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Abstract

Droplet-based single-cell assays, including scRNA-seq, snRNA-seq, and CITE-seq, produce a
significant amount of background noise counts, the hallmark of which is non-zero counts in cell-free
droplets and off-target gene expression in unexpected cell types. The presence of such systematic
background noise is a potential source of batch effect and spurious differential gene expression.
Here we develop a deep generative model for noise-contaminated data that is structured to reflect
the phenomenology of background noise generation in droplet-based single-cell assays. The pro-
posed model successfully distinguishes cell-containing from cell-free droplets without supervision,
learns the profile of background noise, and retrieves a noise-free quantification in an end-to-end
fashion. We present a scalable and robust implementation of our method as a module in the
open-source software package CellBender. We show that CellBender operates close to the the-
oretically optimal denoising limit in simulated datasets, and present extensive evaluations using
real datasets and experimental benchmarks drawn from different tissues, protocols, and modalities
to show that CellBender significantly improves the agreement of droplet-based single-cell data
with established gene expression patterns, and that the learned background noise profile provides
evidence for degraded or uncaptured cell types.

1 Introduction

Droplet-based assays have enabled transcriptome-wide quantification of gene expression at the
resolution of single cells [1, 2]. In a typical single-cell RNA sequencing (scRNA-seq) experiment,
a suspension of cells is prepared and loaded into individual droplets. Poly(A)-tailed mRNAs in
each droplet are uniquely barcoded and reverse-transcribed, followed by PCR amplification, library
preparation, and ultimately sequencing. Quantifying gene expression in each cell is achieved by
identifying and counting unique cDNA fragments that have a particular droplet barcode. The dif-
ferential PCR amplification bias on different molecules can be reduced by using unique molecular
identifier barcodes (UMIs), and counting the number of unique UMIs as a proxy for unique endoge-
nous transcripts. This count information is then summarized in a count matrix, where counts of
each gene are recorded for each cell barcode. The count matrix is the starting point for downstream
analyses such as batch correction, clustering, and differential expression [3, 4]. In additional to
cellular mRNA, other cell-endogenous molecules or incorporated perturbations (hereafter referred
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to as cell “features” for brevity) can be assayed using a similar setup by conjugating the desired
feature with a cellular barcode. Examples include CITE-seq [5], Perturb-Seq [6], scCAT-seq [7],
SNARE-seq [8], SHARE-seq [9], ECCITE-seq [10], 10x Multiome, among many other recently
introduced droplet-based assays.

In order to reduce the rate of events where multiple cells are encapsulated in the same droplet,
the cell suspension is appropriately diluted, and as a result, a typical droplet-based single-cell exper-
iment produces hundreds of thousands of cell-free droplets. In an ideal scenario, a cell-free droplet
is expected to be truly devoid of capturable molecules whereas a cell-containing droplet will yield
features originating only from the encapsulated cell. In reality, however, neither expectation is met.
On the one hand, the cell suspension contains a low to moderate concentration of cell-free mRNA
molecules or other capturable features (Fig. 1a) which leads to non-zero molecule counts even in
cell-free droplets [11] (Fig. 1b). These cell-free molecules, also referred to as “ambient” molecules,
have their origin in either ruptured or degraded cells, residual cytoplasmic debris (e.g. in single-
nuclei RNA-seq), or exogenous sources such as unbound ssDNA-conjugated antibodies or sample
contamination. On the other hand, the shedding of capture oligos by beads in microfluidic chan-
nels as well as the formation of spurious chimeric molecules during the bulk mixed-template PCR
amplification [12, 13] effectively lead to “swapping” of transcripts and barcodes across droplets.
The severity of these problems depends on the tissue isolation protocol, as well as library prepara-
tion steps, including purification, size selection, PCR amplification conditioning and the number
of cycles [14]. For a more thorough discussion, see Sec. S.2 in Supplementary Methods.

Mixed-species experiments provide a direct demonstration of the effects of systematic back-
ground noise, as shown in Fig. 1c, where an experiment with a mixture of human and mouse cells
is observed to have hundreds of off-target human transcripts in all droplets that contain mouse cells
(inset), when ideally, mouse-cell-containing droplets would have zero human transcripts (excluding
doublets, where two cells are captured in one droplet). The issue of background counts is par-
ticularly problematic in single-nuclei RNA sequencing (snRNA-seq). The harsh nuclear isolation
protocols produce a significant number of ruptured nuclei and a high concentration of cytoplasmic
RNA in the suspension (Fig. 1d, green dots). In severe cases, the typical total UMI count distinc-
tion between droplets with and without nuclei nearly disappears and all droplets lie on a continuum
of counts. In such situations, successful downstream analysis hinges on our ability (1) to tell apart
empty from non-empty droplets, and (2) to correctly recover the counts from encapsulated cells
or nuclei while removing background counts.

The presence of background counts can reduce both the magnitude and the specificity of dif-
ferential signal across different cell types. In cases where quantitative accuracy or specificity is
required, e.g. for identification of exclusive marker genes as a part of drug target discovery, or the
study of subtle phenotypic alterations in a case/control setting, background counts can obscure or
even completely mask the signal of interest. In some experiments, extremely high expression of
a particular gene in one cell type can give rise to a large amount of background, making it seem
as though all cells express the gene at a low level. This issue is common to antibody features in
CITE-seq and sgRNA CRISPR guides in Perturb-seq.

As the field of single-cell omics is rapidly extending beyond unimodal measurements and toward
multimodality [15], the issue of systematic background noise remains a ubiquitous artifact that
negatively impacts all such assays, regardless of the measured feature. A general-purpose in
silico mitigation strategy is therefore expected to be of wide applicability. Here, we introduce a
deep generative model for inferring cell-free and cell-containing droplets, learning the background
noise profile, and retrieving uncontaminated counts from cell-containing droplets. Our proposed
algorithm operates end-to-end starting from the raw counts, is fully unsupervised, is agnostic
to the nature of the measured molecular feature (e.g. mRNA, protein, etc.), and requires no
assumptions or prior biological knowledge of either cell types or cell-type-specific gene expression
profiles. A major challenge in distinguishing background noise counts from biological counts for
single droplets is the extreme sparsity of counts, such that without a strong informative prior, the
counts obtained from a single droplet do not provide sufficient statistical power to allow inference
of background contamination. Here, we utilize a neural network to learn the distribution of gene
expression across all droplets. The learned distribution acts as a prior over cell-endogenous counts,
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Figure 1: The phenomenology of ambient RNA and its deep generative modeling using
CellBender remove-background. (a) Cell dissociation and nuclei extraction lead to the pres-
ence of cell-free RNA in solution. (b) Schematic diagram of the proposed source of ambient RNA
background counts. Cell-free “ambient” RNAs (black lines) and other cellular debris are present
in the cell-containing solution, and these RNAs are packaged up into the same droplet as a cell
(red), or into an otherwise empty droplet that contains only a barcoded capture oligo bead (green
hexagon). (c) Unique UMI counts per droplet that map to human and mouse genes for the pub-
licly available hgmm12k dataset from 10x Genomics. The experiment is a mixture of human and
mouse cells, and the inset (red box) shows that there are hundreds of human counts in droplets
that contain mouse cells. (d) snRNA-seq Wistar rat heart dataset rat6k, showing unique UMI
counts per droplet (black) with fraction of reads from exonic regions superimposed (green). The
“ambient plateau” is the region of the rank-ordered plot with ranked barcode ID greater than
about 15,000, where there are approximately 100 unique UMI counts per droplet. The increase
in the fraction of exonic mapped reads coinciding with the onset of cell-free droplets shows that,
in snRNA-seq, the ambient RNA is enriched for cytoplasmic material, where fewer intronic reads
remain due to splicing. (e) Running CellBender is as simple sending a raw count matrix in
and receiving a corrected count matrix in return. (f) Additional useful outputs include inferred
latent variables of the model, such as the ambient RNA profile, probabilities that each droplet
is non-empty, a low-dimensional embedding of gene expression per cell, and a summary report.
(g) Schematic diagram explaining the rationale for our model. “True” cell counts are modeled
using a flexible prior parameterized by a neural network NNχ. These counts (if a cell is present
in a given droplet) are added to two constant noise sources: ambient background noise and bulk
background noise. (h) The generative model for count data in the presence of background RNA.
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provides a mechanism to share statistical power between similar cells, and ultimately improves the
estimation of background noise counts. Learning this neural prior of cell states and estimating
the background noise profile is performed simultaneously and self-consistently within a variational
inference framework, allowing progressively improved separation of endogenous and background
counts during model training.

We present extensive evaluation of our algorithm on both simulated and real datasets (whole-
cell, single-nuclei, mixed-species, and CITE-seq). We show that (1) our method is superior to
the currently existing methods in distinguishing empty and cell-containing droplets, in particular,
in ambiguous regimes and challenging single-nuclei RNA-seq datasets, and that (2) our method
successfully learns and subtracts background noise counts from cell-containing droplets and leads
to significantly increased amplitude and specificity of differential expression, both for RNA and
CITE-seq antibody counts, and increases the correlation between the two modalities.

Our method is made available as a production-grade, easy-to-use command line tool (Fig. 1e,f).
We utilize the Pyro probabilistic programming framework [16] for Bayesian inference. GPU acceler-
ation is necessary for fast operation of this method. We refer to this method as remove-background,
which constitutes the first computational module in CellBender, an open-source software package
developed by the authors for pre-processing and quality controlling single-cell omics data. Several
community-standard file formats, including CellRanger, DropSeq, AnnData [17], and Loom, are
accepted as input. CellBender workflows are available on Terra (app.terra.bio), a secure open
platform for collaborative omics analysis, and can be run on the cloud on a GPU with zero setup.

Since the time our method was first made available as an open-source project in 2019, it has
been extensively used by the single-cell omics community in several large-scale studies, including
primary research articles on the mouse brain [18], human brain organoids [19], human intestine [20],
human heart [21–23], human and mouse adipocytes [24, 25], several recent studies on SARS-CoV-
2 in human tissues [26–30], and a large snRNA-seq human cross-tissue atlas [31]. Background
noise removal remains a crucial step in single-cell data analysis, and other authors have developed
methods for remedying ambient RNA as well. In particular, DecontX by Yang et al. [32] is another
principled method, which we benchmark together with our method here.

2 Methods

2.1 A generative model for noisy single-cell droplet-based count
data

We build a probabilistic model of noise-contaminated single-cell data by examining the key steps of
data generation process from first principles, including droplet formation and cell encapsulation,
reverse transcription, PCR amplification, and the consequent ambient molecules and chimeric
library fragments. These mechanisms, along with the empirical evidence for each, are discussed
in detail in Sec. S.2 in Supplementary Methods. A simplified schematic of our model is shown in
Fig. 1g, along with the formal probabilistic graphical model in Fig. 1h. Our general approach to
modeling is discussed in Sec. S.1.1 in Online Methods. We review key elements of the probabilistic
model in this section and refer the reader to Online Methods for supplementary details.

Our starting point is the observed feature count matrix cng, where n and g denote cell index
and feature index (e.g. gene), respectively. We interpret cng as the sum of two non-negative
contributions: the true biological counts originating from cells ccellng , and the background noise

counts cnoiseng . The background noise counts are drawn from a Poisson distribution:

cnoiseng ∼ Poisson
[
(1− ρn) ϵn d

drop
n χa

g︸ ︷︷ ︸
ambient noise rate

+ ρn ϵn (ynd
cell
n + ddropn ) χ̄g︸ ︷︷ ︸

barcode swapping

]
. (1)

where the noise rate stems from two distinct processes: physically encapsulated ambient molecules,
and barcode-swapped molecules, e.g. PCR chimeras. The ambient rate is determined by a learnable
ambient profile χa

g, droplet size factor ddropn , and droplet-specific capture efficiency factor ϵn. We
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model barcode swapping as a diffusion process with a droplet-specific rate ρn that is additionally
modulated by the total amount of physically captured molecules in the droplet, i.e. ϵn (ynd

cell
n +

ddropn ), and the dataset-wide average gene expression (“pseudo-bulk”), χ̄g. Here, yn ∈ {0, 1} is a
binary variable that indicates cell presence in the droplet and dcelln is the cell size factor.

