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Abstract 9 

Ocean microbes are responsible for about 50% of primary production on Earth, and are strongly 10 

affected by environmental resource availability. However, selective forces resulting from 11 

environmental conditions are not well understood. We studied selection by examining single-12 

nucleotide variants in the marine environment, and discovered strong purifying selective forces 13 

exerted across marine microbial genes. We present evidence indicating that this selection is 14 

driven by the environment, and especially by nitrogen availability. We further corroborate that 15 

nutrient availability drives this 'resource-driven' selection by showing stronger selection on highly 16 

expressed and extracellular genes, that are more resource-consuming. Finally, we show that the 17 

standard genetic code, along with amino acid abundances, facilitates nutrient conservation by 18 

providing robustness to mutations that increase nitrogen and carbon consumption. Notably, this 19 

robustness generalizes to multiple taxa across all domains of life, including the Human genome, 20 

and manifests in the code structure itself. Overall, we uncover overwhelmingly strong purifying 21 

selective pressure across marine microbial life that may have contributed to the structure of our 22 

genetic code.  23 
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Introduction 24 

Ocean microbes, the largest group of organisms on the planet1, are involved in key cycling of 25 

nutrients that make up all living systems. They account for nearly half of the carbon compound 26 

synthesis on Earth, thereby producing about 50% of breathable oxygen2. These marine microbes 27 

also cycle nutrients to perform numerous other important roles, such as biodegradation of 28 

complex organic material and fixation of atmospheric nitrogen, while flourishing in a wide range 29 

of environments with varying ambient conditions such as oxygen and nitrogen levels, light and 30 

temperature3,4. Nonetheless, and despite their importance in global energy flux and nutrient 31 

cycling, evolutionary forces acting on ocean microbes are not fully understood4. 32 

With rapidly changing climate and environment, understanding the types of stress exerted on 33 

microbes in marine habitats is of paramount importance. Recent studies4,5 provide evidence of 34 

high variability in the core genomic properties of marine microbes, including GC content and 35 

genome size, suggesting that this variability is linked to the concentrations of nutrients in the 36 

environment. Nitrogen and carbon are major limiting factors in the marine environment and their 37 

concentrations are typically inversely correlated6. It was shown that in low-nitrogen environments 38 

there is lower incorporation of nitrogen-rich side chains into proteins, a strong A+T bias in 39 

nucleotide sequences, and smaller genome sizes, suggesting that nitrogen conservation is a 40 

strong selective force7. An opposite trend was shown for carbon4. Previous studies7,8 identified a 41 

purifying selective pressure associated with resource conservation, which we term ‘resource-42 

driven’ selection. Such ‘resource-driven’ selection against incorporation of nutrients in a resource-43 

limited environment may be further propagated by the high effective population sizes observed in 44 

the open ocean, where even slightly deleterious mutations are rapidly selected against9. 45 

Notwithstanding, the ways in which resource-driven selection manifests in protein-coding 46 

sequences are not fully elucidated. 47 
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To illuminate mechanisms through which resource-driven selection affects protein-coding genes, 48 

we amalgamated measurements of environmental conditions with publicly available marine 49 

metagenomic data from oceanic habitats across the globe (Fig. 1A)3,10. We analyzed purifying 50 

selection in 746 such marine samples by devising a tailored computational pipeline examining 51 

single nucleotide polymorphisms. This enabled us to systematically associate purifying selection 52 

with related environmental measurements. We revealed a strong purifying selective pressure, 53 

which seems to be acting in a similar fashion across most marine microbial genes. This purifying 54 

selection is associated with environmental nutrient concentrations, specifically nitrate. We further 55 

show that resource-consuming genes, which are highly expressed or code for extracellular 56 

proteins, are under stronger resource-driven selection as compared to other, less resource-57 

consuming genes. We analyze mutations in nitrate-rich as compared to nitrate-poor waters and 58 

show that this selection is likely characterized by specific amino acid preferences depending on 59 

environmental conditions. Finally, we demonstrate that the distribution of amino acids, along with 60 

the structure of the genetic code, provides robustness against random mutations that increase 61 

carbon and nitrogen incorporation into protein sequences. We extend this observation to codon 62 

distributions across many diverse life forms, and suggest that nutrient conservation is encoded in 63 

the standard genetic code, which is robust to mutations that result in higher nitrogen and carbon 64 

utilization.  65 
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Results 66 

 67 

Single nucleotide polymorphisms in marine microbial genes reveal strong purifying 68 

selection 69 

To better understand the underlying mechanisms governing resource-driven selection acting on 70 

marine microbes, we sought to characterize, at the single nucleotide level, how coding sequences 71 

of marine microbes are affected by resource availability in their environment. To this end, we 72 

devised a computational pipeline that calculates metrics of selection from marine metagenomic 73 

samples (Fig. 1B). We downloaded metagenomic sequencing data from 746 samples from the 74 

Tara oceans3 (n=136); bioGEOTRACES10 (n=480); Hawaii Ocean Time-series10 (HOT; n=68); 75 

and Bermuda Atlantic TimeSeries10 (BATS; n=62) expeditions (Fig. 1A; Methods). We aligned 76 

these reads to the Ocean Microbiome Reference Gene Catalog (OM-RGC)3 and searched for 77 

single nucleotide polymorphisms (SNPs) in genes that had sufficient high-quality coverage (Fig. 78 

1B; Methods). Overall, we found 71,921,864 high-confidence SNPs in 1,590,843 genes.  79 

Next, to quantify purifying selection on different gene functions, we annotated genes from the OM-80 

RGC database to inform their functional group membership with either KEGG orthology (KO) or 81 

eggNOG orthologous group (OG; Methods). We then calculated, using called SNPs per 82 

orthologous group in each of the samples, the ratio of non-synonymous to synonymous 83 

polymorphisms11,12 (pN/pS; Methods). We used pN/pS rated to approximate purifying selection at 84 

the population level as dN/dS ratios, which are typically used to characterize these stresses12, 85 

were not applicable in this setting (Methods). pN/pS quantifies the rate of nonsynonymous 86 

polymorphisms (pN), which lead to a change in the resulting amino acid, normalized to the rate 87 

of synonymous polymorphisms (pS), which maintain the coded amino acid.  88 
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As pN/pS is a proxy for the magnitude of purifying selection exerted on protein-coding sequences, 89 

we sought to utilize it to evaluate the selective forces acting on marine microbial functions. The 90 

rate of non-synonymous to synonymous polymorphisms was on average, across samples, 0.074 91 

(CI [0.072, 0.075]) across all OGs and 0.079 (CI [0.077, 0.080]) across all KOs, similar to 92 

previously reported pN/pS ratios across different microbial genomes in the human microbiome11 93 

(Fig. 1C,D). With values close to zero indicating very strong selection against amino acid changes, 94 

these findings imply that purifying selection is on the same scale in free-living marine organisms 95 

as compared to host-associated microbes in the human gut. While gut microbes are expected to 96 

be under strong purifying selection in order to keep functioning in the host-associated niche13, the 97 

source of this strong purifying selection on ocean microbes is not well understood. 98 

 99 

Figure 1. Calculation of evolutionary metrics from marine metagenomic samples. (A) 100 
Geographical overview of the samples used in this study. (B) Illustration of our computational pipeline. 101 
(C,D) Histogram of pN/pS rates for eggNOG orthologous groups (OG; C) and  KEGG  orthologs (KO; 102 
D) across all marine samples.  103 
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Strong resource-driven selection apparent across marine microbial genes 104 

To quantify the effects of environmental conditions on selective forces acting on marine microbial 105 

genes, we extracted measurements regarding the environment in which each sample was taken. 106 

