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Abstract— Proprioceptive feedback is a critical component 
of voluntary movement planning and execution. 
Neuroprosthetic technologies aiming at restoring 
movement must interact with it to restore accurate motor 
control. Optimization and design of such technologies 
depends on the availability of quantitative insights into the 
neural dynamics of proprioceptive afferents during 
functional movements. However, recording proprioceptive 
neural activity during unconstrained movements in 
clinically relevant animal models presents formidable 
challenges. In this work, we developed a computational 
framework to estimate the spatiotemporal patterns of 
proprioceptive inputs to the cervical spinal cord during 
three-dimensional arm movements in monkeys. We 
extended a biomechanical model of the monkey arm with 
ex-vivo measurements, and combined it with models of 
mammalian group-Ia, Ib and II afferent fibers. We then used 
experimental recordings of arm kinematics and muscle 
activity of two monkeys performing a reaching and 
grasping task to estimate muscle stretches and forces with 
computational biomechanics. Finally, we projected the 
simulated proprioceptive firing rates onto the cervical 
spinal roots, thus obtaining spatiotemporal maps of spinal 
proprioceptive inputs during voluntary movements. 
Estimated maps show complex and markedly distinct 
patterns of neural activity for each of the fiber populations 
spanning the spinal cord rostro-caudally. Our results 
indicate that reproducing the proprioceptive information 
flow to the cervical spinal cord requires complex spatio-
temporal modulation of each spinal root. Our model can 
support the design of neuroprosthetic technologies as well 
as in-silico investigations of the primate sensorimotor 
system.  
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I. INTRODUCTION1 
RAUMATIC injuries of the central and peripheral 
nervous system interrupt the bi-directional 

communication between the brain and the periphery. 
Neuroprosthetic systems aiming at the recovery of motor 
function have been mainly focused on the restoration of 
motor control via direct muscle stimulation [1-3], 
peripheral nerve stimulation [4-6] and spinal cord 
stimulation [7-12].  For example, epidural electrical 
stimulation (EES) [13] of the lumbar spinal cord has 
shown promising results for the recovery of multi-joint 
movements in animals [11, 14] and humans [10, 15] with 
spinal cord injury (SCI). EES engages motoneurons pre-
synaptically by directly recruiting large myelinated 
afferents in the posterior roots [16, 17]. In fact, the 
stimulation-induced information is processed by spinal 
circuitry and integrated with residual descending drive 
and sensory signals to produce coordinated movement 
[18] [19].  
These encouraging clinical results have produced a surge 
of interest in the application of spinal cord stimulation to 
the cervical spinal cord to restore also arm and hand 
movements [12, 20, 21]. However, restoration of voluntary 
control of arm and hand movements likely requires even 
finer integration between stimulation signals, descending 
drive and natural sensory feedback [22]. Unfortunately, 
electrical stimulation patterns interfere with  natural 
afferent activity [23] leading to impairment of movement 
execution and conscious perception of proprioception 
[24]. Therefore, application of EES protocols to the 
complex control of the upper limb should rely on precise 
knowledge of cervical sensorimotor circuit dynamics.  
More generally, any application that aims at restoring limb 
function [2, 3], or even at the control of external devices 
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[25, 26], might benefit from the restoration of 
proprioceptive feedback to enhance movement quality 
and control [23, 27]. In this view, experimental recordings 
of proprioceptive afferent dynamics are pivotal to future 
developments in neurotechnologies.  Recordings of 
afferent activity in humans can be performed using 
microneurography [28, 29], but this technique only allows 
the recording of single fibers in constrained experimental 
settings. Alternatively, extracellular recordings of dorsal 
root ganglion sensory neurons can be obtained in non-
primate animal models during functional movements [30, 
31]. However, although the latter allows recording multiple 
fibers simultaneously, it does not readily permit 
discrimination between the different fiber types, which 
requires a-priori knowledge of the firing dynamics of each 
cell type during movement. Moreover, studies addressing 
the human upper limb sensory dynamics require more 
pertinent animal models such as non-human primates, in 
which similar invasive recordings during unconstrained 
functional movements still present formidable challenges.  
Here we sought to combine experimental recordings of 
kinematics and muscle activity in monkeys with a 