The true biological counts ccellng are modeled as a negative binomial distribution with a rate that
depends on droplet-specific capture efficiency ϵn, non-chimeric fraction 1 − ρn, the cell presence
indicator yn, cell size factor dcelln , and a prior on true gene expression rate of the cell χng[zn]:

ccellng | zn ∼ NegBinom
[
(1− ρn) ϵn yn d

cell
n χng[zn],Φ

]
. (2)

Here, Φ is a global learnable overdispersion parameter that modulates the uncertainty of the
cell gene expression prior, and zn is a droplet-specific latent variable that determines the gene
expression rate prior χng. Crucially, the way we construct this prior is one of the components that
makes the our model unique among noise removal approaches for count data. We utilize a neural
network to learn a flexible prior for biological counts, which is realized as a deformation of a low-
dimensional Gaussian latent space zn (Fig. 1g). We fit the model using the stochastic variational
inference (SVI) technique and leverage additional “encoding” neural networks for amortizing the
approximate inference of droplet-specific (“local”) latent variables, see Supplementary Fig. S1b.
Put together, our framework resembles a variational auto-encoder (VAE) [33] within a structured
probabilistic model of noisy single-cell data.

We use the probabilistic programming language Pyro [16] to implement our model and the ap-
proximate variational inference algorithm. Our choice of variational posterior is shown graphically
in Supplementary Fig. S1b and the details are provided in Sec. S.1.3 in Online Methods.

2.2 Constructing a denoised integer count matrix

CellBender generates several outputs following model fitting and inference, including the learned
profile of ambient noise, cell containment probability per droplet, the low-dimensional latent space
representation of cell states, and importantly, the estimated denoised integer count matrix, ĉcellng .

It is worth emphasizing that our sought-after denoised count matrix ĉcellng is not obtained by decod-
ing the underlying low-dimensional latent embeddings of observed counts. This is a fundamental
difference between our approach and VAE-based denoising and imputation methods [34–36]: en-
coding into and out of a low-dimensional latent space acts as an information bottleneck, smooths
the data to varying degrees, and potentially masks subtle biological features such as transcriptional
bursting, infrequent cell states, and other rare fluctuations of potential functional importance. In
our approach, the low-dimensional latent space of cell states acts as a prior, which together with
the observed data, determines the Bayesian posterior p(cnoiseng | {cng}). We estimate an integer ma-

trix of likely-noise counts ĉnoiseng from the latter and obtain the denoised counts by subtracting off
noise counts from observed counts.

Given the explicit partitioning of the observed data as a sum of non-negative signal and noise
contributions, our approach explicitly guarantees the following: (1) each entry in the output count
matrix will be less than or equal to the corresponding entry in the raw input matrix cng; (2) the
results are largely insensitive to the representational capacity of the encoding and decoding neural
networks; (3) importantly, in a clean dataset where ĉnoiseng → 0, we obtain ĉcellng → cng, i.e. the data
is not deformed, smoothed, or imputed. Our conservative approach to denoising is crucial for safe
operation of our method in automated analysis pipelines, in particular, in application to clinical
data and reference atlas building efforts.

Any noise removal algorithm involves a trade-off between removing actual noise (sensitivity)
and retaining signal (specificity). In CellBender, we control this trade-off by means of a user-
defined “nominal false positive rate” (nFPR) parameter (see Sec. S.1.5 in Online Methods). The
nFPR parameter provides a transparent and interpretable handle to impose an upper bound on the
amount of erroneously removed signal counts in aggregate (“false positive” counts), which could
be either imposed separately on each feature, or globally. Larger nFPR values imply removing
more noise at the expense of more signal. The ability to control denoising nFPR, regardless of
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the inherent noise of a given dataset, is desirable for integrative analysis of heterogeneous datasets
such as clinical patient samples generated at multiple centers [26].

Finally, we note that reducing the posterior distribution of noise counts p(cnoiseng | {cng}), which is

the natural output of a Bayesian model, to an integer point estimate ĉnoiseng , is a non-trivial and sub-

tle task. The widely-used maximum a posteriori (MAP) estimator ĉnoiseng = argmax p(cnoiseng | {cng}),
even though is a canonical Bayesian choice, leads to systematic under-estimation of noise counts
for genes that are present in the ambient profile at low levels (see Sec. S.1.10 in Online Methods).
Meeting the specified total noise target implied by nFPR while attaining the maximum model-
based posterior probability turns the estimation of ĉnoiseng into a secondary optimization problem.
We discuss and evaluate several such estimation algorithms in Sec. S.1.4 in Online Methods. By
default (as of CellBender version v0.3.0), we use a constrained estimator that is formally equiv-
alent to the multiple-choice knapsack problem (MCKP), which we show is exactly solvable using
a fast and greedy coordinate ascent algorithm under mild assumptions, see Sec. S.1.9 in Online
Methods.

3 Results

We present several evaluations of CellBender using real and simulated datasets in the following sec-
tions. Benchmarking on real scRNA-seq and snRNA-seq datasets shows that CellBender increases
the specificity of known marker genes and significantly diminishes off-target gene expression. Com-
pared to widely-used cell calling strategies, CellBender retrieves substantially more high-quality
cells. Benchmarking on mixed-species scRNA-seq experiments demonstrates that CellBender re-
moves the majority of off-target cross-species counts. Experiments using simulated noisy datasets
with known ground truth show that CellBender operates close to the theoretically optimal limit.
Finally, we show that CellBender significantly reduces background noise in CITE-seq data and
increases the correlation between the cell-type specificity of mRNA and protein.

3.1 CellBender increases the specificity of marker genes and at-
tenuates off-target expression

Removal of systematic noise from a dataset results in clearer biological insights by enhancing the
specificity of gene expression and reducing spurious off-target counts. We demonstrate this by pre-
processing a single-cell and a single-nuclei RNA-seq dataset with CellBender prior to downstream
analysis, and assessing the biological soundness of the results.

We carried out a standard analysis workflow on the publicly available peripheral blood mononu-
clear cell (PBMC) scRNA-seq dataset (pbmc8k) from 10x Genomics dataset using scanpy [17]. We
identified cell-containing droplets as having posterior cell probability qn > 0.5, and we used these
cells in analyzing raw data and data pre-processed with CellBender. We further filtered cells
using cutoffs for number of nonzero genes, percent mitochondrial counts, and an upper limit for
UMI counts (details in Sec. S.1.12 in Online Methods). The results of the exact same analysis,
with and without CellBender pre-processing, are shown in Fig. 2a-d, including the expression of
several immune marker genes.

Raw gene expression data, as shown in Fig. 2b, indicates that the genes S100A8, S100A9, LYZ,
CST3, and PTPRC are found to be abundantly and ubiquitously expressed in all clusters. While
PTPRC (CD45) is a glycoprotein expressed on all nucleated hematopoietic cells, LYZ and CST3
are known to be specific markers for monocytes and plasmacytoid dendritic cells (pDCs), whereas
S100A8 and S100A9 are known to be specific markers of neutrophils, monocytes, and pDCs [37, 38],
see Fig. S7. We hypothesized that the off-target expression of these genes was a result of systematic
background noise. Fig. 2d shows the denoised counts obtained using CellBender at nFPR = 0.01
and demonstrates both sensitivity and specificity of CellBender: on the one hand, we observe that
the expression of S100A8, S100A9, and LYZ is now largely concentrated on monocytes and pDCs,
as expected. Conversely, we note that the biologically expected ubiquitous expression of PTPRC
has remained unchanged. Supplementary Fig. S8 the expression of LYZ across clusters before and
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Figure 2: (a-h) Standard scanpy analysis of publicly-available 10x Genomics dataset pbmc8k with
and without CellBender. UMAP visualizations of (a) the raw data and (c) the data pre-processed
with CellBender. The dot plots display the expression of pre-defined marker genes for PBMCs
for (b) the raw dataset and (d) the dataset processed with CellBender. (e) Removal of each gene
has been mapped to cell type, indicating that cell types do not necessarily contribute equally to
ambient RNA. (f-h) UMAP plots of the expression of LYZ, IGKC, and HLA-DRA in each cell
before and after CellBender. Colorbar axes are truncated at the 80th percentile of per-cell
expression. (i-q) Removal of background RNA from a published human heart snRNA-seq atlas,
heart600k. (i) UMAP of raw data for nearly 600k nuclei. (j) Dotplot showing several highly-
expressed genes in the raw dataset. (k-l) UMAP and dotplot after CellBender. (m) Similar to
(e), this plot demonstrates that many of the removed counts are attributable to cardiomyocyte
genes. (n-q) UMAP plots of the expression of TTN, CTNNA3, DCN, and LAMA2 before and
after CellBender. Colorbar axes are truncated at the 80th percentile of per-cell expression.
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after CellBender in more detail. Supplementary Table S2 shows the differential expression for
S100A8, S100A9, LYZ, and CST3, between monocytes C (cluster 0, where expression is expected)
and naive B cells (cluster 4, where expression is not expected), calculated as the log2-fold-change
using a Wilcoxon test. The log2-fold-changes (LFC) increase by a factor of two after subtracting
background RNAl; in contrast, the LFC of PTPRC hardly changes at all. Another visualization of
the effect of background noise removal is shown in Fig. 2f-h, where the expression of LYZ (increased
specificity for monocytes), IGKC (increased specificity for B cells), and HLA-DRA (increased
specificity for both monocytes and B cells) are plotted per-cell before and after CellBender. The
increase in specificity is striking for these and many other examples, see e.g. Supplementary
Fig. S9.

Next, we explored the origin of background counts in the PBMC dataset. Note that neutrophils
and other granulocytes are absent from 10x PBMC cell clusters. The difficulty of capturing gran-
ulocytes is attributed to their sensitivity to rapid degradation after collection and poor isolation
via density gradient centrifugation [39]. As such, we hypothesized that ambient counts might be
enriched with granulocyte lysates. To test this hypothesis, we examined the fraction of counts
removed by CellBender for each gene, and accordingly assigned each gene to the blood cell type
with the highest consensus normalized TPM expression value obtained from the Human Protein
Atlas (HPA) immune reference [38]. We binned the genes according to the fraction removed by
CellBender as ambient noise, and interpreted the empirical frequency of assigning different cell
types to the genes within each bin as the probability of contributing to the ambient soup. The
result is shown in Fig. 2e and indicates that genes in the topmost ambient removal bins are associ-
ated with granulocytes at a significantly higher frequency. The top- and bottom- ten genes ranked
by CellBender ambient removal are shown in Supplementary Fig. S6 along with the expression
of each in the HPA immune reference, further demonstrating the enrichment of top-most ambient
genes in basophils and neutrophils and the relative cell-type non-specificity of bottom-most genes.

PBMC scRNA-seq datasets are considered relatively clean in terms of ambient RNA contam-
ination (see the UMI curve in Supplementary Fig. S4a-b as compared with Fig. S4e-f). Next,
we examined a more challenging snRNA-seq dataset in which nuclei were extracted from frozen
human heart tissue [23], heart600k. Nuclei preparations are more susceptible to ambient RNA
contamination since the cells are all lysed and cytoplasmic mRNA becomes free in solution.