This included the depth of the sample, water temperature and salinity, as well as concentration of 107 

the key molecules nitrate, nitrite, oxygen, phosphate and silicate (Fig. S1A-H; Methods). All these 108 

measurements of environmental conditions are highly correlated with each other (Fig. S1I), and 109 

also presented consistent correlation patterns with pN/pS of many KEGG and eggNOG orthologs 110 

(Fig. S2), with low pN/pS at shallow depths and low nitrate concentrations. We therefore sought 111 

to estimate the overall variance explained by the environment while accounting for these 112 

covariations. To this end, we used a linear mixed model (LMM) with variance components, 113 

commonly used in population genetics 14 (Methods). We defined the environmental covariates as 114 

random effects in order to quantify the fraction of variance in pN/pS that is explained by resource 115 

availability (i.e., environmental explained variance; EEV; Methods). Across both KEGG and 116 

eggNOG orthologs we found that a substantial fraction of the variance in pN/pS can be attributed 117 

to the environment, where across all orthologs this effect is significantly bigger than zero (Fig. 118 

2A,B; Mann-Whitney U test  P < 10-16).  119 

Different environmental niches may harbor different taxa with different trophic interactions that 120 

could lead to differences in selective pressures. Thus, we sought to ensure that these 121 

associations between pN/pS and the environment are not confounded by organismal differences 122 

across different depths and nitrate concentrations. To this end, we analyzed genes belonging 123 

exclusively to the genus Synechococcus (Methods). We calculated pN/pS across all of the coding 124 

sequences combined and found a significant positive correlation with nitrate concentrations 125 

(P<10-20; Fig. S3A). To further validate that this correlation does not stem from the different 126 

effective population sizes in the gradient of environmental nitrogen, we divided the samples into 127 

five identically sized groups, based on environmental nitrate concentrations while constraining the 128 
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scope of each group to genes present in at least half of the samples. We show that an association 129 

of pN/pS with nitrate extends to specific niches across the nitrocline, i.e., in concentrations higher 130 

than 1 μmol/kg (P<0.05; Fig. S3B). These results demonstrate the existence of pN/pS gradient 131 

as a function of nitrate concentrations, even in a single taxonomic group in a specific 132 

environmental niche. This indicates that correlations of pN/pS with environmental variables are 133 

not driven exclusively be organismal properties or by differences in trophic conditions across 134 

environments, but rather exhibit a significant trend even within a single taxon, in specific niches. 135 

Genes are not stand-alone entities, but are rather coded as a sequence in the genome of a 136 

microbe. We therefore accounted for a potential non-random association structure between 137 

pN/pS rates of different orthologs. To this end, we used a different setting of the LMM, now 138 

including both the environmental covariates and pN/pS rates of all other orthologs. Even after 139 

accounting for potential non-random association structure between pN/pS rates of different 140 

orthologs due to clonal reproduction, the environmental effect was still significantly bigger than 141 

zero (P<0.05). In particular, there is an overlap of over 40% in orthologs that are top ranked in 142 

terms of EEV between these two model settings. Overall, we observed a very strong association 143 

between environmental measurements and the magnitude of purifying selection exerted on most 144 

orthologous gene groups. We also observed an association with environmental parameters 145 

across many functional categories, including ‘housekeeping’ genes that are important for survival 146 

in any given niche, and wished to further elucidate potential mechanisms that can explain it.  147 

 148 

Environment-associated selection is stronger in resource-consuming genes 149 

Previous studies4,7 suggested that random mutations that lead to incorporation of additional 150 

nutrients to the protein sequences of microbes result in a selective disadvantage. This implies 151 

that genes whose protein sequences consume more resources would be under stronger 152 

selection. Specifically, highly expressed genes would consume more resources and will therefore 153 
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be under stronger purifying selection7,8,15. In these genes, a mutation leading to incorporation of 154 

additional resources would be magnified, as one highly transcribed DNA sequence could translate 155 

to thousands of proteins, each consuming more resources. To quantitatively corroborate this 156 

hypothesis and examine whether these underlying forces are reflected in the above associations 157 

with pN/pS rates, we used an additional expression dataset for marine microbial genes 16 to rank 158 

KEGG orthologs by their mean expression (Methods). We found that the most highly expressed 159 

genes had a significantly higher fraction of the variance in their pN/pS explained by the 160 

environment, as compared to the least expressed ones (Fig. 2C; Mann-Whitney U test P<10-9). 161 

We found a significant difference between the gradient of pN/pS rates, as a function of depth 162 

(highly correlated with nitrate, nitrite and oxygen; Fig S1I), in highly expressed genes, as 163 

compared to least expressed ones (Fig. S4A; Mann-Whitney U test P<10-5), where the former 164 

increased more sharply with depth. A few notable examples for genes with high expression and 165 

environmental explained variance, as compared to other KEGG KOs, are the β subunit of RNA 166 

polymerase (K03043; EEV = 0.82, 0.33 in the first and second LMM settings, respectively; ranked 167 

first in both model settings), the β’ subunit (K03046; EEV  = 0.8, 0.28; ranked in the top five in 168 

both settings) and  a peptide/nickel transporter involved in quorum sensing (K02035; EEV  = 0.81, 169 

0.33; ranked second in both settings).  170 
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 171 

Figure 2. Analysis of pN/pS rates reveals strong resource-driven selection. (A) Left, violin plot of 172 
the variance of eggNOG OG pN/pS rates that was explained by the environment as compared to the 173 
same data with shuffled labels; Right, mean variance explained in unshuffled data (red) as compared 174 
to a histogram (blue) of mean variance explained in 100 executions with shuffled data. (B) Same as 175 
A, for KEGG KO pN/pS. (C) Box plots (line, median; box, IQR; whiskers, 5th and 95th percentiles) of 176 
variance in pN/pS explained by the environment in the 100 lowest and highest expressed KEGG KOs. 177 
(D) Depiction of mutation flux (Methods) common in high versus low environmental nitrate 178 
concentrations, affecting amino acid nitrogen (left) and carbon (right) content. Yellow arrows, increase 179 
in resource; blue arrows, decrease in resource; arrow thickness corresponds to number of atoms 180 
changed by mutation. ****, Mann-Whitney U p<10-9. 181 

 182 

We additionally hypothesized that genes coding for extracellular proteins will have a similar 183 

pattern as in this case, the resources excreted from the cell cannot be recycled. We found the 184 

same pattern of significantly higher EEV in extracellular protein-coding genes as compared to 185 

other gene groups (Methods; Fig. S4B; P<0.05). Overall, our results indicate that these genes 186 

exhibit higher ‘resource sensitivity’, manifested by higher variance explained by the environment, 187 
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potentially due to their high expression levels. This finding provides a data-driven evolutionary 188 

perspective to theory and experiments showing lower resource incorporation in highly expressed 189 

genes7,8. In summary, the variation in resource-consuming genes, (i.e., highly expressed and 190 

extracellular protein-coding), further strengthens our results regarding the breadth of resource-191 

driven selection.  192 

 193 

Resource-driven selection exerts a strong effect on protein-coding sequences 194 

We next sought to quantify the effects of this resource-driven selection on protein-coding 195 

sequences. To this end, we compared the codon mutation frequencies in low- and high-nitrate 196 

samples, after accounting for simplex-related confounders (Methods), and found significant 197 

differences in codon mutation frequencies (Fig. S5A-C). We sought to examine the typical change 198 

in nutrient consumption in varying nitrate concentrations. We thus defined mutation flux, as the 199 

ratio between a codon mutation and its reverse, and estimated it using the log-odds ratio between 200 

the two (e.g., 𝑙𝑜𝑔	(𝑝(𝐴𝐴𝐴 → 𝐴𝐴𝐶)/𝑝(𝐴𝐴𝐶 → 𝐴𝐴𝐴)). Notably, across all the mutations significantly 201 

more prevalent in samples from high nitrate environments (Methods), averaged across amino 202 

acids, we find a significant total increase in nitrogen (Fig. 2D; 18 N atoms summed across all 203 

significant amino acid changes, P=0.0082), decrease in carbon (Fig 2D; -37 atoms, P=0.0165), 204 

decrease in sulfur (-6 atoms, P=0.009), a significant decrease in molecular weight (-508.91 g/mol, 205 

