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ABSTRACT 

Desquamative interstitial pneumonia (DIP) is a rare diffuse parenchymal lung disease of unclear 

etiology. A recent study showed that mice overexpressing granulocyte macrophage 

colony-stimulating factor (GM-CSF) in lungs develop DIP-like disease, suggesting that pulmonary 

GM-CSF may be involved in the pathogenesis of DIP. To determine if GM-CSF is involved in 

human DIP lungs, we performed transcriptome analysis on human DIP lung tissue. We also 

extended transcriptome analysis to respiratory bronchiolitis-associated interstitial lung disease 

(RB-ILD), which has been thought to be in the same spectrum of disease. The analysis revealed 

that DIP has a distinct transcriptome profile compared to both RB-ILD and non-diseased lung 

controls. It also suggested that GM-CSF was a key upstream regulator in the DIP transcriptome 

and that the GM-CSF signaling pathway was highly activated in DIP tissue. Further bioinformatics 

analysis using xCell, a novel computational method that assesses enrichments of individual cell 

types based on gene expression, suggested that DIP is enriched for gene signatures of 

macrophages and other immune cells such as dendritic cells and B cells. In conclusion, our 

analysis shows that DIP is characterized by a GM-CSF signature, and thus GM-CSF is likely to be 

involved in the pathogenesis of DIP. Our analysis also suggests that immune cells other than 

alveolar macrophages, such as B cells, may also be involved in the pathogenesis of DIP. 
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INTRODUCTION 

Desquamative interstitial pneumonia (DIP) is a rare diffuse parenchymal lung disease 

characterized by marked accumulation of alveolar macrophages (AMs) and emphysema without 

extensive fibrosis or neutrophilic inflammation (1). DIP typically occurs in smokers, although it can 

occasionally occur in nonsmokers (2). Recently, SPC-CSF2 mice, which overexpress granulocyte 

macrophage colony-stimulating factor (GM-CSF, encoded by CSF2 gene) under the surfactant 

protein C (SPC) promoter, have been shown to display cardinal features of DIP, including AM 

accumulation, emphysema, secondary polycythemia, and increased mortality. These results 

suggest that pulmonary GM-CSF may be involved in the pathogenesis of DIP. A proposed 

mechanism is as follows: smoke inhalation (or another initiator) → pulmonary GM-CSF 

hypersecretion response → AM accumulation and activation (e.g., STAT5 phosphorylation) → 

MMP secretion (e.g., MMP9, MMP12) by AMs → parenchymal lung damage (i.e., DIP, 

emphysema) (1). To determine whether GM-CSF signaling is truly involved in human DIP lungs, 

we performed transcriptome analysis of human DIP lungs and controls. We also extended 

transcriptome analysis to respiratory bronchiolitis-associated interstitial lung disease (RB-ILD), 

which has been thought to be in the same spectrum of smoking-related pulmonary disease (3). 

Our analysis reveals that the transcriptome of DIP lungs is distinct from that of RB-ILD and 

controls. It also supports the concept that abnormally increased pulmonary GM-CSF signaling 

may play a key role in the pathogenesis of DIP. Furthermore, it suggests that immune cells other 

than alveolar macrophages, such as B cells, may be involved in the pathogenesis of DIP. 

 

 

METHODS 

Data source and analysis of differentially expressed genes 

Microarray data of 4 DIP, 11 RB-ILD, and 50 controls in GSE32537 in the NCBI Gene Expression 

Omnibus (GEO) repository were used for this analysis. Yang et al. obtained DIP and RB-ILD lung 

tissue from the Lung Tissue Research Consortium (LTRC, a biobank created by the National 

Heart Lung and Blood Institute [NHLBI]), and non-diseased lung tissue (control) from the 

International Institute for Advancement of Medicine. The control individuals had suffered brain 

death, failed selection criteria for transplantation, and had no evidence of acute or chronic lung 

disease. For both the diseased lung tissue (i.e., DIP, RB-ILD) and the non-diseased lung tissue 

(i.e., control), total RNA was isolated and mRNA microarray was performed using the Human 

Gene 1.0 ST Array (Affymetrix) platform, and the microarray data was uploaded to GEO (4). To 

identify genes (transcripts) that are differentially expressed between DIP and control lung tissue, 

the expression data were analyzed using limma (Linear Models for Microarray Analysis) R 

package implemented in GEO2R (5). The Benjamini–Hochberg false discovery rate (FDR) 

method was used for multiple-testing corrections. 
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Ingenuity Pathway Analysis (IPA) to identify canonical pathways and upstream regulators 

Pathway analysis of the gene list was carried out using Ingenuity Pathway Analysis (IPA) (6). 

Using its extensive database of published data as well as natural language processing and 

curated text mining of the published literature, IPA identifies pathways likely to be responsible for 

the observed difference in gene expression profiles. IPA can also identify putative molecular 

drivers (upstream regulators) of differentially expressed genes. For analysis of both canonical 

pathways and upstream regulators, absolute z-score�≥�2.0 corresponds to significant changes 

in activity; z-score ≥ 2 implies significant activation, whereas z-score ≤ -2 implies significant 

inhibition. The predicted upstream regulators may themselves be differentially expressed, though 

this is not a criterion for inclusion (7). 

 

Estimation of immune cell landscape  

To characterize the immune cell landscape in DIP, enrichment of various types of immune cells in 

DIP, RB-ILD, and controls were estimated using xCell (8), a novel computational method that 

assesses enrichment of individual cell types based on gene expression profile. An xCell matrix 

comprising gene expression profiles of 64 cell types was used as the reference matrix. Among the 

64 cell types, immune cells, platelets, and erythrocytes present in lungs were selected for further 

analysis. Enrichment scores for each cell type in DIP, RB-ILD, and control were compared using 

Kruskal-Wallis test followed by Dunn’s multiple comparison. A p-value <0.05 was considered 

statistically significant. Statistical analysis was performed using GraphPad Prism 7 software. 