UMAP projections of the heart600k dataset were re-computed using Harmony-pytorch for
batch effect correction [40], starting with either the raw counts (Fig. 2i) or the post-CellBender
counts (Fig. 2k). The overall shape and appearance of the UMAP is qualitatively quite similar
in both cases. However, an examination of gene expression shows that the dataset has been
cleaned up quite significantly post CellBender (Fig. 2j,l). Fig. 2j demonstrates that, for many
highly-expressed marker genes, the raw data would indicate that these genes are expressed in
every cell type. However, it has been well established that the role of TTN, for example, is in the
sarcomere of striated muscle cells including cardiomyocytes, and it is not expressed in the other
cell types present in this experiment. Fig. 2l,n demonstrate that, after CellBender, the expression
of TTN becomes much more specific to the cardiomyocyte clusters. Similarly, CTNNA3, involved
in cell-cell adhesion in muscle, appears much more specific to cardiomyocytes and vascular smooth
muscle cells (cluster 6: VSMC) after CellBender (Fig. 2l,o), in agreement with existing heart
snRNA-seq atlases [21, 41]. The expression of DCN, which plays a role in collagen fibril assembly
in the extracellular matrix, becomes much more specific to fibroblasts (Fig. 2l,p), also consistent
with Refs. [21, 41]. Finally, the expression of LAMA2, another component of the extracellular
matrix, is found after CellBender to be much more specific to fibroblasts and cardiomyocytes,
with some lower-level expression in pericytes, adipocytes, and neuronal cells, again in agreement
with Refs. [21, 41].

Cardiomyocytes have high UMI counts as compared to other cell types (see, for example, Sup-
plementary Fig. 2b from Ref. [21], where the cardiomyocytes can have an order of magnitude higher
UMI counts than other cell types in snRNA-seq). We hypothesized that we should see a dispro-
portionately high amount cardiomyocyte genes in the background RNA removed by CellBender.
An examination of genes preferentially removed by CellBender shows that the top genes in terms
of removed fraction are in fact associated mainly with cardiomyocytes, and to a lesser extent with
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epicardial cells; see Fig. 2m. Many of the genes plotted in Fig. 2j,l are cardiomyocyte marker
genes, including some of the most highly-expressed genes in the dataset, TTN and RYR2. This
highlights the importance of learning the ambient RNA profile from the dataset itself: the large
amount of ambient cardiomyocyte mRNA, which is packaged into each droplet as background
counts, is appropriately targeted and removed by CellBender, vastly improving the specificity of
gene expression for downstream biological analyses.

3.2 CellBender accurately identifies cell-containing droplets

cellbender
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Figure 3: Comparing four cell calling algorithms (CellRanger v2, v3, EmptyDrops, and
CellBender) on the rat6k snRNA-seq dataset. (a) Detected cells for different algorithms:
the UMI vs. barcode rank curve (black line) is superimposed on the fraction of detected cell-
containing droplets in different barcode rank bins (green bars). CellRanger results indicate im-
posing a nearly hard cutoff on the barcode rank, while EmptyDrops calls several cells between
6000 and 10,000 in UMI count rank (x-axis). (b) CellBender detects all cells called by the other
algorithms (after cell QC) and many more. UMAP embeddings were generated after performing
cell QC. All cells are shown in gray, with green dots superimposed to denote cells which were not
detected by the method in question but detected by CellBender. The Venn diagram quantifies
the agreement between various methods. (c) UMAP with cell type labels at Leiden resolution
0.5. All clusters appear to be biologically meaningful. (d) Top three marker genes for each cluster
(scanpy Wilcoxon test) are shown for the union of all cells called by any algorithm (which coin-
cides with CellBender cell calls). (e) Same marker gene dotplot as in (d), but now showing only
those cells which were exclusively detected by CellBender. The similarity to (d) and presence
of real marker genes indicates that the extra cell calls made by CellBender are real.

As a part of model training and inference, CellBender produces a posterior probability qn
that droplet n contains a cell. While this determination can be rather trivial in some pristine
datasets (e.g. the PBMC dataset pbmc8k, see Supplementary Fig. S4a-b), complicated experimen-
tal factors and excessive amounts of ambient RNA contamination often make this determination
rather challenging (see, e.g., the snRNA-seq dataset rat6k in Supplementary Fig. S4e-f). A va-
riety of heuristics are typically employed in order determine cutoffs for thresholding cells versus
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empty droplets, as in CellRanger v2. More principled approaches have been developed, including
CellRanger v3+ and EmptyDrops. CellRanger v3+ and EmptyDrops [42] use statistical tests to
ascertain which droplets have expression profiles significantly different from empty droplets. In
our algorithm, the determination of empty vs. non-empty droplet is a result of disentangling
background counts from endogenous feature counts during model training, where both the gene
expression and total UMI counts of all droplets are taken into account.

Fig. 1f panel 2 shows the posterior cell probabilities for the first 25,000 droplets of the rat6k rat
heart snRNA-seq dataset. Note that the algorithm in general identifies cells and empty droplets
as expected, and that the transition between the two is not based on a hard UMI cutoff. A
determination of cell-free vs. cell-containing can be obtained by thresholding based on the posterior
probability, qn. The algorithm converges to largely binary probability values for the majority of
droplets and the precise choice of threshold value affects relatively very few droplets in practice.

We compare the cell calls made by CellBender with three other methods in common use
(CellRanger v2, CellRanger v3, and EmptyDrops) in Fig. 3. Fig. 3a shows that CellBender

generally calls more cells than CellRanger (Sec. S.6.6 in Supplementary Methods), many of which
lie farther down the UMI curve (black) and are not called by other methods.

The set of cells called by CellBender contains all the cells called by CellRanger v2, v3, and
EmptyDrops after cell quality control (see Venn diagram in panel Fig. 3b). In addition, CellBender
detects more than 50% extra cells compared to CellRanger v3, and more than five times as many
cells as EmptyDrops. Given the significant ambient RNA contamination in this dataset, we natu-
rally hypothesized that many of the extra cell calls made by CellBender might have been cyto-
plasmic debris which were nevertheless statistically different from the ambient RNA in terms of
gene expression makeup. To evaluate this hypothesis, we obtained a UMAP embedding of cells
detected only by CellBender together with the cells detected by other methods (Fig. 3b) after
typical filtering by gene complexity and mitochondrial fraction (see Sec. S.1.12 in Online Meth-
ods). To our surprise, (1) over 40% of the extra cells called by CellBender pass quality control
filters, amounting to over 1600 cells (Supplementary Table S3), and (2) the extra cell calls made by
CellBender clustered together with cells called by the other algorithms. Fig. 3c shows the UMAP
embedding obtained from the union of all cells called by any algorithm (after cell QC filtering)
with putative cell type labels, and it can be seen that the cells called exclusively by CellBender

have a marker gene distribution (Fig. 3e) similar to the dotplot created using the union of all cells
called by any algorithm (Fig. 3d). EmptyDrops calls many low-UMI-count cells that CellRanger v2
and v3 miss, though it also misses a large number of relatively high-UMI-count droplets along the
rank-ordered UMI plot. This is likely due to the similarity between gene expression of the empty
drops and the most populous cell types in this particular experiment (Sec. S.6.6 in Supplemen-
tary Methods). As such, the Dirichlet-multinomial likelihood model employed in EmptyDrops does
not yield a statistically significant probability of being non-empty for cardiomyocyte-containing
droplets. In contrast, CellBender learns the expression profile of cardiomyoctyes from high-count
droplets and is not impacted.

Finally, we recommend performing additional biologically-motivated and tissue-specific quality
control on CellBender cell calls whenever possible, e.g. using mitochondrial read fraction, exonic
read fraction, and gene complexity, as suggested by previous authors [42, 43]. We have deliberately
avoided including such filters in CellBender to allow broad applicability of this method. Post-
CellBender quality controlling strategies must be informed by the studied biological system and
the protocol. To emphasize the importance of post-filtering, we show a plot of the fraction of
reads per droplet that come from mitochondrial genes in the hgmm12k dataset in Supplementary
Fig. S12. It can be clearly seen that many low-UMI droplets exhibit a high fraction of mitochondrial
genes (possibly dead or dying cells), and because they are distinct from empty droplets, they are
nevertheless assigned a high probability of containing cells by CellBender. After filtering the
detected cells based on mitochondrial read fraction, some of these lowest-count and degraded cells
will be naturally filtered out. The analysis shown in Fig. 3 includes such post-filtering criteria.
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3.3 CellBender significantly reduces off-target gene expression in
mixed-species experiments

A definitive and straightforward experimental benchmark to evaluate the level of background
noise and the efficacy of mitigation strategies is a mixed-species experiment, where two cell types
from different species are combined and assayed together. This would ideally result in droplets
containing exclusively feature counts from one species or the other, but due to the presence of
background noise, this is not the case (as shown in Fig. 1c). Here, we use the publicly available
human-mouse mixture dataset from 10x Genomics (hgmm12k) to evaluate CellBender and also
compare to DecontX [32], another method for removing background noise.

Fig. 4a shows a scatter plot of human and mouse gene expression in each droplet (doublet
droplets not shown) in raw data and for CellBender processed data at different nFPR settings on
a logarithmic scale (data plotted on linear axes in Supplementary Fig. S13). The raw data shows
hundreds of off-target cross-species counts in each droplet (best visible in the side histograms).
After removing background noise, we would ideally expect all cross-species counts to be removed.
Indeed, CellBender (with default nFPR of 0.01) reduces off-target counts to a median of 19 per
cell, i.e. by over an order of magnitude from the raw data, with a median of 225. At a nFPR
setting of 0.1, the median off-target counts per cell drops to 4 (Supplementary Table S5 and Fig.
S14). It is worth re-emphasizing that CellBender is a completely unsupervised model, and that
the algorithm achieves this level of denoising without the knowledge of human genes, mouse genes,
or that this is a mixture-species experiment.

Fig. 4b compares the performance of CellBender with DecontX [32]. We find that while
DecontX removes a large number of cross-species counts, CellBender has a significantly higher
sensitivity: in fact, at nFPR 0.1 (in red), CellBender removes all cross-species counts from 16% of
cells (see the marginal histograms in Fig. 4a, where “1” means there are zero cross-species counts).
In addition, the results obtained using CellBender show other important characteristics which are
worth emphasizing:

• The amount of background noise which gets removed can be tuned using the interpretable
expected nFPR parameter, as shown in Fig. 4a,e.

• CellBender largely removes the linear trend in the relationship between cross-species counts
and cell endogenous counts (the linear trend seen in raw data shown in gray, see also Sup-
plementary Fig. S13). The proportional relation between background noise counts and cell
endogenous counts has been associated with library PCR chimeras formed during mixed-
template amplification [13] which effectively leads to random barcode swapping between
library fragments. Another potential mechanism is droplet-to-droplet variability in capture
efficiency which also leads to a proportional relation between endogenous and noise counts.
Both of these phenomena are modeled in CellBender, see Sec. S.1.2 in Online Methods. Note
that this linear trend remains largely unmitigated by DecontX, see Fig. 4b and Supplementary
Fig. S13b.

• We find that DecontX treats different groups of cells from the same species differently, which
can be seen as the fragmentation of blue points in Fig. 4b. We hypothesize this non-uniform
performance to be associated with the hard clustering preprocessing step in DecontX. While
the user can provide their own clustering to DecontX to mitigate this issue, CellBender
sidesteps such issues altogether by avoiding hard clustering entirely, and instead allows similar
cells to share statistical power via a low-dimensional continuous latent space.