P=0.0193) and a non-significant decrease in oxygen (-6 atoms, P=0.1505). These results indicate 206 

that the lower the nitrate concentrations are, the stronger the selection against mutations leading 207 

to higher nitrogen incorporation in protein sequences. 208 

While nitrate concentrations increase with depth (Fig. S1I), dissolved organic carbon 209 

concentrations typically decrease6. Our results are supported by previous observations regarding 210 

genomic and proteomic changes associated with environmental concentrations of nitrate4. 211 

Mutations in nitrate rich and, typically, carbon poor environments were shown to drive an increase 212 
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in genomic GC content, accompanied by higher rates of nitrogen incorporation and lower rates of 213 

carbon incorporation into protein sequences. Here we show, in high resolution, the typical 214 

mutations that underlie this phenomenon (Fig. 2D; Fig. S5D). As we base our analysis on pN/pS 215 

rates, a proxy for the magnitude and direction of selection exerted on coding sequences, we 216 

suggest that the differences observed in gene GC content across varying nitrate concentrations 217 

are inseparable from changes to the proteome, and are possibly the result of resource-driven 218 

selection exerted on these coding sequences. 219 

 220 

Resource-conservation as an optimization mechanism in the genetic code 221 

The standard genetic code is known to be highly efficient in minimizing the effects of 222 

mistranslation errors and point mutations17–20. This optimality is prominent among theories 223 

regarding the origin of the genetic code21–24. According to the theory of error minimization, 224 

selection to minimize the adverse effect of point mutations and translation errors was the principal 225 

factor governing the evolution of the genetic code25–32. As a quantitative exploration of this theory 226 

requires a well-defined cost function, a few measures of amino acid fitness were previously 227 

suggested (e.g., PR scale, Hydropathy index) based on stereochemical theories and hydropathy 228 

properties33–36. As we have observed strong patterns of selection for specific amino acids in 229 

nutrient-limited environments, we hypothesized that resource conservation may also be a factor 230 

in code error minimization. 231 

Specifically, we hypothesized that the strong resource-driven selection, whose signature is visible 232 

on protein-coding sequences across marine functional groups, may also have resulted in a 233 

resource-optimized genetic code, such that the expected cost of a random mutation, in terms of 234 

added resources, is minimized. To rigorously test this hypothesis, we first defined a cost function 235 

for each element 𝑒 (e.g., carbon, nitrogen), such that the ‘tariff’ of a single mutation is the 236 

difference in the number of atoms before and after the mutation. As an example, a missense 237 
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mutation from codon CCA to codon CGA results in an amino acid change from proline to arginine, 238 

and an increase of 3 nitrogen atoms and one carbon atom, setting the nitrogen cost of such 239 

mutation to 3 and the carbon cost to 1 (Fig. 3A).  240 

To estimate the cost of a random mutation on each element, across the entire genetic code, we 241 

calculated, for nitrogen, carbon and oxygen, the Expected Random Mutation Cost (ERMC) for the 242 

standard genetic code 𝑉!: 243 

𝐸𝑅𝑀𝐶"(𝑉!) 	= 	 2 𝑃(𝑣)P(𝑚𝑢𝑡(𝑣, 𝑣′))c"#(𝑣, 𝑣′)
$,$&∈(<

 244 

Where 𝑃(𝑣)	is the abundance of codon 𝑣, calculated from all marine samples; P(𝑚𝑢𝑡(𝑣, 𝑣′))	is the 245 

probability of mutation from codon 𝑣 to codon 𝑣′, set to be the relative abundance of the single 246 

nucleotide mutation driving this codon change (e.g. for mutation from GCA to CCA, we use the 247 

abundance of G-to-C transversions), calculated from all mutations observed in fourfold 248 

degenerate codons to avoid sites under strong selection; and c"#(𝑣, 𝑣′) is the ‘tariff’ of a single 249 

mutation if an atom of element 𝑒	has been added to the post-mutation amino acid (Methods). For 250 

the standard genetic code, and typical codon abundances and mutation rates calculated from 251 

marine microbes, we report an ERMC of 0.440, 0.158 and 0.163 for carbon, nitrogen and oxygen 252 

respectively, corresponding to an average increase of this number of atoms per random mutation.  253 

To check if the genetic code, along with codon abundances and mutation rates in marine 254 

microbes, is indeed robust to resource-consuming mutations, we compared it to other hypothetical 255 

codes. To this end, we simulated alternative genetic codes by randomizing the first and second 256 

position in all codons, while constraining the permutation in stop codons (Methods), creating a 257 

null distribution of ERMC. We found that the standard genetic code, common to most life forms, 258 

is parsimonious in terms of carbon and nitrogen utilization, given a random mutation, manifested 259 

by minimization of the ERMC for nitrogen (Fig 3B; ERMCN P=0.0153) and carbon (Fig. 3B; ERMCC 260 
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P=0.0109), while in the ERMC for oxygen we did not find a significant trend (Fig. 3B; P=0.8659). 261 

Remarkably, only two out of 10,000 randomized genetic codes were more resource-robust than 262 

the standard genetic code in conservation of nitrogen and carbon together (P=0.0002). 263 

Nonetheless, these alternative codes are less conservative than the standard code in maintaining 264 

hydrophobicity and hydrophilicity of amino acids given a random mutation (Methods; Fig. S6). 265 

They may therefore lead to proteins that are more susceptible to structural changes in the event 266 

of a random mutation, as was postulated previously in theories governing the evolution of the 267 

genetic code.  268 

Finally, we sought to confirm that our elemental cost function is not confounded by traditional 269 

properties of amino acids such as the polar requirement (PR) and hydropathy index33–36. To this 270 

end, we calculated the ERMC using these common cost functions for the standard genetic code 271 

and for simulated alternative ones, and compared the overlap between traditional cost functions 272 

and our elemental cost functions (Methods). For both cost functions, we found that optimality in 273 

terms of carbon or nitrogen utilization implies lack of optimality in polar requirement or in 274 

hydropathy (Table S1 nitrogen-PR, P<10-16; nitrogen-hydropathy, P<10-4; carbon-PR, P<10-7; 275 

carbon-hydropathy, P<10-20). This result indicates that carbon and nitrogen conservation in the 276 

genetic code is not confounded by previously reported optimization properties such as hydropathy 277 

and PR. Altogether, these results indicate resource optimization in marine microbes is driven by 278 

the structure of the genetic code, alongside specific amino acid choices.  279 
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 280 

Figure 3. Resource-conservation is facilitated by the genetic code. (A) Nitrogen (left), carbon 281 
(center) and oxygen (right) content of different amino acids depicted along their positions in the 282 
standard genetic code. (B) Histograms of the expected random mutation cost (ERMC), in 10,000 283 
random permutations of the genetic code for nitrogen (left, blue), carbon (center, black) and oxygen 284 
(right, red). Green bar marks the ERMC of the standard genetic code, ERMC(Vs), for each of the 285 
elements. (C) Heat map of ERMCCN P-values across 39 organisms and 11 transition:transversion 286 
rates. Organisms in each of the groups are ordered according to the GC content of their coding 287 
sequences.  288 
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The genetic code facilitates resource conservation across kingdoms 289 

