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Abstract 
 
The thousands of disease risk genes and loci identified through human genetic studies far outstrip 
our current capacity to systematically study their functions. New experimental approaches are 
needed for functional investigations of large panels of genes in a biologically relevant context. 
Here, we developed a scalable genetic screen approach, in vivo Perturb-Seq, and applied this 
method to the functional evaluation of 35 autism spectrum disorder (ASD) de novo loss-of-function 
risk genes. Using CRISPR-Cas9, we introduced frameshift mutations in these risk genes in pools, 
within the developing brain in utero, and then performed single-cell RNA-Seq in the postnatal 
brain. We identified cell type-specific gene signatures from both neuronal and glial cell classes 
that are affected by genetic perturbations, and pointed at elements of both convergent and 
divergent cellular effects across this cohort of ASD risk genes. In vivo Perturb-Seq pioneers a 
systems genetics approach to investigate at scale how diverse mutations affect cell types and 
states in the biologically relevant context of the developing organism. 
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Human genetics has now uncovered strong associations between genetic variants in tens 
of thousands of loci and complex human diseases ranging from inflammatory bowel disease to 
psychiatric disorders (Jostins et al., 2012; Schizophrenia Working Group of the Psychiatric 
Genomics, 2014; de la Torre-Ubieta et al., 2016). In particular, analysis of trio-based whole-exome 
sequencing (WES) has implicated a large number of de novo variants in contributing to risk of 
several neurodevelopmental pathologies, including autism spectrum disorders (ASD) (Sanders et 
al., 2012; Satterstrom et al., 2018). Compared to common variants identified by Genome-Wide 
Association Studies, such de novo risk variants often have large effect sizes, are highly penetrant 
and are in the gene’s coding region, thus providing a crucial entry point for disease modeling and 
mechanistic studies. However, a major challenge remains for functional genetics: the identification 
of the point of action of these risk genes, each of which can, in principle, affect any of a massive 
number of different tissues, cell types, and molecular pathways. High-resolution and high-content 
phenotyping methods to identify tissue- and cell-type specific effects of genetic perturbations are 
needed, as generating and analyzing individual knockout animal models for long lists of risk genes 
as a first line of functional investigation is prohibitively time consuming and costly. 

To address these challenges, we developed in vivo Perturb-Seq, a scalable, in vivo genetic 
screen, to investigate the function of large sets of genes at single-cell resolution in complex tissue 
in vivo. We applied in vivo Perturb-Seq in utero to study the effect of autism spectrum disorder 
(ASD) risk genes on mouse brain development. ASD comprises a broad collection of 
neurodevelopmental disorders with highly heterogeneous genetic contributions, including 
hundreds of highly penetrant de novo risk variant genes (Chen et al., 2015). Moreover, there is 
substantial diversity in the function of the gene products that risk genes encode, precluding a clear 
prediction about the underlying brain cell types, developmental processes, and molecular 
pathways affected during neurodevelopment (Mullins et al., 2016). By combining in utero genome 
editing in neural progenitors of the forebrain with postnatal single-cell RNA-Seq (scRNA-Seq), we 
studied how perturbing each of 35 ASD de novo variant genes affected brain development in a 
cell-type specific manner. 

 
In vivo Perturb-Seq to assess the function of ASD risk genes  

We chose ASD candidate genes from a recently published WES study of 11,986 cases with 6,430 
ASD probands, the largest published cohort in neural developmental disorder (NDD) and ASD 
genetics to date (Satterstrom et al., 2018) (Table S1). We initially prioritized 38 candidate genes 
(of which 35 were retained in the final analysis, Supplemental Information) that harbor a de 
novo variant specific to ASD patients within the broader class of neurodevelopmental disability 
(NDD) (Figure S1A, Supplemental Information, Table S1). These ASD risk genes are 
expressed in human brain tissue, as assessed by the Allen BrainSpan bulk RNA-Seq dataset 
(Miller et al., 2014); some are highly expressed at embryonic stages, and others highly expressed 
from early postnatal to adult stages (Figure S1B). Based on mouse cortical scRNA-Seq data, 
their orthologs are expressed in diverse cell types (Figure S2) (E18.5 data from the 10x Genomics 
public dataset, see Supplemental Information; P7 data from this work). Thus, these ASD genes 
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could in principle act in many different cell types and temporal frames, emphasizing the 
importance of using scalable methods to test gene function across a range of cell types and 
developmental events.  

For in vivo Perturb-Seq, we used Cas9-mediated genome editing (Adamson et al., 2016; 
Dixit et al., 2016; Jaitin et al., 2016) in a pooled approach to introduce mutations in each of the 
ASD risk genes within progenitor cells of the developing forebrain in utero, followed by scRNA-
Seq at P7 to read out both a barcode of the perturbation and the perturbed cell’s transcriptomic 
profile (Figure 1A). Specifically, we used a transgenic mouse line that constitutively expresses 
Cas9 (Platt et al., 2014), and delivered pools of gRNAs by lentiviral infection into the lateral 
ventricles of the developing embryo in utero. Each lentiviral vector contained two gRNAs targeting 
the 5’-end coding exons of one ASD gene and a blue fluorescent protein (BFP) reporter with a 
barcode corresponding to the perturbation identity (Adamson et al., 2016; Dixit et al., 2016; Jaitin 
et al., 2016). To minimize vector recombination, we packaged each lentivirus independently and 
then pooled them at equal titers. We injected a pool of lentiviruses with equal gRNA representation 
into the ventricular zone at E12.5 (Figure 1A). In this approach, lentiviral infection will label neural 
progenitors lining the ventricle, and since the virus integrates into the genome, their progeny will 
likewise be labeled by BFP and carry a perturbation barcode corresponding to the targeted ASD 
gene. The lentiviral administration allows a sparse labeling of less than 0.1% of cells in the cortex 
(Figure S3A-C). On P7, we micro-dissected and dissociated cortical and striatal tissue, FACS-
enriched the perturbed cells by selecting for BFP expression, and used massively parallel scRNA-
Seq to obtain each cell’s expression profile along with its perturbation barcode. The cell survival 
rate after FACS was 78%, and we confirmed a 40-70% frameshift insertion/deletion for each 
gRNA target among the infected cells (Figure S3D-E). 