biomechanical model of the primate arm to produce in-
silico estimates and characterize the firing rates of 
proprioceptive fiber ensembles during arm movements.  
Using OpenSim [33], we extended and scaled the 
biomechanical model of the Macaca Mulatta upper limb 
developed by Chan and Moran [32], with dedicated ex-
vivo measurements,  to the size and functional 
parameters of Macaca Fascicularis. We then trained two 
monkeys to reach and grasp a spherical object while 
recording arm joint kinematics and electromyograms 
(EMGs) of the principal arm and hand muscles. We 
validated this biomechanical model by comparing 
simulated kinematics and muscle activity with 
experimental recordings, and used the model to extract 
muscle stretches and tendon elongation parameters.  
Next, we fed simulated muscle and tendon states to 
empirical models of group Ia, Ib and II proprioceptive 
afferents [34, 35]. Finally, we projected the simulated 
activity of each of the fiber ensembles onto the spinal 
segments hosting their homonymous motor pools, thus 
obtaining spatiotemporal maps of the proprioceptive input 
to the cervical spinal cord during movement.  

 
Fig. 1: Modelling approach. A: the Macaca Fascicularis right arm model of 8 bone structures, articulated around 8 degrees of freedom (SA: shoulder 
adduction, SR: shoulder rotation, SF: shoulder flexion, EF: elbow flexion, RP: radial pronation, WF: wrist flexion, WA: wrist abduction, FF: fingers flexion) 
B: 39 musculo-tendon units (MTU) allow dynamic activation of the joints. 6 virtual markers are added to the model, conform to the placement of real 
markers on the recorded animal. C: in the Hill muscle model, a MTU consists of a Contractile Element (CE) mounted in parallel with a passive element 
together representing the fiber, mounted in series with a passive element representing the tendon. D: Computational flowchart: the joint angles q are 
produced by OpenSim’s inverse kinematics, and are fed to OpenSim’s CMC. The latter yields fiber properties such as the activity a, the fiber length 𝑙"  and 
its first derivative	𝑣" , as well as the fiber force 𝐹" . With linear models developed by Prochazka [34,35], these properties are used to compute 3 types of 
sensory feedback f for each of the 39 MTUs, sensory feedbacks which are then separately mapped to spinal segments to obtain spinal maps. 
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II. METHODS 

The computational framework to estimate the firing 
dynamics of proprioceptive sensory afferents of the upper 
limb in non-human primates is presented in Fig. 1. It 
consists of a biomechanical model of the primate’s right 
arm, fine-tuned to the muscle mechanical properties and 
anatomy of Macaca Fascicularis, and in a mathematical 
model linking muscle and tendon stretches to firing rates 
of group Ia, Ib and II afferent fibers. It is complemented 
with an experimental dataset of the three-dimensional 
arm joint kinematics and muscle activity of Macaca 
Fascicularis during reaching and grasping movements, 
and a method to project the afferent activity onto the 
cervical spinal segments.   
 

A. Biomechanical model 
The right arm model includes 39 musculo-tendon units 

(MTU), 8 bone structures, and 8 joints. We adapted a 
SIMM (Motion Analysis Corporation, USA) model of the 
right arm of the Macaca mulatta [32] to OpenSim (National 
Center for Simulation in Rehabilitation Research, USA) 
and scaled each bone separately to the dimensions of the 
Macaca Fascicularis arm. The parametrization of each 
arm segment was complemented with mass [36], and 
resulting inertia matrix coefficients calculated for each 
segment taken as a homogeneous cylinder. We obtained 
further anatomical measurements by dissecting an arm 
specimen of a female Macaca Fascicularis.  During the 
dissection, approximate muscle fiber and tendon lengths 
were also measured.  From a dissected muscle, and after 
removing the tendons, we measured the fiber volume by 
submerging it in a graduated beaker. We estimated the 
fiber principal cross-sectional area (PCSA) as the fiber 
volume divided by the fiber length. Subsequently, the 
maximal isometric force was estimated as 𝐹&'(" = 	𝜎 ∗
PCSA, with 𝜎 = 0.3	[Nm67] [37]. We repeated such 
measurements for a total of 36 muscles of the arm, hand 
and shoulder. By combining this dataset with reported 
morphological measurements of macaques [36, 38, 39], 
we complemented the model with novel data and adapted 
it to the Fascicularis anatomy. However given the difficulty 
to measure it, we kept the pennation angle parameter at 
null [36]. Measurements from a subset of representative 
muscles is reported in Table 1. Moreover, following the 