To show that the robustness of the genetic code in terms of resource-consumption was not limited 290 

to our dataset and analytic approach, we calculated the ERMC of 187 species of genera 291 

Prochlorococcus and Synechococcus. We calculated codon abundances and mutation rates 292 

using prior knowledge of both protein-coding sequences5 and the published 293 

transition:transversion rate of 2:137 (Methods). By testing the ERMC of the standard genetic code 294 

against a null distribution generated, as before, given these known parameters rather than ones 295 

inferred from marine samples, we were able to reveal significant conservation of carbon, nitrogen, 296 

and both elements combined (Fig. S7A; ERMCC mean P=0.013, P=0.020; ERMCN mean 297 

P=0.049, P=0.032; ERMCCN P=0.0004, P=0.0007 for Prochlorococcus and Synechococcus, 298 

respectively). To account for inaccuracies and variation in the known parameters, we next 299 

calculated the ERMC null distribution for a wide range of transition:transversion rates. We show 300 

that the ERMC of the standard genetic code remains significantly conserved for nitrogen, carbon, 301 

and both elements combined for most physiological transition:transversion rates (Fig. S7B), 302 

indicating that the structure of the genetic code and codon abundances of organisms are the 303 

driving force behind genetic code optimization. 304 

To explore whether this optimality in the genetic code in terms of nutrient conservation extends 305 

across different lifeforms, we performed a similar calculation using codon abundances from 39 306 

organisms across all domains of life, including all human protein-coding sequences, and tested a 307 

range of transition:transversion rates (Methods). We find that, similarly to marine microbes, the 308 

genetic code features optimization in terms of resource utilization for all tested organisms, 309 

manifested by a significant minimization of the combined ERMC of nitrogen and carbon in all 310 

transition:transversion rates tested (P<0.01, Fig. 3C). Moreover, we find significant optimization, 311 

albeit of a lower magnitude, even in the theoretical case where all codon abundances are the 312 

same (Fig. S7C). The codon abundances of a great majority of organisms also demonstrate 313 
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significant minimization of ERMC in nitrogen (Fig. S7D) and carbon (Fig. S7E), given a random 314 

mutation, for a wide range of transition:transversion rates. These results indicate that resource 315 

optimization in the genetic code transcends taxonomy, codon choices, and mutation rates. It 316 

shows that the genetic code may have structural properties that make it robust in terms of 317 

resource-consumption. It is also possible that amino acid and codon usage in organisms has 318 

evolved to lower nutrient consumption in case of a random mutation, informed by the structure of 319 

the code.  320 

 321 

Structural principles drive optimization in the genetic code 322 

We next wished to examine the organizing principles that drive the strong resource optimization 323 

evident in the standard genetic code. We observed that codons of the nitrogen-rich amino acids 324 

histidine, glutamine, asparagine, lysine and arginine span only two nucleotides in their first 325 

position and two in their second position. We define this organization to be a ‘square’ arrangement 326 

(Fig. 4A; Methods), and hypothesize that, as compared with other arrangements, it amplifies 327 

nitrogen conservation. Specifically, in the square arrangement, codons coding for some amino 328 

acids (alanine, valine, phenylalanine, and several leucine and serine codons) require at least two 329 

mutations to increase the number of nitrogen atoms in the resulting amino acid. This is in contrast 330 

to other hypothetical arrangements, including a ‘diagonal’ arrangement in which nitrogen-rich 331 

amino acid codons span all possible nucleotides in the first and second positions (Fig 4A; 332 

Methods). We suggest that the diagonal arrangement would be nutrient-wasteful, as in these 333 

arrangements a single mutation could increase the nitrogen content of a protein sequence in more 334 

than one way. To rigorously test this hypothesis, we generated 10,000 random genetic codes, 335 

with 220 arrangements happening to embody a square structure, and 127 a diagonal one. We 336 

found that, when compared to all other possible arrangements, square arrangements present a 337 

significantly lower ERMC (Fig 4A; Mann-Whitney U P<10-10) while diagonal arrangements exhibit 338 
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a significantly higher ERMC (Fig. 4A; Mann-Whitney U P<10-10). This result demonstrates that 339 

resource optimization in the genetic code is driven by structural principles, perhaps underlying 340 

the significant optimization observed across kingdoms. 341 

 342 

Figure 4. Structural properties and codon usage bias underlying optimality in the genetic code. 343 
(A) Box plots (line, median; box, IQR; whiskers, 5th and 95th percentiles) of ERMCN of square 344 
arrangements (left) and diagonal arrangements (right, Methods), as compared to all other 345 
arrangements (center) out of 10,000 randomized arrangements of the code. (B) Violin plot of codon 346 
usage among 187 species of Prochlorococcus and Synechococcus showing significant preference of 347 
threonine codons ACT and ACC as compared to ACA and ACG, and of isoleucine codon ATT as 348 
compared to ACA. ****, P<10-10. 349 

 350 

Finally, we hypothesized that codon usage for a single amino acid may also be biased due to 351 

differential cost of a random mutation for each codon. We therefore examined all amino acids 352 

coded by codons with adenine in their first position, focusing on codon usage of the amino acid 353 

threonine. We note that a C-to-G transversion in the second position for codons ACT and ACC 354 

yields serine (AGT and AGC, respectively), and that the same mutation for codons ACA and ACG 355 

yields arginine (AGA and AGG, respectively; Fig. 4B, inset). As arginine has higher carbon and 356 

nitrogen content than serine, and lysine a higher carbon content than asparagine, we 357 

hypothesized that following a nutrient-conservative model, codons ACT and ACC will have a 358 

higher abundance than codons ACA and ACG, respectively, given a known genomic GC content. 359 
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We thus examined codon usage in 187 Prochlorococcus and Synechococcus strains, and show 360 

a significantly higher use of ACT as compared to ACA (Fig 4B; Wilcoxon signed-rank test P<10-361 

20) and ACC as compared to ACG (Fig 4B; Wilcoxon signed-rank test P<10-20). Similarly, 362 

Isoleucine codon ATT has higher abundance as compared to ATA (Fig 4B; Wilcoxon signed-rank 363 

test P<10-20). These results demonstrate that resource conservation is a central driving force in 364 

selection processes guiding codon usage and may affect not only protein sequence but also 365 

cellular translation efficiency. 366 

 367 

Discussion 368 

In this work, we use the proxy of pN/pS rates to show strong purifying selection acting upon 369 

protein-coding genes in the marine environment. We demonstrate that a substantial fraction of 370 

the variance in pN/pS rates could be attributed to environmental factors, and highlight a strong 371 

association of these rates with nitrate concentrations. We show that the variance in pN/pS rates, 372 

across resource-consuming genes (i.e., highly expressed and extracellular protein-coding), can 373 

be attributed to environmental factors, suggesting that stronger resource-driven selection is 374 

exerted upon them. Using single nucleotide polymorphisms from across marine samples, we 375 

characterize the typical mutations in nitrate-rich versus nitrate-poor environments and show that 376 

these drive incorporation of additional nitrogen-rich amino acids and fewer carbon-rich amino 377 

acids to protein sequences. Finally, we provide evidence that the standard genetic code, shared 378 

among most lifeforms, facilitates resource conservation, demonstrating that along with codon 379 

choices, it is conservative in incorporating additional atoms of nitrogen and carbon given a random 380 

mutation. Notably, we show, across tens of thousands of simulated genetic codes, that the 381 

standard genetic code surpasses almost all other random simulated codes in conservation of 382 

