could be present, and there 152

could be more than one suitable aquatic habitat, such as a pond and a rain-storage barrel in the 153

backyard of a home, for instance. The question of how to model a landscape – how many haunts make 154

up the landscape, how large an area is represented by each haunt, whether to include haunts without 155

other resources, and how many micro-sites in each haunt – is flexible. In some instances, a haunt could 156

represent a small area around a habitat or the area immediately surrounding a single household. The 157

question is intrinsically related to mosquito search and dispersal, a question that may require some 158

tuning, depending on the purpose of a simulation. 159

In addition to the resources present, each haunt is assigned a set of local hazards, or parameters that 160

affect survival at the site, which reflects highly local conditions (such as predators) that may make a 161

haunt more or less dangerous than others of the same type. 162

Each haunt is characterized by a set of micro-sites, which define specific aspects of the places within a 163

haunt where the mosquito lands to rest. Different types of haunts may have different sets of micro-sites 164

with different resting surfaces. A homestead is a pre-defined haunt type with three micro-sites” a 165

mosquito may rest either in the house, or outside on the house, or outside on surrounding vegetation. If 166

there is no human dwelling at a haunt, it could have only vegetation. Other types can be easily 167

constructed (e.g., a homestead with livestock sheds) with their own set of relevant micro-sites for 168

resting. 169

These micro-sites were devised to simulate survival through the post-prandial resting period or contact 170

with various kinds of vector control in a highly realistic way, including exposure to residual pesticides 171

and house entering. Housing quality and housing improvements can affect the probability of entering a 172

house; when a mosquito attempts to enter a house, it may encounter an eave tube; insecticide spraying 173

can be applied to the interior walls of houses (or not), their exterior walls (or not), or vegetation (or not) 174

so that contact is simulated only if a mosquito lands on the type of micro-site that has been sprayed; and 175

area repellents or other local features can make it more likely a mosquito will leave the haunt, thereby 176

initiating a new search bout. Encounter with environmental vector based intervention, such as indoor 177

residual spraying (excluding personal-level interventions, such as topical repellents, which we considered 178
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separately) at any point may incur death or physiological damage. 179

Modular Design MBITES is designed to be nested within a broader framework for simulating the 180

transmission dynamics and control of mosquito-borne pathogens. Because agents in MBITES interact on 181

the landscape, it is necessary in the simulation for haunts to have associated data structures that record 182

information to pass between different parts of the model. For example, when a human visits a certain 183

blood feeding haunt, they must leave a piece of information denoting their id, when they arrived, and the 184

duration of their stay so that during the mosquito portion of the MBITES simulation, mosquitoes 185

visiting that haunt have a list of potential blood hosts they can select from to take a blood meal. We call 186

these data structures queues, and, more abstractly, they allow different modules to interact in a generic 187

way, facilitating a design that is both flexible and extensible. To continue the blood feeding example, it 188

is not important for MBITES to know the specific algorithms by which human movement between blood 189

feeding haunts is simulated, as long as when a mosquito arrives at a haunt to take a blood meal, it can 190

query the queue there to find out which blood hosts are available. In many cases the actual 191

implementation of the queue is quite simple, the queue of blood hosts, for example, only requires a 192

simple vector type of data structure. 193

As described, at each blood feeding haunt, MBITES tracks all available blood meal hosts in a queue 194

called the atRiskQ. Because not all hosts present at a haunt are equally available or attractive to the 195

mosquito, the atRiskQ stores not only the identities of blood hosts but also a biting weight for each 196

human and other potential blood host. These biting weights reflect a combination of time spent and 197

comparative attractiveness of all the hosts. When a mosquito chooses a blood host, she samples from the 198

discrete distribution on blood hosts parameterized by those biting weights. 199

Each haunt also has a queue object called the eggQ that lists aquatic habitats at the haunt and ovitraps. 200

The eggQ stores any eggs laid by mosquitoes for potential use by linked models of immature mosquito 201

population dynamics in aquatic habitats. Like potential blood hosts, these habitats are not equally 202

available or attractive to the mosquito, so each eggQ has a search weight. These weights can be changed 203

dynamically to mimic specific behaviors; for example, it is possible to change the search weight if larvae 204

are present [23]. 205

A landscape is thus comprised of the locations of multiple points in space called haunts where 206

mosquitoes rest, their resources, a set of micro-sites describing landing behavior (e.g., homestead, shed, 207

field, forest edge), local hazards, and queues. Importantly, the ability to characterize landing spots in 208

varying granular levels of detail allows for specific simulations that can adapt to levels of detail present 209

in field data. In this way, complex composite types of haunts can be built up by adding the basic 210
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elements, as in our previous example of a single blood feeding haunt with several independent aquatic 211

habitats representing a large house with multiple mosquito breeding ponds in the backyard; the 212

flexibility can accommodate complex ecological dynamics of structured habitat and behavior such as skip 213

oviposition. All these elements determine where a mosquito attempts to do something on the landscape 214

and affects its probability of success and survival. 215

2.1.1 Mosquito Dispersal 216

Inter-site mosquito movement in MBITES is modeled during some behavioral bouts. The destination is 217

determined by a probability mass function giving the probability of traveling to another haunt, 218

conditional on the location of the haunt the mosquito has just left, which we consider the result of a 219

search. A mosquito may decide to leave a haunt for several reasons, but once it has left, it picks a 220

destination according to this mass function, which we call the haunt-specific movement kernel. 221

Computation of the probability distribution functions describing dispersal to each haunts from any 222

starting point is done prior to the MBITES simulation; the simulation accepts as input the computed 223

probability vectors giving inter-point movement. 224

As utilities for setting up simulations, MBITES has developed some simple parametric functions to 225

compute these probabilities as a function of distance and an activity-specific search weight, ωx, where x 226

denotes a particular blood feeding haunt or aquatic habitat. These functions thus provide multiple ways 227

of computing the probability of moving from one haunt to any other haunt, optionally conditional on 228

behavioral state. 229

2.2 Behavioral States and Other Variables 230

Simulations in MBITES include variables describing mosquito behavioral states and other states that 231

maybe relevant for survival [8]. At any point during a mosquito’s lifespan, it will seek to mate, sugar 232

feed, blood feed, or lay eggs; these are biological imperatives that must be accomplished to survive and 233

reproduce. In terms of simulation, this means that at all points in time a mosquito is alive, it belongs to 234

one of a discrete set of behavioral states that govern its actions while in that state, as well as what state 235

it is likely to transition to next. 236

Transitions between behavioral states were developed around a basic description of adult mosquito 237

behavior. A newly emerged female mosquito must harden and mate before it is mature, whereupon it 238

begins a cycle of blood feeding and egg laying throughout the rest of its life. After a search to find 239
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suitable blood meal hosts, the mosquito selects a host and approaches it in an attempt to blood feed. 240

Assuming it is successful, after the blood meal, the mosquito typically rests to lose some of the water 241

weight in a post-prandial resting period. During this time, blood is provisioned into eggs that require 242

some time to mature. Once the egg batch is mature, the mosquito initiates a search to find a suitable 243

aquatic habitat and then lays eggs. Sugar feeding occurs from time to time, depending on the species 244

and the mosquito’s energetic needs. 245

In order to allow detailed simulation of activities mosquitoes undertake during each behavioral state, as 246

well as allowing for flexibility to account for differences among species, behavioral algorithms simulate 247

specific actions mosquitoes take as they attempt to accomplish goals associated with each state, as well 248

as transitions to future states. While there is a general pattern to be followed (e.g. blood feed, rest, lay 249

eggs, and repeat), each mosquito follows a probabilistic sequence through a set of distinct phases 250

surrounding the activity bout as they seek to accomplish their goals. Transitions between behavioral 251

states depend on various internal characteristics of the individual mosquito and logical prerequisites. Egg 252

batches must mature before a mosquito is considered gravid and enters the egg laying state. If a 253

mosquito is gravid, it will tend to lay eggs, though re-feeding can occur regardless (see below). Otherwise, 254

disregarding sugar feeding and mating for the moment, a mosquito’s state is oriented towards blood 255

feeding. A mosquito must leave a haunt to initiate a search if the resources it needs are not present, but 256

a decision to leave the haunt and initiate a search can also occur even if resources are present, depending 257

on other events that occur during a bout and properties of a haunt. For example, area repellents could 258

increase the probability of a failure, and force a mosquito to initiate a new search. 259