In vivo Perturb-Seq targets diverse cell types without affecting overall cell composition 

Targeting of the gRNA library to the lateral ventricle of E12.5 embryos results in infection 
of neural progenitors of the cortex, striatum and hippocampus. This allowed us to examine the 
effects of each perturbation across a wide range of progeny cell types (i.e. projection neurons, 
interneurons, astroglia, oligodendroglia, etc.) from distinct brain regions. In agreement 
immunohistochemical analysis and scRNA-Seq showed that the Perturb-Seq vector was 
expressed across a variety of neuronal and glial cell types (Figure 1B, Figure S3A-B). 

We performed the experiment with 18 different cohorts of pregnant mice, for a total of 163 
embryos, each subjected to the entire pool of perturbations. This multiplexed experimental design 
allowed us to test the cell-autonomous effect of all perturbations against a negative control 
construct targeting the endogenous GFP in the Rosa26 locus, a construct that was included in 
the same pool thus minimizing batch-dependent variation (Figure S3F). After quality control, we 
retained for further analysis a total of 46,770 cells from the neocortex across 17 high-quality 
experimental batches, and 7,118 striatal cells from 6 experimental batches. We grouped the cells 
into major subsets using Louvain clustering (Blondel et al., 2008) and annotated them by known 
marker gene expression (Zeisel et al., 2018) (Figure 1D). We then focused on five broad cell 
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populations for downstream analysis: cortical projection neurons, cortical inhibitory neurons, 
astrocytes, oligodendrocytes, and microglia (thus excluding vascular, endothelial, hippocampal 
and striatal cells (Figure S3F)). After filtering some remaining low-quality cells in these groups 
(Supplemental Information), we retained 35,857 high quality cells (median of 2,436 detected 
genes per cell overall, and 4,084 genes in the projection neuron cluster (Figure S3G)). We 
subclustered each of these five major cell types separately and annotated biologically meaningful 
subclusters (Figure S6).  

Based on the perturbation barcodes from the lentiviral constructs, 92% (33,231 cells) of 
the cells in these five major cell types had at least one perturbation read assigned to them 
(Supplemental Information), and 50% had a single gene perturbation identity (Figure S4A-C, 
18,044 cells), reflecting the low multiplicity of infection (Figure S4D). We assigned 18,044 cells 
to a single perturbation at a median of 338 cells per perturbation. After excluding genetic 
perturbations with <70 perturbed cells detected, we retained 35 ASD risk gene perturbations in 
the final analysis. BFP from the lentiviral vector was robustly detected as one of the most highly 
expressed genes in all cells retained for analysis (Figure S4E), and the BFP detection rate in 
each cell type was correlated to the average number of genes detected (Figure S4F).  

Relative to the negative control (which targeted the GFP gene), ASD risk gene 
perturbations had a very modest effect on the composition of the five main cell types. Only loss 
of Dyrk1a had a significant effect on cell type composition, increasing the proportion of 
oligodendrocytes and reducing microglia [(FDR-corrected P<0.05 using Poisson regression 
(Haber et al., 2017)] (Figure 1D, Figure S5). 

ASD gene perturbations affect gene programs and cell states within and across sub-
populations of cells  

To assess whether molecular changes and alterations in cell state were caused by ASD 
genetic perturbations, we next defined modules of genes within each of the five cell types that co-
varied as a group across the cells within each cluster (Figure 2A). Such modules may reflect 
common biological processes (e.g., cell cycle, differentiation, cell identity) whose activity either 
varies naturally across the cells within a given subset (Bielecki et al., 2018; Smillie et al., 2019), 
and/or is affected by the introduced perturbation. As previous work has shown (Adamson et al., 
2016; Dixit et al., 2016; Jaitin et al., 2016; Duan et al., 2019), focusing on gene modules instead 
of individual genes provides more power to detect biologically meaningful perturbation effects 
using fewer cells than would be required for single gene-level analysis. To recover these gene 
expression modules, we applied two algorithms: Weighted Gene Correlation Network Analysis 
(WGCNA) and structural topic modeling (STM) (Supplemental Information, Figure S6-7, Table 
S2-3) (Roberts et al.; Langfelder and Horvath, 2008). As the modules selected by WGCNA were 
highly correlated with one or more topics (the STM analogue of modules) (Figure S7), we focused 
on 14 WGCNA modules extracted from the five major cell types. 

Within each cell category, some modules were specific to one subcluster within a cell type, 
whereas others ranged across cells in multiple subclusters, reflecting association with a specific 
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subtype or a cell state, respectively. For example, within the projection neuron cluster, some of 
the modules are specific to subclusters matching a subtype of projection neurons, Layer 4 
projection neurons (module PN1) (Figure 2B,C). Conversely, module PN2, associated with genes 
involved in neurite development and varied across cells in multiple subclusters, regardless of 
subtypes (Figure 2D). 