3.4 CellBender operates near the theoretically optimal limit on
simulated datasets

So far, we have shown evaluations of CellBender using real datasets and resorted to prior biological
knowledge (e.g. marker genes) or expected outcomes (as in mixed-species experiments) to assess
the soundness of the results. Here, we additionally show experiments using simulated data, with
known noise and signal contributions, to evaluate the performance of CellBender theoretically and
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Figure 4: Benchmarking CellBender on denoising the hgmm12k human-mouse mixture dataset
(a-b), and a simulated dataset with different sized cells (c-g). (a) Log-scale plot of species mixing
shows that raw data (gray) contains several hundred counts of mouse transcripts in human cells
and vice versa. CB removes most of the off-target noise. The marginal histograms show that
many human cells end up with zero mouse counts and vice versa. CB denoised counts are shown
for several nominal false positive rates (nFPR) choices. (b) Same plot as in (a) but with DecontX
included for comparison. (c) The UMI curve for the simulated dataset, showing cells and empty
droplets. Simulated cell type 2 has many more UMI counts than cell type 1. (d) The UMAP
created from cells called by CB. (e) ROC curve quantifying per-cell noise removal performance.
Black dashed line with gray shading (one standard deviation in per-cell performance) represents
the best possible performance given perfect knowledge of all latent variables in the simulation
and is only limited by sampling noise. Large green dots (mean) with error bars (first and third
quartiles in per-cell performance) show CB outputs at a variety of expected nFPR values. Cyan
dots with error bars show DecontX output using different values of the parameter delta. (f-g)
Comparison of per-cell performance of DecontX (default settings) and CB (matching the output
FPR of default DecontX), where cells are colored by cell type. DecontX treats the different
cell types rather differently in terms of FPR (blue and orange colors are cell types from c-d).
CellBender is abbreviated as CB on the plots.
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in a more controlled setting. Fig. 4c-g shows the results of inference using a simulated dataset with
10,000 genes, generated according to a noise model that includes both ambient sources and barcode
swapping (see Sec. S.1.14 in Online Methods for simulation details). Importantly, the CellBender
model is slightly mis-specified for this simulated data on purpose, as the simulation draws “true”
gene expression χng from a Dirichlet distribution with fixed concentration parameter per cell type.
Panels (c-g) show a simulation with two “cell types” with unique underlying expression profiles,
where the cell types have a very different number of UMI counts. The ambient profile in the
simulation is a weighted average of total expression.

Fig. 4e shows the noise removal performance as a receiver operating characteristic (ROC) curve.
Noise counts that are correctly removed are counted as “true positives”, and a “false positive” is a
cell-endogenous count that is erroneously removed. A hypothetical model with perfect knowledge
of every real and noise count would be represented by the point (0, 1) in the FPR-TPR plane.
The stochasticity of the data generating process and finite sequencing depth, however, make this
perfect limit theoretically out of reach, even with prefect knowledge of all latent variables.

We show the “best theoretically achievable performance”, given perfect knowledge of all latent
variables, as the black dashed line. CellBender comes quite close to this optimal performance
(green dots, obtained by running at increasing nFPR parameters). Supplementary Table S6 shows
a decent agreement between the specified nFPR and empirical FPR. The DecontX ROC curve
was created by running the tool with several values of hyperparameter delta. Default DecontX
parameters were found to correspond to an empirical FPR of 0.142 and TPR of 0.809. Run with
nFPR=0.0442, CellBender was found to have exactly the same TPR of 0.809, but the FPR was
0.062. This means that, for the same amount of removal of noise, DecontX removed more than
twice as much signal as CellBender. At nFPR=0.125, CellBender matched the DecontX FPR
of 0.142, but the TPR was 0.923. This means that, for the same value of removal of real signal,
CellBender was able to remove 92.3% of the noise, while DecontX removed 80.9%. This seems to
be due to DecontX treating the two simulated cell types differently in terms of where they land
on the ROC curve (see Fig. 4f,g).

3.5 CellBender removes ambient antibody counts from CITE-seq
data and increases correlation between protein and RNA levels

As mentioned in the introduction, CellBender makes no assumption about the nature of the
captured molecules and is generally applicable to all barcoded features using within the same
model. This generality results from the common phenomenological origin of the technical noise we
aim to remove. To demonstrate this, we evaluate CellBender for denoising CITE-seq data. We
treat cell surface protein and RNA measurements on an equal footing as a unified count matrix,
and denoise the two modalities simultaneously using CellBender. Empirically, antibody counts
exhibit a very high level of background noise which may be attributed to unbound and unwashed
antibodies in the cell suspension. We show a publicly-available 10x Genomics CITE-seq dataset
of PBMCs (pbmc5k) in Fig. 5. We have grouped antibodies together with their associated genes
for ease of visual evaluation. In panel (a), the antibody features (red) have such a large amount
of background noise that it is challenging to discern a clear pattern. The gene expression counts
(blue), in contrast, have a very low amount of background noise in this dataset. Panel (b) shows
the output of CellBender run with nFPR 0.1, where a pattern clearly emerges, and visually it
appears that the red dots (protein antibody) very often line up with the blue dots (mRNA).

Antibody counts and the corresponding RNA counts exhibit an expected linear relationship
for most antibodies, and the impact of CellBender on this relationship is shown in Fig. 5e. In the
raw data, the presence of background noise leads to a relatively large nonzero intercept, such that
cells with zero RNA counts have nonzero antibody counts. CellBender effectively reduces the
magnitude of this intercept while maintaining the biological linear relationship; additional results
are given in Supplementary Fig. S16a-b. The specificity of antibodies to particular cell types
improves as a direct consequence. Supplementary Fig. S16c shows that the Pearson correlation
between the fraction of cells per cluster expressing antibody and the corresponding RNA increases
markedly after CellBender. We note that the presence of large intercepts poses a challenge for
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Figure 5: Performance of CellBender on denoising a CITE-seq PBMC dataset from 10x Genomics
pbmc5k. (a) Raw data. The dotplot includes antibody capture features (red), along with the
relevant gene expression features (blue) for all measured antibodies whose corresponding gene
had max expression in any cell type above 0.05 mean counts. Groupings of related features are
delineated by the gray vertical lines. (b) Same as (a) but for CellBender denoised counts. In
both (a) and (b), the clustering is obtained at Leiden 0.6 resolution based on the CellBender

output; see Supplementary Fig. S 15 for UMAP and cluster labels. (c) Examining CD45RA and
CD45RO isoforms of CD45 as log normalized counts superimposed on the UMAP embedding.
The expected anti-correlation of the two isoforms is significantly enhanced by CellBender. (d)
UMAP embedding showing the log ratio of CD45RA and CD45RO expression and indicating the
increased specificity afforded by CellBender. (e) Comparing the relationship between antibody
counts and gene expression after scaling to collapse all data to the same line (see Sec. S.1.13 in
Online Methods) for the raw data (upper) and CellBender denoised data (lower). By removing
background counts, CellBender moves the intercept down toward zero and makes antibody
counts more cluster-specific.
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comparing cell types across different batches and datasets, which may have different levels of
background counts.

As a specific case study, we highlight two antibodies for different isoforms of PTPRC (also
known as CD45): CD45RA and CD45RO, shown with the corresponding mRNA PTPRC. The
removal of background noise (Fig. 5c) highlights a clear pattern of mutually exclusive differential
expression of the two isoforms in different immune cell types: compare panel (d) top (raw) and
bottom (CellBender). The expression of HNRNPLL, a splicing factor associated with the CD45RO
isoform [44], is shown in Supplementary Fig. S15. We find that effector T cells states, i.e. T CD8+
EM/TE, and T regs, have both relatively higher level of HNRNPLL and CD45RO expression, as
expected. CellBender increases the relative enrichment of CD45RO in such clusters as shown in
Fig. 5d.

4 Discussion

We presented CellBender, an unsupervised method for removing systematic background noise
from droplet-based single-cell experiments. CellBender learns the profile of noise counts from the
data and subsequently estimates denoised counts. This is achieved by leveraging a deep generative
model of noisy single-cell data that combines the flexibility of deep neural networks for learning
the landscape of cell states with a structured probabilistic model of noise generation processes.
CellBender can be used as a pre-processing step in any droplet-based single-cell omics analysis
pipeline that involves an unfiltered count matrix, and is especially helpful for analysing datasets
severely contaminated with background noise. These include snRNA-seq experiments that are
subject to hash nuclear isolation protocols, and CITE-seq experiments that may produce large
amounts of ambient antibodies. Removal of ambient noise has been advocated as an important
step in single-cell analysis workflows and protocols [45, 46] and is increasingly becoming a standard
part of single-cell data analysis.

Other authors have addressed the removal of background noise in scRNA-seq datasets in the
past few years, including DecontX [32] and SoupX [11] for removal of ambient RNA, and methods
for attenuating background counts due to chimeric molecules [13]. In practice, the operation of
SoupX involves manual input and relies on the user’s prior knowledge of cell-type-specific gene
expression, as well as providing (or calculating) a list of genes for estimating background RNA
fraction in cells. The method introduced in Ref. 13 leverages read-per-UMI frequency data to
detect library PCR chimeras. While this approach is highly effective at reducing the number of
chimeric counts, it cannot detect physically encapsulated ambient molecules, which are indistin-
guishable from cell-endogenous molecules based on read-per-UMI frequency data alone. DecontX
represents an unsupervised alternative for background noise removal. We have demonstrated that
CellBender operates near the theoretically optimal limit and surpasses the performance of De-
contX on several benchmarks. Other practical advantages of CellBender over DecontX include
a tunable “nominal false positive rate” parameter for controlling the trade-off between denoising
sensitivity and specificity in a principled fashion; automatic probabilistic determination of cell-
containing droplets; and generation of a low-dimensional latent space embedding of cells which
can be used in downstream analyses.

CellBendermakes no assumptions about the profile of ambient noise and infers it from observed
data, including counts in cell-free droplets. The analysis accompanying Fig. 2e,m demonstrated
that studying the ambient profile produced by CellBender might be of value in and of itself, and
could be used for instance to study the transcriptional makeup of extracellular vesicles, and to
diagnose degraded and uncaptured cells. Ziegler et al., for example, made use of the CellBender-
inferred ambient profile to help call high-confidence SARS-CoV-2 RNA+ cells in a scRNA-seq
study of human nasopharyngeal swabs [28].

By mitigating background noise, CellBender eliminates a source of batch variation and spu-
rious differential expression signals. This is particularly important for performing differential
analysis of similar cell types between samples in a cohort. Since the systematic background noise
is dataset-specific and is influenced by the circumstances around each batch, unmitigated noise can
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then appear as differential signal across batches. Sec. S.6.2 in Supplementary Methods includes
a clear demonstration of this phenomenon and shows how CellBender effectively mitigates this
source of batch variation and spurious differential expression. Removing systematic noise from
individual datasets prior to integration is becoming increasingly crucial as the field is progressing
from homogeneous small-scale experiments toward large-scale data integration and atlasing efforts,
where datasets from many batches and tissue processing centers are being combined and analyzed
jointly, see e.g. Eraslan et al. [31].

Field applications of CellBender, which include aiding the discovery of novel biology and
resolving inconsistent findings, can be found in the works of other authors who have adopted
our method since the time it was made publicly available as open-source software in 2019. We
would like to highlight Ref. [47] where CellBender was applied to remove ambient RNA from
brain snRNA-seq samples, resulting in the removal of neuronal marker genes from glial cell types,
and identification of previous annotations of immature oligodendrocytes as potentially glial cells
contaminated with ambient RNAs. A selection of other works which have used CellBender include
primary research articles on the mouse brain [18], human brain organoids [19], human intestine [20],
human heart [21–23], human and mouse adipocytes [24, 25], several recent studies on SARS-CoV-2
in human tissues [26–30], and a large snRNA-seq human cross-tissue atlas [31]. For particularly
compelling example figures demonstrating the effects of CellBender, see Supplementary Fig. 1 in
Eraslan et al. [31] and Extended Data Fig. 1e-h in Delorey et al. [26]. In cases where the raw data
are relatively clean to begin with, Di Bella et al. observe that processing with CellBender will
(appropriately) change the count matrix very little [48].