observations made during the dissection, we adapted 
several MTU lines of action, and added wrapping surfaces 
when necessary to prevent MTUs from crossing bones. 
These adjustments preserved the operating ranges of 
normalized MTU length and moment arm. Finally, we 
added a joint to improve representation of the hand. The 
hand bone structure was split into two pieces around the 
first knuckles, in order to obtain the “fingers” and the 
“palm” (with the thumb). For finger actuators such as the 
flexor digitorum superficialis muscle (FDS), the model 
already included a single MTU whose distal attachment 
point was located on the palm. However since we wanted 
to allow for the simulation of power grasps, we made 
adaptations to the FDS and its antagonist MTU, the 
extensor digitorum (EDC), so that together they could 
actuate the new finger joint. Both MTUs were stretched 
and the tendon lengths increased accordingly, in order to 
reach opposite sides of the middle finger’s distal phalanx. 
A degree of freedom was created to allow fingers flexion 
in the range (-10, 90) degrees, where the flat hand was 
taken to be the neutral fingers flexion. The complete 
model is available as supplementary material to this 
manuscript.  

B. Afferent fiber model 
The average firing rate of group Ia, Ib and II afferent fibers 
can be estimated from the state of a single MTU at time t 
using equations developed to fit experimental recordings 
of afferent firing rates in cats by Prochazka and 
colleagues [18, 34, 35]. MTU sizes are comparable 
between the cat hind limb and the Macaca Fascicularis 
upper limb, therefore we expect such models to offer a 
reasonable approximation of sensory fiber dynamics in 
the Fascicularis arm. Specifically, for a given MTU, we 
approximated the firing rate 𝑓:;  of Ia afferents as:    
 
𝑓:; = 𝑘= ∗ 𝑠𝑖𝑔𝑛(𝑣")|𝑣"|EF + 𝑘H:I𝑙" − 𝑙KEL" M+ 𝑘N:𝑎 + 𝑐: ,           
(1) 

which is the sum of terms that depend on fiber contraction 
velocity 𝑣" [mm/s], fiber stretch (obtained as the 
difference between fiber length 𝑙"	[mm] and optimal fiber 
length 𝑙KEL"  [mm]), the normalized muscle activity 𝑎, and a 
baseline firing rate 𝑐:. All constants 𝑘∗ and 𝑐∗, as well as 
𝑝=, are numerical coefficients that have been previously 
determined [34, 35].  
The firing rate of Ib afferents was estimated to be 
proportional to the ratio of the force exerted by the muscle 
fiber 𝐹" [N] over the maximal isometric force 𝐹&'("  [N]:  
 

	𝑓:S = 𝑘T
𝐹"

𝐹U;V" .																																																																																												(2) 

Finally, the firing of group-II spindle afferents was 
estimated as the sum of terms depending on fiber stretch, 
muscle activity, and a baseline firing: 
 
𝑓:: = 𝑘H::I𝑙" − 𝑙KEL" M + 𝑘N::𝑎 + 𝑐:: .																																																						(3) 

Table 1:  Morphometric measurements of a subset of representative arm 
and forearm musculo-tendon units (MTU): optimal fiber length (𝑙KEL" ), 

tendon slack length (𝑙XY), and fiber volume (V). 
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We enforced a lower bound firing rate of 0 [Hz] or 
[impulses/s] to each fiber population.  

