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ABSTRACT 30 

 31 

 32 

Alu retrotransposons account for more than 10% of the human genome, and insertions 33 

of these elements create structural variants segregating in human populations. Such 34 

polymorphic Alu are powerful markers to understand population structure, and they 35 

represent variants that can greatly impact genome function, including gene expression. 36 

Accurate genotyping of Alu and other mobile elements has been challenging. Indeed, 37 

we found that Alu genotypes previously called for the 1000 Genomes Project are 38 

sometimes erroneous, which poses significant problems for phasing these insertions 39 

with other variants that comprise the haplotype. To ameliorate this issue, we introduce a 40 

new pipeline -- TypeTE -- which genotypes Alu insertions from whole-genome 41 

sequencing data. Starting from a list of polymorphic Alus, TypeTE identifies the 42 

hallmarks (poly-A tail and target site duplication) and orientation of Alu insertions using 43 

local re-assembly to reconstruct presence and absence alleles. Genotype likelihoods 44 

are then computed after re-mapping sequencing reads to the reconstructed alleles. 45 

Using a ‘gold standard’ set of PCR-based genotyping of >200 loci, we show that 46 

TypeTE improves genotype accuracy from 83% to 92% in the 1000 Genomes dataset. 47 

TypeTE can be readily adapted to other retrotransposon families and brings a valuable 48 

toolbox addition for population genomics.  49 

 50 

  51 

  52 

  53 
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INTRODUCTION 54 

  55 

Mobile element insertions (MEIs) are ubiquitous and are major contributors to genomic 56 

variation between and within species (Kidwell and Lisch 1997; Sudmant et al. 2015; 57 

Underwood, Henderson, and Martienssen 2017). Active ME families continuously 58 

generate new MEIs which segregate among individuals. Individual MEI generate 59 

structural variants (SV) between genomes (typically insertions) and can lead to complex 60 

chromosomal rearrangements through non-homologous recombination between copies 61 

(Jurka et al. 2004; Song and Boissinot 2007; Xing et al. 2009; Thomas, Perron, and 62 

Feschotte 2018). Both processes represent a substantial source of genomic instability, 63 

which has been implicated in more than 100 human genetic diseases (Hancks and 64 

Kazazian 2016) , and they are also fodder for the emergence of adaptive genetic 65 

novelties (Oliver, McComb, and Greene 2013; Chuong, Elde, and Feschotte 2017; 66 

Wallace et al. 2018; Horváth, Merenciano, and González 2017; Jangam, Feschotte, and 67 

Betrán 2017)(Oliver et al. 2013; Chuong et al. 2017; Horváth et al. 2017; Jangam et al. 68 

2017).     69 

  70 

In humans, recently mobilized transposable elements (TEs) include members of the 71 

LINE-1, Alu, SVA, and a few human endogenous retroviruses (HERVs) families. 72 

Together these elements make up to >30% of the human genome, but relatively few 73 

remain polymorphic, i.e. being either present or absent between two genomes (Mills et 74 

al. 2007; Hancks and Kazazian 2012). Such polymorphic MEIs (pMEIs) account for 75 

hundreds to thousands of loci per individual (Stewart et al. 2011; Hancks and Kazazian 76 
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2012; Sudmant et al. 2015). The extent of pMEIs segregating in the human population 77 

is yet to be determined, but Alu is known to be the most common source of human 78 

pMEIs.  Thus far, a little less than 20,000 Alu copies have been identified as 79 

segregating among 2,504 humans sampled as part of the 1000 Genomes Project 80 

(Sudmant et al, 2015; 1000 GP, Gardner et al., 2017). 81 

  82 

Alu elements are powerful markers for genetic and evolutionary studies of human 83 

populations. As non-autonomous retrotransposons, Alus amplify through a copy-and-84 

paste mechanism utilizing LINE-1 machinery (Dewannieux, Esnault, and Heidmann 85 

2003) and are inherently incapable of precise excision, providing identical-by-descent 86 

loci virtually free of homoplasy (Doronina et al. 2019). Accordingly, Alu have been 87 

shown to effectively track human population history (Watkins et al. 2003; Jurka, Bao, 88 

and Kojima 2011; Stewart et al. 2011; Rishishwar, Tellez Villa, and Jordan 2015). Like 89 

most MEIs, Alu insertions in humans are usually thought of as neutral variants that 90 

achieve fixation in the population through genetic drift (Boissinot et al. 2006; Cordaux et 91 

al. 2006). Nevertheless, more than 70 de novo Alu insertions are known to cause 92 

genetic diseases (Hancks and Kazazian 2016), including neurological disorders (Larsen 93 

et al. 2018; Hueso et al., n.d.). Furthermore, polymorphic Alu insertions have been 94 

identified as candidate causative variants in common polygenic diseases (Payer et al. 95 

2017), and a handful have been shown to alter mRNA splicing (Payer et al. 2019). 96 

Finally, worldwide reference pMEI datasets such as those produced by 1000 GP 97 

(Sudmant et al. 2015) can be used in conjunction with gene expression data (e.g. RNA-98 

seq) to identify loci associated with changes in gene expression (S. Wang et al. 2016). 99 
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Together these studies suggest that pMEIs, and Alus in particular, play an important, 100 

yet still underappreciated role in human phenotypic variation.   101 

 102 

Recognizing the abundance and biological significance of MEIs, a growing number of 103 

software packages have been developed in the past few years to detect and map 104 

pMEIs in whole-genome resequencing (WGS) data relative to a reference genome 105 

(Goerner-Potvin and Bourque 2018). For studies of human pMEIs, Tea (Lee et al. 106 

2012), Retroseq (Keane, Wong, and Adams 2013), Mobster (Thung et al. 2014), Tlex2 107 

(Fiston-Lavier et al. 2015), RelocaTE2 (J. Chen et al. 2017), STEAK (Santander et al. 108 