nitrogen and carbon, across multiple taxa from all domains of Life and across multiple codon 383 

choices and mutation rates. 384 
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Hypotheses regarding the origin of the genetic code include stereochemical affinity between a 385 

codon or anticodon and their amino acid38,39; a frozen accident theory24, relying on the fact that 386 

the code is highly immutable; a co-evolution of the genetic code with the emergence of amino 387 

acid-producing biosynthetic pathways22; and an early fixation of an optimal genetic code, 388 

suggesting that the code evolved under selection for error minimization40. Our observations are 389 

in line with the latter theory of optimality, and suggest that the genetic code may have been 390 

optimized also for nutrient conservation. While we do not know the nature of nutrient cycling in 391 

the primordial ocean, we hypothesize that scarcity of nitrogen and carbon that are common now 392 

may have also prevailed alongside early lifeforms. Thus, an organism harboring a nitrogen- and 393 

carbon-efficient genetic code would have had a selective advantage over its peers, especially in 394 

the absence of fully evolved DNA mutation repair mechanisms.  395 

We note that while we observe resource optimization for nitrogen and carbon conservation in the 396 

standard genetic code, oxygen conservation is not optimized. We offer several hypotheses 397 

regarding this lack of optimization. First, it is possible that since oxygen is highly abundant in 398 

organic molecules, it is less of a limiting factor as compared to carbon and nitrogen and therefore 399 

its optimization does not confer a selective advantage. Another option is that oxygen-rich amino 400 

acids may function in cellular processes that are independent of protein synthesis and are 401 

therefore more readily available and thus not optimized. Prominent examples for this hypothesis 402 

are aspartate, which also performs an important function in the malate-aspartate shunt, and 403 

glutamate, which plays a role in countless cellular processes.  404 

Overall, by using publicly available data on ocean microbes and their corresponding 405 

environmental measures, we were able to discern strong purifying selective pressure which 406 

shapes marine microbial life, and may have even shaped the structure of the genetic code that 407 

was since preserved for billions of years. With the advent of new multi-omic data from 408 
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environmental studies, we will be able to better divulge the intricate relationships of microbes with 409 

a rapidly changing global environment.  410 
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Methods 411 

 412 

Marine microbiome samples 413 

Marine samples collected with Tara oceans3, bioGEOTRACES10, the Hawaii Ocean Timeseries 414 

(HOT) and the Bermuda Atlantic Timeseries Series (BATS)10 were downloaded from ENA with 415 

accessions ENA:PRJEB1787 (TARA oceans prokaryotic fraction), ENA:PRJNA385854 416 

(bioGEOTRACES) and ENA:PRJNA385855 (HOT/BATS), each sample with a minimum of 5 417 

million reads. 418 

 419 

Mapping of Illumina reads to reference gene sequences 420 

Samples were mapped to nucleotide sequences from the Ocean Microbiome Reference Gene 421 

Catalog (OM-RGC)3 using bowtie2 with parameters --sensitive -a 20 --quiet -p 8 and saved as a 422 

bam file using the ‘samtools view’ command. As gene sequences are relatively short, reads from 423 

both ends of the metagenomic sequencing samples were mapped separately, and reunited prior 424 

to variant calling.  425 

 426 

Determining metagenomic read assignment probability 427 

We determined the probability of assignment of metagenomic reads to marine microbial genes 428 

using the Iterative Coverage-based Read-assignment Algorithm (ICRA)43 with parameters 429 

max_mismatch=12, consider_lengths=True, epsilon=1e-6, max_iterations=30, min_bins=4, 430 

max_bins=100, min_reads=10, dense_region_coverage=60, length_minimum=300, 431 

length_maximum=2e5, use_theta=False. To prevent spurious mapping, alignments were 432 

considered for downstream analysis only if the probability of alignment was higher than 0.9. 433 
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Variant calling 434 

Alignments from both ends of all sequencing runs pertaining to the same sample were united 435 

using the samtools cat command and sorted using the samtools sort command, with default 436 

parameters. 437 

To facilitate variant calling in tractable timescales, each filtered, untied and sorted .bam file was 438 

split into chunks, each encompassing 10,000 reference sequences (out of about 40 million 439 

reference sequences). For each such batch of reference sequences, we called variants across 440 

all samples using the following command: bcftools mpileup --threads 4 -a FORMAT/AD -Q 15 -L 441 

1000 -d 100000 -m 2 -f <OM-RGC fasta> <bam filenames> | bcftools call --threads 4 -Ov -mv -o 442 

<output vcf>, where <OM-RGC fasta> is the fasta file of OM-RGC nucleotide sequences, <bam 443 

filenames> are the filenames of all .bam files pertaining to the reference sequence chunk in 444 

question, and <output vcf> is the output .vcf file pertaining to that same chunk. 445 

Single nucleotide variants were considered as SNPs if they had an allele frequency if at least 1% 446 

44, were supported by at least 4 reads across samples, and had a GATK quality score of at least 447 

30.  448 

For a sample mapped to a reference gene to be considered for downstream analysis, we 449 

demanded that at least 60% of SNPs called along the length of the reference gene for that sample 450 

would be supported by at least 4 reads, thereby enabling accurate calculation of pN/pS rates. For 451 

a gene to be considered for downstream analysis, we demanded for that gene to have at least 452 

one SNP common to 20 or more samples. 453 

 454 

Calculation of pN/pS in single genes  455 

While comparing SNP patterns across samples, it is instrumental to avoid biases due to 456 

differences in coverage. We therefore downsampled the read coverage depth to the minimum 457 
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depth across all samples, for each position in a sample that was supported by more than 4 reads. 458 

For positions that had minimum support of fewer than 4 reads, no subsampling was performed. 459 

Subsampling was performed by drawing from a multinomial distribution, with n trials and variant 460 

probabilities p, where n was set to the calculated minimum depth and p set to the relative 461 

abundance of each variant in the given sample. 462 

The expected ratio of non-synonymous and synonymous substitutions was calculated by 463 

considering all called SNPs in every gene. First, we calculate a consensus sequence for each 464 

gene by taking, for each SNP position, the variant that was overall more common across all 465 

samples (after the subsampling performed above). We counted, for each gene, the number of 466 

non-synonymous and synonymous sites across the consensus sequence. For each SNP position 467 

in each sample, we counted the number of synonymous and nonsynonymous substitutions. As 468 

more than one variant can exist in a single sample, we considered the relative abundance of 469 

synonymous to nonsynonymous substitutions dictated by the different variants. For example, if 470 

the reference codon was CAC, coding for histidine, one variant, a C-to-G transversion in the third 471 

position abundant at 50%, led to a nonsynonymous mutation that resulted in glutamine (CAG) 472 

while another variant in the same sample and the same position was a synonymous C-to-T 473 

transition, we counted 0.5 synonymous substitutions and 0.5 nonsynonymous substitutions. We 474 

followed by calculating the pN/pS ratio: 475 

𝑝𝑁/𝑝𝑆	 =
𝑛𝑜𝑛𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠	𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠

𝑛𝑜𝑛𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠	𝑠𝑖𝑡𝑒𝑠
/
𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠	𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠

𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠	𝑠𝑖𝑡𝑒𝑠
 476 

pN/pS characterizes selective constraints at the population level, as opposed to dN/dS that 477 

characterizes it between individual species 12 and can thus be standardized to a specific time 478 

interval and used as an absolute metric. Nonetheless, dN/dS ratios are not applicable in our 479 

study since polymorphic sites derived from short read sequencing impede having haplotypes 480 

which are a prerequisite for calculating dN/dS.  481 
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 482 