In addition to a mosquito’s behavioral states, MBITES includes a set of other variables making it 260

possible to model heterogeneity among individual mosquitoes in extreme detail. Each mosquito in 261

MBITES is described by internal variables that include but are not limited to: physical and physiological 262

condition, energy reserves, size of the most recent blood meal, the number of mature eggs ready to be 263

laid, infection status, physical condition, and a set of variables related to sugar feeding and mating. For 264

example, inter-site movement is physiologically stressful on the mosquito, and during travel between 265

haunts, a mosquito’s energy level (an optional variable) can be decremented. The energy level can be 266

replenished by blood meals (for females), or sugar feeding, and could be modeled as an important source 267

of mortality while searching in resource-sparse environments. A random variate is drawn to determine 268

the amount of physical damage (e.g., wing tattering) that was incurred and modifies its physical 269

condition or physiological damage (e.g., after exposure to insecticides). Physical and physiological 270

damage takes a cumulative toll on the mosquito. 271

MBITES is capable of modeling both female and male mosquito populations and behavior. For female 272
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mosquitoes, the primary behavioral states are blood feeding and egg laying (the two necessary 273

components of the gonotrophic cycle). In this manuscript, male mosquitoes are not considered and the 274

optional behavioral states of sugar feeding and mating and all associated variables have been turned off 275

in order to introduce and focus on algorithms describing blood feeding and egg laying by females. 276

Each behavioral state – blood feeding or egg laying – requires one or more activity bouts. Additionally, 277

each behavioral state may require one or more types of activity, namely searching or attempting. Thus 278

the set of possible activity bout types each associated with a behavioral state has been denoted by a 279

letter (Figure 1, Table 2): the blood feeding search bout (F); the blood feeding attempt bout (B); the 280

search bout for egg laying (L); the egg laying attempt bout (O). A letter is also assigned to the 281

post-prandial resting period (R) that always follows a blood meal, which is a part of the blood feeding 282

attempt bout. 283

Because we assume that regardless of behavioral intent, mosquitoes always need to launch themselves 284

into the air prior to the activity bout and rest after the activity before the next launch, these phases are a 285

common part of each behavioral state and activity bout. The endpoint of each bout type is either death 286

(D) or another bout and possibly a behavioral state transition (Table 2, Figure 1). The structure of each 287

bout type is different, and it is possible to modify the models to describe what happens during each bout 288

in virtually unlimited detail. These paths through a bout are sampled from appropriate distributions 289

that determine whether the bout resulted in death, success (state transition), or failure (remain in the 290

same behavioral state). These activity bouts, prefaced by a launch and ending with a rest, may be of 291

varying duration, but encompasses all of the activity by a mosquito from launch to launch. 292

2.3 The Activity Bout 293

Regardless of behavioral state, all activity bouts have four phases: launch, do an activity, land, and rest 294

(Figure 1). Launching itself into the air, finding a suitable landing spot, and resting prior to the next 295

launch must occur regardless of the biological state of the mosquito (blood feeding or oviposition, in this 296

manuscript). However because the purpose of activity bouts is to accomplish different biological goals, 297

the activity phase of each bout depends on the behavioral state. Notably, the definition of an activity 298

bout is defined as everything that happens from a resting state to resting state; during an activity bout, 299

a mosquito may land briefly on a blood host or on water before taking a short flight to rest. 300

The modular nature of MBITES makes it possible to configure alll these options to consider biological 301

process of interest. While all bouts share similar structure and call on similar functions (e.g. optionally, 302

flights could expend energy or contribute to cumulative wing damage), the activities and outcomes will 303
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differ based on each individual mosquito’s internal physiological state. Thus, a mosquito’s life consists of 304

a series of transitions between behavioral states, each of which may take several bouts to accomplish, 305

completely determining a mosquito’s activity throughout its life. 306

Launch and Timing A new bout begins the moment a mosquito launches itself into the air. The 307

timing of the start of the launch phase is determined during the previous bout during the resting phase 308

following landing. By sampling the time to next launch at this point in the simulation, launch times can 309

be (optionally) conditional on events that have taken place during the previous bout. 310

Do an Activity — Search or Attempt After launching, the specific behavioral algorithms called 311

by the mosquito depend on its behavioral state (decision point “state” in Figure 1), as well as the local 312

distribution of resources necessary to fulfill the mosquito’s current biological needs. A mosquito will 313

either “attempt” to accomplish the task required by their behavioral state or “search” for the resource it 314

needs to accomplish that task. In any particular activity bout, a mosquito will either “search” or 315

“attempt”, but not both. Searching or attempting algorithms are behavioral state-specific, and will be 316

called during that phase of the bout (attempting to blood feed, as illustrated in Figure 2, for example, 317

means something very different behaviorally than attempting to oviposit, as illustrated in Figure 3). 318

Details of the attempt algorithms are described below. 319

The searching algorithm moves a mosquito to a new haunt on the landscape to find resources, described 320

in Section 2.1.1, while the attempting algorithm describes how a mosquito fulfills its behavioral 321

imperatives once necessary resources are present, which will be described below for egg laying and blood 322

feeding (Section 2.4). 323

There are many factors that determine whether a mosquito will make an attempt or begin a search. A 324

mosquito will stay and make an “attempt” if the necessary resource is present at the haunt, but it could 325

leave and initiate a “search” if it has previously been frustrated in its attempts or if the resource is not 326

present. Many events occurring during the bout can trigger a decision to leave and initiate a search 327

during the next bout. For example, if the mosquito is primed to blood feed and blood hosts are present, 328

the mosquito will tend to approach a potential blood host and try to blood feed. If there are no blood 329

hosts present, the mosquito will “search” and move to a new haunt. Even if blood hosts are present, 330

after multiple failed attempts, or if the blood hosts are not sufficiently attractive, a mosquito may 331

become frustrated and leave. 332
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Land After its flight, a mosquito must land and rest. This must occur at one of the micro-sites at a 333

haunt, as described earlier. During the landing phase, an algorithm called restingSpot simulates the 334

mosquitoes choice of micro-site, and to simulate the consequences of landing there (e.g. encountering a 335

sprayed surface or entering or leaving a house). Movement to a micro-site within a haunt to land and 336

rest is designed to emulate short hops (e.g., < 10m) a mosquito may take that differs from longer range 337

searching behavior. The algorithm also tracks if the attempt was successful. Repeated failures at the 338

same site may lead to the mosquito becoming frustrated, in which case the next activity bout will 339

include a search regardless of resources availability. 340

Rest The duration of the resting phase, the time elapsed between landing and the next launch, will in 341

general differ based on behavioral state, other state variables, and events that may have transpired during 342

the bout. Several probability distribution functions functions are available to simulate heterogeneity in 343

the time required by mosquitoes to accomplish certain tasks based on individual characteristics and 344

spatial location. The default option is for these times to follow an exponential distribution. 345

During the resting phase, internal characteristics of the mosquito are updated, including cumulative wing 346

damage, and internal energy reserves which have been used for flight. Egg batches (if present) are also 347

checked for maturity, depending on if the mosquito has successfully blood fed, and if so how much. The 348

next behavioral state is determined by the success or failure of the current bout. Other variables are also 349

updated during this time, such as age and (if a pathogen model is present), infection status. 350

Survival A mosquito can die during at any point during a bout as a result of specific events, such as 351

being swatted while attempting to blood feed, or as a result of contact with some vector control device. 352

Survival through a bout is also computed during every resting phase. Mortality is associated with the 353

stress of flight, which sets a baseline mortality probability (per flight). A mosquito must also survive any 354

local hazards, which determine the site-specific probability of dying while landing or flying at each site, 355

such as from predation by jumping spiders or dragon flies. 356

2.4 Attempt Algorithms 357

The following sections describe in detail the algorithms that determine how a mosquito makes an 358

attempt to blood feed or oviposit. In addition, a separate section discusses the post-prandial resting 359

period and algorithms for simulating oogenesis and re-feeding. 360
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2.4.1 Blood Feeding Attempt and Pathogen Transmission [B] 361