2017), MELT (Gardner et al. 2017), TranSurVeyor (Rajaby and Sung 2018), polyDetect 109 

(Jordan et al. 2018), and ERVcaller (X. Chen and Li 2019) are among the most recent 110 

software tools available. The algorithmic refinement dedicated to accurately detecting 111 

pMEIs, and Alus in particular, in WGS data has led to an increase of the quality of the 112 

calls.  Notably, the accurate detection of the presence or absence of a specific Alu at a 113 

precise breakpoint has improved substantially in recent years (Rishishwar, Mariño-114 

Ramírez, and King Jordan 2016; Gardner et al. 2017; X. Chen and Li 2019). 115 

  116 

Although the discovery of Alu and other pMEI alleles is generally benchmarked 117 

extensively when these methods are evaluated, far less attention has been paid to 118 

individual genotyping, i.e. determining whether the insertion is a homozygote or 119 

heterozygote for each individual locus. Genotyping accuracy is critical for phasing 120 

insertion polymorphisms with single nucleotide polymorphisms (SNPs) and relating 121 

insertions with expression quantitative trait loci (eQTL) and disease-risk loci identified by 122 
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genome wide association studies (GWAS). Similarly, accurate genotypes are necessary 123 

to infer how the effects of drift and selection influence allele frequencies. However, 124 

genotyping accuracy of pMEI released with the 1000 GP dataset has only been 125 

estimated using 250 bp Illumina reads (accuracy estimated to 98%) (Sudmant et al., 126 

2015) . To our knowledge, only three pipelines, MELT (Gardner et al. 2017), polyDetect 127 

(Jordan et al. 2018),  and ERVcaller (X. Chen and Li 2019) are maintained as tools that 128 

directly allow genotyping for non-reference pMEIs. However, MELT is the only one 129 

offering the option to directly genotype reference pMEIs (i.e. polymorphic elements that 130 

are annotated in the reference genome but still segregating in the population). None of 131 

these tools have been subject to a comprehensive evaluation of their genotyping 132 

performance. Given the ever-growing number of resequencing efforts, there is a 133 

pressing need to develop highly accurate genotyping tools to complement the diverse 134 

methods already available to detect the presence or absence of pMEI. 135 

  136 

To address these issues, we have developed a new bioinformatics pipeline, TypeTE, 137 

which improves the genotyping of pMEIs located by other tools using whole genome 138 

resequencing data. Our method is based on the accurate recreation of both the 139 

presence and absence of pMEI alleles before the remapping of reads for genotyping. 140 

We benchmarked TypeTE with both low- and high-coverage data [(1000 GP phase 3 141 

(Sudmant et al. 2015) and Simons Genome Diversity Project, (SGDP) (Mallick et al. 142 

2016) respectively] and show, based on a collection of more than 200 PCR-based 143 

genotyping assays, that our method significantly improves genotype quality. In addition, 144 

we applied TypeTE to all polymorphic Alu insertions discovered in 445 human samples 145 
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both present in the 1000 GP phase 3 (low-coverage WGS) and the Genetic European 146 

Variation in Disease Consortium (GEUVADIS; RNA sequencing) (Lappalainen et al. 147 

2013). We thus provide a new high-quality genomic resource dedicated to the functional 148 

and evolutionary analysis of polymorphic Alu insertions. 149 

   150 
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MATERIAL AND METHODS 151 

 152 

Pipeline implementation 153 

Non-reference MEI. TypeTE-non-reference is designed to genotype insertions not found 154 

in the reference genome (Figure 1A,Supplementary Figure S1). Based on the 155 

information provided in a vcf file (such as produced by MELT), the location and 156 

orientation of each Alu insertion are first collected. For each breakpoint, reads that are 157 

mapped in a window of 500 bp (250 bp upstream and downstream of the breakpoint) 158 

are extracted. The mates of discordant reads (mapping somewhere else in the genome) 159 

are also extracted from the BAM file of each individual. The reads from all individuals for 160 

each locus are then combined, and a local de-novo assembly of all the reads is 161 

attempted using SPAdes v3.11.1 (Bankevich et al. 2012). Minia (v2.0.7) (Chikhi and 162 

Rizk 2013) is used an alternate assembler when SPAdes failed to generate an 163 

assembly of the sequences (‘scaffolds.fasta’). The genomic locations where mates of 164 

discordant reads are mapped are identified and intersected with the respective 165 

RepeatMasker track (we used the coordinates version hg19 for 1000 GP data and hg38 166 

for the SGDP data; Repbase version 20140131). Using a majority rule, the most likely 167 

Alu subfamily consensus for the copy inserted at that locus is identified. To verify 168 

orientation and identify target site duplications (TSDs), homology-based searches are 169 

performed. First, the identified Alu consensus is searched with blastn (v. 2.6.0+) against 170 

the assembled contigs. Then, a second blastn is performed using the genome reference 171 

sequence (500 bps window) against the assembled contigs. The contig with the highest 172 

score from the query Alu and the reference sequence is selected and searched for 173 

target site duplications flanking the MEI. To identify the strand of the MEI, the sequence 174 
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flanking the insertion in the contig is further compared with the reference sequence. For 175 

each MEI, the two alleles are reconstructed as follows: a new window of +/- 500bp is 176 

extracted upstream and downstream of the breakpoint predicted by MELT. This 177 

represents the “absence” allele. To recreate the “presence” allele, TypeTE first removes 178 

the predicted TSDs from the extracted reference sequence and inserts the fully 179 

assembled MEI with its two TSDs in the correct orientation. If the assembly fails to 180 

generate a complete sequence of the MEI with flanking TSDs, the TSD predicted by the 181 

TE detection program (in our case MELT) is duplicated and placed at the 5’ and 3’ end 182 

of the consensus MEI in the composite allele. 183 

 184 

<FIGURE 1> 185 

 186 

Reference TE. TypeTE-reference determines genotypes of Alus in the reference 187 

genome that are polymorphic in other individuals (Figure 1B, Supplementary Figure S2).  188 