Future research directions include extending CellBender beyond the count matrix of unique
UMIs, and modeling the data at the finer granularity of individual sequenced reads. For instance,
chimeric reads can be identified much more effectively when read-per-UMI counts are taken into
account [13]. This information is not contained in the conventional primary quantification of
single-cell data as a count matrix of unique UMI counts. Additional interesting directions include
evaluating the utility of CellBender on additional single-cell data modalities, including Perturb-seq
[6] where background CRISPR guides can make the determination of perturbation challenging.
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Mayte Suárez-Fariñas, Samuel F. Bakhoum, Yaron Bram, Alain Borczuk, Xinzheng V. Guo,
Jay H. Lefkowitch, Charles Marboe, Stephen M. Lagana, Armando Del Portillo, Emily J.
Tsai, Emmanuel Zorn, Glen S. Markowitz, Robert F. Schwabe, Robert E. Schwartz, Olivier
Elemento, Anjali Saqi, Hanina Hibshoosh, Jianwen Que, and Benjamin Izar. A molecular
single-cell lung atlas of lethal COVID-19. Nature, 595(7865):114–119, July 2021.

[30] Si Wang, Xiaohong Yao, Shuai Ma, Yifang Ping, Yanling Fan, Shuhui Sun, Zhicheng He,
Yu Shi, Liang Sun, Shiqi Xiao, Moshi Song, Jun Cai, Jiaming Li, Rui Tang, Liyun Zhao,
Chaofu Wang, Qiaoran Wang, Lei Zhao, Huifang Hu, Xindong Liu, Guoqiang Sun, Lu Chen,
Guoqing Pan, Huaiyong Chen, Qingrui Li, Peipei Zhang, Yuanyuan Xu, Huyi Feng, Guo-
Guang Zhao, Tianzi Wen, Yungui Yang, Xuequan Huang, Wei Li, Zhenhua Liu, Hongmei
Wang, Haibo Wu, Baoyang Hu, Yong Ren, Qi Zhou, Jing Qu, Weiqi Zhang, Guang-Hui
Liu, and Xiu-Wu Bian. A single-cell transcriptomic landscape of the lungs of patients with
COVID-19. Nature Cell Biology, 23(12):1314–1328, December 2021.

[31] Gökcen Eraslan, Eugene Drokhlyansky, Shankara Anand, Evgenij Fiskin, Ayshwarya Sub-
ramanian, Michal Slyper, Jiali Wang, Nicholas Van Wittenberghe, John M. Rouhana, Julia
Waldman, Orr Ashenberg, Monkol Lek, Danielle Dionne, Thet Su Win, Michael S. Cuoco,
Olena Kuksenko, Alexander M. Tsankov, Philip A. Branton, Jamie L. Marshall, Anna Greka,
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S Supplemental Material

S.1 Online Methods

S.1.1 Why a deep generative model?

Before we take a deeper dive into the CellBender model and inference algorithm, we would like to
clearly motivate our choice of modeling framework. The approach taken here, i.e. deep generative
models and stochastic variational inference (SVI), typically requires more computational resources
than conventional deterministic algorithms and thus, must be conceptually justified.

First, we note that since the ambient molecules are aliquoted from the same cell suspension,
they correspond to the same fixed distribution, and our many observations of cell-free droplets
provide sufficient statistics to make it possible to infer that distribution with very high accuracy–
in principle. In challenging cases such as highly contaminated snRNA-seq experiments where
background noise removal is most needed, cell-free droplets are defined only in relation to cell-
containing droplets (see Sec. 3.2). Therefore, we are obligated to model the landscape of cell
feature counts (mRNA, protein, etc.) on par with the fixed distribution of ambient molecules.
Cell states, however, are typically much more variable than the fixed distribution of ambient
molecules. The challenging issue is our lack of a priori knowledge of the process that generates
true biological counts in a cell, and the a priori unknown biological complexity of the assayed
sample.

Furthermore, the fraction of captured mRNAs and other targeted features is on the order of 10%
or less of expected counts (using 10x Genomics v2 or v3 chemistry, which generates approximately
tens of thousands of feature counts per cell). Such sparse sampling is referred to as “dropout” in
the context of droplet-based cell assays. For our purposes, dropout poses a particularly difficult
challenge: even if we are provided with the knowledge of the true distribution of ambient molecules
and other systematic background noises, “deconvolving” the observed count data from any given
droplet into noise and signal contributions is a non-trivial task, given that both contributions
are deep in the discrete regime and are subject to extreme sampling stochastic noise. We must,
therefore, come up with a prior estimate of both contributions. An imbalanced model, e.g. one
that has a stronger prior for noise and weaker prior for signal, or vice versa, will lead to over- or
under- estimation of noise.

For these two main reasons, i.e. (1) a priori unknown landscape of cell states, and (2) sparse
sampling of the content of each droplet (dropout), we are naturally led to a modeling choice that
includes the following ingredients: (1) a flexible class of distributions to learn the landscape of cell
states; (2) the ability to allow cells to share statistical power and leverage the observation from all
cells to act as a prior; (3) the ability to automatically determine whether or not a droplet contains
a cell.

Grouping of cells into clusters in order to share statistical weight may be achieved in multiple
ways, including a nearest-neighbors clustering (as in a traditional scRNA-seq analysis) and other
graph-based methods [49]. Using information learned from similar cells to build a prior belief is
most rigorously done within the Bayesian framework. Bayesian methods for modeling complex
distributions include auto-encoders and normalizing flows. Finally, automatic determination of
cell-free vs. cell-containing droplets requires model comparison which may also be rigorously done
within the Bayesian framework. We have found the common denominator of these requirements,
together with the expressibility of the Bayesian framework for turning mechanistic insights into
structured probabilistic models, to naturally lead to a model that is no more or no less complex
than CellBender.

S.1.2 Model

Our generative model for noisy droplet-based count data is shown in Fig. S1a, along with a
schematic of the rationale in Fig. 1g. Throughout this section, we use n and g subscripts to
refer to cell and molecular feature (e.g. gene, protein) indices on various vector and matrix vari-
ables. zn ∈ RZ is the latent variable that encodes endogenous cell states in a lower-dimensional
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Figure S 1: (a) CellBender generative model for noisy single-cell count data. (b) The variational
posterior used by CellBender. The neural network NNenc takes the observed data as input and
yields the parameters of various variational distributions assumed for the local latent variables.
The global latent variables are treated in the usual mean-field approximation.

space. χng is the fractional molecular feature frequency (i.e. normalized to 1) in cell n, and lives
on a (G− 1)-simplex in RG, where G is the dimensionality of the raw molecular feature space (e.g.
number of genes in scRNA-seq). NNχ, shown as a factor (black square) in the graphical model,
is the “decoder” neural network that deforms the low-dimensional embedding zn to the raw data
feature space χng. χa

g is the normalized abundance of ambient molecules and is a learnable pa-

rameter. dcelln is a cell-specific size factor. ddropn is a droplet-specific size factor for ambient counts.
yn is a discrete binary random variable which is 1 if there is a cell in droplet n and 0 otherwise.
ρn is the proportion of reads that are assigned to droplet n but are exogenous to droplet n and
have been randomly swapped e.g. due to PCR chimera formation. ϵn is a droplet-specific capture
efficiency parameter, close to 1, that reflects how efficiently the targeted molecules in droplet n
are captured, barcoded, and reverse-transcribed. In other words, ϵn is a technical confounder that
affects the total UMI counts in a droplet, endogenous and ambient alike. ccellng and cnoiseng denote
the latent counts per droplet that come from the cell and from background sources, respectively.
Finally, cng is the observed counts of feature g in cell n. The generative process is as follows:

zn ∼ N (0,1)

χng = NNχ(zn)

ddropn ∼ LogNormal(ddropµ , ddropσ )

dcelln ∼ LogNormal(dcellµ , dcellσ )

yn ∼ Bernoulli(p)

ρn ∼ Beta(ρα, ρβ)

ϵn ∼ Gamma(ϵα, ϵα)

Φ ∼ Gamma(ϕα, ϕβ)

ccellng ∼ NegBinom
[
(1− ρn) ϵn yn d

cell
n χng︸ ︷︷ ︸

µcell
ng term

,Φ
]

cnoiseng ∼ Poisson
[
(1− ρn) ϵn d

drop
n χa

g + ρn ϵn (ynd
cell
n + ddropn ) χ̄g︸ ︷︷ ︸

λnoise
ng term

]
cng = ccellng + cnoiseng

(3)
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Modeling the rate of endogenous and exogenous feature counts. – We will discuss our
parametric choices for count likelihoods, i.e. negative binomial for endogenous counts and Poisson
for ambient counts, in the next section. Here, we focus on the expressions given for the “rates” of
the two contributions, µcell

ng and λnoise
ng , respectively. The rate of endogenous counts in a droplet,

µcell
ng , straightforwardly follows from the definitions: ynd

cell
n χng represents the expected counts from

the cell in droplet n. The rate is modulated by the droplet’s efficiency ϵn, and the term (1 − ρn)
is the fraction of library fragments originating from the cell that are not swapped to a differ-
ent droplet, maintaining the interpretation of ρn as the fraction of swapped counts exogenous to
droplet n. The rate of exogenous counts in a droplet, λnoise

ng , has two parts: ambient molecules
and randomly swapped barcodes. The barcode swapping process results in a certain fraction of
counts in each droplet, ρn ∈ [0, 1], having actually originated in other droplets. We assume it
is equally likely to swap any two barcodes, and so the net effect is that the swapped molecules
in any given droplet are effectively sampled from the average (“bulk”) features over the entire
experiment, denoted by χ̄g. Ambient molecules, on the other hand, may have a distinct composi-
tion as argued in Supplementary Section S.2 and demonstrated in Section 3.1, and therefore are
sampled from a different and learnable profile, denoted by χa

g. Accordingly, we decompose the rate
into two main parts. The first part is the ambient counts that physically originate in droplet n:
(1 − ρn) ϵn d

drop
n χa

g. The second part is the counts that did not physically originate in droplet n,

but were erroneously assigned there later: ρn ϵn (yn d
cell
n + ddropn ) χ̄g. This expression is the prod-

uct of three terms: the contamination fraction ρn, the term in parentheses together with ϵn that
is proportional to the expected number of molecules physically encapsulated in the droplet, and
finally the average (“bulk”) molecular profile, χ̄g.

Count Likelihood Models. – The fundamental noise governing count data in single-cell sequenc-
ing is Poisson, rooted in the empirical fact that each molecule has only a small probability of being
successfully captured and sequenced. We refer the reader to the excellent analysis of Refs. [50, 51]
on this matter and the nuances and hazards of employing more flexible count likelihood models.

Accordingly, we model the noise statistics of background noise counts, cnoiseng , as a Poisson
distribution. We do not accommodate for additional overdispersion in addition to what is implicitly
induced by the stochasticity of the latent variables that appear in the Poisson rate of exogenous
counts, see Eq. (3): we believe our theoretical model of ambient counts and barcode swapping
to be flexible enough, and to be a fairly faithful representation of the simple underlying physical
process, such that any additional overdispersion is likely to result in model under-specification.