During an activity bout in which a mosquito attempts to blood feed (Figure 2), a detailed sequence of 362

events describing the blood feeding attempt is simulated, any of which can result in a failure (the green 363

nodes in Figure 2) with its associated state transitions (the green box in lower right of Figure 2). In the 364

event of failure, the mosquito could either fail to survive the landing, be frustrated and leave the site to 365

search for other blood hosts (a blood feeding search, F), or remain and try again (B). 366

When the mosquito attempts to feed on a blood host after launching, a sequence of critical processes 367

must be simulated. Upon arriving at a site with viable blood hosts, the mosquito chooses a particular 368

host at that site to approach from the atRiskQ object at that site, which maintains a list of available 369

hosts (Section 2.1). 370

If the mosquito chooses a human host, a detailed sequence of events is simulated. First, the mosquito 371

must approach and land on the host successfully. The approach can result in failure or death if it is 372

deterred by swatting or a sudden movement or something else. If the mosquito survives the approach 373

and lands on the human host, it will try to probe the host, which can also result in failure or death. 374

Finally, if probing is successful, the mosquito proceeds to feed. When a mosquito blood feeds, a random 375

variable is drawn to determine the blood meal size, which affects egg maturation and batch size. Notably, 376

the blood meal could infect a mosquito if the human host is infectious. Following successful feeding, the 377

mosquito will make a short hop within the current site and find a resting spot to digest the blood meal 378

(post-prandial rest, purple oval), simulated by the restingSpot algorithm, where the specific micro-site for 379

resting is chosen from the set of micro-sites available. 380

Note that it is during probing that mosquitoes could transmit pathogens from their salivary glands into 381

humans infecting them. During blood feeding, mosquitoes could take up pathogens in blood and become 382

infected. This functionality is part of MBITES, but the details are beyond the scope of this paper. 383

If the mosquito chooses a non-human host (or more generally, a blood host that is not suitable for the 384

pathogen), probing is not modeled. A mosquito can either survive and blood feed, survive without blood 385

feeding, or die. If the mosquito survives, restingSpot is called (as above). 386

2.4.2 The Post-Prandial Resting Period and Oogenesis [R] 387

The postprandial resting period is part of the blood feeding attempt bout following landing (purple oval, 388

Figure 2), but it requires special consideration. After calling restingSpot, a long delay is simulated which 389

represents the time needed for diuresis and digestion to occur. Several options are available for modeling 390
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survival and the events that follow as blood is concentrated and provisioned into eggs. First, mortality 391

rates can be higher because the mosquito is heavy with blood, increasing the chance that they fall victim 392

to successful predation [24]. Second, a function has been provided to model “overfeeding”: the 393

physiological stress of processing a blood meal can kill a mosquito, so it is possible to model mortality as 394

an increasing function of blood meal size. A function determines how much, if at all, the energy reserves 395

are topped up by the blood in the blood meal. 396

During the resting period, an egg batch is produced; however, the mosquito will not be considered gravid 397

until the batch is mature. The number of eggs in a batch is determined by a probability distribution 398

function family, such as a discretized Gaussian distribution. Oogenesis (production of an egg batch) and 399

the time delay to egg maturation is modeled explicitly in MBITES in three distinct model. MBITES has 400

three models for oogenesis: first, a simple phenomenological model, which simply draws a random 401

variate from a Gaussian distribution with mean and variance parameterized to match entomological 402

understanding; second, a semi-mechanistic model in which the size of the egg batch is linearly 403

proportional to the size of the blood meal, in which a new blood meal adds to the egg batch size; and 404

third, a model in which the egg batch is linearly proportional to the size of the blood meal, but eggs 405

from a new blood meal completely replace a previous egg batch. The third model is unrealistic but 406

mathematically convenient (i.e., it was included so that there would be a memoryless model that could 407

exactly match the assumptions of MBDETES). 408

In the first oogenesis model, each egg in the egg batch is considered to require a certain “provision” of 409

blood for its maturation. Because each egg requires its own resources, the total blood provision needed 410

for a batch is a linear function of the egg batch size. After the blood provision has been fulfilled, which 411

could require multiple blood meals, the egg batch is mature and the mosquito will become gravid. 412

In the other two models, time to maturation is modeled as a delay between the initial biological 413

commitment of the mosquito to produce a batch of eggs, and the time when the mosquito is considered 414

gravid, upon which it will be primed to transition to the egg laying behavioral state. The time to 415

maturation implements a simple phenomenological model, where a random variate is drawn for the 416

maturation time which is coincident with the resting period; after this time delay is fulfilled, the 417

mosquito will become gravid and either search for suitable aquatic habitats (L) or attempt to oviposit 418

(O), depending on the local availability of resources. re-feeding can occur in both these models. 419
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2.4.3 Re-feeding 420

Re-feeding (the red diamond in Figure 2) is possible. A mosquito may take multiple blood meals prior to 421

oviposition, and thus lengthens the time interval between successive oviposition attempts. re-feeding 422

depends in part on the model for oogenesis, as an oogenesis model could explicitly force re-feeding when 423

a batch of eggs is not yet mature. 424

When re-feeding is not forced by the oogenesis model, MBITES allows for probabilistic re-feeding 425

behavior that can optionally be disabled. re-feeding behavior is a Bernoulli event that occurs when a 426

mosquito is exiting the post-prandial rest (R) at the end of a blood feeding attempt bout. The 427

probability of re-feeding is a function of either the size of the previous blood meal or the previous egg 428

batch, accounting for mosquito propensity to top up the size of the egg batch before ovipositing. 429

2.4.4 Egg Laying Attempt and Oviposition [O] 430

After arriving at a haunt containing an aquatic habitat (i.e. after a search), or if the mosquito is already 431

at a suitable haunt with one or more aquatic habitats, the mosquito chooses a particular habitat, or 432

possibly an ovitrap (Figure 3). If a mosquito chooses an aquatic habitat, it will approach the habitat and 433

attempt to lay eggs. The outcome of an egg laying attempt bout is either death, a failed attempt, or 434

oviposition. Like the blood feeding attempt bout, mosquitoes can fail at any time during the attempt 435

(green pentagons), which, if the mosquito survives the failed attempt, will lead it to either reattempt at 436

the current site (L), or become frustrated and search for a new site (O). If a mosquito is successful it lays 437

some fraction of her eggs in an aquatic habitat. If an ovitrap exists at a site, it competes for 438

attractiveness with other aquatic habitats that may be present, and ovipositing mosquitoes could become 439

trapped and die in it. 440

3 MBDETES 441

MBDETES (Mosquito Bout-based Differential Equation Transmission Ecology Simulator) is a system of 442

coupled ordinary differential equations for modeling mosquito bout-based behavioral states and state 443

transitions that offers analytical tractability but reduced flexibility compared with MBITES. MBDETES 444

was developed as a way of approximating some models developed in MBITES: any MBITES model in 445

which the behavioral state transitions are memoryless and the waiting time to the next state transition is 446

always exponentially distributed is the the stochastic analogue of a model in MBDETES. 447
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The analytic tractability of MBDETES and speed of numerical solutions serves several purposes. First, 448

we can check that the complex behavioral algorithms in MBITES are indeed functioning correctly, by 449

comparing the output of Monte Carlo simulations against analytic solutions in situations where their 450

expected behavior is known. Second, MBDETES provides a simple null case against which the 451

importance of process stochasticity and individual level heterogeneity can be judged, allowing 452

examination of situations where estimation of mean quantities through Monte Carlo simulation (e.g., 453

running MBITES repeatedly) deviates from the deterministic approximation. It is not the goal of 454

MBDETES to produce a full deterministic approximation of the complete spatial dynamics of MBITES, 455

but for model checking and investigating the importance of stochasticity on the individual level. 456

The variables in MBDETES equations represent the density of mosquitoes that are in each behavioral 457

state, and the parameters describe state transition probabilities and associated waiting times. Let a 458

variable name denote the population density of mosquitoes in each state, where the variable names in 459

MBDETES matches the code letter for the behavioral states and the postprandial resting period in 460