In this case, no reads are extracted from the original alignments to reconstruct the 189 

alternate allele. However, the exact coordinates and TSDs of each MEI in the reference 190 

genome are reassessed as follows: the breakpoints identified from MELT for the 191 

location of the reference TE are further refined using the corresponding RepeatMasker 192 

annotation track to identify the exact location and orientation of each TE inserted in the 193 

reference genome. At first, the longest reference Alu elements that are within +/-50 bps 194 

of the predicted MELT breakpoints are extracted. If none is found within that boundary, 195 

Alus within +/-110 bps of the predicted breakpoints are collected. However, we did not 196 

find any difference in the number of elements identified after increasing the boundary up 197 
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to 200bps. The flanking sequence of the TE sequence is also extracted and TSDs and 198 

their coordinates are identified whenever possible. Then, based on these new 199 

coordinates, a region of +/- 500 bps upstream and downstream of the 5’ and 3’ end of 200 

the MEI is extracted from the reference genome. This constitutes the “presence” allele. 201 

The “absence” allele is defined by removing the TE sequence and one TSD from the 202 

reference genome. 203 

 204 

Genotyping. TypeTE automatically generates input files and parallelizes the method 205 

developed by Wildschutte et al. (Wildschutte et al. 2015), called insertion-genotype, to 206 

genotype each Alu insertion in every individual. Briefly, read-pairs with at least one read 207 

mapping to the target locus are extracted and mapped against the reconstructed 208 

insertion and empty site alleles using bwa (v. 0.7.16a) (H. Li and Durbin 2009). The 209 

number of reads that align to each allele, and their associated mapping quality values 210 

are tabulated and likelihoods for the three possible genotype states are calculated (H. Li 211 

2011). Reads that map equally well to the empty and insertion alleles are assigned a 212 

mapping quality of 0 by bwa (H. Li and Durbin 2009) and do not contribute to this 213 

calculation. Additionally, read pairs are required to partially align to the repeat sequence 214 

and pairs that align entirely within the target repeat sequence are ignored, since these 215 

reads may not be specific to the targeted locus. By default, the genotype with the 216 

highest likelihood is chosen, but the resulting likelihoods may optionally be used as 217 

inputs to downstream programs which estimate genotypes based on patterns across 218 

multiple samples and sites. After genotyping, individual per-sample VCFs are 219 

concatenated. 220 
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 221 

Evaluation of the 1000 GP genotypes quality and TypeTE performance 222 

Genotype calling. In order to evaluate the quality of the Alu genotype calls available in 223 

the 1000 GP phase 3 structural variants (SV) dataset ([Sudmant et al. 2015], average 224 

depth of coverage 7.4X), we gathered the genotypes available for both non-reference 225 

(indicated by “<INS:ME:ALU>” in the available VCF file) and reference (tagged with 226 

“SV_TYPE=DEL_ALU”). We ran TypeTE-reference and TypeTE-non-reference on the 227 

same loci as well as MELT-discovery (non-reference) and MELT-deletion (reference) 228 

using its version 2.1.4 (referred to as MELT2 for the remainder of the manuscript) in 229 

order to take into account, the most recent changes added to its genotyping module. 230 

Additionally, we tested the performances of TypeTE with samples from the SGDP 231 

(Mallick et al. 2016), which has higher coverage (average 42X).  232 

 233 

In the 1000 GP data, we ran TypeTE and MELT2 on 445 CEU, TSI, GBR, FIN and YRI 234 

individuals, also present in the Geuvadis dataset (RNA-seq) (Lappalainen et al. 2013). 235 

In the 1000 GP dataset released by Sudmant et al. (Sudmant et al. 2015), Alu 236 

genotypes were produced by MELT (first version) for non-reference insertions. 237 

However, polymorphic reference Alu insertions were first discovered along with other 238 

genomic deletions with a set of SV detection tools (BreakDancer, Delly, CNVnator, 239 

GenomeSTRiP, Variation-Hunter, SSF and Pindel), then genotyped with the same 240 

algorithm as any other SV (Sudmant et al. 2015). Because the sample size we used 241 

was smaller than the original one (n = 445 vs n = 2504), MELT2 did not recover all loci 242 

genotyped by the 1000 GP and TypeTE. Also, probably because of changes in the 243 
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newer version, some Alu breakpoints were slightly different between the Sudmant et al. 244 

(Sudmant et al. 2015) dataset and the MELT2 output. Thus, in order to reconcile and 245 

compare the three datasets, bedtools intersect (v.1.5) (Quinlan et al. 2010) was used 246 

with a window of +/- 30bp around each original 1000 GP Alu breakpoint. Finally, the 247 

predicted genotypes were compared to PCR assays of 108 non-reference and 43 248 

reference loci in 42 individuals from the CEU population (see next section). 249 

For the SGDP data, reference and non-reference polymorphic Alu insertions were 250 

called using MELT2 in 14 publicly available individuals from the South Asian population 251 

for which we had access to DNA. The genotypes of the loci discovered were then 252 

determined using TypeTE and compared to 9 non-reference and 67 reference loci 253 

previously genotyped by PCR in these 14 samples (Watkins et al. 2003). 254 

 255 

PCR typing in a subset of 1KGP and SGDP dataset. Non-reference (108) and reference 256 

(43) Alu loci identified in 1000 GP were tested in a 30-trio reference panel of CEPH 257 

CEU individuals (42 individuals were evaluated by PCR and sequenced in 1000 GP) 258 

(HAPMAPPT01, Coriell Institute for Medical Research). Primers flanking the Alu 259 

insertion site were selected using Primer3 (Untergasser et al. 2012). PCR amplifications 260 

were performed using OneTaq Hot Start Quick-Load 2x Master Mix (New England 261 

BioLabs) using 3-step PCR (initial denaturation: 94oC, 15”, (94oC, 15’’; 57oC, 15’’; 68oC, 262 