 

 

RESULTS 

Demographic characteristics 

Table 1 summarizes demographic and clinical characteristics of the DIP patients, RB-ILD patients, 

and the non-diseased control cohort. There are no statistically significant differences in sex or 

smoking status between the groups. Although there are no statistically significant differences, 

there is a trend that DIP patients and RB-ILD patients smoked more cigarettes than controls, as 

expected. There is also a trend indicating that DIP patients had worse lung function than RB-ILD 

patients, as expected. 

 

Canonical pathways and upstream regulators responsible for differentially expressed 

transcripts 

DIP to control comparison 

There were 1932 transcript IDs meeting FDR <0.05 cut-off, and 438 transcript IDs meeting FDR 

<0.05 and absolute fold change ≥�2 cut-off (207 upregulated, 231 downregulated). IPA identified 

multiple canonical pathways that were significantly overrepresented in DIP compared to control 

(Table 2). Many of them were related to innate or adaptive immunity. For example, pathways 
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related to innate immunity include “Granulocyte Adhesion and Diapedesis,” “Leukocyte 

Extravasation Signaling” (with significant z-score: 2.714), “Dendritic Cell 

Maturation,” ”Phagosome Formation,” “Phagosome Maturation,” and “Complement System.” 

Pathways related to adaptive immunity include “Th1 and Th2 Activation Pathway,” “Th1 Pathway,” 

“Th2 Pathway,” “T Helper Cell Differentiation,” “T Cell Exhaustion Signaling Pathway,” and “B Cell 

Development.” Pathways related to both innate and adaptive immunity included “Antigen 

Presentation Pathway,” “Communication between Innate and Adaptive Immune Cells,” and “PD-1, 

PD-L1 cancer immunotherapy pathway.” Of note, the “Hepatic Fibrosis/Hepatic Stellate Cell 

Activation” pathway was found to be significantly deregulated. This appears consistent with the 

fact that a varying degree of fibrosis is observed in DIP. Furthermore, “Inhibition of Matrix 

Metalloproteinases (MMPs)” (i.e., counteraction by TIMPs) was found to be significantly inhibited 

(Z-score-2.449), which suggests that MMPs are significantly activated (Supplemental Figure 1). 

This supports the concept that MMPs may be involved in the pathogenesis of DIP (1). 

 

IPA also predicted many upstream regulators responsible for transcriptome changes in DIP. 

In the “cytokines” category, four genes were predicted to be upstream regulators with a significant 

Z-score: CSF2, IL4, IL5, and SPP1 (osteopontin) (Table 3). Among these, CSF2 (the gene 

encoding GM-CSF) had the highest activation Z-score of 3.162 (i.e., predicted to be significantly 

activated in DIP compared to control), although its expression was not found to be upregulated in 

DIP (Figures 1, 2). This supports the notion that GM-CSF may be involved in the pathogenesis of 

DIP (1). SPP1 also had a high activation Z-score (2.335), and its expression was upregulated in 

DIP (log expression ratio [DIP vs. control] = 2.878). This is consistent with the previous study, 

which showed increased osteopontin expression in, and secretion from, AMs in DIP lungs (9).  

 

In the “transcription regulators” category, 13 transcription factors were identified as potential 

upstream regulators: Five were predicted to be significantly inhibited (ZBTB17, ZFP36, EGR2, 

NUPR1, NANOG), and eight were predicted to be significantly activated (NEUROG1, ETV5, 

CLOCK, KEAP1, SOX3, WT1, PPARGC1A, RUNX3). In the “ligand-dependent nuclear factor” 

category, NR3C1 (gene encoding glucocorticoid receptor) was predicted to be significantly 

inhibited (Z-score -2.235) (Figure 3). This may be reflecting the fact that corticosteroids are used 

as an effective treatment in some cases of DIP (10). In contrast, PPARA was predicted to be 

significantly activated (Z-score 2.159).   

 

In the “transmembrane receptors” category, CD40 (expressed on antigen presenting cells, 

including dendritic cells, macrophages, and B cells; Supplemental Figure 2), TLR2, and TREM1 

(expressed on various cells of the myeloid lineage) were identified as potential upstream 

regulators. All were predicted to be significantly activated. 
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In the “complex” category, BCR was the only upstream regulator with a significant Z-score of 

2.174 (i.e., predicted to be activated) (Supplemental Figure 3).  

 

IPA also identified some drugs and chemicals as potential upstream regulators. For example, 

glucocorticoids such as dexamethasone (Supplemental Figure 4), fluticasone propionate, 

triamcinolone acetonide, and fluocinolone acetonide were predicted to be significantly inhibited in 

DIP compared to control. This supports the fact that corticosteroids are an effective treatment in 

some cases of DIP. Interestingly, filgrastim (granulocyte-colony stimulating factor), chloroquine 

(Supplemental Figure 5), 4-hydroxytamoxifen (a selective estrogen receptor modulator), 

Z-LLL-CHO (also known as MG-132, a proteasome inhibitor), and lactacystin (a proteasome 

inhibitor), were predicted to be significantly inhibited. In contrast, diethylstilbestrol (DES; a 

synthetic form of estrogen), enterolactone (a phytoestrogen), daidzein (a phytoestrogen), 

chrysotile asbestos, cephaloridine (cephalosporin), pioglitazone (an agonist for PPAR-γ [and 

PPAR-α, to lesser degree]), and cholesterol were predicted to be significantly activated. 

 

RB-ILD to control comparison 

There were 1767 transcript IDs meeting FDR <0.05 cut-off, and 100 transcript IDs meeting FDR 

<0.05 and absolute fold change ≥�2 cut-off (31 upregulated, 69 downregulated). 