MBITES: blood feeding (B), egg laying (O), searching for blood (F), searching for habitats (L), and 461

post-prandial resting (R), for each site. Let PXY denote the proportion of mosquitoes transitioning from 462

state X to Y after one bout, and let ΛF (t) and ΛB(t) denote the rates of mosquitoes emerging end 463

entering into F and B states, respectively: 464

dF
dt = ΛF (t) + γBPBFB + γOPOFO + γRPRFR− γF (1− PFF )F

dB
dt = ΛB(t) + γFPFBF + γRPRBR+ γOPOBO − γB(1− PBB)B

dR
dt = γBPBRB − γRR

dL
dt = γRPRLR+ γOPOLO − γL(1− PLL)L

dO
dt = γRPROR+ γLPLOL− γO(1− POO)O

(1)

Note that there are some more general cases of MBITES (i.e., with mating and sugar feeding) in which 465

behavioral state transitions can be formulated as a continuous-time Markov process and could thus be 466

described by similar systems of equations. MBITES models that build up state memory over time in a 467

mosquito, breaking the memoryless assumption of Markovian systems (by depending on age, oogenesis, 468

egg-batch size, or other variables which depend on previous states), could possibly be modeled, but they 469

would require more complex systems of equations. In particular, the model of oogenesis in which 470

re-feeding depends on previous blood meals would require modifying the state space to track egg batch 471
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size, or use integro-differential equations. While such models can be built, they are beyond the scope of 472

this paper. 473

4 Results 474

Behavioral state models, such as MBDETES and models developed in MBITES, are based on a detailed 475

description of mosquito behaviors, behavioral states, and behavioral state transitions. These models do 476

not supply the standard bionomic parameters. Instead, they show how mosquito bionomic parameters 477

most relevant for transmission arise from the simple algorithms that drive the mosquito behavior. In 478

addition, MBITES has additional built-in flexibility to show how these parameters are affected by 479

geography (distribution of resources), ecology (interactions of mosquitoes with other biotic and abiotic 480

elements of their environment), climate, and other factors external to the individual mosquito. The small 481

set of summary statistics that has been traditionally used to describe aspects of mosquitoes relevant for 482

transmission (Table 1) are thus emergent features of a complex interaction of mosquito behavior in an 483

environment. In MBITES, these parameters arise naturally from mosquito behavior for a given place, 484

shedding light into what aspects of ecology affect these population level summary metrics the 485

most. 486

Here, using some models that were developed within the MBITES framework, we show how to compute 487

these parameters and illustrate some basic features of mosquito ecology relevant for transmission. We 488

also use MBDETES to verify MBITES (and vice versa). 489

4.1 VC and Bionomic Parameters 490

VC in MBITES models can be computed in two ways. First, VC could be estimated by taking the 491

product of the average bionomic parameters, using standard formulas (Table 1). Second, the bionomic 492

parameters are not specified as parameters in MBITES, but they can be computed as a summary 493

description of mosquito behavior through Monte Carlo simulation. 494

It has been shown that the traditional formula for VC can be reduced to just three terms – the number 495

of emerging adult female mosquitoes, per human, per day (λ); the probability of mosquito survival 496

through the extrinsic incubation period (EIP) of the pathogen (P ); and the expected number of human 497

blood meals taken by a mosquito over its life, called the stability index (S) [11]. The Ross-Macdonald 498

formula for the VC is equivalent to: V = λS2P . The stability index appears twice because pathogen 499

transmission requires a mosquito to take two distinct human blood meals – one to infect the mosquito 500
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and another to infect the pathogen’s human host (after surviving the EIP and becoming infectious). 501

Unlike the entomological inoculation rate, the VC does not rely on any information about the parasite 502

reservoir in humans; that is, VC measures only the entomological capacity of a particular setting to 503

sustain pathogen transmission, and is independent of prevalence of disease in humans [11]. 504

Expectations in MBITES and MBDETES One method to compute the bionomic parameters is 505

by computing the expected transition probabilities from each state to all other states accessible from it. 506

This discrete distribution can be calculated by following the sequence of Bernoulli events in Figures 2 507

and 3, for example, taking expectation values at each step. By averaging in this way, the PX,Y quantities 508

for MBDETES can be computed from MBITES. The exact multinomial probability distribution over 509

outcomes (PX,Y ) for each bout can also be calculated numerically without simulation, by summing the 510

relative probability of each path through the bout; certain branch points are based on random sampling, 511

such as blood meal size, in these cases, we calculate the expectation with respect to the random variable 512

by numerical integration (these functions can be found in the file 513

https://github.com/dd-harp/MBITES/blob/v1.0/MBITES/R/MBDETES-Calibration.R in the 514

MBITES package). 515

Using these methods, we can then compute quantities in MBITES or MBDETES linking estimates back 516

to the bionomics commonly used as input (or derived as equilibrium) in Ross-Macdonald style models. 517

From the single-bout transition probabilities and waiting times for each bout type, PXY and TX , we 518

derived formulas for the proportion surviving and the waiting time for surviving mosquitoes to make the 519

transition from: F to B, including loops back into F ; from B to R including loops back into F and B; 520

from L to O; including loops back into L; and from O to L, including loops back into L and O. The 521

waiting time in each state TX is determined by parameter, and the inverse is the rate parameter γX used 522

for simulation in MBDETES (Table 2). These closed-form solutions for the means of these bionomics 523

allow us to compare MBDETES to classical Ross-Macdonald parameters. 524

The inverse of this resting period to resting period waiting time maps onto the feeding rate parameter f 525

in the Ross-Macdonald model (see Table 1); TR,R 7→ 1/f . The rest to rest survival probability is also 526

needed to link MBDETES to Ross-Macdonald parameters; this maps onto the probability of surviving 527

through one feeding cycle, PR,R 7→ e−g/f , or
− lnPR,R

TR,R
7→ g. 528

Monte Carlos Simulation in MBITES In these simulations, there is a more direct way of 529

computing the VC. For each mosquito from emergence to death, MBITES logs each activity bout, 530

including the time, location, behavioral state, the values of other variables, the identity of every human 531
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host probed, and the identity of every host who gave a blood meal. Mosquito survival can be computed 532

simply from the distribution of the mosquito age at death. Similarly, the overall feeding frequency can be 533

computed from the distribution of time intervals between successive blood meals. 534

The formulas for VC arise from an anthropocentric concept that counts events happening to a human on 535

a day. Here, we compute VC directly by following every bite occurring on a single person on a single day, 536

and then summing all secondary bites by the initial biting mosquito separated from the initial bite by at 537

least EIP days. To put it another way, the average VC is the number of pairs of human bites separated 538

by at least EIP days divided by the number of humans; the distribution of VC uses the infecting human 539

as the reference (thus VC is in units of human−1 day−1). 540

To compute the VC in this way, the simulation output was summarized by counting up all pairs of bites 541

with humans that could have accounted for transmission of a parasite/pathogen from one human host to 542

another: 1) the first bite in the pair must have been a blood meal; only blood feeding can infect a 543

mosquito; and 2) the second bite in the pair included all events in which a human was probed (as 544

parasites or pathogens usually enter the wound in a matrix of salivary proteins during probing); 3) the 545

time interval between the two events was greater than or equal to the EIP; 4) the number of secondary 546

bites is tallied by adding them to the human who was bitten on the first encounter. Because all events in 547

the simulation occur at a set of sites in space, the spatial dispersion of VC can be calculated by simply 548

attaching the distance between these secondary bites from the primary bite to each pair of bites. This 549

level of realism is possible because probing and blood feeding are accounted for separately and accurately 550

in MBITES. 551

Notably, because MBITES simulates the blood meal as a process of probing followed by blood feeding, 552

some mosquitoes may be killed or interrupted after probing but prior to blood feeding, so there will exist 553

small differences in the computed quantities of VC from the classic Ross-Macdonald formula and 554

computation via MBITES. 555

4.2 Verifying MBITES and MBDETES 556

To address a challenge facing most complicated individual-based models, we have identified models in 557

MBITES that are the stochastic analogues of models in MBDETES. The following sections illustrate 558

how this was done. 559

Bionomic Parameters with MBDETES To compute some of the bionomic quantities in 560