30’’) for 30 cycles; final extension 68oC, 5’). Sequences for 20 new primer pairs are 263 

available in Table S1; the remainder are available in (Payer et al. 2017). Accuracy was 264 

evaluated by replication in duplicate samples and by evaluating the number of 265 

Mendelian errors in related individuals. Non-reference (9) and reference (67) Alu loci 266 
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were previously genotyped by PCR in 14 South Asian samples present in the SGDP 267 

dataset (Watkins et al. 2003). Primers around each Alu insertion were selected using 268 

Primer3 (Untergasser et al. 2012). PCR amplification was performed using three-step 269 

PCR (initial denaturation: 94oC, 3’; (94oC, 15’’; 60oC, 15’’; 72oC, 30’’) for 30 cycles; final 270 

extension 72oC, 5’) in 1X PCR buffer (10mM Tris, pH 8.3, 50mM KCl, 1.5 mM MgCl2) 271 

with 200 uM dNTPs, 10 pmol each primer, and 1U Taq polymerase. Annealing 272 

temperature was adjusted for each primer set. DMSO (5-10%) was used to improve 273 

amplification for some loci. 274 

 275 

Effect of genotype corrections on the Alu insertion discovery 276 

In some cases, new genotyping changed the presence/absence status of an Alu 277 

insertion for a given genome. We define a false positive (FP) as a case in which an Alu 278 

copy is called present, either homozygote or heterozygote in one sample, while the 279 

PCR reported it absent. A false negative (FN) is recorded when an Alu is called absent 280 

(homozygote absent ) while it is called as either homozygote present or heterozygous 281 

by PCR. True positive (TP) and true negative (TN) are the same calls 282 

(presence/absence), respectively, being validated by PCR. For each dataset and 283 

method, we calculated the sensitivity (ability of the method to discover a MEI: 284 

TP/(TP+FN)), the precision (or positive predictive value: TP/(TP+FP)) as well as the F1 285 

score as described by Rishishwar et al (Rishishwar, Mariño-Ramírez, and King Jordan 286 

2016), which corresponds to the harmonic mean of sensitivity and precision and 287 

summarizes the overall performance of each method. 288 

 289 
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Estimation of mappability scores 290 

The mappability scores are downloaded for the GRCh37/hg19 version of reference 291 

assembly for 100mers 292 

(ftp://hgdownload.soe.ucsc.edu/gbdb/hg19/bbi/wgEncodeCrgMapabilityAlign100mer.bw293 

). The downloaded file is processed (Kent et al. 2010) and is converted to bed format 294 

(Neph et al. 2012). These data are stored in an indexed mysql table. The mappability 295 

scores for genomic regions in the flanking region (+/- 250bps) of the predicted Alu 296 

breakpoint for non-reference insertions and flanking region (+/- 250bps) of the reference 297 

Alu insertions are extracted from the table, and the mean of the mappability scores is 298 

recorded in a dedicated table and is provided with the output files. 299 

 300 

Calculation of local read depth 301 

The average read depth at genomic regions in the flanking region (+/- 250bps) of the 302 

predicted Alu breakpoint for non-reference insertions and flanking region (+/- 250bps) of 303 

the reference Alu insertions is calculated using samtools (Version: 1.4.1). Only reads 304 

with a mapping quality of 20 or more (mapped with > 99% probability) and bases with a 305 

quality of 20 or more (base call accuracy of > 99%) are counted.  306 

 307 

Inbreeding Coefficient (Fis) estimates. 308 

In order to assess how genotype quality affects common population genetics summary 309 

statistics, we computed the per locus inbreeding coefficient (Fis) for the loci assayed by 310 

PCR. Fis is a common metric used in population genetics to assess the excess (Fis < 0) 311 
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or the depletion (Fis > 0) in heterozygotes relative to the expected genotypes proportion 312 

at Hardy-Weinberg equilibrium. Allele frequencies were calculated using the genotypes 313 

produced by each method (1000 GP, MELT2, TypeTE and PCR) as follows: 314 

���=
���������

����
 315 

with Hexp = 2pq, p = presence allele insertion frequency, q = (1-p) Hobs is the observed 316 

number of heterozygotes. 317 

 318 

All statistical analyses were carried out with R version 3.5.1 (R Core Team 2018). 319 

 320 

RESULTS 321 

 322 

Concordance of the 1000 GP dataset genotypes with PCR assays 323 

Alu genotype predictions in the 1000 GP phase 3 release (Sudmant et al. 2015) were 324 

called using MELTv1.0 (first version) for non-reference loci and a combination of SV 325 

tools (Sudmant et al. 2015) for reference insertions. To assess their accuracy, we 326 

compared them to an assembled collection of 108 non-reference and 43 reference loci 327 

genotyped by PCR (Figure 2A and Table 1) in 42 individuals (see methods). To ensure 328 

accuracy in genotyping validations, PCR assays were performed using all (30) trios of 329 

the CEPH CEU, and in all cases, no Mendelian errors in the transmission of alleles from 330 

parents to offspring were seen (see methods). Presence of both “empty” and “filled” 331 

alleles (with and without Alu) were confirmed by the presence of bands of expected size 332 

in the agarose gel electrophoresis and in most cases with Sanger sequencing. Upon 333 

comparing the genotype predictions to PCR assays, we found that the 1000 GP phase 334 
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3 release had an overall concordance rate with the PCR (total number of prediction 335 

identical to the PCR generated genotypes/ total number of predictions) of 83.31% 336 

(3649/4380) for non-reference Alu insertions and 80.72% (1248/1590) for reference 337 

insertions. 338 

 339 

<FIGURE 2> 340 

 341 

TypeTE pipeline overview 342 

In order to improve the quality of Alu genotyping by short read sequencing analysis, we 343 

developed TypeTE which allows the re-genotyping of both reference and non-reference 344 