On the other hand, we purposefully endow endogenous counts ccellng with extra overdispersion,
signified by the overdispersion parameter Φ of a negative binomial (Poisson-Gamma) distribution.
In the context of our problem, this inclusion is motivated as follows: as mentioned earlier, im-
posing a prior distribution over ccellng is to provide a mechanism to share statistical power across
cells, help overcome data sparsity, and ultimately aid deconvolving observed counts into exoge-
nous and endogenous compartments. Crucially, the prior imposed on endogenous counts must be
data-driven and endowed with a tunable parameter to balance the model’s prior belief over endoge-
nous counts with exogenous counts, as dictated by the structure of the data and the maximum
likelihood principle that we use to fit the model. The extra overdispersion parameter provides
precisely such a mechanism to balance the prior beliefs and desensitize the results on the repre-
sentational capacity of the underlying neural networks that encode the structure of endogenous
counts. Faced with a dataset that contains a large number of the same cell types in the same state,
the model will benefit from reducing Φ and strengthening its prior belief of endogenous counts.
By contrast, prior belief will be commensurately “softer” when faced with a complex dataset, in
particular, if the size of the latent space is not large enough to afford the complexity of the dataset.

Model Hyperparameters. – dcellµ , dcellσ , ddropµ , and ddropσ are all fixed hyperparameters that
we determine automatically from the provided data using a number of heuristics. A cutoff in
UMI counts (--low-count-threshold) is used to remove very low UMI count barcodes. The

mode of the remaining UMI count distribution is then used to approximate ddropµ . A gaussian
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mixture model is fit to the UMI counts per droplet, and mixture components larger than ddropµ

are identified and combined to obtain an estimate of dcellµ . The variance hyperparameters are also
estimated from the gaussian mixture components, and scaled down to account for the dispersion
induced by ϵn. These hyperparameters specificy the prior for endogenous and ambient rate scale
factors, dcelln and ddropn , both of which are modeled as LogNormal distributions on an empirical
basis. p is a hyperparameter representing the prior probability that any given droplet contains a
cell, and it is derived from the expected number of cells in the experiment and the total number
of droplets included in the analysis. (ρα, ρβ) are general priors for the contamination fraction
ρn, with default values of (1.5, 50), motivated by the fact that the shape of this beta distribution
matches our expectations, from observations of many datasets, that barcode swapping is typically
in the range of a few percent. The hyperparameter ϵα controls how concentrated the droplet-
specific capture efficiency will be around 1. We use a fixed value of 50, motivated by examination
of the overdispersion of the droplet sizes in the 10x Genomics ercc dataset, compared to a Poisson.

Choice of Contamination Model. – The CellBender model can be restricted to only ambient
background noise by setting ρn = 0 for all n, or it can be restricted to barcode swapping background
noise only by removing the “endogenous ambient” term, (1−ρn) ϵn d

drop
n χa

g, from the Poisson rate

for cnoiseng . The default mode in CellBender uses the full model as specified in Eq. (3), but the user
can specify the ambient-only or swapping-only model via command line arguments in our provided
implementation.

S.1.3 Inference

The probabilistic model described in the previous section entails several global (experiment-wide)
and local (one for each droplet) latent variables. Scalable approximate inference can be achieved
using stochastic variational inference (SVI) [52] and amortization [53]. We provide a brief account
of the inference strategy in this section. We note that other authors have also successfully applied
SVI techniques for scalable probabilistic modeling of single-cell data [34–36]. The objective function
which is optimized in SVI is the evidence lower bound (ELBO):

ELBO(X|θ, φ) ≡
∫

dZ q(Z|φ) log
(
p(X,Z|θ)
q(Z|φ)

)
, (4)

where X = {cng} is the observed data, θ = {χa
g,Wχ} is the bundle of tunable model hyperparam-

eters, including the weights of the neural network NNχ (denoted by Wχ), Z = {ρn, yn, dcelln , ddropn ,
ϵn, zn,Φ} is the bundle of latent variables, and q(Z|φ) is the variational ansatz shown in Supple-

mentary Fig. S1b and parameterized by φ = {Wy,Wd,Wϵ,Wz, d̂
cell
σ , d̂dropµ , d̂dropσ , ρ̂α, ρ̂β, ϕ̂α, ϕ̂β}. In

the SVI methodology, one obtains argmaxθ,φ ELBO(X|θ, φ) via successive sub-sampling of data X
and incremental updates of (θ, φ) using a stochastic optimizer. We refer the reader to Ref. 54 for
a review.

Constructing a Variational Posterior Distribution. – The faithfulness of the approximate
posterior to the true posterior is ultimately dependent on one’s choice of the variational ansatz,
q(Z|φ). Supplementary Fig. S1b shows the structure of our proposed ansatz. Generally speaking,
we impose tunable parametric distributions over global latent variables while we infer local latent
variables using auxiliary neural networks (often referred to as recognition or encoder networks).
The latter technique is referred to as amortization and is the key to the scalability of our algorithm
to a theoretically unbounded number of data points (cells).

The posterior for zn is encoded by a neural network NNz which takes in observed counts cng,
along with the current estimate of the ambient profile χa

g, and outputs (zn;µ, zn;σ); the latter
parameterize the mean and scale of an assumed Gaussian posterior distribution for zn:

zn | cng, χa
g ∼ N (zn;µ, zn;σ). (5)

Note that this encoder network for zn, together with the decoder network that maps zn to χng,
form the auto-encoder structure mentioned earlier, in the spirit of Kingma et al. [33].
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The variational posteriors for the cell presence indicator variable yn, cell scale-factor d
cell
n , and

the droplet-specific capture efficiency ϵn are parameterized via additional neural networks (shown
together as NNenc in Fig. 1). These auxiliary encoder neural networks each take cng and χa

g as
input, and estimate all or some of the parameters of specified posterior distributions. In practice,
we found it beneficial to further provide a few hand-crafted features constructed from cng and χa

g

as inputs to each of the encoder neural networks (see Sec. S.1.11). The posterior for yn is assumed
to be Bernoulli and is parameterized by the neural network NNy that outputs qn, the cell presence
posterior probability:

yn | cng, χa
g ∼ Bernoulli(qn). (6)

The posterior for dcelln is assumed to be LogNormal and is parameterized by the neural network
NNd which outputs dcelln;µ, a strictly-positive scale-factor per droplet:

dcelln | cng, χa
g ∼ LogNormal(dcelln;µ, d̂

cell
σ ). (7)

We have additionally introduced a learnable posterior parameter d̂cellσ to characterize the uncer-
tainty in estimating cell scale-factors. The posterior for ϵn is assumed to be Gamma and is pa-
rameterized by the neural network NNϵ which outputs ϵn;µ, the posterior mean capture efficiency:

ϵn | cng, χa
g ∼ Gamma(ϵn;µϵα, ϵα). (8)

Here ϵα is the same hyperparameter from the model, controlling the uncertainty in droplet effi-
ciencies. Finally, the variational posteriors for Φ, ρn, and ddropn are assumed as follows:

Φ ∼ Gamma(ϕ̂α, ϕ̂β),

ρn ∼ Beta(ρ̂α, ρ̂β),

ddropn ∼ LogNormal(d̂dropµ , d̂dropσ ),

each of which involve two trainable parameters. Note that we have assumed the barcode-swapping
rate ρn and droplet size ddropn to have the same posterior distribution for all droplets n, even though
these are droplet-specific (local) latent variables. We have found this more restrictive posterior to
work well in practice while allowing more robust SVI fits.

Approximate treatment of Poisson and Negative Binomial convolution. – Details aside,
the structure of our generative model for endogenous and exogenous counts is as follows (see Eq. 3):

ccell ∼ NegBinom(µ, α−1),

cnoise ∼ Poisson(λ),

c = ccell + cnoise,

where we have dropped the common ng indices and used bold symbols as a shorthand for cell ×
feature matrices. Here, µ and λ refer to the endogenous and exogenous count rates, and α = Φ−1

is the inverse overdispersion. This parametric decomposition into non-negative endogenous and
exogenous contributions ensures that the inferred endogenous counts ccell | c to be ≤ c. This
desirable property, however, poses a technical challenge: as a part of variational inference, we need
to be able to compute the probability density of c in a differentiable fashion; however, the sum of
a general Poisson and a general negative binomial distribution does not admit a closed probability
density expression. Formally, the latter is given by the convolution of the two probability densities.
Computing this convolution explicitly, while doable, is prohibitively slow. We therefore resort to
the following approximation during model training:

p(c|µ,λ, α) =

{
NegBinom(c | µ̂, α̂−1), if µ ≥ ελ

Poisson(c |λ), otherwise
(9)
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where we set ε = 10−5, and µ̂ and α̂ are obtained by matching the first two moments of an
“effective” negative binomial distribution to ccell + cnoise:

µ̂ = µ+ λ,

α̂ = α

(
µ+ λ

µ

)2

,
(10)

where all algebraic operations involving matrices are element-wise. The rationale for switching
from a moment-matched negative binomial to Poisson when µ < ελ is for numerical stability:
when µ → 0, i.e. vanishing prior rate of endogenous counts, we obtain α̂ → ∞, which leads to
numerical instability. At the same time, the observed count is dominated by noise counts in this
regime, i.e. E[ccell]/E[cnoise] = µ/λ < ε = 10−5, justifying the switch.

S.1.4 Constructing the denoised integer count matrix: preliminaries

Our Bayesian model, following fitting of model and posterior parameters, allows us to compute
the posterior probability of having a specified number of noise counts in each entry of the count
matrix. Even though we marginalize cnoiseng during inference, we can recover its posterior after
model fitting via posterior sampling. We formally have:

p(cnoiseng | {cng}) =
∫

dZ q(Z)
NegBinom(cng − cnoiseng |µcell

ng ,Φ)Poisson(c
noise
ng |λnoise

ng )∑cng

cnoiseng =0
NegBinom(cng − cnoiseng |µcell

ng ,Φ)Poisson(c
noise
ng |λnoise

ng )
,

(11)
where Z is the bundle of all other latent variables along with their approximate posterior distribu-
tion q(Z). The terms and expressions appearing in the integrand are evaluated at Z. In practice,
we approximate the integral via N discrete Monte Carlo samples drawn from q(Z) and keep track
of the marginal posterior of noise counts for each of the n× g count matrix entries. We compute
the probabilities in log space for numerical stability, truncate the allowed range of cnoiseng to a safe
upper bound, normalize each MC sample via the LogSumExp operation, and keep track of the
running total over MC samples via sequential LogSumExp operations for memory efficiency.

The obtained n× g marginal posterior distributions comprise our full probabilistic knowledge
of noise counts for each entry in the count matrix. Standard single-cell downstream analysis work-
flows, however, by and large expect a single point estimate for input, as opposed to a distribution.
Furthermore, a plurality of widely-used algorithms such as voom [55] for differential expression
(DE) analysis, Seurat v3’s highly-variable gene (HVG) selection [56], and scVI [34] for latent space
learning, explicitly expect integer counts as input due to employment of discrete likelihood models
such as negative binomial. These expectations motivate us to estimate a single integer matrix of
noise counts ĉnoiseng from the obtained Bayesian posterior p(cnoiseng | {cng}), and produce an integer

matrix of denoised counts ĉcellng = cng − ĉnoiseng as the primary output of CellBender. The strict sat-

isfaction of cng = ĉcellng + ĉnoiseng implies the complementary of noise and signal estimators. Hereafter,
we focus on estimating the noise matrix for concreteness.

Canonical Bayes estimators for summarizing p(cnoiseng | {cng}) as a single point estimate include:

(1) the posterior mean, E
[
cnoiseng

∣∣ {cng}], and (2) the posterior mode, argmax p(cnoiseng | {cng}), also
known as the maximum a posteriori (MAP) estimator. The posterior mean estimator is an unbiased
estimator; however, it yields non-integer values, which is undesirable. The MAP estimator yields
integer values, however, is a biased estimator. For example, the MAP estimator systematically
underestimates noise counts for genes that have lower noise prior rate compared to cell expression
prior rate, see Sec. S.1.10. Neither of these canonical estimators provide a tunable parameter for
increasing or decreasing the strength of denoising and controlling the trade-off between denoising
sensitivity and specificity.