C. Experimental dataset: kinematics 
Two females Macaca Fascicularis (Mk-Sa, age 7 years, 
weight 4 kg and Mk-Br, age 4 years, weight 3.5 kg) were 
trained to reach with the left arm for a spherical object, 
grasp it, and pull it towards a return position to receive a 
food reward. Animals were housed within a group of five 

animals at the University of Fribourg, Switzerland. All 
experimental procedures were performed at the 
University of Fribourg in agreement with the veterinary 
cantonal office of the Canton of Fribourg according to the 
license n°2017_04_FR.  
We recorded three-dimensional arm-joint kinematics 
using the VICON Vero system (VICON, Oxford, U.K.) with 
12 infrared cameras, 6 reflective markers attached to the 
arm joints, and 2 high definition video cameras. Two sets 
of n=9 (Mk-Sa), and n=19 (Mk-Br) reaching and grasping 
successful trials, each cut between the cue command and 
the return to start position, were extracted and used for 
the results of this study. Kinematic and video recordings 
were synchronized and sampled at 100Hz. The 
recordings of the reflective markers’ positions in 3D were 
then resampled over 1000 time points. Given the 
constancy of the trial durations (1.62 ± 0.26 s for Mk-Sa, 
2.24 ± 0.20 s for Mk-Br), we proceeded to average in 
normalized time the marker positions across trials. The 
duration of this time-normalized average trial was finally 
scaled back to the real average trial duration in order to 
be fed to the chain of computations. The time point 
corresponding to the grasping event was manually 
identified in each video recording separately. The location 
of the markers on the arm is shown in Fig. 1. Markers 
were placed at the middle of the upper arm, at the distal 
end of the humerus, at the elbow joint and at the proximal 
end of the ulna, and at the distal ends of the ulna and 
radius at the wrist. Finally, we artificially triggered a whole 
hand flexion of the model’s “fingers” upon initiation of 
grasping by the animal. We simulated the fingers’ flexions 
by making the fingers’ joint angle follow a logistic function 
of time fitted to match the start and end angle values, with 
its step centered on the time point identified as the 
grasping onset. The key criterion in choosing the logistic 
function for this artificial joint evolution is that its first 
derivative is bell-shaped, which is the natural temporal 
profile of joint velocities [40]. 

D. Experimental dataset: electromyography 
The monkeys were implanted with  chronic bipolar teflon 
coated stainless steel wire electrodes in the deltoid (DEL), 

biceps (BIC), triceps (TRI), FDS and EDC muscles of the 
left arm (Cooner wires). The surgical procedures have 
been described elsewhere [13]. We recorded differential 
EMG signals at 12 kHz using a TDT RZ2 system with a 
PZ5 pre-amplifier (Tucker Davis Technology, USA) and 
synchronized them with the 3D kinematic recordings 
using analog triggers. EMG recordings were high-pass 
filtered at 5Hz, rectified, and low-pass filtered at 6Hz, to 
obtain signal envelopes for model validation purposes. 
EMG signal envelopes were normalized in amplitude 
(divided by their maximal value over the trial) 
independently for each muscle, and their time course was 
scaled similarly to that of the kinematic recordings. 

E. Estimation of Spatiotemporal maps  
Proprioceptive sensory afferents, innervating muscles 
and tendons, converge towards the spinal cord in 
peripheral nerves bundled with their homonymous muscle 
motor axons. Therefore, we assumed that their 
organization within the dorsal roots matches that of their 
homonymous motor axons in the corresponding ventral 
roots. Following this assumption, the afferent activity 
stemming from each MTU was mapped to the dorsal roots 
and thus to the spinal segments using the rostro-caudal 
distribution of motor pools in the primate spinal cord [41]. 

Table 2: Proportional distribution of the motor pools of deltoid (DEL), 
biceps (BIC), triceps (TRI), flexor digitorium superficialis (FDS) and 

extensor digitorium communis (EDC). 
 

 

 
Fig. 2: Evolution of the principal joint angles during the three-dimensional 
reaching and grasping task for Mk-Sa, recorded and simulated (resulting 
from the estimated muscle activities). The time of grasping was manually 
identified for each recording separately. Joint angles computed by forward 
dynamics, using estimated muscle activities, are in excellent agreement 
with experimental recordings as can be quantified with the cross-
correlation between the two curves, presented in bars. 
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As data were missing for the deltoid in the mentioned 
publication, we approximated its motor pool localization 
using data available in humans [42]. Table 2 shows the 
resulting proportions of motoneurons of each muscle in 
each cervical spinal segment, which we assumed to 
represent the proportions of afferent fibers of each muscle 
projecting to each segment as well. 
We estimated the input sensory activity 𝑎Z,V of type 𝑥, 
received by the 𝑖-th spinal segment, as: 
 