Aggregation of calculated metrics using KEGG and eggNOG orthologies 483 

Functional assignments to KEGG KOs and eggNOG OGs for all OM-RGC genes were computed 484 

using eggNOG-mapper v2 based on the eggNOG v5.0 database41,45. For each functional 485 

assignment in each sample, all OM-RGC genes assigned with the same functional assignment 486 

were concatenated and treated as one long genomic sequence per the calculation of pN/pS ratios. 487 

To reduce noise in pN/pS calculation, we considered only KOs and OGs that had at least 5 genes 488 

per sample, in at least 50 samples. 489 

 490 

Environmental variables 491 

For each sample, we compiled measurements pertaining to the following environmental 492 

measurements: Depth [m], Nitrate [μmol/kg], Nitrite [μmol/kg], Oxygen [μmol/kg], Phosphate 493 

[μmol/kg], Silicate [μmol/kg], Temperature [C] and Salinity. 494 

Tara oceans metadata was downloaded from PANGAEA (https://doi.pangaea.de/10.1594/) with 495 

accession numbers PANGAEA.875575 (Nutrients) and PANGAEA.875576 (Watercolumn 496 

sensor), and recorded median values for all the above nutrients were extracted. Tara nutrient 497 

concentrations were given as [μmol/l]. Conversion to [μmol/kg] was done by dividing the 498 

measured concentration by the measured specific gravity for the same sample.  499 

bioGEOTRACES metadata was compiled from CTD sensor data and discrete sample data from 500 

the GEOTRACES intermediate data product v.246. HOT metadata was downloaded from the ftp 501 

server of the University of Hawai’i at Manoa (ftp://ftp.soest.hawaii.edu/hot/) and BATS metadata 502 

was downloaded from the Bermuda Institute of Ocean Sciences (http://bats.bios.edu/bats-data/). 503 

As GEOTRACES/HOT/BATS ocean water samples are not linked to specific biological samples 504 

as is the case with Tara oceans samples, we considered only water samples from the exact same 505 
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geographic location, within a day from biological sample collection time, and within 5% difference 506 

in depth of collection, and chose the closest sample in terms of time and depth of collection. As 507 

all these measurements of environmental conditions are highly correlated with each other (Fig. 508 

S1I), we utilized this correlation structure to impute missing values using the EM algorithm47. 509 

 510 

Linear mixed models 511 

Generative model Consider a collection of 𝑀) , 𝑤ℎ𝑒𝑟𝑒	𝑖 ∈ {1,2} features (i.e., 𝑀*,+number of KEGG 512 

and eggNOG orthologs respectively), each measured across 𝐾	samples. We get as input an 513 

(𝑀) 	× 𝐾) matrix 𝑂 ), where 𝑂,-) 	is the pN/pS of ortholog 𝑗 in sample 𝑘. Let 𝑦). =	 (𝑂.*) , . . . , 𝑂./)) 514 

be a 𝐾 × 1 vector representing the pN/pS in ortholog 𝑚, according to grouping 𝑖,	across 𝐾	samples 515 

(e.g., pN/pS in KEGG KO K02274 across K samples). Let 𝑊 be a (𝐾	 × 𝑞) normalized matrix of 516 

environmental measurements. This included the depth of the sample, water temperature and 517 

salinity, as well as concentration of the key molecules nitrate, nitrite, oxygen, phosphate and 518 

silicate. 519 

With these notations, we assume the following generative linear model  520 

							𝑦). 	= 	𝑊𝑢. + ϵ.																									(1) 521 

 522 

Where 𝑢.	and ϵ. are independent random variables distributed as  𝑢. ∼ 𝑁(0	, 𝜎+1Y𝐼		)and ϵ2 ∼523 

𝑁(0	, σ3Y
+ 𝐼		). The parameters of the model are 𝜎+1Yand σ3Y

+ . 524 

It is easy to verify that an equivalent mathematical representation of model (1) is given by 525 

 526 

𝑦). 	∼ 𝑁(	0	, σ/
+𝐾	 + σ3Y

+ 𝐼)      (2) 527 
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where σ/+ = 𝑀)𝜎+1Y, 𝐾	 =	
*
4\ 	𝑊𝑊5 . We will refer to 𝐾 as the environmental kinship matrix, which 528 

represents the similarity, in terms of environmental covariates, between every pair of samples 529 

across grouping 𝑖 (i.e., represent the correlation structure to the data).  530 

 531 

Environmental explained variance: The explained variance of a specific feature 𝑦). by the 532 

environmental measurements   533 

𝜒). 	=
6^
_

6^
_#6`Y

_                 (3) 534 

In the second model setting, we wished to account for a potential non-random association 535 

structure between pN/pS rates of different orthologs. To this end, we included both the 536 

environmental covariates and pN/pS rates of all orthologs not inferred as two different sets of 537 

variance components. 538 

In this setting, Let 𝑊* be an (𝐾	 × 𝑞) normalized matrix of environmental measurements, as before 539 

and 𝑊+ be an (𝐾	 × 𝑀) − 1) normalized matrix of pN/pS measurements according to grouping 𝑖 540 

(i.e., KEGG or eggNOG orthologs)  across 𝐾	samples, where for each 𝑦). we exclude the pN/pS 541 

rates of the focal ortholog 𝑚. 542 

With these notations, we assume the following model  543 

							𝑦). 	= 	𝑊*𝑢*.		 +	𝑊+𝑢+.		 + ϵ2																									(4) 544 

It is easy to verify that an equivalent mathematical representation of model (1) is given by 545 

			𝑦). 	∼ 𝑁(	0	, σ/b
+ 𝐾* + σ/_

+ 𝐾+ 	+ σ3Y
+ 𝐼)     (5)     546 

where 𝜎+/b = 𝑀)𝜎+1bY, 𝜎
+
/_ = 𝑀)𝜎+1_Y, 𝐾	* =	

*
4\ 	𝑊*𝑊*

5 , 𝐾	+ =	
*
4\ 	𝑊+𝑊+

5 . 𝐾*and 𝐾+ represent 547 

the similarity, in terms of environmental covariates and pN/pS rates, between every pair of 548 

samples across grouping 𝑖 (i.e., represent the correlation structure to the data).  549 
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In this setting, the environmental explained variance is:  550 

𝜒). 	=
7_^b#	7

_
^_

6^b
_ #6^_

_ #6`Y
_       (6) 551 

 552 

KEGG KO expression data as a ranking metric 553 

Using expression data from 4,092 KEGG KOs collected by Kolody et al. 16, we ranked the KO 554 

genes in our marine samples in the following way. We first represent the expression data in 555 

relative abundance space (normalize each sample by its read counts). Next, for each KO 𝑖, where  556 

𝑖	 ∈ {1, . . . , 𝐼} , we sum across different instances of this focal KO. The input is an 𝑚	 × 𝑛 matrix, 557 

where 𝑚 is the number of different instances of focal KO 𝑖, and 𝑛	is the number of samples. The 558 

output is a vector of length 𝑛:	(𝑥*	, . . . , 𝑥8). Finally, we average the expression levels 559 

	(𝑥*	, . . . , 𝑥8)	across samples:*
8
∑ 𝑥-	8	
-	9	*  and rank the KOs based on the calculated average 560 

expression. Notably, we limited the scope of our analysis to samples collected only in small 561 

fraction filters (0.22 𝜇𝑚). 562 

 563 

Determination of Synechococcus-specific pN/pS rates 564 

We identified genes from the OM-RGC database belonging exclusively to genus Synechococcus 565 

using eggNOG-mapper. We filtered out genes that were present in fewer than 20% of all samples. 566 