MBDETES, we set F (0) = 1 and ΛF (t) + ΛB(t) = 0 such that the equations track a cohort as it ages. 561
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Using these equations, we track the proportion surviving by age: F +B +R+ L+O, the laying rate 562

γO(POF + POB)O, and the blood feeding rate, γBPBRB. In practice, given these initial conditions, this 563

set of equations can be numerically solved to derive bionomic parameters of interest. 564

To compute the length of one feeding cycle, a set of equations was developed to separate the resting state 565

into two variables: a cohort that had just entered and could only leave (R1), and an absorbing state they 566

would never leave (R2). The length of a feeding cycle was computed by setting R1(0) = 1, and letting 567

the equations run until R2 was no longer changing. The asymptotic level for R2 was the computational 568

equivalence of mosquitoes surviving one feeding cycle, and the mean value of R2, conditioned on 569

surviving, was the average duration of one feeding cycle. 570

Mapping MBITES onto MBDETES A challenge for most complex individual-based models is 571

having a method for verification. Here, for a comparatively simple model developed in MBITES, there is 572

a theoretical match to a system of ordinary differential equations formulated in MBDETES. The two 573

models can be used for mutual verification. 574

A model in MBITES that maps onto a set of equestions in MBDETES works on a “trivial” landscape 575

such that there were three haunts, one haunt with only a blood feeding resource, one haunt with only an 576

aquatic habitat, and one haunt with both types of resources (i.e., a peri-domestic haunt), with 577

symmetric movement probabilities. Exponential distributions were used to sample all waiting times for 578

behavioral state transitions, and re-feeding probability is only a function of blood meal size. We 579

summarized the Monte Carlo simulation in MBITES by computing histograms, which were overlaid on 580

top of density functions computed in MBDETES by numerically solving the system of Kolmogorov 581

forward equations (Equation 1). 582

For MBDETES, having matched parameters to MBITES, if we set ΛF (t) = ΛB(t) = 0, and let 583

dD/dt = −dF/dt− dB/dt− dR/dt− dL/dt− dO/dt, and initial conditions such that 584

F +B +R+ L+O +D = 1, then the system of equations in MBDETES are the Kolmogorov forward 585

equations (master equations) for individual behavioral state space trajectories for some particular model 586

in MBITES. In this interpretation, the state variables F,B,R,L,O,D represent the distribution of 587

probability density over the set of states a mosquito may belong to at any point in time t. If provided 588

with an initial density over states at t = 0, the numerical solution gives the time evolution of the 589

probability to find a mosquito in any state at any time t. 590

In Figure 4 we show a comparison of MBDETES and MBITES for several bionomic parameters, where 591

MBITES was simulated under a set of simplified conditions such that MBDETES correctly describes the 592

predicted probability density functions of the parameters. Bionomic parameters for MBITES were 593
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computed from simulation output and compared to deterministic approximations from MBDETES by 594

overlaying histograms over predicted density functions and comparing means (Figure 4). MBDETES was 595

simulated by numerically solving the system of Kolmogorov forward equations (Equation 1). Under this 596

set of assumptions, the numerical results from MBDETES are matched by the results of the MBITES 597

Monte Carlo simulation. 598

4.3 Dispersion in MBITES 599

Because the specific trajectory a mosquito takes is a random process that depends on the particular 600

haunt containing the aquatic habitat from which it emerged, the complex interactions between a 601

mosquito’s internal behavioral state, the spatial arrangement of haunts and resources, and the movement 602

of human (and non-human) blood hosts, the movement of mosquitoes on a landscape is an emergent 603

consequence of how these various algorithms interact. Averaging across all location-specific movement 604

kernels gives a sense of how far mosquitoes are likely to travel (Figure 5), though the realized 605

distribution for any particular simulation will differ depending on how often each route is used. 606

Dispersion in MBITES is a probability mass function describing the distances traveled as mosquitoes 607

redistribute themselves among point sets: all distances traveled are drawn from the set of pairwise 608

distances among sites. The dispersal kernels can be visualized directly for each site (i.e., the probability 609

mass on each distance), or from a simulation or overall: we compute the empirical cumulative 610

distribution function (eCDF) of distances traveled; 2) fit a smooth curve to the eCDF; and 3) take the 611

derivative of the smoothed eCDF. These smoothed kernels were estimated through the “lokern” package 612

for R [25], and provide a rough estimate of how far mosquitoes will travel. 613

Distributions of mosquito movement by distance can also be directly calculated by Monte Carlo 614

simulation through MBITES, allowing examination of characteristic scales of movement in the presence 615

of specific models of human activity. Functionally relevant summaries of mosquito movement come from 616

simulating MBITES and plotting these same kernels for spatial dispersion of VC as computed above 617

(Figure 5). A key difference between these dispersal kernels and simulated empirical kernels is that the 618

interactions between mosquitoes and humans will produce empirical kernels that are not necessarily the 619

same as what one would obtain if we had simply used the dispersion kernels to smooth average bionomic 620

parameters over space. 621

Because MBITES simulates discrete events in time as well as space, detailed measures of how mosquitoes 622

disperse themselves and other quantities (secondary bites, eggs) through space can be calculated and 623

described by probability density functions which give the probability to observe some event as a function 624
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of distance. In Figure 5, densities for one particular landscape were calculated by taking the empirical 625

cumulative distribution function (CDF) from simulation output, applying a smoothing algorithm to 626

estimate a smooth CDF, and differentiating to estimate a probability density function (PDF) [25]. Four 627

measures of dispersal were computed. First, the upper left density is the average site to site movement 628

kernel, and shows the average “one hop” distance a mosquito will make during a activity bout if it leaves 629

to search. Cumulative dispersion (upper right) is the average distance traveled by a mosquito summing 630

over all hops in its lifetime. Absolute dispersion (lower left) summarizes the mean displacement of 631

mosquitoes; that is, the distance between their natal aquatic habitat they emerge as adults from and the 632

site of death. Most relevant for pathogen transmission is VC (described in Section 4.1), for which the 633

average distance between each pair of secondary bites is a measure of the capability of the local ecology 634

and vector population to sustain pathogen transmission spatially. Dispersion of secondary bites tracks 635

much more closely measures of absolute dispersion rather than cumulative distance traveled, which will 636

be explored in greated detail below. 637

4.4 Co-Distribution of Resources 638

Searching behavior, in which mosquitoes take long range flights or many short hopping flights to look for 639

resources, plays a crucial role in mosquito behavior but also contributes an important source of mortality 640

that could be avoided if local resources are plentiful. The distribution of local resources structures 641

mosquito movement, therefore, holding all else constant, the amount of time a mosquito spends searching 642

for resources should affect the various summary bionomics that describe the mosquito population and its 643

ability to be effective vectors of pathogens. To illustrate the effect of distribution of resources on the 644

bionomic parameters, we conducted a set of experiments showing the influence of resource 645

co-distribution on summary bionomics. 646

The set of in-silico experiments was designed to explore how bionomics changed as a function of the 647

availability of peri-domestic habitats, which describes the proportion of blood feeding at haunts that 648

have a viable aquatic habitat in the local vicinity; in terms of simulation, a peri-domestic haunt has both 649

types of resources present. The proportion of haunts with viable aquatic habitats nearby may differ 650

depending on local distribution of resources. The extent to which the haunts get visited depends the 651

extent to which there is significant correlation between the set of points at which mosquitoes can locate 652

suitable blood meal hosts and the set of points at which mosquitoes can oviposit egg batches. 653

To examine the effect of peri-domestic habitats on generated mosquito bionomics, 26 resource landscapes 654

were generated, each containing 250 blood feeding haunts, and 250 aquatic habitats. peri-domestic 655

habitats (the percent of haunts that contained both resources), ranged from 0% in landscape 1, to 100% 656
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in landscape 26. Put another way, in landscape 1, each site contained either a blood feeding haunt or an 657

aquatic habitat, whereas in landscape 26, each site contained both types of resources. In all landscapes 658

the total number of resources was held constant as described above. Spatial variance in location of 659

haunts was simulated by choosing 25 parent points for blood feeding haunts, and then scattering 9 660

offspring blood feeding haunts around each parent, for a total of 250 haunts in 25 clusters. In the 661

simulation where peri-domestic habitats was held at 0%, aquatic habitats were simulated independently 662

using the same algorithm. For all other landscapes, overlap was simulated by selecting some fraction of 663

the total number of aquatic habitats and attaching them randomly to blood feeding haunts. 664