We next tested whether perturbation of individual ASD risk genes was associated with 
changes of expression in each module. For each of the 14 WGCNA gene modules, we fit a joint 
linear regression model to estimate the effect size of each perturbation on that module. This 
allowed us to measure how module gene expression in each perturbation group deviated from 
the GFP control group (Figure 2E). We estimated the significance of these deviations by 
permuting the perturbation labels across cells within each experimental batch separately and 
comparing the resulting effect size to that in the unpermuted data. To ensure that no single 
perturbation or batch had a dominant effect on the linear model, we down-sampled cells in each 
cell category such that no perturbation had more than two times the median number of cells over 
all perturbations (Supplemental Information).  

Perturbations in 15 ASD genes (Adnp, Ank2, Ash1l, Chd8, Ctnnb1, Gatad2b, Kdm5b, Mll1, 
Pogz, Pten, Scn2a1, Setd5, Spen, Stard9, and Upf3b) had significant effects across six modules 
(Figure 2E, circles, compared to the GFP control, FDR corrected P<0.05, Table S4): the 
projection neuron Layer 4 module (PN1), all three astroglia modules (Astro1, Astro2, and Astro3), 
the oligodendrocyte progenitor module 1 (ODC1), and the interneuron Ndnf+ module (IN1). 
Perturbation of three additional ASD risk genes, Ctnnb1, Dscam, and Setd2, resulted in nearly 
significant (FDR corrected P<0.09) decreases in the projection neuron neurite development 
module (PN2) (Figure 2D-E). This is consistent with previous work showing that Dscam regulates 
presynaptic assembly and arborization size in Drosophila sensory neurons (Kim et al., 2013), and 
that loss of function of Ctnnb1 signaling impairs synaptic vesicle diffusion, decreases vesicle 
number, and decreases dendritic arborization (Bamji et al., 2003; Yu and Malenka, 2003; Gao et 
al., 2007).  

We further used the non-parametric van der Waerden test to ask which modules had a 
significant amount of their variation across the relevant cell types explained by the ASD 
perturbations overall. The oligodendrocyte progenitor module (ODC1) was a significant hit (FDR 
corrected P<0.05), while two other modules, Astro2 and Astro3 (corresponding to astroglia 
progenitors and astrocyte activation, respectively), were nominally significant (P<0.05, FDR 
corrected P>0.05) (Figure S5C). In order to determine whether changes in module expression 
observed in neocortical cells may also occur in cells of other brain regions, we performed in vivo 
Perturb-seq in the striatum and analyzed a total of 7,118 cells (5,933 of which are in glia clusters) 
from 6 independent batches. We find that the direction of effect of most perturbations largely 
agrees with those in the cortical data (see Supplemental text and fig S10, Supplemental 
Information), indicating that at least some of the ASD gene perturbation effects appear to 
generalize in cells of more than one brain region  
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Collectively, the data indicate that a selected group of perturbations was able to affect 
specific gene expression modules with cell-type specificity and point to convergent effects on such 
modules by a subset of perturbations.  

Single perturbation of Ank2 confirms effect on interneuron gene expression module  

In our multiplex in vivo Perturb-seq results, Ank2 perturbation leads to an increase in the 
interneuron Ndnf+ module (IN1) (FDR corrected P<0.05, Figure S8). Ank2 encodes an ankyrin 
protein, which interacts with ion channels and can stabilize GABAergic synapses (Tseng et al., 
2015). To validate our finding, we tested this result in a simplex setting, by performing a single 
perturbation targeting either Ank2 or GFP (control), followed by scRNA-Seq of neocortical cells at 
P7, collecting 2,943 and 1,716 high quality cells, respectively.  

The individual simplex perturbation confirmed the results from the multiplexed in vivo 
Perturb-Seq screen. First, Ank2-perturbed cells were present across all cell types and their overall 
proportions were not significantly changed (Figure S8B). The IN1 module was strongly correlated 
with a subcluster of inhibitory neurons, which expressed Ndnf (Figure S8C,D), and within those 
cells Ank2 loss-of-function perturbation led to upregulation of the module (FDR corrected P<0.05, 
Figure S8E), confirming the in vivo Perturb-Seq result. 

The ASD risk genes Chd8 and Gatad2b alter gene programs in oligodendrocyte 
progenitors 

Chd8 and Gatad2b perturbations significantly decreased the expression of the ODC1 
module in the oligodendrocyte cluster (Figure 3A-D, FDR corrected P<0.05). The ODC1 module 
is expressed highly in cycling cells and oligodendrocyte precursor cells (OPC), and lowly in newly 
formed oligodendrocytes (nODC) and myelinating oligodendrocytes (mODC), suggesting a link to 
oligodendrocyte maturation (Figure 3A). 

We further investigated and validated this result by examining oligodendrocyte 
development in a Chd8 germline heterozygous mutant model (as homozygous mutation is 
embryonic lethal (Nishiyama et al., 2004)), using several orthogonal methods. First, we used in 
situ hybridization for two canonical OPC marker genes, Pdgfra and Cspg4, one of which (Cspg4) 
is in the ODC1 module. Both were downregulated in P7 Chd8+/- cortex (Figure 3E, Figure S9A-
C), consistent with our in vivo Perturb-Seq results. Immunohistochemistry against PDGFRA did 
not show significant differences in OPC cell numbers between the WT and Chd8+/- littermates at 
P7 and P12, also consistent with in vivo Perturb-Seq; however, cells positive for the myelinating 
protein MBP were increased in numbers and displayed elevated MBP protein levels in the Chd8+/- 
mutant in both P7 and P12 (FDR corrected P<0.05, nonparametric ANOVA test) (Figure 3F, 
Figure S9D-G). These results also agree with previous findings that Chd8 loss of function is 
connected to abnormal OPC development (Marie et al., 2018). Collectively these data indicate 
that in vivo Perturb-Seq can identify cell-type specific molecular changes that agree with single 
gene perturbations. 
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Discussion 

In vivo Perturb-Seq can serve as a scalable tool for systems genetic studies of large gene 
panels to reveal their function at single-cell resolution in complex tissues. In this work, we 
demonstrated the application of in vivo Perturb-Seq to ASD risk genes in the developing brain; 
more generally, this method can be applied across diverse diseases and tissues. 