For each of the samples, we calculated pN/pS on all gene sequences combined. We further 567 

divided the samples into five identically sized groups, based on environmental nitrate 568 

concentrations, and for each group filtered out genes that were present in fewer than 50% of all 569 

samples in the group. We next calculated pN/pS on all the gene sequences that remained in each 570 

of the groups. 571 

 572 
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Determination of extracellular genes 573 

To determine extracellular gene groups, we searched the eggNOG v.5 OG database for the words 574 

‘secreted’ or both words ‘extracellular’ and ‘protein’ in their description. We demanded that the 575 

words ‘autoinducer’, ‘expression’, ‘role’ and ‘hypothetical’ are not in the description to prevent 576 

instances where (a) the OG in question describes a hypothetical protein; and (b) where the OG 577 

produces a secreted particle but is not secreted by itself, as is the case with autoinducer producing 578 

genes. To ensure robust pN/pS calculations, descriptions encompassing 10 OGs or more were 579 

assigned a group name, while descriptions encompassing less than 10 OGs were all grouped 580 

together in one group.  581 

 582 

Calculation of mutation flux in divergent nitrate concentrations 583 

We created matrix 𝐻(;) as follows: Consider a set 𝑈 of all genes for which SNP measurements 584 

exist and a subset 𝑇 ⊆ 𝑈 of this set across 𝐾samples. Let 𝐺(5)- = (𝑉, 𝐸) be a codon graph for 585 

subset 𝑇 and sample 𝑗, where 𝑣 ∈ 𝑉 is a codon (e.g., CUU coding for Alanine) and (𝑣, 𝑣′) ∈ 𝐸 if 586 

and only if 𝑣 and 𝑣′ are one mutation apart (e.g., CUU for Alanine and CAU for Histidine). Let 587 

𝑤(5)
-	: (𝑣, 𝑣′) → [0,1] be a weight function where 𝑤(5)

-(𝑣, 𝑣′) =588 

=1.>"?	@A	.1BCB)@8D	B1?8)8E	$	B@	$&	)8	D1>D"B	5	C8F	DC.GH"	-
=1.>"?	@A	@II1??"8I"D	@A	I@F@8	$	)8	D1>D"B	5	C8F	DC.GH"	-

. Let 𝐻(5) be a matrix of dimension (|𝐸| 	× 𝐾), 589 

where 𝐻(5)($,$&),- = 𝑤(5)
-(𝑣, 𝑣′).  590 

We next sum-normalized H per each sample and compared the codon mutation frequencies 591 

between the 40 lowest- and 40 highest-nitrate samples. Despite significant differences in codon 592 

mutation frequencies between low-nitrate and high-nitrate samples, some of the difference could 593 

be driven by the simplex properties of the sum-normalized codon mutation frequencies, and some 594 

could be attributed to the different rates of synonymous mutations between the high- and low-595 

nitrate groups, which, combined with simplex properties, may affect observed nonsynonymous 596 
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mutation rates. To address simplex properties, we employed a centered log-ratio (CLR) 597 

normalization on H. The CLR transformation is a mapping, per codon composition, from the 598 

simplex to a Euclidean vector subspace. This log transforms each value and then centers them 599 

around zero as given below: 600 

𝐶𝐿𝑅(𝑉) 	= [𝑙𝑜𝑔
𝑣*
𝑔(𝑣)

, . . . , 𝑙𝑜𝑔
𝑣J
𝑔(𝑣)

] 	= 	𝑙𝑜𝑔(𝑣) 	− 	𝑙𝑜𝑔(𝑔(𝑣))	 601 

where g(v) is the geometric mean of all of the codons.  602 

To address differences in rates of the different types of mutations, for each mutation (𝑣, 𝑣′) in 603 

the CLR normalized matrix 𝐻′(;)	we calculated the log odds ratio between the mutation and its 604 

reverse mutation. Namely, we computed mutation flux matrix 𝐹(;)	where 𝐹(;)($,$&),- =605 

𝐻(;)($,$&),- −𝐻(;)($&,$),-. We compared differences in codon mutation flux between low- and high 606 

nitrate samples using the Mann-Whitney U-test. 607 

 608 

Calculation of expected random mutation cost per genetic code 609 

Let 𝑉be a genetic code with a set 𝑉D ⊂ 𝑉of stop codons. Let 𝑃(𝑣) be the abundance of codon 610 

𝑣 ∈ 𝑉	in a sample and P(𝑚𝑢𝑡(𝑣, 𝑣′))	the probability of a single mutation from codon 𝑣 to 𝑣′. Let 611 

𝑐": 𝑉 × 𝑉 → 𝒁	be a cost function for element 𝑒, where: 612 

𝑐"(𝑣, 𝑣′) = #	𝑜𝑓	𝑎𝑡𝑜𝑚𝑠	𝑜𝑓	𝑒	𝑖𝑛	𝑣′	 − 	#	𝑜𝑓	𝑎𝑡𝑜𝑚𝑠	𝑜𝑓	𝑒	𝑖𝑛	𝑣 613 

When testing the random mutation cost on hydrophobicity: 614 

𝑐KLF(𝑣, 𝑣′) = 0	𝑖𝑓	𝑣	𝑎𝑛𝑑	𝑣′	𝑎𝑟𝑒	𝑏𝑜𝑡ℎ	ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑖𝑙𝑖𝑐	𝑜𝑟	ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑜𝑏𝑖𝑐, 1	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	 615 

With these notations, we define the expected cost of genetic code 𝑉 for element 𝑒 as follows: 616 

𝐸[𝐶"(𝑉)] 	= 	 2 𝑃(𝑣)𝑃(𝑚𝑢𝑡(𝑣, 𝑣′))𝑐"(𝑣, 𝑣′)
$,$&∈(

 617 
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And the ERMC cost as: 618 

𝐸𝑅𝑀𝐶"(𝑉) 	= 	 2 𝑃(𝑣)P(𝑚𝑢𝑡(𝑣, 𝑣′))𝑐# "(𝑣, 𝑣′)
$,$&∈(

 619 

Where 620 

𝑐#" = 𝑚𝑎𝑥(0, 𝑐") 621 

We estimate 𝐸𝑅𝑀𝐶"(𝑉) as follows: 622 

1. We define 𝑃(𝑣) as the median abundance of all codons𝑣′coding for the same amino acid 623 

as 𝑣.  624 

2. We wished to calculate mutation rates in sites that were under minimal selection. To this 625 

end, we estimated P(𝑚𝑢𝑡(𝑣, 𝑣′)) by calculating, from fourfold-degenerate synonymous 626 

mutation sites the average abundance of each single nucleotide mutation (e.g. A to C) 627 

across all genes in which there are called SNPs in all ocean samples, excluding stop 628 

codons. We then estimate P(𝑚𝑢𝑡(𝑣, 𝑣′))using the relative abundances of all pairs of single 629 

nucleotide mutations. We estimate P(𝑚𝑢𝑡(𝑣, 𝑣′)) for Prochlorococcus, Synechococcus 630 

and Human genomes using published transition:transversion rates5,48. 631 

3. We calculate c using information on the amino acids which each codon codes for. 632 

To compute a p-value, we generate a null distribution by calculating 𝐸𝑅𝑀𝐶"(𝑉) for alternative 633 

genetic codes. We randomize the first and second position of all codons, while maintaining that 634 

the two sets of first and second positions in which the stop codons reside are separated by a 635 

single transition mutation. 636 

Confounding effects between cost functions for the structure of the genetic code 637 