Alu insertions. The pipeline is divided into two main modules: the non-reference module 345 

genotypes Alu insertions absent from the reference genome, while the reference 346 

module genotypes Alu insertions present in the reference genome. Details about the 347 

implementation of each module are given in the Material and Methods section (Figure 348 

1,Supplemental Figure S1 and Supplemental  Figure S2). The basic principle of TypeTE 349 

is to recreate the most accurate sequences for the two alleles of each insertion 350 

(presence and absence). TypeTE currently uses a VCF file such as produced by a TE 351 

discovery tool such as MELT to locate each individual TE insertion. The pipeline then 352 

performs an independent analysis of each predicted locus and collects the information 353 

regarding the insertion. After allele reconstruction (see Material and Methods), the 354 

individual reads mapping to each insertion locus are extracted from the original 355 

alignment file (bam) and mapped against the reconstructed alleles for genotyping using 356 

an automated and parallelized version of the method developed by Wildschutte et al. 357 
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(2015). A new VCF file with the corrected genotypes and genotypes likelihoods is then 358 

produced. 359 

 360 

TypeTE performances 361 

In order to assess the accuracy of the predictions made by TypeTE, we ran the pipeline 362 

on a subset of 445 individuals of European and African ancestry included in the 1000 363 

GP dataset (see Material and Methods). These samples were selected because they 364 

are both represented in the 1000 GP (WGS) and GEUVADIS (RNA-seq) datasets, 365 

allowing functional analyses of pMEIs. We also compared the performance of TypeTE 366 

with a recent version of MELT (version 2.1.4, abbreviated as MELT2) using the 367 

packages MELT-discovery and MELT-deletion on the same sample. TypeTE and 368 

MELT2 genotypes were then compared to 108 non-reference and 43 reference insertion 369 

for which we have collected or generated PCR genotypes. With non-reference 370 

insertions, MELT2 shows increased concordance with the PCR compared to the original 371 

1000 GP calls, with 87.95% (vs 83.31%; +131/4298 372 

 accurate genotypes) of the predicted genotypes matching the experimental results. 373 

TypeTE further increases the concordance of the genotype prediction, achieving a rate 374 

of 92.14% (+325/4313 375 

 accurate genotypes compared to original 1000 GP release). For reference insertions, 376 

MELT2 had a lower concordance than the original 1000 GP predictions, with only 71% 377 

(vs. 80.72%; -374/1504 genotypes) of the genotypes matching the PCR results, while 378 

TypeTE achieved 91.56% concordance (+ 141/1575 genotypes). Note that the total 379 
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number of genotypes considered correspond to the total number of predictions available 380 

and doesn’t take into account here the missing genotypes. 381 

We further tested the genotyping performance of MELT2 and TypeTE with the SGDP 382 

(Mallick et al. 2016) data, which benefits from a higher depth of coverage than the 1000 383 

GP data (42x vs 7.4x). We tested the concordance of the predicted genotypes with 67 384 

reference and 9 non-reference Alu loci in 14 individuals previously genotyped by PCR 385 

(Watkins et al. 2003). MELT2 has a concordance rate of 70.13% for reference loci while 386 

TypeTE matches the PCR results for 91.01% of the predicted genotypes (+181 correct 387 

genotypes; Figure 3 and Table 1). Finally, for the 9 non-reference loci that were 388 

experimentally genotyped, the concordance rate is 78.57% for MELT2 and 94.44% for 389 

TypeTE (+ 20 correct genotypes).  390 

 391 

<FIGURE3> 392 

 393 

In order to analyze in detail, the genotyping performances of each method, we 394 

calculated the concordance rate by genotype category (0 or (0/0): homozygote absent, 395 

1 or (0/1): heterozygote, 2 or (1/1): homozygote present) corresponding to the percent 396 

of correct genotypes in one category to the total number of calls for this category (Table 397 

1). Additionally, we report the percentage of unascertained loci (NA genotypes) for each 398 

method.  399 

 400 

 401 

 402 

1000 GP 
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Table 1. Genotype prediction accuracy (%) for each category of insertions when 403 

compared with PCR generated genotypes 404 

 405 

We then investigated how the concordance between predicted and PCR genotypes is 406 

distributed across loci and individuals by calculating the average concordance rate at 407 

each locus (total number of correct genotypes at a locus / total number of individuals 408 

with a predicted genotype). Regardless of the genotype category (reference / non-409 

reference), TypeTE has a higher average concordance rate per locus, as well as lower 410 

variance for this value, than the other methods (Figure 4). The greatest improvement 411 

was when the genotypes of reference insertions were compared to MELT2, where the 412 

concordance rate of TypeTE is always significantly higher (Tukey’s HSD, P < 0.05).  413 

 414 

<FIGURE 4> 415 

 416 

For each locus assayed by PCR in the 1000 GP dataset, we also examined whether the 417 

mappability and local read coverage affect genotyping predictions for TypeTE. We do 418 

not find a significant correlation between genotype concordance and the mappability 419 

score (0.1 - 1) computed in a 500-bp window around the MEI breakpoints 420 

non-reference insertions (n=108x42) reference insertions (n=43x42) 

  
hom ref 

(0) het (1) 
hom alt 

(2) NAs overall 
hom ref 

(2) het (1)  
hom alt 

(0) NAs overall 
1000 GP 98.92% 98.28% 23.49% -* 83.31% 97.71% 90.00% 41.84% -* 80.72% 
MELT 2.1.4 99.02% 92.27% 68.01% 1.90% 87.95% 98.63% 37.97% 26.62% 5.37% 71.00% 
TypeTE 98.44% 89.28% 93.61% 1.54% 92.14% 91.46% 84.54% 87.82% 1.04% 91.56% 