𝑎Z,V = 	
∑ 𝜔^Z𝑓 ,V
_`ab
^	c	d

∑ 𝜔^Z
_`ab
^	c	d

																																																																														(4) 

where 𝑓 ,V is the firing rate of the proprioceptive fibers of 
type 𝑥 of the 𝑗-th MTU, and 𝜔^Z the proportion of its afferent 
fibers projecting to the 𝑖-th spinal segment. The 

considerations that led to the expression of 𝑎Z,V are 
addressed in the discussion.  
The set of 𝑎Z,V ’s can thus be represented as a color image 
summarizing the amount of input sensory activity of type 
𝑥 received by the cervical spinal cord over time, similarly 
to spatiotemporal maps of motoneuronal activity [12, 43].  
 

III. RESULTS 

A. Model Validation  
We recorded simultaneous 3D kinematics of the upper 
limb and EMGs of the principal upper limb muscles during 
an unconstrained three-dimensional reaching, grasping 
and pulling movement. To validate our biomechanical 
model, we fed averaged 3D trajectories of the joint 
markers to OpenSim, and computed joint angles with 
inverse kinematics. We then used the compute muscle 
control (CMC) tool to estimate a set of muscle activities, 
that represented a plausible solution to the inverse 
biomechanical problem, i.e.: what is the set of muscle 
activities, from which the recorded motion of the arm has 
originated? Next we fed the simulated muscle activities to 
OpenSim’s forward dynamics, thereby obtaining 
simulated kinematics solution to the forward 
biomechanical problem. Comparing the kinematics 
produced with this approach against the experimental 
joint angles (Fig. 2) shows excellent similarity between 

simulated and recorded data. In particular, simulated joint 
angle trajectories are well within the experimental 
variability range of recorded data (R=0.90 for Mk-Sa and 
R=0.81 for Mk-Br). We then compared the computed 
muscle activities and the envelopes of recorded EMG 
signals from upper limb muscles. Qualitative analysis of 
activity patterns shows that the simulated muscle 
activities match the recorded EMGs (Fig. 3). In particular, 
upper arm muscles are activated in the first part of the 
reaching phase to lift the arm and initiate the whole limb 
movement. Successively, forearm and hand muscles are 
activated to shape the grasp, and grab the object. Finally, 
biceps and deltoid muscles are strongly activated during 
the pulling phase of the movement. Quantitative 
comparison between simulated muscle activities and 
EMG envelopes shows good correlation levels for almost 
all muscles in both animals (Fig. 3). Results 

corresponding to cross-correlation values of about 0.50 
correspond to model predictions that seem reasonably 
accurate. While the predictions realized for the finger 
actuators of Mk-Sa fall short of this accuracy, we observe 
outstanding accuracy for the elbow actuators of Mk-Sa, 
and for finger actuators of Mk-Br.    

B. Spatiotemporal map of motoneuronal activity 

We then projected the computed muscle activity onto the 
spatial locations of arm motoneurons in the primate 
cervical spinal cord (Table 2, Fig. 4). Clear bursts of 

 
Fig. 3: Averaged and normalized EMG envelopes, compared to computed 
muscle activity for Mk-Br. DEL: deltoid, BIC: biceps, TRI: triceps, FDS: 
flexor digitorum superficialis, EDC: extensor digitorum. Correlation 
between the two curves, for each monkey, are shown in bars. 
 

 
Fig. 4: Simulated spatiotemporal map of motoneuronal activity during the three-dimensional reaching task for both monkeys, obtained using the weights 
presented in Table 2. Normalized activity over time and for each segment is shown in a color scale from purple (no activity) to yellow (maximal activity).  
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motoneuronal activity span the cervical spinal cord from 
rostral (C5-C6) to caudal segments (C8-T1) reflecting the 
upper-arm to forearm to finger muscles sequence of 
activation. Strong bursts of motoneuronal activity are 
present in rostral segments at the beginning of the 
reaching phase, whereas more caudal segments, where 
motoneurons of intrinsic and extrinsic hand muscles are 
located, are activated around the grasping phase. Finally, 
rostral segments are again activated but with a lower 
amplitude during the pulling phase. These results are in 
agreement with experimental findings in human subjects 
performing a similar task [44]. 