 

IPA identified pathways that are significantly overrepresented in RB-ILD compared to control, 

although the number of pathways in this comparison was less than the number of pathways in the 

DIP to control comparison (Table 4). Unlike the DIP vs control comparison, the RB-ILD vs control 

comparison did not suggest pathways directly linked to adaptive immunity (e.g., B cells, T cells). 

Pathways identified in both DIP and RB-ILD include “Granulocyte Adhesion and Diapedesis,” 

“Hepatic Fibrosis/Hepatic Stellate Cell Activation,” “Role of Osteoblasts, Osteoclasts and 

Chondrocytes in Rheumatoid Arthritis,” “Role of Macrophages, Fibroblasts and Endothelial Cells 

in Rheumatoid Arthritis,” “PPAR Signaling,” “STAT3 Pathway,” “LXR/RXR Activation,” and 

“LPS/IL-1 Mediated Inhibition of RXR Function.”  

 

Upstream regulators identified/predicted in RB-ILD differ from the ones identified/predicted in DIP 

(Table 5). For example, in the “cytokines” category, the following were predicted to be upstream 

regulators with significant Z-scores: TNF, IL6, IL1A, IL1B, TNFSF12, OSM, IL17A, IFNA2. All of 

these were predicted to be significantly inhibited (i.e., Z-score <-2). Consistently, STAT3 (in 

“transcription regulator” category) was predicted to be significantly inhibited (Z-score: -2.292). Of 

note, CSF2 was not identified as an upstream regulator. 

 

DIP to RB-ILD comparison 

There were 656 transcript IDs meeting FDR <0.05 cut-off, and 200 transcript IDs meeting FDR 
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<0.05 and absolute fold change ≥�2 cut-off (81 upregulated, 119 downregulated).  

 

IPA identified multiple pathways that are significantly overrepresented in DIP compared to RB-ILD 

(Table 6). These included some of the pathways identified in the DIP to control comparison, such 

as “Granulocyte Adhesion and Diapedesis,” “Agranulocyte Adhesion and Diapedesis,” “Inhibition 

of Matrix Metalloproteases,” “Complement System,” “Leukocyte Extravasation Signaling,” 

“Phagosome Formation,” “Hepatic Fibrosis/Hepatic Stellate Cell Activation,” “Oncostatin M 

Signaling,” “IL-8 Signaling,” “Altered T Cell and B Cell Signaling in Rheumatoid Arthritis,” and 

“Caveolar-mediated Endocytosis Signaling.” 

 

Upstream regulators identified/predicted in the DIP to RB-ILD comparison also included some of 

the upstream regulators identified in DIP to control comparison, such as CSF2, IL4, SPP1, and 

NR3C1 (Table 7). Of note, CSF2 was predicted to be strongly activated (Z-score 3.418), and 

NR3C1 was predicted to be strongly inhibited (Z-score -2.213). 

 

These results indicate that, in the transcriptome, both DIP and RB-ILD are distinct from control, 

and DIP is distinct from RB-ILD. In DIP, the GM-CSF signaling pathway and MMP pathway appear 

activated, as seen in SPC-CSF2 mice. Many other pathways related to innate and adaptive 

immunity also appear to be activated in DIP. 

 

Characterization of immune cell landscape in DIP lungs using xCell 

Lymphoid cells 

The gene signature of B cells was significantly enriched in DIP compared to control tissue. In 

particular, the gene signatures of naïve B cells, memory B cells, and class-switched B cells were 

significantly enriched in DIP compared to both control and RB-ILD (Figure 4). The gene signature 

of T cells was not significantly enriched in DIP compared to control (Figure 5), although IPA 

suggested overrepresentation of pathways related to T cells in DIP compared to control (Table 2). 

The gene signature of natural killer (NK) cells was significantly less enriched in DIP compared to 

RB-ILD and control (Figure 6). 

 

Myeloid cells 

The gene signature of macrophages (both M1 and M2) was significantly enriched in DIP 

compared to control (Figure 7). A gene signature of dendritic cells was also significantly enriched 

in DIP and RB-ILD compared to control. This appears to be driven by conventional dendritic cells 

rather than plasmacytoid dendritic cells (Figure 8). Although IPA predicted that the “Dendritic Cell 

Maturation” pathway is strongly activated in DIP compared to control (Table 2), xCell suggested 

that the gene signature of immature dendritic cells, rather than activated dendritic cells, was 

significantly enriched in DIP (Figure 8). 
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The gene signature of neutrophils was significantly less enriched in DIP and RB-ILD compared to 

control (Figure 9). In contrast, the gene signature of eosinophils was significantly enriched in DIP 

compared to RB-ILD and control (Figure 9). This is consistent with previous studies reporting 

increased eosinophils in DIP (11). 

 

The gene signature of basophils appeared less enriched in DIP compared to RB-ILD and control, 

but there is no statistically significant difference in the enrichment scores (Figure 9).  

The gene signature of mast cells appeared more enriched in DIP compared to RB-ILD and control, 

but there is no statistically significant difference in the enrichment scores (Figure 10). The gene 

signature of mast cells was significantly enriched in RB-ILD compared to control (Figure 9). 

 

Interestingly, the gene signature of platelets was significantly less enriched in DIP compared to 

RB-ILD and control (Figure 10). The gene signature of erythrocytes was significantly enriched in 

RB-ILD, but not in DIP, compared to control (Figure 10).   
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DISCUSSION 

Our analysis demonstrates that CSF2 (encoding GM-CSF) is a critical upstream regulator of the 

DIP transcriptome. This is in line with the recent finding that lungs of SPC-CSF2 mice mimic DIP 

(1), and supports the concept that abnormally increased pulmonary GM-CSF signaling may play a 

critical role in the pathogenesis of DIP. 