To confirm that our elemental cost function is not confounded by traditional properties of amino 638 

acids such as the polar requirement (PR) and hydropathy index33–36, we calculated the expected 639 
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random mutation cost (ERMC), per genetic code, using these common cost functions across 1 640 

million simulated alternative codes. To this end, we randomized the first and second position of 641 

all codons, while maintaining that the two sets of first and second positions in which the stop 642 

codons reside are separated by a single transition mutation. We next calculated a contingency 643 

table for each pair of cost functions for both nitrogen and carbon (i.e., 𝐸𝑅𝑀𝐶=(𝑉):𝐸𝑅𝑀𝐶MN(𝑉), 644 

𝐸𝑅𝑀𝐶=(𝑉):𝐸𝑅𝑀𝐶KLF?@GCBKL(𝑉), (𝑉):𝐸𝑅𝑀𝐶MN(𝑉), 𝐸𝑅𝑀𝐶O(𝑉):𝐸𝑅𝑀𝐶KLF?@GCBKL(𝑉)). We assign 645 

each code to one of four bins in the following way: (1) surpassing the standard genetic code in 646 

both cost functions (e.g., nitrogen and PR), (2) surpassing the standard genetic code only in 647 

element 𝑒 cost (e.g. only nitrogen), (3) surpassing the standard genetic code only in the traditional 648 

cost function (e.g., PR), (4) not surpassing the standard genetic code in neither. Finally, we 649 

applied the Chi-square test of independence with two degrees of freedom to each contingency 650 

table.    651 

 652 

Determination of ‘square’ and ‘diagonal’ arrangements of the nitrogen genetic code 653 

We define a ‘square’ arrangement of the codons coding for nitrogen-rich amino acids histidine, 654 

glutamine, asparagine, lysine and arginine as one where their codons span only two nucleotides 655 

in the first position and two nucleotides in the second position. In the standard genetic code, these 656 

amino acids are coded by CAN, CGN, AAN, AGR, following a square configuration. In contrast, 657 

a ‘diagonal’ arrangement of the codons coding for these amino acids is one where they span all 658 

possible nucleotides in the first position and all possible nucleotides in the second position. For 659 

example, a genetic code where TTY codes for histidine, TTR for glutamine, CCN and AAR for 660 

arginine, GGY for asparagine and GGR for lysine constitutes a ‘diagonal’ arrangement of nitrogen 661 

amino acids. In each of the alternative genetic codes we generated, we tested whether either of 662 

these conditions hold and, if so, designated the code as ‘square’ or ‘diagonal’ accordingly. 663 

 664 
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Prochlorococcus and Synechococcus genomic data and mutation rates 665 

We downloaded Prochlorococcus and Synechococcus protein-coding gene sequences (where 666 

available) from the Joint Genome Institute (https://genome.jgi.doe.gov/portal/) following 667 

accession numbers published by Berube et al. 5. To estimate codon relative abundance 𝑃(𝑣), we 668 

counted and sum-normalized codons in all protein-coding genes for each species. To estimate 669 

codon mutation rate 𝑃 (𝑚𝑢𝑡(𝑣, 𝑣′)) we used the published transition:transversion rate of 2:1 for 670 

Prochlorococcus and Synechococcus 37.  671 

 672 

Multiple taxa ERMC calculation 673 

To calculate ERMC for 39 taxa across multiple transition:transversion rates, we downloaded 674 

codon usage and GC-content data collected by Athey et al.49. We used codon usage counts to 675 

estimate 𝑃(𝑣)and 11 transition:transversion rates (1:5, 1:4, 1:3, 1:2, 2:3, 1:1, 3:2, 2:1, 3:1, 4:1, 676 

5:1) to estimate P(𝑚𝑢𝑡(𝑣, 𝑣′)).  677 
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Supplementary Material 788 

 789 

Figure S1. (A-H) Distribution of measurements taken alongside marine microbial samples for depth 790 
(A), nitrate (B), nitrate and nitrite (C), oxygen (D), phosphate (E), salinity (F), silicate (G) and 791 
temperature (H). (I) Spearman correlation coefficients between all pairs of environmental 792 
measurements across all available samples.  793 
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 794 

Figure S2. (A-P) Histograms of Spearman correlations between πwithin (red) or pN/pS rates (blue) and 795 
environmental variables, for both KEGG KOs and eggNOG OGs. Panels A, C, E, G, I, K, M and O 796 
depict correlations between OG calculated parameters and depth, nitrate, nitrite and nitrite, oxygen, 797 
phosphate, salinity, silicate and temperature, respectively. Panels B, D, F, H, J, l, N and P depict 798 
correlations between KO calculated parameters and depth, nitrate, nitrite and nitrite, oxygen, 799 
phosphate, salinity, silicate and temperature, respectively.  800 
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 801 

Figure S3. (A,B) Scatter  plot of the association of pN/pS genes from genus Synechococcus with 802 
environmental concentrations of nitrate (A) for all synechococcus genes and (B) for genes present in 803 
over 50% in nitrate strata. 804 

 805 

Figure S4. (A, B) Box plots (line, median; box, IQR; whiskers, 5th and 95th percentiles) of (A) 806 
Spearman correlation coefficients between depth and pN/pS in highly expressed (left) and lowly 807 
expressed (right) KEGG KOs. (B) Spearman correlation coefficients between depth and pN/pS in 808 
highly expressed (left) and lowly expressed (right) KEGG KOs. Variance explained by the environment 809 
in extracellular gene groups versus all eggNOG OGs (Methods). *, P<0.05; ***, P<10-5. 810 
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 811 

Figure S5. (A-C) Histograms of the distribution of P-values of codon-to-codon mutations compared 812 
between (A) 40 low-nitrate samples and 40 other low-nitrate samples selected randomly out of the 80 813 
lowest-nitrate samples; (B) 40 high-nitrate samples and 40 other high-nitrate samples selected 814 
randomly out of the 80 highest-nitrate samples; (C) 40 low-nitrate samples and 40 high-nitrate samples 815 
selected randomly out of the 80 lowest and highest nitrate samples. (D) Depiction of mutations 816 
common in high versus low environmental nitrate concentrations. Two edged arrows mark amino-817 
acids in which some codon mutations were more common in high-nitrate but the opposite codon 818 
mutation was more common in low-nitrate.   819 
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 820 

Figure S6. (A-C) Hydrophobic or hydrophilic properties of different amino acids depicted across their 821 
positions in (A) the standard genetic code, (B+C) two permutations of the standard genetic code that 822 
were more conservative in terms of nitrogen and carbon ERMC.   823 
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824 
Figure S7. (A) Box plots (line, median; box, IQR; whiskers, 5th and 95th percentiles) of P-values for 825 
the ERMC of the standard genetic code for nitrogen (left), carbon (center) and both (right) across 187 826 
Prochlorococcus (P, blue) and Synechococcus (S, red) strains. (B) P-values for the ERMC of the 827 
standard genetic code for nitrogen (blue), carbon (black) and both (purple) across a wide range of 828 
transition:transversion rates, calculated using combined codon abundance of 187 Prochlorococcus 829 
and Synechococcus strains. (C) Heat map of ERMC P-values for nitrogen, carbon and both, for a 830 
theoretical case in which all codons are of the same abundance. (D,E) Same as Fig. 3C for ERMCN 831 
(D) and ERMCC (E) P-values.  832 
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 833 

Table S1. Contingency tables for each pair of cost functions for both nitrogen (n+) and carbon (c+), 834 
compared to PR (pr) and Hydropathy index (hyd), across 1 million simulated genetic codes. Each code 835 
is assigned to one of four bins:  (1) surpassing the standard genetic code in both cost functions (<; <), 836 
(2)  surpassing the standard genetic code only in element e cost (<; >=), (3) surpassing the standard 837 

genetic code only in the traditional cost function (>=; <), (4) not surpassing the standard genetic code 838 
in neither (>=; >=). Chi-square test of independence was applied to each contingency table.    839 
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