ASD affects brain function profoundly, but its cellular and molecular substrates are not yet 
defined. The large number of highly penetrant de novo risk genes implicated through human 
genetic studies offer an entry point to identify the cell types, developmental events, and 
mechanisms underlying ASD origin. However, this requires scalable methods to define the 
function of genetic hits, with cell-type specificity. Here, we observed different cell types and 
processes affected by distinct ASD risk genes as well as distinct molecular pathways which are 
differentially affected across cell types. In addition to effects in neurons, oligodendrocyte 
development was affected by certain perturbations. Oligodendrocytes modulate and consolidate 
neural circuit refinement, and abnormal maturation of oligodendrocytes may be linked to long-
lasting changes in neural wiring and brain function (Bercury and Macklin, 2015). One of the risk 
genes, Chd8, encodes a protein that binds directly to b-catenin and negatively regulates the Wnt 
signaling pathway, which plays a crucial role in progenitor proliferation and differentiation in the 
forebrain (Sakamoto et al., 2000; Durak et al., 2016; Katayama et al., 2016; Platt et al., 2017). 
Our results showed that Chd8 modulates gene programs for oligodendrocyte differentiation and 
maturation, consistent with previously reported ChIP-Seq results showing that CHD8 interacts 
directly with OPC maturation genes in the neonatal stage (Marie et al., 2018; Zhao et al., 2018). 
Other cell types may be altered at different developmental stages, through cell-autonomous 
(intrinsic) or non-cell autonomous (extrinsic) mechanisms, which should be investigated further in 
the future.  

Although we focused on the neocortex in this study, in vivo Perturb-Seq can be applied to 
study gene functions systematically across other tissues, to reveal tissue-specific as well as 
broadly-distributed gene functions, and uncover both the impact of individual disease-associated 
genes and the overall set of processes that they affect. Our findings underscore the importance 
of using single-cell profiles as a rich, comprehensive and interpretable phenotypic readout. With 
advances in other single cell profiling approaches (e.g., single-cell ATAC-Seq (Rubin et al., 
2019)), single-cell multi-omics (Bian et al., 2018), and spatial genomics (Wang et al., 2018; 
Rodriques et al., 2019), we expect in vivo Perturb-Seq to be coupled in the near future with diverse 
readouts to better define the function of disease-risk associated variants from molecular 
mechanisms to non-cell autonomous effects in tissues. Spatial transcriptomics in particular should 
be well suited for use with in vivo Perturb-Seq, and should help uncover non-cell autonomous 
effects. In vivo Perturb-Seq can enable discoveries of pathways and cell types affected in 
heterogenous genetic pathologies, directing downstream studies and informing the development 
of refined models for genetic disorders and mechanistic studies as we move from genetic variants 
to function. 
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Figure 1. In vivo Perturb-Seq to investigate functions of a panel of ASD risk genes harboring de 
novo variants.  
(A) Schematics of the in vivo Perturb-Seq platform, which introduces mutations in individual genes 
in utero lentivirally at E12.5, followed by transcriptomic profiling of the cellular progeny of these 
perturbed cells at P7 via scRNA-Seq. (B) TSNE of five major cell types identified in the Perturb-
Seq cells.  (C) In vivo Perturb-Seq lentiviral vector with an mCherry expression starts within 24h, 
and can sparsely infect brain cells across many brain regions. Scale bar is 1000µm. (D) Cell type 
analysis of in vivo Perturb-Seq of ASD de novo risk genes. Canonical marker genes were used 
to identify major cell clusters (left), and cell type percentage representation in each perturbation 
group (right). Negative control (GFP) is highlighted by a black rectangle. 
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Figure 2. In vivo Perturb-Seq reveals cell-type specific effects of ASD risk gene perturbations.  
(A) Schematic illustration of the Perturb-Seq analysis pipeline, using co-varying gene module 
analysis in each cell cluster to estimate perturbation-associated effects on gene modules using 
linear modeling. (B) Subtypes of projection neurons (left), identified by expression of key marker 
genes (right). (C-D) Examples of projection neuron co-varying gene modules associated with 
Layer 4 projection neuron subtype identity and neurite development, respectively. (E) ASD risk 
gene perturbation effects in different WGCNA gene modules compared to GFP controls. Dot color 
corresponds to effect size, dot size corresponds to log(P-values). Module gene lists are in Table 
S2. P-value was calculated using a permutation-based approach; Padj was calculated using 
Benjamini & Hochberg FDR correction. 
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Figure 3. Perturbation effect in oligodendrocytes and validation in Chd8+/- mouse models.  
(A) TSNE of oligodendrocyte subtypes from the Perturb-Seq data. (B) The ODC1 gene module 
expression score in each cell (left) and in each subcluster (right). (C) Average expression of genes 
in the ODC1 gene module (by row) in each perturbation group (by column), scaled by row. (D) 
Effect size of each perturbation on the ODC1 gene module compared to the control group. Error 
bars represent 95% confidence intervals. (E) In situ hybridization for Pdgfra, a marker of 
oligodendrocyte precursor cells (OPC), in the somatosensory cortex of P7 Chd8+/- and wild-type 
littermates. Right: quantification of Pdgfra expression in P7 cortex of Chd8+/- and wild-type 
littermates. Each dot represents the gene expression measurement from one cell; error bars 
represent standard error of the mean (n=2-3 animals per genotype). Scale bar on the left top 
panel is 1000µm, left bottom panel is 200µm and right panel is 50µm. (F) Immunohistochemistry 
for PDGFRA and MBP, markers for immature OPC and mature oligodendrocytes, and cell counts 
in the somatosensory cortex of P7 Chd8+/- animals and wildtype littermates. Scale bar is 250µm. 
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Supplemental Information 
 