C. Sensory Afferent Firing rates  

We estimated the firing rates of group Ia, Ib and group II 
afferent fibers by feeding the simulated muscle stretches 
and forces to the mathematical model of afferents firing 
rates (1), (2), (3). Our framework allows the direct 
comparison between the firing rate of each simulated 
sensory fiber ensemble (consisting of the fibers of a 
specific type originating from a specific MTU) and its 
homonymous muscle activity during a whole limb three-
dimensional movement (Fig. 5). For simplicity we reported 
here the example of the agonist /antagonist of the elbow, 
i.e. biceps and triceps.  As expected from intuition, 
antagonist Ia afferents are anticorrelated.  Ia afferents of 
the biceps are most active when the triceps’ are least 
active and vice versa. Instead, Group II and Ib afferents 

are not entirely anti-correlated between these 
antagonists. Moreover, in the case of the triceps, afferents 
show anticorrelation with active muscle contraction. This 
is surprising considering that group II and Ib afferents 
should respond more to active muscle force. Likely this is 
the result of both passive and active tendon elongation 
and muscle stretches that occur during multi-joint 
movements.  

D. Spatiotemporal map of proprioceptive inputs   
We then projected the activity of the proprioceptive 
sensory afferents onto the spinal segments. Individual 
sensory input maps for the Ia, Ib and  group II fibers, are  
reported in Fig. 6.  
These maps show very distinct patterns in both space and 
time for each of the fiber populations across movement in 
both subjects. While Ia activity precedes the grasping 
phase, Ib, and group II activity is maximal during the 
pulling phase when the animal applies maximal force. 
However, Ib activity shows sharp activations along the 
whole cervical enlargement while group II has long bursts 
of activity that span the entire duration of the pulling 
phase. Finally, we computed the total normalized 
proprioceptive sensory activity received by the cervical 
spinal cord by summing the normalized activities of each 
fiber type. The resulting spatiotemporal map (Fig. 7) 
shows how total proprioceptive inputs are conveyed in 
space and time to the cervical spinal cord during three-
dimensional reaching movements. Overall this map is 
qualitatively similar to the spatiotemporal map of 
motoneuronal activity (Fig. 4). Proprioceptive activity first 
arises in the rostral segments, moves towards the caudal 
segments during grasp pre-shaping and finally peaks in 
both rostral and caudal segments during the pulling 
phase. In particular, it is sustained for the entire duration 
of the motor bursts responsible for the movement 
execution. 

IV. DISCUSSION 
We extended and validated a biomechanical model of the 
arm of Macaca Fascicularis to predict the firing rates of 

 
Fig. 5:  Profiles of normalized moto- and sensory-neurons firings, for the 
principal arm and forearm muscles in Mk-Sa. Motoneuron firing rates are 
shown with solid lines, Ia dashed, II dashed-dotted and Ib dotted.  

 
Fig. 6: Spinal map of the three different sensory feedbacks during a standardized reaching and grasping task, for both animals. Here as well, the three 
identified phases present noticeably different patterns of afferent activity. 
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ensembles of proprioceptive afferents during three-
dimensional reaching and grasping.  

A. A realistic primate arm model  
We reworked a model of the rhesus monkey upper limb 
to fit the geometrical and mechanical properties of the 
Macaca Fascicularis arm. We dissected most of the 
muscles of the arm, forearm and shoulder from a 
Fascicularis arm specimen and extracted parameters 
such as fiber and tendon lengths, as well as fiber volume 
for each of the analyzed muscles, in order to refine and 
complement the initial model parametrization. As was the 
case in the original model, the joint angle space was 
constrained to physiological values.  
Our model was able to faithfully reproduce the recorded 
kinematics, thus validating the skeletal model and the 
muscular parametrization as a whole. When comparing 
the computed muscle activity with the envelopes of the 
recorded EMG signals, we found a weaker 
correspondence. However, quantitative discrepancies 
between simulated and recorded muscle activities are 
common in biomechanical models [45, 46]. Specifically, 
since we compute muscle activities from joint kinematics 
our model cannot simulate co-contraction of antagonist 
muscles (e.g. as occurs during stiffening of the arm). This 
limited the quality of forearm EMG estimation and will be 
the object of future research directions. Such 
discrepancies could furthermore originate in the 
optimization strategy chosen to compute the solution of 
the inverse biomechanical problem. There is indeed 
redundancy in muscle space, that requires imposing a 
strategy to extract one set of muscle activities, amongst 
several that are able to produce a given motion. In the 
case of OpenSim, the choice is to minimize the sum of 
squared MTU activities, i.e. minimizing metabolic energy 
consumption [47]. Other strategies might be explored to 
improve future studies results. Finally, we did not expect 
full correspondence between estimated and recorded 
muscle activity because the model parametrization does 
not take into account the subject-specific detailed 
anatomy [48, 49] and physical training [50, 51]. 
Nevertheless, our simulated muscle activity dynamics 
and kinematics are overall similar to those yielded by 
other investigations involving non-human primate upper 
limb models [32], strengthening our confidence in the 
validity of our approach [46, 52].     
Finally, it may be worth noting that the biomechanical 
model presented here can be embedded in a broader 
closed-loop simulation environment. The estimated 
sensory activity could be used to compute motoneuronal 
activity, itself could be driving the evolution of arm 
kinematics, and in turn allow to estimate an updated 
distribution of sensory activity. Such an approach may 
enable testing for different hypotheses regarding the 
sensorimotor control of the upper limb. 