In order to address these shortcomings, we introduce a number of application-specific estimators
to meet our specific needs. In general, we aim to develop estimation strategies for attaining the
highest posterior probability subject to specified population-level constraints such as gene-wise or
dataset-wise total noise budgets or expected false positive rate. Having such handles is useful in
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many downstream applications such as ascertaining the specificity of marker genes. We note that
the true Bayesian recipe for conveying the results of CellBender is the full posterior and not a
point estimate, and that the optimality an integer noise estimator is not universal and depends on
the downstream application. For example, the desire to have an estimator suitable for differential
expression testing between samples imposes a different set of constraints than the desire to have a
given degree of certainty that each count in the output is not noise. We examine the merits and
drawbacks of each strategy using different metrics in the following sections.

S.1.5 Estimating the integer noise matrix as a multiple-choice knapsack prob-
lem

We show that the problem of estimating an integer noise matrix ĉnoiseng that attains maximum
posterior probability subject to linear constraints is equivalent to the multiple-choice knapsack
problem (MCKP), which is a classical combinatorial optimization problem. To set the stage, we
assume a linear index map I : m → (n, g) from m ∈ {1, . . . , N × G} to the entries of the count
matrix (n, g), for 1 ≤ n ≤ N and 1 ≤ g ≤ G. Let M be the index set of noise count matrix
elements we wish to perform constrained estimation over. Choices include the entire count matrix
MD, a row (cell) Mn, or a column (gene) Mg. We define Xmc ∈ {0, 1} to be a binary variable
that is 1 if the noise count for matrix element at I(m) is set to c, and is 0 otherwise. Since there
is a unique choice to be made for each matrix entry, we require

∑C
c=0Xmc = 1, where C is the

maximum specified noise count and is upper bounded by max cng. We further define a “reward”
for each assignment as Vmc ≡ log p(cnoiseI(m) = c | {cng}), i.e. the log posterior probability for that
assignment. Finally, we wish to impose a lower bound L on the sum total of noise counts. This
is readily expressed as

∑
m∈M

∑C
c=0Xmcwc ≥ L, where wc = (0, 1, . . . , C) is an integer-valued

weight vector. Maximizing the log posterior probability, which is given as
∑

m∈M
∑C

c=0XmcVmc

subject to the aforementioned constraints is expressed as:

max
∑
m∈M

C∑
c=0

XmcVmc, s.t.


Xmc ∈ {0, 1},
C∑
c=0

Xmc = 1,∑
m∈M

∑C
c=0Xmcwc ≥ L,

(12)

which is precisely the MCKP problem. MCKP is a classical NP-hard problem which admits a
pseudo-polynomial dynamic programming solution. In our specific case, we show that subject to
mild assumptions, a fast and exact solution is feasible with time complexity O(|M| × |L − L∗|),
where L∗ =

∑
m argmaxc Vmc, see S.1.9. Note that L∗ is the sum of MAP estimates over the

specified count matrix entries m ∈M. Since the noise rate is typically lower than the endogenous
expression rate, L∗ is typically an underestimate (see Sec. S.1.10) and as such, we are gener-
ally interested in cases where L > L∗ to overcome the asymptotic bias of the MAP estimator.
Moving away from the MAP estimator, by definition, decreases the posterior probability. As such,
the inequality constraint is realized at the threshold L and thus, we refer to L as the “noise target”.

Concrete MCKP problems for enforcing gene-wise and dataset-wise noise count con-
straints. – The MCKP framework allows us to impose noise targets over arbitrary selections of
count matrix entries. For concreteness, we consider two scenarios: (1) imposing gene-wise con-
straints, where each column g of the noise count matrix is constrained to sum to ≥ Lg and is
estimated independently; and (2) dataset-wise constraints, where all count matrix entries are es-
timated at once subject to a global constraint that the sum total of noise counts ≥ L. Setting
the noise target may also be done in a different ways. Here, we consider two strategies: (1) a
noise target based on a nominal false positive rate (nFPR), and (2) a noise target based on the
cumulative distribution function (CDF) of the posterior of the aggregated noise counts. These
strategies are described below.

Using the nominal false positive rate (nFPR) to specify the noise target. –We introduce
a single tunable parameter nFPR ∈ [0, 1] to specify the noise target. We define this parameter
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such that nFPR = 1 implies allocating all raw counts as noise counts whereas nFPR = 0 implies
removing as many noise counts as what is inferred from the model posterior aggregated over the
appropriate slice of the dataset, i.e. either gene-wise or for the full dataset. Specifically, we define
nFPR as follows. For each gene g, we estimate the expected noise count per likely cell-containing
droplet as follows:

cnoiseg ≈

∑
n I[qn > q∗]

(
(1− ρ̄) ddropµ ϵn;µ χ

a
g + ρ̄ χ̄g ϵn;µ cng

)
∑

n I[qn > q∗]
, (13)

where q∗ = 0.5 is the threshold we have chosen for determining likely cell-containing droplets,
and ρ̄ = ρ̂α/(ρ̂α + ρ̂β) is the posterior mean of the barcode-swapping rate. The two terms in the
numerator correspond to ambient and barcode-swapping contributions to noise counts. Likewise,
we estimate cell counts as follows:

ccellg ≈

∑
n I[qn > q∗] max

(
cng − (1− ρ̄) ddropµ ϵn;µχ

a
g − ρ̄ χ̄g ϵn;µ cng, 0

)
∑

n I[qn > q∗]
. (14)

Equipped with these two aggregate estimates, we define the nFPR recipe for specifying the per-cell
per-gene noise target ℓg as:

ℓg = cnoiseg + nFPR ccellg . (15)

The gene-wise total noise target for N cells is given as Lg = N ℓg, and the dataset-wise total noise
target for N cells is given as L = N

∑
g ℓg.

Using the aggregated noise posterior CDF quantiles to specify the noise target. –
Another strategy for setting a total noise target over a slice of the dataset is via the quantiles
of the the aggregated noise posterior. The aggregated noise over the desired set of count matrix
entries m ∈M defined as:

cnoiseM ≡
∑
m∈M

cnoiseI(m). (16)

The posterior distribution of cnoiseM is formally given as the convolution of the posterior distribution
of the included noise count matrix entries. The latter can be obtained numerically using fast Fourier
transform (FFT). In practice, we have found that calculating the first two moments of cnoiseM and
appealing to the central limit theorem (CLT) yields virtually identical results. These moments are
given as:

µM ≡
∑
m∈M

EcnoiseI(m)
∼p(cnoiseI(m)

| {cng})

[
cnoiseI(m)

]
,

σ2
M ≡

∑
m∈M

VarcnoiseI(m)
∼p(cnoiseI(m)

| {cng})

[
cnoiseI(m)

]
,

(17)

and the CLT implies cnoiseM ≃ N (µM, σ2
M). Given a total noise CDF quantile q, we set the noise

target to:
L = µM + σMΦ−1(q), (18)

where Φ−1(q) is the inverse CDF of the normal distribution. Like before, we can setM to either
MD orMg for imposing dataset-wise or gene-wise noise targets, respectively.

S.1.6 Estimating the integer noise matrix via element-wise noise posterior CDF
quantiles

A straightforward strategy for estimating the integer noise count matrix is to pick the noise count
for each entry of the noise count matrix according to a specified CDF quantile q. In particular, the
choice q = 0.5 corresponds to the posterior median estimator, which is a canonical Bayes estimator.
Specifying a higher (lower) valuer for q results in removing more (fewer) noise counts and as such, q
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serves as a handle for setting the denoising eagerness of CellBender. This algorithm is implemented
as follows. For each cell n and gene g, we calculate the CDF of noise counts F noise

ng (cnoiseng ) from the
noise posterior:

F noise
ng (x) =

x∑
c=0

p(cnoiseng = c | {cng}). (19)

The estimated integer noise count matrix is then obtained as:

ĉnoiseng = argmaxx
[
F noise
ng (x) ≤ q

]
. (20)

This estimator, as opposed to the MCKP approach discussed in the previous section, does not
involve solving a global constrained optimization problem and as such, does not allow targeting
noise counts in aggregate, either gene-wise or dataset-wise. While it is possible to fine-tune the
quantile threshold q to achieve the desired nFPR, we did not attempt it: MCKP achieves the
same goal by allocating the total noise budget more globally rather than locally, and as such, can
achieve a higher total posterior probability.

S.1.7 Estimating the integer noise matrix via posterior regularization

Another strategy for estimating an integer noise matrix subject to external constraints, such
as dataset-level or gene-wise nFPR, is provided by the framework of posterior regularization of
Ganchev et al. [57] and is another optimization-based approach. This is the framework we had
adopted in CellBender v0.2.0 and we provide it here for completeness. Concretely, following the
setup of Eq. (4) in Ganchev et al. [57] (with no slack, i.e. ε = 0), given data X = {cng} and latent
variables Z, we seek a posterior distribution p∗reg that solves the following constrained optimization
problem:

argmin
preg

KL (preg(Z) || p(Z |X)) s.t. Epreg [Φ(X,Z)] ≥ b, (21)

where p(Z |X) is the unregularized Bayesian posterior, preg(Z) is the sought-after regularized
posterior, and Φ(X,Z) is a specified function of raw data and latent variables that we wish to
constrain below a specified value of b in expectation. We have implicitly grouped the model
parameters together with the latent variables in Z. Adapted to our problem, we wish to compute
a regularized posterior for noise counts, preg(c

noise
ng ), such that it is as close as possible to the

regularized posterior in terms of KL divergence while the expected total noise count over all likely
cell-containing droplets is controlled by the user-specified nFPR parameter (see Eq. 15):

argmin
preg

KL
(
preg(c

noise
ng ) || p(cnoiseng | cng)

)
(22)

s.t. Epreg

[∑
n I[qn > q∗] cnoiseng∑

n I[qn > q∗]

]
≥ cnoiseg + nFPR ccellg , (23)

where q∗ = 0.5 is the posterior probability threshold we have chosen for likely cell-containing
droplets. As it is written, the nFPR condition is imposed separately for each gene g. A more
relaxed version of the problem is obtained by summing both sides of the constraint over g, which
is equivalent to imposing a dataset-wise constraint. In the dual formulation [57], the regularized
posterior that satisfies Eq. (21) can be written as:

ω∗ = argmax
ω≥0

[−b ω − logQ(ω)] , (24a)

Q(ω) =

∫
dZ p(Z |X) exp [−ω Φ(X,Z)] , (24b)

p∗reg(Z) =
p(Z |X) exp [−ω∗ Φ(X,Z)]

Q(ω∗)
, (24c)

and the problem is reduced to finding an appropriate ω∗ that satisfies the constraint imposed by
b and Φ(·). Exact posterior regularization requires separate SVI model fits for every choice of
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constraint threshold (b in Eq. 22). In theory, one could solve the optimization problem posed
by Eqs. (24a)-(24c) in dual form, plugging p∗reg(Z) into the ELBO (Eq. (4)), and interleaving
SVI updates with constrained satisfaction updates: a computationally prohibitive task. Another
approach is augmented Lagrangian constrained optimization, where one concurrently updates ω
along with model parameters using the same stochastic optimizer to minimize the ELBO while
also approximately satisfying Eq. (24a).