 
SGDP 

            non-reference insertions (n=9x14)                                        reference insertions (n=67x14) 
1000 GP - - - - - - - - 
MELT 2.1.4 92.31% 94.87% 9.09% 0.00% 79.57% 97.93% 88.26% 2.95% 0.00% 70.13% 
TypeTE 92.31% 94.87% 100.00% 0.00% 94.44% 91.19% 87.58% 91.14% 0.00% 91.01% 
NA: Not Applicable as no genotypes reported 
*no NA genotype has been reported in the Sudmant et al. (2015) dataset 
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(Supplementary Figure S3. Pearson’s product-moment correlation, r = 0.20, P = 0.281 421 

for non-reference loci and r = 0.13, P = 0.414 for reference loci). We also found that the 422 

average depth of coverage for a given locus (4.69 X – 10.01 X) is not correlated to 423 

genotyping concordance for both reference (r = 0.12, P = 0.4538) and non-reference 424 

insertions (r = -0.01, P = 0.957) (Supplementary Figure S4).  We conclude that at least 425 

for the loci tested by PCR, the level of repetitiveness of the flanking sequence of 426 

individual Alu insertions and the local read depth do not appear to influence the 427 

genotyping performance of TypeTE.  428 

 429 

 430 

Effect of genotype corrections on variant discovery 431 

Different methods can assign different genotypes for some loci due to the inherent 432 

differences in their approach or due to locus specific features. For example, a 433 

heterozygous locus for the presence of Alu can be genotyped either as homozygous 434 

presence or absence by different methods. We first converted the genotypes into 435 

presence/absence calls in order to assess sensitivity, precision (positive predictive 436 

value), and the overall detection accuracy, summarized by the F1 score (harmonic 437 

mean of sensitivity and precision, see Material and Methods) for each method 438 

considering PCR results as true genotypes. TypeTE received the highest F1 score in 439 

each dataset (1000 GP or SGDP) and for both types of insertion (reference or non-440 

reference) (Fig 5). The small number of loci tested for the SGDP-non-reference dataset 441 

(n = 9) did not allow us to find significant differences between the methods; however, we 442 

show that the increased F1 score of TypeTE with the 1000 GP-non-reference loci is due 443 
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to a significant increase of the sensitivity compared to the other methods. Interestingly, 444 

the higher F1 score of TypeTE with reference insertions (both for the 1000 GP and 445 

SGDP datasets) is, in these cases, due to significantly higher precision (TP/(TP+FP)). 446 

 447 

<FIGURE 5> 448 

 449 

Influence of re-genotyping on population genetics statistics 450 

To illustrate the importance of accurately genotyping of Alus, we calculated the 451 

population-wise inbreeding coefficient (Fis) for each locus in 42 individuals of the CEU 452 

cohort (1000 GP) and 14 individuals of the South Asian cohort (SGDP). Compared to 453 

the original 1000 GP and MELT2 genotypes, the Fis values calculated with TypeTE 454 

genotypes are concordant with the ones based on PCR genotypes. These results are 455 

even more striking when only reference loci are considered: while TypeTE and PCR 456 

estimates of Fis are centered at 0, MELT2 and 1000 GP genotypes suggest a clear 457 

deviation of most loci from Hardy-Weinberg equilibrium (Figure 6). We note that 458 

estimates of the Fis are more variable using the SGDP data, which can be explained by 459 

its smaller sample size and a higher population subdivision (e.g. castes) than the 1000 460 

GP dataset. 461 

 462 

<FIGURE 6> 463 

 464 

Influence of the dataset quality on genotype prediction 465 

 466 
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To discover factors specific to each dataset that influence genotype prediction, we 467 

compared the results obtained in the 1000 GP dataset (average depth of 7.4 X) with the 468 

results from analysis of the SGDP (average depth of 42X) to the respective PCR 469 

genotypes. The provenance of the dataset does not influence the variant discovery 470 

abilities of MELT2 and TypeTE (Supplementary Figure S5). However, we observe that 471 

the percentage of unascertained loci differs between the 1000 GP and SGDP datasets. 472 

About 1% to 5.4% of genotypes are not ascertained by either MELT2 and TypeTE in the 473 

1000 GP dataset, probably due to low coverage. Conversely, all SGDP loci are called in 474 

every individual for the SGDP dataset (Table 1).  475 

 476 

DISCUSSION 477 

 478 

The purpose of TypeTE is to provide automatic and reliable genotyping of pMEIs, 479 

especially Alus from short read, whole genome or targeted interval sequencing. To our 480 

knowledge, MELT (Gardner et al. 2017) is the only tool with continued support and 481 

documentation that allows direct genotyping of both reference and non-reference pMEI. 482 

While its performance for variant discovery has made it a popular tool for pMEI 483 

mapping, to our knowledge its performance at genotyping has never been 484 

comprehensively tested. Moreover, there was no formal testing of the genotype quality 485 

concerning pMEI reported in the Phase 3 release of the 1000 GP. Thus, we thoroughly 486 

tested the Alu genotype predictions made for the 1000 GP, a recent version of MELT (v. 487 

2.1.4), and TypeTE by assembling the results of more than 200 locus-specific PCR 488 

genotyping assays.  489 
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 490 

Combining reference and non-reference pMEI, our analysis indicates that 82% of the 491 

genotypes reported by the 1000 GP are consistent with the PCR assays which we 492 

consider the ‘gold standard’ and wherein accuracy was evaluated by comparing 493 

duplicate samples and verifying the absence of Mendelian errors in related individuals. 494 

This estimate of genotyping accuracy is much lower than a previous estimate of 98% 495 

based on long (250bp) Illumina reads (Sudmant et al. 2015). Genotypes reported by the 496 