B. Sensory afferent firing dynamics 
The firing dynamics of primary sensory afferents during 
active functional movements is a key information to study 
sensorimotor integration during voluntary movement 

execution. Additionally, modern neuroprosthetic 
applications aiming at the recovery of both motor [24] and 
sensory [23, 53] functions in patients affected by 
neurological disorders often seek to design biomimetic 
stimulation protocols, with the underlying assumption that 
the most effective therapy depends on reproducing the 
natural activity in primary sensory afferents as closely as 
possible. For both these basic and translational 
applications, knowledge about the firing dynamics of 
various types of afferent fibers during functional voluntary 
movements is required. A sufficiently accurate 
computational model can be used to estimate these firing 
rates during multi-joint movements in dynamic tasks. 
Such estimates can support the interpretation of 

experimental data, as well as assist the design of 
neuroprosthetic systems that aim at reproducing these 
firing rates. Towards this goal, we describe a method to 
study sensory fiber ensembles from multiple muscles 
simultaneously during voluntary movements. The results 
that we reported show the importance of studying these 
signals during functional tasks. Indeed, when looking at 
the Ib afferent firing rates, we notice that in the triceps, the 
Ib afferents are anti-correlated with muscle activation (Fig. 
5). Ib afferents encode force information via tendon 
elongation and are thus commonly expected to be active 
during muscle contraction and consequent tendon 
elongation. However, during a multi-joint movement, 
active and passive tendon elongation can also occur due 
to the contraction of antagonist muscles, or gravity 
compensation. Therefore, large discrepancies from the 
expected firing patterns of this fiber population may 

 
Fig. 7: Spinal map of combined estimated proprioceptive feedbacks of 
Mk-Sa, during a standardized reaching and grasping task. The three 
identified phases present noticeably different patterns of general afferent 
activity. 
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emerge as a result of complex bio-mechanical 
interactions, as it was likely the case in our simulations.  

C. Spatiotemporal patterns of proprioceptive input to 
the cervical spinal cord 
We assumed that the proprioceptive afferents are 
distributed along the rostrocaudal extent of the cervical 
spinal cord similarly to their homonymous motoneurons. 
Given the well-known strong monosynaptic connectivity 
between muscle spindle Ia afferents and motoneurons, 
this approximation seems reasonable [54]. Using this 
assumption, we estimated the spatiotemporal distribution 
of the proprioceptive input to the spinal cord during arm 
movement. The total proprioceptive activity reaching the 
spinal cord during movement is a combination of both 
spindle and Golgi tendon fibers activity. This activity (Fig. 
7) arises in the form of clear bursts that span the spinal 
segments and are sustained across the entire duration of 
movement whilst being strongly modulated. This is in 
agreement with the well-known fact that the spinal cord 
receives large amounts of neural inputs during 
movement, and that spinal circuits are continuously fed 
with information. Moreover, the neural input supplied by 
the different sensory fiber ensembles present markedly 
distinct spatiotemporal patterns, suggesting that a 
stimulation-based restoration of “proprioceptive” 
information and perception must target these three fiber 
populations independently.  