Tables 
Table S1. ASD risk gene list and their effect in ASD/NDD patient cohort. 
Table S2. WGCNA gene module gene lists. 
Table S3. Structural topic modeling fitted model. 
Table S4. Effect size estimate of each ASD risk gene perturbation and nonparametric ANOVA 
analysis in the cortex in WGCNA modules and STM topics. 
Table S5. Effect size estimate of each ASD risk gene perturbation and nonparametric ANOVA 
analysis in the striatum in WGCNA modules. 
Table S6. gRNA design for the ASD risk gene perturbations. 
Table S7. Parameters used in Seurat for cell type clustering. 
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Figures S1-S10 

 

 

Figure S1. (A) The frequency of de novo loss-of-function variants in ascertained Autism Spectrum 
Disorders (ASD) and ascertained neurodevelopmental delay (NDD) cases for the 35 risk-
associated genes included the Perturb-Seq analysis. Q value was calculated based on the de 
novo and case control (dncc) data. This data comes from Satterstrom et al. (B) Gene expression 
of a panel of selected ASD de novo risk genes in human somatosensory cortex (S1C), striatum, 
and thalamus across the Allen Brain Atlas BrainSpan postmortem samples from various ages. 
Dendrogram indicates hierarchical clustering by the rows. 
  

Supp. Fig. 1 
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Figure S2. (A-B) Cell type clusters from E18.5 (public data from 10x Genomics) and WT P7 (data 
generated from this work) neocortex, as well as expression of cell type marker genes across 
identified cell clusters. (C) Expression of the 38 initially-selected risk-associated genes in the cell 
clusters from E18.5 and P7 wildtype cortex. 

Supp. Fig. 2 
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Figure S3. (A-B) Lentiviral injection at E12.5 can sparsely infect neurons (NeuN+), astrocytes 
(Glutamine Synthase [GS]+), oligodendrocyte precursor cells (PDGFRA+), and microglia and 
macrophages (IBA1+) in the P7 neocortex. Scale bar is 50µm. In vivo Perturb-Seq lentiviral vector 
with an mCherry expression allows immunohistochemistry and identification of the targeted cell 
types. (C) The proportion of live cells after FACS purification is 78.2%, and <0.1% of total 
dissociated cortical cells are BFP+. (D-E) Frameshift insertion/deletion rates of the targeted loci 
by CRISPR/Cas9 genome editing (D) in the infected cells in vivo, and (E) in mouse embryonic 
stem cells in vitro, for each gRNA. (F) Five major cell types from the Perturb-Seq cells, composed 
of 17 different libraries (independent experimental batches) (left) and representing 35 different 
perturbation groups (right). (G) Number of genes detected in each cell type in the Perturb-Seq 
single-cell RNA-Seq data. Quality control cutoffs for each cell type are marked by black vertical 
bars. 
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Figure S4. (A) The distribution of each perturbation vector in the lentiviral pool. (B) The distribution 
of cell numbers from each ASD perturbation group. (C) Estimated doublet score in the Perturb-
Seq data using the Scrublet package; the black vertical bar represents the cutoff above which a 
“cell” is declared as a doublet. (D) The distribution of the number of perturbation barcodes 
detected per cell. (E) BFP is one of the genes with the highest expression level, detected in all 
five cell types. (F) BFP expression level is correlated with the number of genes detected in each 
cell type. 

 
  

Supp. Fig. 4 
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Figure S5. (A) Proportion of the five major cell types in each perturbation group. (B) Poisson 
regression for differences of cell type composition compared to the GFP control group. The size 
of the dots corresponds to log p-value, the color to effect size. (C) Nonparametric ANOVA analysis 
shows that perturbation status explains a significant portion of the variation in one module, ODC1, 
and nominally significant amounts in Astro2 and Astro3, all of which are identified from glial 
clusters. 

Supp. Fig. 5 
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Figure S6. Subtypes of each major cell cluster, and feature plots of scores of gene modules 
identified by WGCNA, labelled by associated cell subtypes or biological processes. 

Supp. Fig. 6 
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Figure S7. Modules identified by structural topic modeling (STM) and their correlation with 
WGCNA modules. Gene score indicates the lift score from STM analysis; a gene with high gene 
score means it is highly representative of the given topic. 
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Figure S8. (A) Schematics of simplex Perturb-Seq of the GFP control and the ASD risk gene 
Ank2. (B) Cell type clusters from P7 neocortical simplex Ank2 Perturb-Seq. (C) Subtype clusters 
of inhibitory neurons from the simplex Ank2 Perturb-Seq. (D-E) Simplex dataset expression of the 
gene module IN1 identified in the pooled Perturb-Seq analysis.   