1000 GP were estimated using the first version of MELT for non-reference loci, but 497 

genotyping methods developed for other structural variation (indels, inversions, etc.) 498 

were used for reference insertions. While MELT2 appears to offer a noticeable 499 

improvement over its first version for genotyping non-reference pMEI, its overall 500 

genotyping performance is diminished when applied to reference loci, with genotyping 501 

errors reaching more than 20% in based on our PCR assays. For both categories of 502 

loci, most errors are caused by the underestimation of homozygous genotypes carrying 503 

the alternative allele relative to the reference genome (Table 1). We note that for non-504 

reference insertions, MELT’s genotyping algorithm benefited from improvements 505 

deployed in the version tested (v2.1.4) compared to its original release, in particular to 506 

detect homozygous insertion (1/1). However, this increased sensitivity to detect pMEI 507 

alleles from read alignments seems to be accompanied by a reduced power to detect 508 

“absence” alleles for reference insertions (MELT-deletion module). Such errors are 509 

consequential for population genetics analysis because they lead to inaccurate 510 

estimation of population genetics parameters. For example, calculation of the 511 

inbreeding coefficient (Fis) shows that the original release of the 1000 GP genotypes 512 
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was overestimating heterozygotes, leading to negative and likely inaccurate values of 513 

Fis (Figure 6). Genotypes obtained with MELT2 improve these estimates for non-514 

reference insertions, but the results appear less accurate when computed from a small 515 

sample and they are more inaccurate for reference insertions. These issues underscore 516 

the need for a tool dedicated to the genotyping of pMEI.  517 

 518 

Toward this goal we developed TypeTE and applied it to genotype both reference and 519 

non-reference Alu insertions. Our benchmarking data show that TypeTE has an 520 

average concordance rate of 91% or greater with PCR-based genotyping. Importantly, 521 

TypeTE maintains a genotyping accuracy greater than 84% under all genotyping 522 

scenarios. While TypeTE performs better than MELT v1 (1000 GP) and MELT2 for non-523 

reference insertions, the most significant improvement is for reference insertions. In 524 

particular, the genotypes predicted by 1000 GP and MELT2 never reached more than 525 

41.8% concordance with the experimental results when the PCR called a homozygote 526 

absence (0/0); by contrast, TypeTE predicted these genotypes with more than 87% 527 

concordance in the two datasets tested (1000 GP and SGDP). Consequently, 528 

calculation of Fis based on TypeTE genotypes shows better concordance with that 529 

based on PCR-derived genotypes, and fits the neutral expectation as we observe no 530 

deviation from Hardy-Weinberg equilibrium for a single human population (Hosking et 531 

al., 2014).  532 

 533 

The principal difference between TypeTE and MELT derives from characteristics of the 534 

actual data on which the genotyping is performed. While both methods implement the 535 
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core genotyping algorithm described by Li (H. Li 2011), TypeTE relies on a strategy 536 

based on re-alignment of the reads against both presence and absence alleles before 537 

computation of the genotype likelihoods, an approach initially introduced by Wildschutte 538 

et al. (Wildschutte et al. 2015). Furthermore, TypeTE facilitates the genotyping with no 539 

user intervention by using as input the ‘vcf’ produced by MELT (or virtually any other 540 

pMEI detection software) to generate a new ‘vcf’ output file delivering the predicted 541 

genotypes. TypeTE also uses recently developed assemblers (SPAdes (Bankevich et 542 

al. 2012) and Minia (Chikhi and Rizk 2013)) and use reads from all individuals for a 543 

locus for local MEI assembly which, in our hands, showed a higher rate of assembly 544 

than the CAP3 assembler (Huang and Madan 1999) used previously (Wildschutte et al. 545 

2015). In addition, TypeTE can also genotype more pMEIs than previous studies based 546 

solely on de-novo MEI assembly (Wildschutte et al. 2015): if an incomplete Alu is 547 

assembled, TypeTE subsidize it with the exact consensus sequence based on TE’s 548 

read identity with RepBase. This additional step is performed by retrieving the subfamily 549 

on which most discordant mates align in the assembly. Here, we show that 550 

reconstruction of alternative alleles (either by local assembly or consensus-based) -- a 551 

major difference with MELT -- significantly improves the accuracy of Alu genotyping. 552 

Finally, TypeTE predicts the TSD accompanying each insertion and the pMEI 553 

orientation, which ensures optimal reconstruction of the two alleles. Collectively these 554 

implementations enable TypeTE to generate highly accurate Alu insertion genotypes.  555 

 556 

We further tested whether the quality of the starting dataset (in particular sequencing 557 

depth) influenced TypeTE performance. By comparing results on the 1000 GP and 558 
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SGDP datasets, which use different sequencing depth (on average 7.4X vs 42X, 559 

respectively), to the PCR genotypes, we found that TypeTE performs equally regardless 560 

of coverage depth (at least for reference insertions, for which we had enough loci to 561 

compare between datasets). In fact, using both non-reference and reference Alu 562 

insertions genotyped with TypeTE in the 1000 GP dataset, we showed that the average 563 

sequence coverage of the region flanking these loci does not seem to influence 564 

genotyping accuracy. Thus, TypeTE can support the analysis of large population 565 

dataset without stringent or highly uniform coverage requirements.  566 

 567 

While TypeTE offers significant improvements over MELT, it still fails to genotype 568 

accurately some of the loci we experimentally assayed (16/227). Neither low 569 

sequencing coverage nor mappability issues could be readily implicated as hindering 570 

genotyping of these loci. We believe that other locus-specific idiosyncrasies prevent the 571 

ability of TypeTE to produce an accurate allele call. For instance, earlier tests on the 572 

pipeline showed that a 1-bp insertion at the end of the element in one allele or a slight 573 

error in the TSD prediction could dramatically affect the re-mapping and genotype 574 

predictions. A specific assessment of the bioinformatic methods aimed to identify TSDs 575 

should be able to improve this issue. Identifying boundaries of Alu insertion in low 576 

complexity (especially A-rich) regions is challenging due to inter-individual differences in 577 

the length of the poly-A tail of the element, and according to our tests, Repeatmasker 578 

often fails to identify the exact boundaries of such reference elements. Even though our 579 

pipeline in principle considers such subtle sequence variation, at least for one locus, we 580 

found that the TSD was overlapping the annotated poly-A region. Implementing 581 
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changes to identify similar instances could mitigate genotyping miscalls for those loci. 582 