 

Our analysis with IPA suggested that many other molecules (e.g., cytokines, transcription factors, 

and transmembrane receptors) may also be involved in the pathogenesis of DIP. For example, 

IPA predicted that SPP1 (encoding osteopontin, a glycoprotein with cytokine-like properties) is 

another upstream regulator strongly activated in DIP (compared to RB-ILD and control). SPP1 

expression was also significantly increased in DIP compared to RB-ILD and control. Osteopontin 

has been implicated in the pathogenesis of various lung diseases such as COPD, IPF, DIP, and 

pulmonary Langerhans cell histiocytosis (PLCH) (9, 12-14). Of note, in both DIP and PLCH, 

osteopontin concentration is increased in BAL fluid, and BAL cells spontaneously produce high 

amounts of osteopontin. Furthermore, combined stimulation with osteopontin and GM-CSF 

enhanced the survival of AMs derived from non-smokers (9). It is quite possible that GM-CSF and 

osteopontin synergistically contribute to the pathogenesis of DIP in humans. Interestingly, in 

rodents, pulmonary GM-CSF overexpression caused DIP-like disease (1), whereas pulmonary 

osteopontin overexpression caused PLCH-like disease (9).  

 

Our analyses with IPA and xCell suggested that immune cells other than alveolar macrophages, 

both in innate and adaptive immunity, may be involved in the pathogenesis of DIP. For example, 

the analysis with IPA suggested that the “Dendritic Cell Maturation” pathway is activated in DIP, 

and the analysis with xCell suggested that the gene signature of dendritic cells is enriched in DIP. 

This is consistent with previous reports that cigarette smoke induces cytokines such as GM-CSF 

and osteopontin which can stimulate the recruitment of Langerhans cells (9, 15). It has been 

shown that GM-CSF has a homeostatic local role in normal tissue macrophage and dendritic cell 

survival and/or function in the lung (16). 

 

Regarding lymphocytes, the analysis with IPA suggested that the “B Cell Development” pathway 

is overrepresented in DIP lung. It also predicted that BCR (B cell receptor) and CD40 (a gene 

expressed by antigen-presenting cells including B cells) are activated upstream regulators. This 

appears consistent with previous reports showing that a subset of B cells express GM-CSF 

receptors and that autocrine production of GM-CSF may contribute to their survival (17, 18). The 

gene signature of T cells is not significantly enriched in DIP compared to control. However, this 

does not exclude the possibility that T cells play an important role in the pathogenesis of DIP, 

especially given that IPA did suggest overrepresentation of many pathways related to T cells in 

DIP. The gene signature of NK cells is significantly less enriched in DIP compared to RB-ILD and 
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control. This change may be simply due to the effects of cigarette smoke, which has been shown 

to impair function of NK cells (19). However, this change may also be attributed to altered 

functions of other types of cells interacting with NK cells. Impaired NK cells may be contributing to 

the pathogenesis directly or indirectly (by activating other immune cells such as macrophages, B 

cells, and T cells).  

 

Another interesting finding was that the gene signature for platelets is less enriched in DIP lungs 

compared to controls. The reason for this is unclear, but may be because platelets in DIP lungs 

have a very different gene expression profile compared to control lungs. One possibility is that the 

altered lung environment in DIP affects the platelet transcriptome, as seen in “tumor-educated 

platelets” in patients with lung cancer (20). The second possibility is that platelet biogenesis is 

deregulated in DIP lung. Recently, the lung has been shown to be a site of platelet biogenesis and 

a reservoir for hematopoietic progenitors, including megakaryocyte progenitors (21). The third 

possibility is that some unknown extrapulmonary factors cause alteration in the DIP platelet 

transcriptome. This is an interesting question and deserves further research. Another interesting 

question which merits further research is whether platelets (with altered transcriptome) in DIP 

actively contribute to inflammatory signaling and subsequent DIP pathogenesis, as seen in other 

lung conditions (22).  

 

Some drugs and chemicals were predicted by IPA to be upstream regulators. For example, 

glucocorticoids were predicted to be significantly “inhibited” in DIP compared to control. Again, 

this may be reflecting the fact that corticosteroids are an effective treatment in some DIP cases. 

Chloroquine, 4-hydroxytamoxifen, and proteasome inhibitors were also predicted to be 

significantly “inhibited” in DIP, so we could speculate that these drugs may be effective treatments 

for DIP. In fact, it has been reported that a child with DIP due to secondhand cigarette exposure 

was successfully treated with steroids and hydroxychloroquine (23). In contrast, drugs predicted 

to be “activated” in DIP such as estrogens and PPAR agonists might be detrimental to DIP. 

However, it should be noted that these speculations are not based on solid evidence and thus 

remain in question. It is unclear why filgrastim (granulocyte-colony stimulating factor [G-CSF]) 

was predicted to be significantly “inhibited” in DIP, despite the fact that G-CSF and GM-CSF have 

many similarities. 

 

There are several limitations in our study. One of the major limitations is that the sample size for 

DIP is small (only four cases). Another major limitation is that we were unable to provide validation 

of microarray analyses (e.g., qRT-PCR for differentially expressed transcripts identified in the 

microarray analysis) due to a lack of the access to the samples. We also acknowledge that in 

silico prediction/estimation of gene signature enrichment for various types of cells in tissues is still 

far from perfect, and is especially difficult in rare types of cells. It remains to be seen if other in 
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silico methods/algorithms outperform xCell, which integrates the advantages of gene enrichment 

with deconvolution approaches. xCell has been shown to outperform CIBERSORT, a major 

deconvolution-based method (8, 24), but has not been compared with immunoStates, another 

deconvolution-based method which has been shown to outperform CIBERSORT (25). At any rate, 

no in silico algorithm is expected to be perfect in predicting cell composition/enrichment in tissue. 