Supp. Fig. 8 
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Figure S9. (A) In situ hybridization for Cspg4, a gene in the ODC1 gene module and a marker of 
oligodendrocyte precursor cells, in the somatosensory cortex of P7 Chd8+/- animals and wild-type 
littermates. White dotted lines indicate individual Cspg4-positive nuclei. Scale bar is 50µm. (B-C) 
Quantification of Pdgfra expression in P4, P7, and P15 somatosensory cortex of Chd8+/- and 
wildtype littermates. Each dot represents the gene expression measurement from one cell; error 
bars represent standard error of the mean. (n=2-3 animals per genotype) (D-G) 
Immunohistochemistry of PDGFRA and MBP, markers for immature OPC and mature 
oligodendrocyte, and their quantification in the somatosensory cortex of P12 Chd8+/- and wild-
type littermates (n=3 animals per genotype). Scale bar is 250µm. 
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Figure S10. (A) Cell clusters from the striatal Perturb-Seq. (B) Number of genes detected in each 
cell type in the striatal Perturb-Seq data. (C) Left: Effect size for ASD risk gene perturbations in 
the striatum on the glial WGCNA modules identified in the cortical data, compared to the 
population mean. Size corresponds to log p-values, color corresponds to effect size. Right: 
ANOVA test identified modules significantly affected by the ASD perturbations, taken as a group, 
in the striatal dataset. 

Supp. Fig. 10 
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Methods 
 
Lentiviral vector construction and production 
The lentiviral vector was constructed following the Perturb-Seq publications (Adamson et al., 2016; 
Dixit et al., 2016; Jaitin et al., 2016). The backbone contains antiparallel cassettes of two gRNAs 
(Table S6) under mouse U6 and human U6 promoters, and EF1a promoter to express puromycin, 
BFP, and a polyadenylated barcode unique to each perturbation. Cloning of the 38 vectors were 
done individually. Association of each gRNA set and perturbation barcode was established by 
Sanger sequencing. The gRNA designs were designed using the online tool at benchling.com 
(Doench et al., 2016) (Table S6). Each lentivirus was packaged individually with the V2 helper 
plasmids (Joung et al., 2017), and the functional titer was measured individually through HEK293 
cell infection and FACS measurement of BFP+ population before pooling equally for 
ultracentrifugation. The functional titer of the final lentivirus was > 5 x 109 U/mL for in utero 
ventricular injection and transduction. 
 
In vivo Perturb-Seq experiment 
This analysis comprises 18 independent libraries of Perturb-Seq cells. In utero lentiviral injection 
into the ventricular zone was performed at E12.5 in Cas9 transgenic mice (Platt et al., 2014), and 
each library was made by combining the BFP+ cells from 1-3 litters (4-20 animals) of P7 animals 
harvested on the same day. 
P7 mice were anesthetized and sacrificed by decapitation, then disinfected with 70% ethanol and 
decapitated. The brains were quickly extracted into ice-cold PBS and cortices were micro-
dissected in ice-cold Hibernate A medium (BrainBits, #HA-Lf) with B27 supplement 
(ThermoFisher, #17504044) under a dissecting microscope. Tissue dissociation was performed 
with the Papain Dissociation kit (Worthington, #LK003152). Cortices were transferred into ice-cold 
papain solution with DNase in a cell culture dish and cut into small pieces with a blade. The dish 
was then placed onto a digital rocker in a cell culture incubator for 30 mins with rocking speed at 
30 rpm at 37°C. The digested tissues were collected into a 15 mL tube with 5 mL of EBSS buffer 
(from the Worthington kit). The mixture was triturated with a 10 mL plastic pipette 20 times and 
the cell suspension was carefully transferred to a 15 mL tube. 2.7 mL of EBSS, 3 mL of 
reconstituted Worthington inhibitor solution, and DNAse solution were added to the 15 mL tube 
and mixed gently. Cells were pelleted by centrifugation at 300 g for 5 mins at RT. Cells were 
resuspended in 0.5 mL ice-cold Hibernate A with B27 supplement (ThermoFisher, A3582801) and 
10% fetal bovine serum (FBS) and subjected to FACS purification. The FACS collected cells were 
sorted in cold Hibernate A/B27 medium with 10% FBS (VWR, #97068). After collection the cells 
were centrifuged and resuspended in ice-cold PBS with 0.04% BSA (NEB, B9000S) for single-
cell RNA sequencing library preparation (10x Genomics v2 chemistry). We performed the FACS 
purification and resuspension within 1.5 h while keeping the cells on ice to prevent necrosis, a 
crucial step for this experiment. 
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Shared perturbation phenotypes between cortical and striatal glial cells 
In order to determine whether changes in module expression observed in neocortical cells may 
also occur in cells of other brain regions, we tested whether the glia modules identified by in vivo 
Perturb-Seq in the neocortex were also affected in striatal glia cells. To this end, we collected 
striatal samples at P7, following Perturb-Seq lentiviral injection at E12.5, from 6 independent 
batches that passed quality control, and a total of 7,118 cells (5,933 of which are in glia clusters) 
with a median detection rate of 2,972 genes per cell. As before, we used Louvain clustering and 
known markers to identify and annotate the major cell categories as neurons, astrocytes, 
oligodendrocytes, and microglia (Figure S10, Table S5), as well as a cluster of cycling cells 
comprised of both interneuron progenitors and astroglia cells. Given the small number of cells in 
this test dataset, we included perturbations in the analysis if they had > 5 perturbed cells per 
perturbation group, recognizing that this could increase the noise in effect estimates.  

Using the same nonparametric ANOVA approach, we find that perturbation status explained a 
significant amount of the total variation in the astrocyte progenitor module (Astro3) in the striatal 
dataset, similar to the cortical dataset (FDR corrected P<0.01) (Figure S10, Figure 2F). The 
ODC1 module is nearly significant (P<0.06, FDR corrected P<0.11), likely reflecting limited power 
due to the small number of ODC cells profiled. Moreover, the direction of effect of most individual 
gene perturbations largely agreed with those in the cortical data. In particular, both Gatad2b and 
Chd8 perturbations showed decreased expression of the ODC1 module in this striatal data, as 
observed in the cortex (Figure S10). Thus, at least some of the ASD gene perturbation effects 
appear to generalize in cells of more than one brain region.   
 