In each simulation, all biological parameters were held constant such that the only varying parameter 665

was the spatial arrangement of resources. In addition, mosquito emergence rates from each aquatic 666

habitat was also held constant, such that on average, each habitat produced one adult female per day. 667

We acknowledge that in the absence of population dynamic feedback effects the model may not 668

correspond to any true ecological system. For the specific analysis considered here, we are specifically 669

interested in how spatial arrangement of resources affects how mosquitoes distribute their time across 670

behavioral states, and the effect it has on commonly used bionomic parameters. We intend to revisit the 671

question of population dynamic feedback effects in future research. 672

4.4.1 Sensitivity of parameters to peri-domestic habitats 673

To study sensitivity of bionomics to peri-domestic habitats, we calculated all bionomic parameters for 674

each of the 26 simulated landscapes. Of particular interest was the change in VC as a function of 675

peri-domestic habitats. As the percentage of blood feeding haunts with associated peri-domestic 676

mosquito aquatic habitats increased, mean VC (measured in units person−1day−1) increased by 2 orders 677

of magnitude (Figure 7). While the stability index, S also increased as a function of peri-domestic 678

habitats, the absolute difference between S evaluated at 0% and 100% peri-domestic was smaller, only 679

increasing by one order of magnitude (Figure 7). Importantly, we currently assume no competition 680

among mosquitoes during oviposition, but we note that nonlinear competition has been observed and can 681

easily be included in the model, at the cost of complicating analytic analysis [23]. 682

Significant differences were also observed in how mosquitoes transitioned between and partitioned their 683

time over the set of behavioral states. To do so, we computed empirical state transition matrices for each 684

landscape, consisting of the behavioral states F,B,R,L,O, plus an absorbing state D for death. For 685

each mosquito, all jumps between states were tabulated in the transitions matrix T, which was then 686

normalized such that Te′ = 1. These empirically estimated Markov transition matrices are displayed as 687

chord diagrams in Figure 8 for 0%, 50%, and 100% peri-domestic habitats. Transitions between states 688
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are represented by colored edges, where width of the edges is proportional to the probability of that 689

transition. Colored areas on the circumference of the diagram represent the states, where size is 690

proportional to that element of the quasi-stationary distribution for that landscape (the mean proportion 691

of time spent in that state, conditional on survival). From 0% to 100% peri-domestic habitats the 692

probability of a blood feeding search leading to another search dropped from 0.90 to 0.17 in the most 693

resource-rich setting, which we consider as easy access to local resources. To determine how mosquitoes 694

partitioned their time across these states, for each normalized matrix T, we calculated the 695

quasi-stationary distribution across the transient states F,B,R,L,O [26]. This distribution describes 696

how a mosquito spends its time, conditional on survival. At the 0% condition, mosquitoes spend near 697

77% of their time prior to absorption searching for blood meals, and close to 12% of their time searching 698

for suitable aquatic habitats to oviposit. At 100%, these proportions drop to a mere 11% and 6%, 699

respectively (Figure 8). 700

For each of the 26 resources landscapes, we also calculated mosquito lifespan, number of human blood 701

hosts (stability index ), duration of feeding cycle, blood feeding rate, absolute and cumulative mosquito 702

dispersion, VC, and spatial dispersion of VC (Figures 9, 10). As the resources were rearranged to increase 703

peri-domestic habitats, lifespan, number of blood hosts, and blood feeding rate increased, while duration 704

of the feeding cycle decreased. Certain bionomics, such as blood feeding rate, and length of feeding cycle 705

tended to reach a plateau after peri-domestic habitats increased beyond about 20%, as the mosquito life 706

cycle does not allow these values to change indefinitely. Cumulative mosquito movement (the cumulative 707

distance traveled in all activity bouts) decreases as peri-domestic habitats increases; as the environment 708

becomes more resource rich, mosquitoes do not need to travel as far to fulfill their biological intent (their 709

current behavioral state). In contrast, absolute dispersion (the displacement of a mosquito between the 710

natal habitat they emerged from and where they died) stays relatively constant as a function of 711

peri-domestic habitats. This apparent discrepancy between the simulation results and intuition can be 712

understood by noting that while the percent of haunts that were considered peri-domestic changed 713

between the 26 landscapes, the spatial arrangement of haunts did not (distances and clusters were 714

preserved). Holding these spatial characteristics constant implies that observed differences are due solely 715

to changes in search patterns of mosquitoes as resources become more or less locally dense. 716

As noted in Figure 7, VC increased dramatically as peri-domestic habitats increased. It is notable that 717

at very low levels of peri-domestic habitats, the mean is strongly affected by a few outliers generating 718

large numbers of secondary bites; the effect of these outliers is dampened as peri-domestic habitats 719

increases and more humans contribute to secondary biting (Figure 10). Spatial dispersion of secondary 720

bites remains relatively constant across landscapes; and follows closely the absolute dispersion of 721

mosquitoes. This is primarily due to two effects. First, because VC was calculated assuming a pathogen 722
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with an EIP of 10 days, only mosquitoes that survived at least that long would be able to contribute 723

secondary bites, so the site that secondary bites would be successfully delivered to would be close to the 724

site of the eventual death of the mosquito. Additionally, because the spatial characteristics of the 725

landscape were not affected to a large extent by the rearrangement of resource overlap, although the 726

absolute value of VC changed dramatically, its spatial dispersion did not. 727

5 Discussion 728

Using individual-based models describing adult mosquito ecology and behavior in exquisite detail, we 729

have shown how mosquito bionomic parameters and dispersion arise from a set of mosquito behavioral 730

algorithms in response to multiple resources and their spatial arrangement. In particular, we have 731

rediscovered the importance of search as a critical factor determining both bionomics and dispersion; in 732

these models, search and dispersion are strongly affected by the co-distribution of resources [27]. The 733

resource landscape affects not just where mosquitoes do things, but also what they do. To put it another 734

way, the bionomic parameters of a model are jointly affected by innate traits that determine the 735

mosquito behavioral algorithm (i.e., by a species biology) and by the ecology. The resulting bionomic 736

parameters are a joint feature of both. 737

After more than one century of studying mosquito behavior, medical entomologists have assigned 738

approximate bionomic parameter values to most of the parameters for most of the dominant vector 739

species that transmit human infectious diseases. These have been assembled from hundreds of studies 740

conducted in various ways over several decades. Biology and genetics constrain the mosquito behaviors 741

giving rise to differences in behavior and differences in the average value of traits assigned to some 742

species. While there are differences among species in various species traits, our simulations suggest 743

important bionomic parameters must also be partly determined by the local resources and ecology. 744

There is, for example, a difference between anthropophily and anthropophagy: the former describes a 745

degree of preference and the latter an outcome of that preference expressed as mosquitoes choose from 746

available hosts. An important question to be resolved in future studies is which reported parameter 747

values for a species are in fact fairly robust to differences in ecology and which ones suffer from reporting 748

bias. If bionomic parameters proved to be robust to ecological differences, why? The difference between 749

species’ traits and their expression in context – a measure of species plasticity – are important for 750

transmission dynamics and control. 751

The ecological factors affecting vectors and transmission are part of the local heterogeneity that matters 752

for malaria transmission dynamics and the responses to control. The importance of local conditions was 753
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expressed eighty years ago by Hackett [28]: 754