Discoveries made using digital dissection methods must be rigorously validated using other 

technologies (e.g., flow-cytometry, single cell RNA-seq) to avoid hasty conclusions. For example, 

single-cell RNA-seq may be able to predict cell composition in tissue more accurately. However, it 

has its own limitations, such as requirement of tissue dissociation, changes in gene expression 

profile associated with tissue dissociation, and bias towards types of cells that are easily 

dissociated from tissue (8).  

 

In summary, our analysis revealed that the transcriptome of DIP lungs is distinct from that of 

RB-ILD and controls. It also supports the notion that abnormally increased pulmonary GM-CSF 

signaling may play a critical role in the pathogenesis of DIP. Furthermore, it suggested that 

immune cells other than alveolar macrophages, such as B cells, may be involved in the 

pathogenesis of DIP. 
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Table 1. Demographics 

Disease 

group 

Control DIP p value (vs 

Control) 

RB-ILD p value (vs 

Control) 

p value (vs 

DIP) 

Number 50 4  11   

Age:  

mean (SD) 

45.6 (18.6) 50 (7.0) 0.83* 52.2 (11.0) 0.35* 0.65* 

Sex: 

N (%) 

M 27 (54%) 

F 23 (46%) 

M 3 (75%), 

F 1 (25%) 

0.62† M 4 (36%), 

F 7 (64%) 

0.34† 0.28† 

Smoking 

status:  

N (%) 

  0.64†† 

 

 1.0†† 1.0†† 

-Current 21 (42%) 1 (25%)  1 (9%)   

-Former 7 (14%) 2 (50%)  6 (55%)   

-Never 20 (40%) 1 (25%)  4 (36%)   

-Unknown 2 (4%) 0 (0%)  0 (0%)   

Pack-year:  

mean (SD) 

12.0 (18.1) 

(6 missing 

values)  

24.0 (17.1)  0.12* 33.9 (35.9)  0.08* 0.95* 

FVC: 

mean (SD) 

Unknown 67.4 (8.5) N/A 85.7 (13.1) 

(1 missing 

values) 

N/A 0.07 

DLCO: 

mean (SD) 

unknown 54.3 (0) 

(3 missing 

values) 

N/A 77.1 (21.3) 

(2 missing 

values) 

N/A  

 

SD: standard deviation, M: male, F: female, N: Number, FVC: forced vital capacity, DLCO: 

diffusing capacity of the lungs for carbon monoxide 

*By Mann-Whitney test. 

†By Fischer’s exact test 

††By Fischer’s exact test for Current + Former vs Never 
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Table 2. Canonical Pathways in DIP (compared to Control) 

Ingenuity Canonical Pathways  -log(p-value) z-score 

Granulocyte Adhesion and Diapedesis 1.04E+01  

Hepatic Fibrosis / Hepatic Stellate Cell 

Activation 

5.56E+00  

Primary Immunodeficiency Signaling 5.22E+00  

Inhibition of Matrix Metalloproteases 5.14E+00 -2.449 

Osteoarthritis Pathway 4.95E+00 -0.258 

LPS/IL-1 Mediated Inhibition of RXR 

Function 

4.93E+00 -1.134 

Th1 and Th2 Activation Pathway 4.83E+00  

Role of Osteoblasts, Osteoclasts and 

Chondrocytes in Rheumatoid Arthritis 

4.66E+00  

Agranulocyte Adhesion and Diapedesis 4.52E+00  

Th2 Pathway 4.46E+00 1.633 

Allograft Rejection Signaling 4.36E+00  

STAT3 Pathway 4.18E+00 -1.89 

Communication between Innate and 

Adaptive Immune Cells 

4.12E+00  

Leukocyte Extravasation Signaling 4.00E+00 2.714 

Oncostatin M Signaling 3.77E+00 0.447 

Phagosome Formation 3.51E+00  

Atherosclerosis Signaling 3.28E+00  

Altered T Cell and B Cell Signaling in 

Rheumatoid Arthritis 

3.10E+00  

Dendritic Cell Maturation 2.92E+00 3 

Th1 Pathway 2.87E+00 0 

LXR/RXR Activation 2.63E+00 1.89 

Hematopoiesis from Pluripotent Stem Cells 2.54E+00  

Autoimmune Thyroid Disease Signaling 2.49E+00  

Tryptophan Degradation to 

2-amino-3-carboxymuconate Semialdehyde 

2.27E+00  

Role of Macrophages, Fibroblasts and 

Endothelial Cells in Rheumatoid Arthritis 

2.24E+00  

NF-κB Signaling 2.19E+00 -1.667 

SPINK1 General Cancer Pathway 2.15E+00 2.236 

Hepatic Cholestasis 2.12E+00  
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OX40 Signaling Pathway 2.02E+00  

B Cell Development 2.02E+00  

IL-10 Signaling 1.99E+00  

Bladder Cancer Signaling 1.98E+00  

FXR/RXR Activation 1.97E+00  

PTEN Signaling 1.95E+00 2.646 

PPAR Signaling 1.88E+00 0.816 

Iron homeostasis signaling pathway 1.87E+00  

Nicotine Degradation II 1.86E+00 -2 

IL-8 Signaling 1.84E+00 -0.333 

Antigen Presentation Pathway 1.70E+00  

NAD biosynthesis II (from tryptophan) 1.66E+00  

Inhibition of Angiogenesis by TSP1 1.63E+00  

Bile Acid Biosynthesis, Neutral Pathway 1.60E+00  

Chondroitin Sulfate Degradation (Metazoa) 1.53E+00  

cAMP-mediated signaling 1.53E+00 -1.89 

Graft-versus-Host Disease Signaling 1.52E+00  

Systemic Lupus Erythematosus Signaling 1.51E+00  

T Cell Exhaustion Signaling Pathway 1.50E+00 -1 

Complement System 1.49E+00  

Dermatan Sulfate Degradation (Metazoa) 1.48E+00  

T Helper Cell Differentiation 1.45E+00  

PD-1, PD-L1 cancer immunotherapy 

pathway 

1.44E+00  

Sulfate Activation for Sulfonation 1.42E+00  

Cysteine Biosynthesis/Homocysteine 

Degradation 

1.42E+00  

Dermatan Sulfate Biosynthesis (Late 

Stages) 