 
RNA in situ hybridization 
RNAscope fluorescent in situ hybridization was performed on fixed-frozen tissue. Mice were 
anesthetized and transcardially perfused with ice-cold PBS followed by ice-cold 4% 
paraformaldehyde in PBS. Dissected brains were postfixed overnight in 4% paraformaldehyde at 
4°C, and cryoprotected in 30% sucrose. Brains were then embedded in optimal cutting 
temperature (OCT) compound (Tissue-Tek, #4583) and 15-20μm tissue sections were prepared.  
Multiplex RNAscope v1 was performed based on manufacturer’s instructions. Probes against the 
following mRNA were used: Pdgfra, Cspg4, and Fezf2 (ACDBio). Quantification were performed 
by StarSearch; gene expression copy number were normalized to pixel area 
(https://www.seas.upenn.edu/~rajlab/StarSearch/launch.html). 
 
Immunohistochemistry 
Mice were anesthetized and transcardially perfused with ice-cold PBS followed by ice-cold 4% 
paraformaldehyde in PBS. Dissected brains were postfixed overnight in 4% paraformaldehyde at 
4 °C, and cryoprotected in 30% sucrose. The brains were embedded in OCT compound (Tissue-
Tek, #4583) and 15-20μm tissue sections were prepared. The slides with tissue sections were 
incubated with blocking media (6% donkey serum in 0.3% Triton with PBS) for 1hr, then incubated 
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with primary antibodies in a 1:3 dilution of blocking media in PBS with 0.3% Triton overnight at 
4 °C. Slides were washed with PBS  with 0.3% Triton 4 times to remove the excess primary 
antibody. Secondary antibodies were applied at 1:800 dilution in blocking media and incubated 
for 2hr at room temperature. Slides were then washed 4 times with PBS with 0.3% Triton, and 
incubated with DAPI for 10 mins before mounting with Fluoromount G (Invitrogen, #00-4958-02). 
The antibodies and dilutions were: Mouse anti-NeuN antibody (mab377, 1:500; Millipore), Mouse 
anti-GS antibody (mab302, 1:500; Millipore), Goat anti-Pdgfra antibody (AF1062, 1:200; R&D 
System), Rabbit Iba1 antibody (019-19741, 1:400; Wako), Chicken anti-GFP antibody (ab16901, 
1:500; Millipore),  Mouse anti-Satb2 (ab51502, 1:50; Abcam), Rat anti-Ctip2 (ab18465, 1:100, 
Abcam), Rabbit anti-Sox6 (ab30455, 1:500; Abcam), Rat anti-Mbp (mab386, 1:100; Millipore). 
All images were acquired using either a custom-built spinning disk confocal microscope equipped 
with image acquisition NIS-Elements software, or a Carl Zeiss epifluorescent microscope with Zen 
software. 
 
Perturb-Seq profiling 
Single-cell RNA sequencing libraries were created using the Chromium Single Cell 3' Solution v2 
kit (10x Genomics) following the manufacturer’s protocol. Each library was sequenced with 
Illumina NextSeq high-output 75-cycle kit with sequencing saturation above 70%. Reads were 
aligned to the mm10 mouse genome reference using the Cell Ranger package (10x Genomics). 
 
To sequence the perturbation barcode, dial-out PCR was performed to extract the perturbation 
barcode in each cell. This is modified from Dixit et al (Dixit et al., 2016) to be compatible with the 
10x Genomic V2 chemistry instead of V1. The PCR product was sequenced with the 10x libraries, 
and demultiplexed to extract the perturbation information. 
 
Forward primer: 
CAAGCAGAAGACGGCATACGAGAT-TCGCCTTA-
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-TAGCAAACTGGGGCACAAGC 
Reverse primer (i5): 
AATGATACGGCGACCACCGAGATCTACAC 
 
Data Analysis 
 
Data pre-processing 
BCL files were transformed into fastq files using the cellranger mkfastq command, using 
CellRanger V2.1.0. Bam files and expression matrices were generated from these fastq files using 
the cellranger count command, using force_cells=8000. 
 
Identification of perturbation barcode 
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In order to extract perturbation information from the dial-out reads, we modified code from the 
original Perturb-Seq paper (Dixit et al., 2016) to work with 10x V2 chemistry, and applied it to our 
data (original code at https://github.com/asncd/MIMOSCA). This resulted in a cell-by-perturbation 
UMI count matrix. To extract perturbation information from the 10x reads, a fasta file was first 
created with one entry for each perturbation, containing the sequence of the perturbation barcode 
and the surrounding sequence. This fasta file was turned into a STAR reference (Dobin et al., 
2013), referred to as the PBC reference. Unmapped reads containing either AGAATT or CCTAGA 
as a subsequence were extracted from the Cell Ranger bam file, and then mapped to this new 
reference. Low quality reads were filtered out using the following filters: (i) used “samtools view -
F 2820” to filter out unmapped, multimapped, and low quality reads from the PBC mapped bam 
file, (ii) removed reads with quality scores <255, (iii) removed reads whose 5’ end did not map 
between 655 and 714bp into the PBC reference, to help exclude reads that did not overlap enough 
bases in the perturbation barcode for proper identification of the perturbation, and (iv) removed 
reads whose edit distance from the PBC reference was >2. Reads were then assigned to the 
perturbation they mapped best. Cell barcodes and UMIs were extracted, and a cell-by-
perturbation UMI count matrix was created. This matrix was used to assign cells to perturbations 
in the same way as with the dial-out data. As with the dialout data, if a cell had one perturbation 
with >1.3x the number of UMIs assigned to it than the next best perturbation based on the 10x 
sequence, that cell was assigned to that perturbation in the 10x data; otherwise, the cell was 
declared to have multiple perturbations. We then only kept cells for which either i) the assigned 
10x and dialout perturbations agree or ii) the cell was assigned to a perturbation by one method 
but not assigned to a perturbation in the other. 
 