Everything about malaria is so moulded by local conditions that it becomes a thousand 755

epidemiological puzzles. Like chess, it is played with a few pieces but it is capable of an 756

infinite variety of situations. 757

This has been quoted frequently by malaria epidemiologists, but it has been difficult to reconcile this 758

picture with the simple view of malaria arising from the elegant concepts of VC and entomological 759

inoculation rates, which summarize in a single number the factors that are most likely to affect 760

transmission. If malaria transmission dynamics and control is best described as a collection of puzzles to 761

be solved, and not effectively summarized by VC or EIR, then what other aspects of vector biology 762

matter? VC has a virtual hegemony in mechanistic models (where EIR is a derived concept), due partly 763

to its simplicity and sound logic [13]. While recognizing these concepts are, indeed, highly useful, and 764

that they summarize the first important dimension of transmission, there are other questions that arise 765

when these concepts are put into practice. What is the distribution of these parameters among 766

individuals in a population, or across space or time? How do these factors change and interact in 767

response to vector control? What ecological factors determine which modes of vector control are most 768

likely to work in context? The view of malaria as a chess game has, perhaps, been most apparent in the 769

variable responses of vector control, where small behavioral differences among species have affected the 770

rates of contact with interventions and thus the outcome of control. Our results suggest that fine-grained 771

heterogeneity in movement driven by the co-distribution of resources shape mosquito dispersion, and 772

that among-individual differences in VC and its associated dispersion will also have strong affects on 773

transmission. 774

A relevant lesson emerging from our analysis is how difficult it would have been to try and piece together 775

estimates of mosquito bionomic parameters by measuring just directly observable aspects of mosquito 776

behavior. In retrospect, it is remarkable that investigation of transmission by mosquitoes has been so 777

stable since it was jump-started by an intuitive leap by Ronald Ross [29]. Entomological work that 778

followed over the next decades iteratively refined Ross’s ideas culminating in a fully fledged theory of 779

transmission [4, 6], including field methods to measure a handful of relevant parameters. The large 780

number of computations required to compute state transitions suggests the relevance of any particular 781

direct observation of mosquito is only meaningful when it is measured along with all the other 782

parameters, and the importance of any particular behavior for transmission would thus probably differ 783

by context. It would probably have been extremely difficult to identify a metric like VC or any of the 784

key bionomic parameters from watching the messy behaviors of mosquitoes. At the same time, our 785

simulations have shown that it is important to challenge conventions and refine models; estimates of VC 786
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are, in all likelihood, relevant for transmission only if they take into account measures of the dispersion 787

of infectious bites [30,31]. 788

In constructing MBITES we went to great lengths to ensure we could simulate any individual activity 789

bout in nearly arbitrary complexity on landscapes of variable spatial resolution. Despite the enormous 790

complexity, what became obvious was that much of what occurs during a single activity bout can be 791

summarized by simple outcomes: death, failure or success to feed or oviposit, and resulting behavioral 792

state transitions. We conclude that most of the complexity occurring during a bout is important only 793

insofar as it affects outcomes, though it is possible that some events could affect other state variables 794

with lingering effects on future reproductive success. Landscape details, on the other hand, proved to be 795

enormously consequential for simulated outcomes. 796

Modeling mosquito behavior in exquisite detail can also help the study of pathogen transmission by 797

mosquitoes, help shed light on the effect sizes of vector control, and explain heterogeneity in the outcome 798

of control studies. Neither evidence nor theory alone could provide a sufficient basis for making any 799

educated guess about how the values of bionomic parameters vary in a different ecological setting or the 800

effect modification of setting on vector control. Ideally, a synthesis of existing studies would provide an 801

evidence base for understanding how mosquito biology is molded by its ecological context, and how the 802

ecological context and plasticity affects the outcomes of vector control. Existing studies do not 803

adequately characterize a vector species across multiple settings. Studies are generally too heterogeneous 804

in their design and implementation to be comparable across settings [32]. Few studies have identified 805

systematic differences in mosquito bionomics looking across ecological contexts, perhaps because there is 806

no theory to suggest what they should look for. These detailed models suggest the relevance specific 807

mosquito behavioral studies are relevant only if other observations about behaviors provide enough 808

context to add up to anything relevant for mosquito fitness or for transmission. In providing a synthesis, 809

these behavioral state models provide an in silico laboratory to fill some of the gaps required to 810

understand and synthesize much of the data on mosquitoes that is not directly related to estimation of 811

the basic bionomic parameters. 812

We have presented here a mathematical and computational framework for simulation and analysis that 813

can be used to investigate a broad range of questions about the interface between mosquito biology and 814

life-history traits, the local ecology, and vector control. This framework was designed to evaluate 815

heterogeneity and complexity through simulation, rather than through ad hoc approximation. While this 816

approach has some disadvantages over parametrically simple models, it fills an important need by 817

providing a way of testing whether those simple models cover all the relevant phenomena. MBITES 818

makes it possible to systematically investigate whether the behavior of individual-based models ever 819
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deviates from the behavior of parametrically simpler models of transmission, such as the 820

Ross-Macdonald or MBDETES. The high degree of realism can also provide other functionality, such as 821

power calculations for randomized control trials, investigation of bias and accuracy of field methods, in 822

silico investigation of the interactions among vector-based interventions, and calibration of effect sizes 823

versus coverage for vector-based interventions. 824
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Figure 1. Top) MBITES and MBDETES model mosquito behavioral states and state transitions

required for the gonotrophic cycle. The first two columnns describe the behavioral state, and the last

two columns describe the transitions. A mosquito is either searching for a blood host (F) or attempting

to blood feed (B), searching for aquatic habitat (L) or attempting to oviposit (O), or resting (R).

Transitions depend on whether the last bout was a success or failure, or an option for a mosquito to

refeed† or to lay a partial egg batch and skip oviposit‡. The next state also depends on whether a

mosquito decides to make an attempt or initiate a search∗. Bottom) In MBITES models, each

behavioral state has an associated activity bout that has a common structure, as illustrated in the

diagram. Each mosquito activity bout involves a sequence of four phases: launch, do an activity (either a

search or an attempt), land, and rest. The type of activity is determined both by its behavioral state

and by presence and availability of resources. A mosquito will stay (S) unless there are no resources

present or if the mosquito has become frustrated (∗), in which case it will initiate a search. If the

mosquito decides to stay, it makes a choice and an approach that may or may not succeed at what it was

trying to do. When a mosquito lands, it selects a micro-site for a resting spot from the set of possibilities

at that site. During the resting period, data from the last bout are logged, the behavioral state is

updated, and the waiting time to the next launch is determined. A mosquito enters the bout either after

emerging from aquatic habitat or after exiting its previous bout and surviving.
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Figure 2. The structure of a blood feeding attempt bout in MBITES, a mosquito activity bout in

which blood feeding is attempted. The flowchart follows the progression of a mosquito through simulated

events, from the launch (dark grey oval), choosing a host from the atRiskQ (aquamarine diamond), and

the events that follow depending on what sort of host was chosen (yellow rectangles). If a human is

chosen (or more generally, a blood host that is also a host for the pathogen), then each mosquito must

approach and attempt to probe (salmon rectangle) and then blood feed (red rectangle). If a non-human

host is, probing is ignored. Traps mimicking a blood host can also be chosen. After a blood meal (red

rectangle), a mosquito must land and choose a resting spot (yellow diamonds). A post-prandial resting

period follows a successful blood meal which has its own hazards (purple oval), including additional

hazards associated with a flight laden with blood, which may be followed by decision to feed again (dark

red diamond). Similarly, after failing the attempt (green pentagons to green rectangle), a mosquito must

land and choose a resting spot (yellow diamonds). At each step, it is possible to die (light grey ovals). At

any point when failure occurs or during landing, a mosquito could choose to leave the haunt and initiate

a search on the next bout. This condition is checked after completing the bout (pink diamond). At the

end of a bout, the mosquito’s behavioral state and other state variables are updated. The endpoint of

each bout is either death (grey ovals), a repeated blood feeding attempt (dark red oval) or a state

transition to either a blood feeding search (pink oval) or to oviposit (blue ovals).
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Figure 3. The structure of an egg laying attempt bout in MBITES, a msoquito activity bout in which

oviposition is attempted. The flowchart follows the progression of a mosquito through simulated events,

from the launch, choosing a habitat or trap from the eggQ (aquamarine diamond), and the events that

follow depending on whether the mosquito chose a habitat or a trap (yellow rectangles). If a mosquito

approaches the habitat, it could lay eggs. Alternatively, a mosquito could approach a trap and fail in the

approach (thus surviving) or die (light grey ovals). If a mosquito is deterred in the approach to its

habitat or the trap, it fails (green pentagons to green rectangle). After a successful approach to a

habitat, a mosquito lays eggs (blue rectangle). After laying eggs or failing, a mosquito must land and

survive (yellow diamonds). If not all eggs were laid, a mosquito can choose another habitat to lay (light

blue diamond). At any point when failure occurs or during landing, a mosquito could choose to leave the

haunt and initiate a search on the next bout. This condition is checked after completing the bout (pink

diamonds). At the end of a bout, the mosquito’s behavioral state and other state variables are updated.