1.37E+00  

Caveolar-mediated Endocytosis Signaling 1.37E+00  

Phagosome Maturation 1.34E+00  

TREM1 Signaling 1.33E+00 1 
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Table 4. Upstream Regulators in DIP (compared to Control)  

Upstream 

Regulator 

Expression 

Log Ratio 

Molecule Type Predicted 

Activation 

State 

Activation  

z-score 

p-value 

of 

overlap 

BCR 

(complex) 

  complex Activated 2.174 2.34E-02 

IL4   cytokine Activated 2.105 3.91E-13 

IL5   cytokine Activated 2.268 5.03E-03 

SPP1 2.878 cytokine Activated 2.335 3.12E-02 

CSF2   cytokine Activated 3.162 6.48E-08 

NRAS   enzyme Inhibited -2.157 1.84E-07 

NOS3   enzyme Activated 2 4.53E-03 

HRAS   enzyme Activated 2.313 7.06E-12 

F2R -0.411 G-protein 

coupled receptor 

Inhibited -3.13 9.06E-06 

GPER1 -0.113 G-protein 

coupled receptor 

Inhibited -2.158 5.35E-06 

Vegf   group Inhibited -2.499 4.82E-05 

ERK1/2   group Activated 2.052 1.55E-05 

BMP4 0.468 growth factor Inhibited -2.202 2.71E-02 

FGF8 0.062 growth factor Activated 2.18 2.74E-04 

ANGPT2 -0.224 growth factor Activated 2.254 1.99E-04 

AREG 0.358 growth factor Activated 2.449 4.25E-03 

EPHB4 -0.461 kinase Inhibited -2 1.17E-02 

ERBB3 0.375 kinase Activated 2.772 1.19E-04 

PRKCD 0.264 kinase Activated 3.091 1.47E-03 

ERBB2 0.148 kinase Activated 4.149 3.83E-08 

NR3C1   ligand-dependent 

nuclear receptor 

Inhibited -2.235 1.30E-03 

PPARA   ligand-dependent 

nuclear receptor 

Activated 2.159 2.11E-02 

CALCA   other Inhibited -2.449 1.04E-03 

Irgm1   other Inhibited -2.219 6.94E-04 

VCAN -0.03 other Inhibited -2.137 1.03E-04 

Bvht   other Inhibited -2 4.12E-02 

Hbb-b2   other Activated 2 6.06E-03 

APP   other Activated 2.204 1.01E-06 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 9, 2019. ; https://doi.org/10.1101/791350doi: bioRxiv preprint 

https://doi.org/10.1101/791350


CST5 0.016 other Activated 2.213 1.00E+00 

RABL6   other Activated 2.449 1.39E-03 

OSCAR 0.441 other Activated 2.449 3.69E-05 

F2   peptidase Inhibited -2.109 2.15E-05 

DUSP1 -1.034 phosphatase Inhibited -2.433 3.93E-03 

ZBTB17   transcription 

regulator 

Inhibited -2.449 3.99E-03 

ZFP36 -0.75 transcription 

regulator 

Inhibited -2.207 1.67E-02 

EGR2 0.928 transcription 

regulator 

Inhibited -2.121 2.09E-03 

NUPR1 -0.184 transcription 

regulator 

Inhibited -2.111 3.38E-01 

NANOG -0.061 transcription 

regulator 

Inhibited -2 3.01E-02 

NEUROG1   transcription 

regulator 

Activated 2 3.25E-02 

ETV5 -0.216 transcription 

regulator 

Activated 2 3.00E-02 

CLOCK -0.303 transcription 

regulator 

Activated 2 9.80E-02 

KEAP1   transcription 

regulator 

Activated 2 2.30E-03 

SOX3   transcription 

regulator 

Activated 2 4.89E-02 

WT1 -0.002 transcription 

regulator 

Activated 2.05 2.46E-02 

PPARGC1A -0.596 transcription 

regulator 

Activated 2.242 1.56E-09 

RUNX3   transcription 

regulator 

Activated 2.538 5.41E-08 

TREM1 0.652 transmembrane 

receptor 

Activated 2.183 1.23E-07 

CD40   transmembrane 

receptor 

Activated 2.307 1.81E-06 

TLR2 -0.37 transmembrane 

receptor 

Activated 2.391 1.52E-02 

Hbb-b1   transporter Activated 2 6.91E-02 
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Table 5. Canonical Pathway in RB-ILD (compared to Control) 