Cell type clustering analysis 
UMI count data was loaded into R and processed using the Seurat v 2.2 package (Butler et al., 
2018). Data were scaled to counts per million and log normalized. Cells expressing less than 500 
genes were removed. Variable genes were found using FindVariableGenes with x.low.cutoff=1 
for each batch separately. Genes that were found to be variable in at least 4 batches were 
combined into a final combined list of variable genes. The normalized data was scaled with 
ScaleData on the variable genes, regressing out the effects of nUMI, and PCA was performed. 
Clustering was performed with the FindClusters function (with default parameters, except for 
resolution=1.2 and using 28 PCs). tSNE plots were generated with RunTSNE (RunTSNE (with 
default parameters, except with 28 PCs and pca=F). Clusters were assigned to cell types based 
on marker genes from the literature, mousebrain.org (Zeisel et al., 2018), and DropViz (Saunders 
et al., 2018). For each cell type a more refined nGene cutoff was identified (Figure S3), and cells 
of that cell type with less than that filter were removed from further consideration. We focused 
only on cells of 5 key types (projection neurons, inhibitory neurons, oligodendrocytes, microglia, 
and astroglia) and removed the rest.  
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For subclustering individual cell types, the cells of that cell type were extracted from the larger 
Seurat object. Variable genes were chosen as above, and data was scaled with ScaleData, 
regressing out the effects of nUMI and batch, followed by PCA. Clustering was performed with 
FindClusters (with default parameters except for varying resolutions and number of PCs, Table 
S7). tSNE was performed with RunTSNE (with default parameters, except with different numbers 
of PCs and pca=F).  
 
Testing WGCNA Gene Sets 
WGCNA was performed for each cell cluster based on the published pipeline (Langfelder and 
Horvath, 2008). We manually removed modules that were driven by outlier cells. For a given cell 
type, each WGCNA gene set was input into moduleEigengenes to calculate a gene-set score for 
that set of genes. All cells without an assigned perturbation were removed.  
 
Linear regression was used to test the relationship between perturbations and WGCNA gene 
scores, correcting for batch and number of genes with the lm function in R, using the formula: 
 

Gene Score ~ perturbation + batch + nGene 
 
Associated p-values and effect sizes were extracted. In addition, a permutation-based approach 
was used to calculate an empirical p-value to ensure the model-based p-values reported by lm 
were accurate. Specifically, the perturbation labels of cells were randomly permuted within each 
batch, and the absolute effect size for each perturbation was calculated as above on this permuted 
data. This was repeated 10,000 times. The empirical p-value was the proportion of permutations 
(including the original data) with absolute effect size larger than that of the original data. FDR 
correction was performed using the Benjamini & Hochberg procedure. 
 
Structural Topic Modelling 
Structural topic modelling (STM) was performed separately on each cell type of interest using the 
STM package in R (Roberts et al.). Count data from cells of a given type were extracted from the 
Seurat object, along with corresponding meta data. Genes that occurred in <5% or >90% of cells 
were removed, as were mitochondrial and ribosomal genes. In addition, only genes that were 
expressed in at least one cell in all batches were retained in order to help reduce batch effects. 
The resulting count matrix was provided as input to the STM function, along with the meta data 
and with parameters LDAbeta=T, interactions=F. The formula used by the STM function was  
 
~ perturbation + batch + nGene  
 
This specifies a model that assumed topic proportions were dependent on perturbation, number 
of genes, and batch. We ran this model on each dataset with 5 topics. Top 10 genes for each 
topic were extracted with the labelTopics function. 
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To test for correlations between perturbations and topics, the theta matrix (the matrix containing 
proportions of topics per cell) was extracted from the STM matrix. For each topic, linear regression 
was used to test how the per-cell proportions for each topic related to perturbations (after setting 
GFP to be the reference perturbation), correcting for nGene and batch. In particular, the lm 
function in R was used, with the formula: 
 

Proportion Topic ~ perturbation + batch + nGene 
 
Effect sizes were extracted from the resulting lm object. An empirical p-value was calculated, as 
for WGCNA. FDR correction was performed using the Benjamini & Hochberg procedure.  
 
Cell Type Gene Expression 
Expression data for the E18.5 mouse brain (9k dataset) was downloaded from the 10X website 
(https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/neuron_9k). The 
WT P7 data were generated from this paper. The P7 fastq files were run through the standard 
Cellranger pipeline. The data from both datasets were loaded into Seurat separately and 
transformed to log counts per million. Cells with <500 genes were removed in both datasets. 
Variable genes were found using FindVariableGenes with x.low.cutoff=1, and the data was scaled 
with ScaleData, correcting for nUMI. PCA was performed, followed by TSNE and clustering with 
FindClusters. Cell types were identified with marker genes, and contaminating/ vascular cell types 
were removed.  
In each dataset MAST (Finak et al., 2015) was used to find the differentially expressed genes in 
each cluster, relative to all cells outside that cluster. This was done correcting for the scaled nUMI 
and removing genes that occurred in less than 10 cells. Average expression was calculated for 
each gene in each cluster. 
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