Additionally, our ability to evaluate the concordance of genotype predictions in low-583 

complexity and highly repetitive regions was restrained to PCR-accessible loci.  We 584 

have also noticed that altering the parameters or method for local de novo assembly 585 

improved the assembly of certain TE loci. An automated approach to customize the 586 

assembly parameters for each locus that failed with the standard approach would 587 

enhance the reconstruction of non-reference TE sequences. Identifying proper 588 

orientation of insertions is also crucial in accurately genotyping the insertions and we 589 

are also contemplating a read-based approach to identify the orientation of insertions in 590 

addition to the current assembly-based approach. Collecting more benchmarking data 591 

might allow us to characterize more finely these issues and adapt the pipeline 592 

accordingly. Notwithstanding these peculiar instances, TypeTE has the lowest error rate 593 

of all methods tested and as such it represents a valuable advance in the field.  594 

 595 

The task and challenges of pMEI genotyping have been largely overlooked thus far, yet 596 

we show here that inaccurate genotyping of pMEIs can significantly bias population 597 

genetics inferences. It is presumably because of these issues that reference pMEIs 598 

have been entirely ignored in previous population genomics studies using pMEIs (L. 599 

Wang et al. 2016; L. Wang, Norris, and Jordan 2017)). By increasing genotyping 600 

accuracy for both reference and non-reference insertions, TypeTE will enhance future 601 

studies using pMEI as markers or structural variants in the human population. Notably, 602 

our results now offer a dataset of genotyped Alu insertions for 445 samples of the 1000 603 

GP that is complemented by a wealth of functional data including RNA-seq 604 
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(Lappalainen et al. 2013), DNA methylation (Pai et al. 2011), DNase I accessibility 605 

(Degner et al. 2012), and ATAC-seq (Kumasaka, Knights, and Gaffney 2016, 2019). We 606 

anticipate that these resources will open new avenues to explore the cis-regulatory 607 

influence of pMEIs in humans (L. Wang et al. 2016; L. Wang, Norris, and Jordan 2017; 608 

Rishishwar et al. 2018). The modularity of TypeTE allows one to easily combine new 609 

assemblers to improve the reconstruction of each pMEI, but it is also possible to skip 610 

this step and only use consensus sequence of MEI to speed up the computation time. 611 

The design of TypeTE makes it compatible with any data produced by pMEI detection 612 

tools and in principle it can be readily adapted to genotype insertions from any other 613 

retroelement families in virtually any species.  614 

 615 
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TABLE AND FIGURES LEGENDS 829 

 830 

Figure 1: Overview of the TypeTE pipeline. TypeTE is divided in two main scripts. 831 

The first (A) genotypes non-reference insertion (TypeTE-nonref) and the second (B) 832 

genotypes reference pMEI (TypeTE-ref). (A) TypeTE-ref creates the reference allele 833 

(REF) by extracting +/- 500 bps from the Alu predicted breakpoint. The alternate allele 834 

(ALT), corresponding to the pMEI presence is made by 1-2) removing the predicted 835 

TSD from the +/- 500 bps extracted sequence. Then, for each locus, read pairs 836 

(including discordant mates) are extracted from the individual bam files and are pooled 837 

for local assembly (3). If TSDs are identified in the assembly, the sequence is then 838 

inserted onto the flanking (4). In case the assembly is incomplete, the Repbase 839 

consensus for the predicted TE family is inserted instead (4). (B) The REF allele is 840 

created after extraction of +/- 500 bps from the 5’ and 3’ ends of the adjusted Alu 841 

position (including TSDs). The ALT allele is then created removing the Alu sequence 842 

and 1 TSD from the same extracted sequence. (C) Genotyping. For each locus, read-843 
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pairs of each sample are extracted in a 500 bps window centered on the predicted 844 

breakpoint. For each sample, these reads are then mapped to the two alleles and 845 

genotype likelihood are computed. 846 

 847 

Figure 2: Comparison of the predicted genotypes in the 1000 GP dataset with 848 

PCR-assays in 42 CEU individuals. Each vertical bar represents one locus, and 849 

match or error regarding the genotype for each individual are piled up on the Y axis and 850 

color coded according to the legend. NA values (no genotype predicted or failed PCR) 851 

are removed from the plot. > 852 

 853 

Figure 3: Comparison of the predicted genotypes in the SGDP dataset with PCR-854 

assays in 14 South Asian individuals. Each vertical bar represents one locus, and 855 

match or error regarding the genotype for each individual are piled up on the Y axis and 856 

color coded according to the legend. NA values (no genotype predicted or failed PCR) 857 

are removed from the plot. > 858 

 859 

Figure 4: Average error rate per locus across methods and datasets. Different 860 

letters indicate significant difference. Tukey’s HSD, P < 0.05; NS: Not significant> 861 

 862 

FIGURE 5: Effect of method and dataset on variant discovery performance. 863 

Sensitivity, precision and F1 score are compared for each dataset (1000 GP and 864 

SGDP) according to the type of insertion (non-reference vs reference) and the 865 

genotyping method used (1000 GP, MELT2.1.4 and TypeTE).  Error bars: 95% 866 
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confidence interval. Non-overlapping intervals denotes a significant difference between 867 

scores. 868 

 869 

FIGURE 6: Per locus inbreeding coefficient (Fis). The Fis is estimated for each locus 870 

using the alleles frequencies given by each method (1000 GP: original 1000 GP 871 

genotypes, MELT2, TypeTE and PCR assays) and for each of the 1000 GP (n = 42 872 

individuals) and SGDP (n = 9 individuals) datasets. Red dashed-line: expected Fis at 873 

Hardy-Weinberg equilibrium (Fis = 0).  874 
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