Ingenuity Canonical Pathways  -log(p-value) z-score 

Role of Macrophages, Fibroblasts and 

Endothelial Cells in Rheumatoid Arthritis 

4.01E+00  

Granulocyte Adhesion and Diapedesis 3.91E+00  

SPINK1 General Cancer Pathway 3.64E+00 2 

Hepatic Fibrosis / Hepatic Stellate Cell 

Activation 

3.60E+00  

Osteoarthritis Pathway 3.34E+00 -2.236 

STAT3 Pathway 3.31E+00  

Role of Osteoblasts, Osteoclasts and 

Chondrocytes in Rheumatoid Arthritis 

3.21E+00  

PPAR Signaling 2.86E+00 2 

Heparan Sulfate Biosynthesis (Late Stages) 2.60E+00  

LXR/RXR Activation 2.57E+00 1 

LPS/IL-1 Mediated Inhibition of RXR Function 2.50E+00  

Heparan Sulfate Biosynthesis 2.46E+00  

Iron homeostasis signaling pathway 2.44E+00  

IL-10 Signaling 2.36E+00  

Apelin Cardiac Fibroblast Signaling Pathway 2.26E+00  

Cysteine Biosynthesis/Homocysteine 

Degradation 

2.02E+00  

Coagulation System 1.91E+00  

Triacylglycerol Degradation 1.84E+00  

p38 MAPK Signaling 1.75E+00  

GP6 Signaling Pathway 1.72E+00  

NAD Biosynthesis III 1.72E+00  

Glucocorticoid Receptor Signaling 1.66E+00  

IL-6 Signaling 1.64E+00  

Serine Biosynthesis 1.62E+00  

Lysine Degradation II 1.62E+00  

Superpathway of Serine and Glycine 

Biosynthesis I 

1.48E+00  
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Table 6. Upstream Regulators in RB-ILD (compared to Control) 

Upstream 

Regulator 

Expression 

Log Ratio 

Molecule Type Predicted 

Activation 

State 

Activation  

z-score 

p-value 

of 

overlap  

PDGF BB   complex Inhibited -2.242 1.06E-04 

NFkB 

(complex) 

  complex Inhibited -2.207 3.77E-04 

Ige   complex Inhibited -2 1.52E-02 

TNF 0.033 cytokine Inhibited -3.157 2.47E-10 

IL6 -0.981 cytokine Inhibited -3.11 9.10E-07 

IL1A 0.276 cytokine Inhibited -2.741 6.34E-08 

IL1B -0.012 cytokine Inhibited -2.597 2.29E-11 

TNFSF12   cytokine Inhibited -2.414 5.84E-06 

OSM -0.306 cytokine Inhibited -2.412 5.43E-07 

IL17A   cytokine Inhibited -2.191 2.61E-03 

IFNA2   cytokine Inhibited -2 2.20E-02 

NOS2   enzyme Inhibited -2 6.48E-03 

ADRB   group Activated 2 4.39E-03 

Alpha 

catenin 

  group Activated 2.607 1.39E-06 

ESR1 0.238 ligand-dependent 

nuclear receptor 

Activated 2.157 4.06E-02 

F2   peptidase Inhibited -2.157 7.17E-03 

STAT3   transcription 

regulator 

Inhibited -2.292 1.31E-06 

EHF -0.025 transcription 

regulator 

Inhibited -2.236 7.89E-05 

TP53 -0.136 transcription 

regulator 

Inhibited -2.027 1.39E-01 

TLR3 0.07 transmembrane 

receptor 

Inhibited -2.219 5.15E-04 

TLR9   transmembrane 

receptor 

Inhibited -2 1.26E-02 
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Table 7. Canonical Pathway in DIP (compared to RB-ILD)  

Ingenuity Canonical Pathways  -log(p-value) z-score 

Granulocyte Adhesion and Diapedesis 6.12E+00  

Agranulocyte Adhesion and Diapedesis 5.83E+00  

Inhibition of Matrix Metalloproteases 5.66E+00 -2.449 

Complement System 4.52E+00  

Axonal Guidance Signaling 4.03E+00  

Atherosclerosis Signaling 3.66E+00  

Osteoarthritis Pathway 3.60E+00 1.667 

Bladder Cancer Signaling 3.37E+00  

Leukocyte Extravasation Signaling 3.09E+00 2.828 

Oncostatin M Signaling 3.02E+00 1 

Phagosome Formation 3.02E+00  

HIF1α Signaling 3.00E+00  

Hepatic Fibrosis / Hepatic Stellate Cell 

Activation 

2.57E+00  

Airway Pathology in Chronic Obstructive 

Pulmonary Disease 

2.56E+00  

IL-8 Signaling 2.40E+00 1.134 

Caveolar-mediated Endocytosis Signaling 2.29E+00  

Nicotine Degradation II 1.89E+00  

Colorectal Cancer Metastasis Signaling 1.87E+00 1.134 

Glutamate Receptor Signaling 1.71E+00  

Reelin Signaling in Neurons 1.34E+00  

Altered T Cell and B Cell Signaling in 

Rheumatoid Arthritis 

1.34E+00  

IL-17A Signaling in Fibroblasts 1.31E+00  

dTMP De Novo Biosynthesis 1.30E+00  
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Table 8. Upstream Regulators in DIP (compared to RB-ILD) 

Upstream 

Regulator 

Expression 

Log Ratio 

Molecule Type Predicted 

Activation 

State 

Activation  

z-score 

p-value 

of 

overlap  

PI3K 

(complex) 