D. Insights for the design of neuroprosthetic systems 
Our results offer important insights for at least two 
applications in neuroprosthetics. The first important 
observation regards the distinct spatiotemporal patterns 
of each specific fiber population. Modern biomimetic 
strategies that aim at restoring sensation [53]  employ 
electrical stimulation of the peripheral nerve to convey 
information to the central nervous system of amputees.  
However, this technology does not allow selectivity on 
fiber types [53], This is particularly true for Ia and Ib fibers. 
Indeed, these afferents have similar diameters and thus 
similar recruitment thresholds making it challenging to 
independently control their firing rates. These fibers 
convey complementary information about movement and 
force, and our simulations show that they are active at 
markedly different moments during movement execution. 
This poses important questions on the theoretical 
limitations of electrical stimulation technologies to achieve 
realistic proprioceptive feedback in amputees.  
The second consideration concerns technologies aiming 
at the stimulation of the spinal roots such as EES. When 
active, electrical stimulation of a specific root will cancel 
the natural flow of information of each recruited afferent 
and substitute it with the imposed stimulation frequency 
[24]. However spinal circuits require correct flow of 
sensory feedback to be able to produce functional 
movements. Therefore, development of epidural 
stimulation strategies of the spinal cord must take into 
account the spatiotemporal maps reported in Fig. 7. For 
instance, the T1 spinal roots is supposed to have no input 
activity both at the beginning of reaching and at the end 

of the pulling phase. This means that stimulation targeting 
that root in these periods should be avoided to prevent 
delivery of aberrant proprioceptive information. Similar 
consideration can be made for the other roots.  

E. Model limitations  
Our model is limited by the data available for primates. 
Morphometric measurements, as well as live recordings, 
are scarce and scattered. The number of MTUs studied 
to obtain the spatiotemporal maps should be extended 
when data regarding motor pool distributions of additional 
muscles will be made available. Hence the reported 
spatiotemporal maps of proprioceptive input are built 
using a limited set of arm and forearm muscles. Yet, the 
actual proprioceptive input received by a spinal segment 
is the number of action potentials per unit time entering 
that spinal segment via all the proprioceptive fibers 
running in the corresponding dorsal root. However, the 
exact distribution of proprioceptive fiber ensembles in the 
dorsal roots remains to date surprisingly unknown. We 
thus limited our analysis to the 5 MTUs shown in Fig. 3, 
for which we could estimate the relative proportions of 
fibers in the different spinal roots. We assigned identical 
weights to the Ia-afferent pools of every represented MTU 
(see 𝑎Z,V (4)). This is equivalent to assuming that similar 
stretches and applied forces in these MTUs induce equal 
amounts of proprioceptive input to the spinal cord. This 
assumption may not hold if large differences in the 
absolute number of proprioceptive fibers exist between 
MTUs. The normalization introduced in (4) eases the 
interpretation of the spatiotemporal maps. Without this 
term, the input sensory activity estimated using (4) would 
be biased towards those segments for which ∑ 𝜔^Z

_`ab
^	c	d  is 

larger (e.g. C6 compared to C5) and the temporal 
variations in the unfavored segments would have been 
obscured. In summary, the spatiotemporal maps shown 
in Fig. 6 and 7 are best interpreted in terms of normalized 
temporal variations of the combined proprioceptive input 
emerging from the selected MTUs and received by 
individual segments, rather than actual amounts of neural 
input expressed in impulses/sec. 

CONCLUSION 
We presented a computational estimation of the 
spatiotemporal patterns of proprioceptive sensory 
afferent activity during three-dimensional arm movements 
in a clinically relevant animal model. We showed that the 
patterns of proprioceptive inputs during functional 
movements are surprisingly complex and do not 
necessarily match intuition. Additionally, we showed that 
different fiber populations have markedly distinct 
spatiotemporal patterns of activity, highlighting the need 
of recruiting these populations independently to restore 
the natural flow sensory information. Finally, our model 
can be integrated in a broader in-silico platform to 
simulate the effect of electrical stimulation of the sensory 
afferents on arm biomechanics, as well as support basic 
studies on sensory systems. These advancements can 
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thus reduce the number of animals involved in invasive 
experiments.  
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