The outcome of each bout is either death (light grey ovals), a repeated egg laying attempt bout (dark

blue ovals) or a state transition to either an egg laying search (light blue ovals) or a blood feeding

attempt (red or pink ovals).
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Figure 4. Comparison of results from MBITES and MBDETES under restricted (Markovian)

assumptions on waiting times and state transition probabilities. In each panel, MBITES is summarized

as a red histogram overlaid against the smooth density (in blue) predicted by MBDETES. In all cases

both mean and variance see excellent agreement, with MBITES fluctuating around MBDETES due to

finite sample size of mosquitoes in the stochastic simulation.
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Figure 5. Mosquitoes move among a set of points, so the distances for each hop are always selected

from among the set of pairwise distances among the haunts. Smoothed distribution (red line) and

density (blue area) functions are displayed for summary statistics calculated for one particular landscape

(the middle panel of Figure 6). The spatially averaged movement kernel (upper left) is simply the

probability of movement by distance, averaged over all haunts on the landscape. Cumulative movement

(upper right), gives the distribution of total distance traveled by mosquitoes over their entire lifetime,

and has a long right tail. Lifetime displacement (lower left) is the absolute displacement of a mosquito,

that is, the distance between the natal aquatic habitat they emerged from and the site at which their

died. Dispersion of VC (lower right) shows the distribution of secondary bites by distance, and follows

closely absolute displacement of mosquitoes. All plots are calibrated to the same x-axis for comparison.
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Figure 6. A visualization of 3 simulated landscapes at 0%, 50%, and 100% peri-domestic habitats.

Haunts that contain only blood feeding haunts are plotted as red circles, haunts that contain only

aquatic habitats are plotted as green triangles, and those haunts that contain both types of resources are

shown as blue squares (i.e., peri-domestic habitats). Dispersal kernels were calibrated as if this was an

area of about 100 km2.
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Figure 7. In MBITES, vectorial capacity (VC) is computed directly as the average number of infectious

bites (i.e., probing) arising from all the mosquitoes blood feeding on a single human on a single day; it is

effectively the number of pairs of events where a blood meal is followed at least EIP days later by a

mosquito probing, counting on all the humans. Summary VC (top row) and number of human blood

hosts (bottom row; referred to as the stability index by Macdonald) are shown by column for 0%, 50%,

and 100% peri-domestic habitats. Each histogram gives the distribution of VC or the number of human

blood hosts across mosquitoes for that percent peri-domestic habitats.
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Figure 8. top) Chord diagrams showing the empirical state transition matrices for three of the 26

experiments (0%, 50%, and 100% peri-domestic habitats); bottom) The time spent in each state. These

were calculated for each experiment by summing transitions for each mosquito between two states and

then averaging to produce a Markov transition matrix. The width of the directed edges between each

behavioral state is proportional to the probability of that transition, and the area on the perimeter of the

circle labeled for each state is proportional to the mean time spent in that state. The three chord

diagrams are accompanied by quasi-stationary probability distributions which give the asymptotic

distribution of how a mosquito spends time across behavioral states conditional on survival.
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Figure 9. Simulations in MBITES illustrate that all of the bionomic parameters are sensitive to the

proportion of peri-domestic habitats, which gives a measure of how frequently a mosquito must search.

The x-axis of each plot ranges from 0% to 100%, and each summary bionomic parameter is plotted as

mean (solid line), median (dashed line), and the shaded area covers the 20-80% quantile range of the

data. The distribution of number of blood hosts (upper right) exhibits significant right skew, such that

the mean exceeds the 80% quantile at low proportion peri-domestic breeding habitats. Because the

simulations are stochastic, the exact number of mosquitoes from which Monte Carlo estimates of the

bionomic parameters were computed varied somewhat over the 26 landscapes, the mean was 45,6579

mosquitoes with a standard deviation of 754 mosquitoes.
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Figure 10. In MBITES, vectorial capacity (VC) and its dispersion are highly sensitive to the

proportion of peri-domestic habitats. Interpretation of axes follows Figure 9, and each summary

bionomic parameter is plotted as mean (solid line), median (dashed line), and the shaded area covers the

20-80% quantile range of the data. Number of secondary bites (upper left) produced increases

dramatically as a function of peri-domestic habitats. Spatial dispersion (upper right) shows no strong

trend however, due to the strong clustering of haunts in the landscape (it largely follows the trend of

absolute mosquito dispersion (lower left), as opposed to cumulative movement (lower right). At low

percent peri-domestic breeding habitats, significant right skew in the distribution of VC pulls the mean

above the 80% quantile. Because the simulations are stochastic, the exact number of mosquitoes from

which Monte Carlo estimates of the bionomic parameters were computed varied somewhat over the 26

landscapes, the mean was 45,6579 mosquitoes with a standard deviation of 754 mosquitoes.
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9 Tables 906

m The number of female mosquitoes per human

f The blood feeding rate, per mosquito, per day

Q Proportion of blood meals on the pathogens’ hosts

g The mosquito death rate, per mosquito, per day

n Extrinsic Incubation Period (EIP), in days

λ = gm The number of female mosquitoes emerging, per human, per day

S = fQ/g The expected number of human blood meals per mosquito

P = e−gn The probability of surviving the EIP

Table 1. The five parameters comprising the classical formula for vectorial capacity (VC or denoted V),

describing the total number of infectious bites arising from all the mosquitoes feeding on a single human

on a single day under the assumptions of the Ross-Macdonald model [4, 6, 11]. The expected number of

blood meals on the pathogen’s hosts, summed over a mosquito lifespan, is given by the term S = fQ/g.

The probability of surviving the EIP is P = e−gn. Mosquito population density is m = λ/g. Under the

assumptions, the formula for VC is V = λS2P. In the Ross-Macdonald model, the entomological

inoculation rate, E , is related to VC by a formula: E = Vκ/(1 + Sκ) ≈ Vκ, where κ is the proportion of

bites on humans that infects a mosquito; the approximation holds when κ is small, such that mosquito

super-infection is rare. In MBITES, the same quantity can be computed directly by Monte Carlo

simulation.
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ΨX,Y TX,Y

L→ O
PL,O

1−PL,L

TL

1−PL,L

O → F
PO,F

1−PO,O−PO,LΨL,O

TO+PO,LΨL,OTL,O

1−PO,O−PO,LΨL,O

O → B
PO,B

1−PO,O−PO,LΨL,O

TO+PO,LΨL,OTL,O

1−PO,O−PO,LΨL,O

F → B
PF,B

1−PF,F

TF

1−PF,F

B → R
PB,R

1−PB,B−PB,F ΨB,F

TB+PB,F ΨF,BTF,B

1−PB,B−PB,F ΨF,B

F → R ΨF,BΨB,R TF,B + TB,R

O → R ΨO,F ΨF,R +
PO,F

PO,F +PO,B
(TO,F + TF,R) +

ΨO,BΨB,R
PO,B

PO,F +PO,B
(TO,B + TB,R)

L→ R ΨL,OΨO,R TL,O + TO,R

R→ R
∑

X 6=R PR,XΨX,R TR +
∑

X 6=R PR,XTX,R

Table 2. In MBITES, it is possible to compute the expected state transitions and waiting times from

any state to the next state. In MBDETES and limiting cases of MBITES, these single-state transition

expectations can be used to estimate the state transition probabilities and waiting times from one state

to every other state, including the length of a gonotrophic cycle, from resting to resting (i.e., from

R→ R). The table gives formulas for the probability of surviving to reach the behavioral state Y

starting from another state X, ΨX,Y , where X,Y ∈ {L,O, F,B,R}. Note that PX,Y denotes the single

activity bout probability of a state transition. It also gives the expected waiting time to Y from X is

TX,Y . These formulae are expressed in terms of the single bout state transitions and waiting times, PX,Y

and TX = γ−1
X (or they can be by making a simple substitution from one of the formulas appearing in

the table above it.)
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