  complex Activated 2.316 1.74E-05 

Collagen 

type I 

  complex Activated 2.17 3.21E-04 

IL6 -0.744 cytokine Activated 3.586 1.71E-06 

TNF -0.046 cytokine Activated 3.495 8.49E-11 

CSF2   cytokine Activated 3.418 1.61E-03 

IL1A -0.431 cytokine Activated 2.907 2.72E-04 

IL13   cytokine Activated 2.696 1.68E-05 

IL4   cytokine Activated 2.587 6.56E-05 

CXCL8 0.113 cytokine Activated 2.378 7.53E-05 

TNFSF12   cytokine Activated 2.366 3.62E-04 

C5 0.625 cytokine Activated 2.2 4.63E-03 

CSF3 -0.156 cytokine Activated 2.159 7.08E-03 

SPP1 3.491 cytokine Activated 2.079 5.61E-03 

IL1B -0.437 cytokine Activated 2.047 4.15E-08 

TGM2 -0.032 enzyme Activated 2.949 8.31E-05 

FN1 0.377 enzyme Activated 2.596 3.84E-03 

HRAS   enzyme Activated 2.496 9.33E-05 

PTGER2 0.372 G-protein coupled 

receptor 

Activated 2 1.87E-02 

P38 MAPK   group Activated 2.964 1.28E-06 

ERK   group Activated 2.784 3.97E-04 

IL1   group Activated 2.76 2.17E-05 

ERK1/2   group Activated 2.113 4.34E-04 

estrogen 

receptor 

  group Activated 2.098 2.60E-03 

Jnk   group Activated 2.072 5.97E-04 

Alpha 

catenin 

  group Inhibited -2 2.94E-02 

FGF2 -0.351 growth factor Activated 2.415 5.99E-09 

EGF 0.619 growth factor Activated 2.082 7.03E-05 

ERBB2 0.049 kinase Activated 3.256 6.82E-03 
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MAPK1   kinase Activated 2.727 9.08E-06 

PRKCD 0.277 kinase Activated 2.401 7.70E-03 

MAP2K1 0.428 kinase Activated 2.191 3.40E-04 

MTOR   kinase Inhibited -2 3.99E-01 

NR3C1   ligand-dependent 

nuclear receptor 

Inhibited -2.213 1.45E-02 

mir-223 -0.336 microRNA Activated 2.236 6.49E-03 

APP   other Activated 2.97 6.66E-03 

S100A9 0.13 other Activated 2.2 4.81E-03 

ADCYAP1 0.637 other Activated 2.173 6.54E-02 

OSCAR 0.368 other Activated 2 3.69E-04 

MIR17HG -0.255 other Activated 2 3.27E-02 

INSIG1 -0.352 other Inhibited -2.236 2.91E-03 

NKX2-3   transcription 

regulator 

Activated 2.818 1.20E-03 

ETS1 -0.481 transcription 

regulator 

Activated 2.574 3.89E-05 

ETV5 -0.893 transcription 

regulator 

Activated 2.449 3.41E-04 

ETS2 -0.466 transcription 

regulator 

Activated 2.183 6.22E-04 

TCF4 -0.393 transcription 

regulator 

Activated 2.176 7.36E-04 

CEBPA 0.069 transcription 

regulator 

Activated 2.125 2.05E-05 

CEBPB 0.206 transcription 

regulator 

Activated 2.048 1.12E-04 

FOXO1   transcription 

regulator 

Activated 2.021 9.51E-07 

KEAP1   transcription 

regulator 

Activated 2 2.25E-04 

GATA1   transcription 

regulator 

Inhibited -2.219 6.69E-03 

CBX5   transcription 

regulator 

Inhibited -2.236 1.01E-03 

TP73 0.243 transcription 

regulator 

Inhibited -2.425 8.68E-02 

SRF -0.085 transcription Inhibited -2.449 1.01E-04 
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regulator 

IL10RA 0.568 transmembrane 

receptor 

Inhibited -2 1.30E-08 

APOE 1.213 transporter Inhibited -2.053 1.03E-09 
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Figure Legends 

 

Figure 1. CSF2 is a predicted upstream regulator driving pathway activation in DIP 

transcriptome  

CSF2 was predicted by IPA as an upstream regulator driving pathway activation (i.e., CSF2 was 

predicted to be activated) (activation z-score = +3.162). The CSF2 expression level itself was not 

significantly different between DIP and control. The genes/regulators are colored according to 

their predicted activation state: activated (orange) or inhibited (blue). Darker colors indicate higher 

absolute Z-scores. The edges connecting the nodes are colored orange when leading to 

activation of the downstream node, blue when leading to its inhibition, yellow if the findings 

underlying the relationship are inconsistent with the state of the downstream node, and grey if the 

effect is not predicted. Pointed arrowheads indicate that the downstream node is expected to be 

activated if the upstream node connected to it is activated, while blunt arrowheads indicate that 

the downstream node is expected to be inhibited if the upstream node that connects to it is 

activated. The dashed lines indicate virtual relationships composed of the net effect of the paths 

between the root regulator and the target genes (6). 

 

Figure 2. Predicted regulatory effects of CSF2. 

Upregulated (red) or downregulated (green) genes are indicated in the network surrounding CSF2. 

Arrows are colored as in Figure 1.  

 

Figure 3. NR3C1 (corticosteroid receptor) is predicted to be one of the inhibited upstream 

regulators in the DIP transcriptome. 

Genes/regulators and arrows are colored as in Figure 1. 

 

Figures 4-10.  xCell-inferred enrichment scores for cell types according to the disease 

states.  

Figure 4. B cells 

Figure 5. T cells 

Figure 6. NK cells 

Figure 7. Macrophages 

Figure 8. Dendritic cells 

Figure 9. Neutrophils, eosinophils, basophils, and mast cells 

Figure 10. Platelets, and erythrocytes 

Please note that xCell scores predict relative enrichment for cell types, not the proportions. 

Kruskal-Wallis test followed by Dunns multiple comparison tests (all-group comparison). 

*p<0.05, **p<0.005, ***p<0.001 
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Supplemental Figure 1. “Inhibition of Matrix Metalloproteases (MMPs)” is predicted to be 

inhibited in DIP. (i.e., MMPs are predicted to be relatively activated in DIP.) 

 

Supplemental Figure 2. CD40 is predicted to be one of the activated upstream regulators of 

the DIP transcriptome. 

 

Supplemental Figure 3. B cell receptor (BCR) is predicted to be one of the activated 

upstream regulators of the DIP transcriptome. 

 

Supplemental Figure 4. Dexamethasone is predicted to be one of the “inhibited” upstream 

regulators of the DIP transcriptome. 

 

Supplemental Figure 5. Chloroquine is predicted to be one of the “inhibited” upstream 

regulators of the DIP transcriptome. 
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