Here, we make an approximate simplifying assumption akin to perturbation theory: so long as
the user does not impose extreme values of expected nFPR compared to the FPR achieved in the
unregularized problem, then we expect all latent variables to remain approximately the same, with
and without posterior regularization, with the exception of perhaps cnoiseng , which directly appears
in the constraint. By employing this approximation, we can freeze all latent variables to their
unregularized posteriors and only regularize p(cnoiseng | {cng}) ex post facto. To achieve this goal,

consider scaling λnoise
ng → βg λ

noise
ng , where λnoise

ng is the Poisson rate of exogenous counts given in
Eq. (3) and βg ≥ 0 is a to-be-determined scale factor. We postulate that finding the optimal scale
factor that satisfies the posterior constraint is equivalent to solving Eqs. (24a)-(24c). To show this,
we use the following identity which can be readily ascertained using the explicit expression of the
Poisson probability mass function:

Poisson(cnoiseng |βgλnoise
ng ) = eλng(1−βg) β

cnoiseng
g Poisson(cnoiseng |λnoise

ng ). (25)

According to the dual formulation given in Eq. (24a)-(24c), we can write p∗reg(c
noise
ng ) for likely

cell-containing droplets, i.e. qn > q∗, as:

p∗reg
(
cnoiseng

)
=

Poisson(cnoiseng |λnoise
ng ) exp

[
−ω∗ cnoiseng

]∑
cnoiseng

Poisson(cnoiseng |λnoise
ng ) exp

[
−ω∗ cnoiseng

] (26)

Comparing this to Eq. (25), we identify ω∗ = − log β∗g . In other words, solving for the regular-
ized posterior reduces to the problem of finding the largest noise scale factor β∗g that satisfies

the constraint in Eq. (22). The regularized Poisson rate for noise counts is then β∗g λ
noise
ng . For a

dataset-level nFPR constraint, the gene-wise scale factor β∗g reduces to a single global scale factor
β∗. At the moment, only the dataset-level nFPR condition is implemented in CellBender.

Locating the optimal β∗ via binary search and estimating the integer noise matrix.
– We locate the optimal noise scale factor β∗ numerically using a binary search strategy. Our
goal is to identify the largest value β∗ such that the inequality given in Eq. (22) is satisfied.
Binary search is performed over the range β∗ ∈ [0.01, 500]. At each iteration of the search, we
estimate Eq[c

noise
ng ] by obtaining the regularized posterior using Eq. (11) and making the replace-

ment λnoise
ng → β∗ λnoise

ng . For computational efficiency, we only include a random subset of likely
cell-containing droplets (128 randomly-chosen cells by default). The entire optimization procedure
is repeated five times using different randomly-chosen subsets of cells. The final value of β∗ is the
average from the several repeats. Having located the optimal β∗, we obtain the integer noise count
matrix as the MAP estimate from the regularized noise posterior. We refer to this noise estimation
strategy as posterior regularization for mean-targeting, or “PR-µ” for short.

Approximate noise CDF quantile targeting via posterior regularization. – A variation
of the discussed PR strategy is obtained by replacing the constraint appearing in Eq. (22) with
the following:

Epreg

[
cnoiseng

]
≥ Ep

[
cnoiseng

]
+ ασp

[
cnoiseng

]
, (27)

where α = Φ−1(q) is approximately equal to quantile q of noise under the normality assumption.
Note that the constraint is imposed at the level of individual count matrix entries. The motivation
for this approach is to allocate the extra noise budget preferentially to the count matrix entries
with lower noise posterior confidence. Again, the dual form of the PR problem implies a solution
preg(c

noise
ng ) ∝ p(cnoiseng | {cng}) exp(−ω∗ng cnoiseng ) where ω∗ng is a matrix of Lagrange multipliers to be

determined in order to satisfy Eq. (27). In practice, we obtain ω∗ng by performing a parallelized
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binary search as described earlier. Once the regularized posterior is obtained, the output can be
summarized either by taking the posterior mean, the posterior mode, or a single sample, all of
which we compare later. Note that α = 0 is identical to the unregularized posterior. We refer to
this noise estimation strategy as posterior regularization for quantile-targeting, or “PR-q” for short.

S.1.8 Evaluating different noise estimation strategies

We introduced several strategies for estimating noise counts from the Bayesian noise posterior
in Sec. S.1.5-S.1.7 in order to address the shortcomings of canonical Bayes estimators and allow
controlling the denoising sensitivity-specificity trade-off. In this section, we evaluate these strate-
gies on a simulated dataset that closely follows our model, see S.1.14. Concretely, we generate a
test dataset consisting of three “cell types” with fixed gene expression profiles. We generate 100
cells of each type with 5000 UMIs/cell on average, and a background noise that consists of only
ambient RNA for simplicity. The ambient RNA profile is taken to be the same as the average gene
expression across all simulated cells, with 200 ambient UMIs per droplet on average.

��������������������������
Posterior mode (MAP)
Posterior median
Posterior mean
Single posterior sample

Figure S 2: Comparison of output summarization methods from Sections S.1.5 (legend label
MCKP), S.1.6 (legend label Posteior CDF), S.1.7 (legend labels PR-µ and PR-q). The four
panels show four different ways to compute TPR and FPR to display a ROC curve. “Macro-
averaged per cell” computes TPR as (

∑
g TPng)/(

∑
g TPng + FPng), while “micro-averaged per

cell” computes TPR as
∑

g[TPng/(TPng +FPng)]. For the “per gene” cases, the sum over genes
is replaced by a sum over cells. We exclude genes whose raw data counts are less than 10 summed
over all cells. The dots shown represent the mean over all cells or genes as appropriate.

Here, our focus is to evaluate various noise estimation strategies after model fitting and in-
ference. In order to sidestep confounding factors such as our ability to fit the model and infer
the noise posterior (which depends on the dataset size, the degree of model faithfulness, and our
variational approximations), we assume perfect knowledge of all latent variables other than cnoiseng .
Such an oracle short-circuits the marginalization over Z in Eq. (11) and evaluates the integrand
at the true value of Z. Therefore, the performance metrics given in this section are theoretical
upper bounds. A comparison of such theoretical upper bounds with actually attainable end-to-end
results is given in Fig. 4c-g.
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Figure S 3: Comparison of different noise estimation methods from Sections S.1.5 (MCKP),
S.1.6 (Posterior CDF), and S.1.7 (PR-µ and PR-q). Each plot shows the over-removal of each
gene (fraction removed - fraction that should have been removed according to truth) for the given
method with the hyperparameter setting specified in the title. Each dot is a gene. Positive values
indicate that too many counts of the gene were removed at the level of the entire experiment.
Row 1 column 1 shows the posterior mode, row 2 column 1 shows the posterior mean, and row
3 column 1 shows a single sample from the unregularized posterior (α = 0).

First, we evaluate the different estimators by studying their receiver operating characteristic
(ROC) curves. To construct a ROC curve, we consider each n× g entry of the noise count matrix,
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take “noise” as the “positive” class, and calculate the 2× 2 confusion matrix as follows:

TPng = min(cnoiseng , ĉnoiseng ),

FPng = max(0, ĉnoiseng − cnoiseng ),

TNng = min(ccellng , ĉ
cell
ng ),

FNng = max(0, ĉcellng − ccellng ).

(28)

where cnoiseng and ccellng represent the simulated truth values, ĉcellng is the CellBender output, and

ĉnoiseng = cng − ĉcellng . We “summarize” the resulting n× g confusion matrix either (1) as a “macro-
average” per gene or per cell, where we sum the element-wise 2 × 2 confusion matrices along n
or g, respectively; or (2) as a “micro-average” per gene or or per cell, where we calculate the
element-wise TPRng and FPRng, remove the undetermined entries, and calculate the arithmetic
mean along n or g, respectively. Fig. S2 shows the resulting ROC curves for various estimation
methods. We have further reduced the obtained TPR and FPR values for per-cell (or per-gene)
micro- and macro- averages to a single point via arithmetic averaging for better visibility. The
canonical Bayes estimators (black circle, square, diamond) each provide a single point on the ROC
plane. In contrast, each of our estimators provides a natural parameter for controlling the position
on the ROC curve.

It is clear that drawing a random sample either from the actual posterior (black triangle) or
from the regularized posterior (PR-µ, orange; PR-q, purple), is a poor strategy, while also being
inconsistent and non-deterministic estimators. Posterior mean estimators, either unregularized
(hexagon) or regularized (PR-q, brown circles), neither produce an integer count matrix, nor are
among the top-performing estimators in terms of ROC curve. Estimators based on the regularized
posterior mode (PR-µ, blue circles; PR-q, red circles), the element-wise posterior CDF quantiles
(green circles), and MCKP estimators (per-gene nFPR target, pink; global nFPR target, gray), all
do well and are practically tied in terms of the ROC curve, with the estimator based on element-
wise posterior CDF quantiles showing a slight advantage in this benchmark.

To further distinguish the characteristics of the different estimators, we also study the over- or
under- removal of noise counts for each gene vs. total gene expression in Fig. 3. The ideal estimator
is expected (1) to exhibit the same characteristics across the entire gene expression spectrum, and
(2) to not under- or over- remove noise counts when the total noise budget is chosen in a balanced
way (i.e. q = 0.5 for CDF-based targets, or nFPR ≈ 0). Among the top-performing estimators
in terms of the ROC analysis, we find that MCKP with a per-gene nFPR target satisfies both
expectations (see the last row in Fig. 3). Specifying a dataset-level (global) noise budget tends to
over-correct highly-expressed genes (see PR-µ posterior mode, and MKCP global nFPR target in
Fig. 3).

In summary, our analysis highlights two estimation strategies: (1) the MCKP estimator with
gene-wise nFPR control, which shows decent ROC characteristics and a consistent performance
across the entire gene expression spectrum; (2) element-wise posterior CDF quantiles, which shows
the best ROC characteristics although with some dependence on the gene expression rate. We have
chosen the former as the default estimation strategy in the latest release of CellBender (v0.3.0).
The previous version (v0.2.0) used the PR-µ strategy, which as we have shown here, is inferior to
MCKP. Finally, we note that all of these estimation strategies are implemented in CellBender,
should a user have a use case that warrants a strategy other than the default.

S.1.9 A fast and exact MCKP solver for strictly log-concave posterior distri-
butions

MCKP is an NP-hard problem which admits a pseudo-polynomial dynamic programming solution.
Here, we show that assuming strict log-concavity of the noise posterior distribution leads to a fast
and exact solution of MCKP with time complexity O(M×|L−L∗|), where L∗ =

∑
m argmaxc Vmc.

Definition S.1 (Log-concave discrete distribution). A discrete probability distribution p(k) :
{0}∪N→ R+ is called log-concave if and only if log p(k+1)+ log p(k−1) ≤ 2 log p(k). It is called
strictly log-concave if ≤ is replaced with strict inequality.
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Many common probability distributions are log-concave, including Poisson and negative bi-
nomial, most of which are also strictly log-concave except for a measure zero set of parameters.
We do not aim to rigorously prove the conditions for strict log-concavity of our noise posterior
distribution. However, we have empirically verified that this property holds in various datasets.
To motivate the this empirical observation, consider the limit Φ→ 0 and q(Z)→ δ(Z −Z∗). It is
easily shown that the the noise posterior tends to the Binomial distribution with a success proba-
bility of p = λnoise

ng /(λnoise
ng +µcell

ng ) and total number of trials N = cng in this limit (see Sec. S.1.10),
which is a log-concave distribution. Continuity implies the existence of an extended parameter
regime around this limit where log-concavity holds. Increasing Φ or the dispersion in q(Z) can be
thought of as imparting uncertainty on p. Modeling this uncertainty as a Beta distribution, the
noise posterior may then be approximated as a Beta-Binomial distribution, which is also strictly
log-concave except for a measure zero set of parameters or irrelevant parameter regimes, e.g. bi-
modal success probability p. Hereafter, we assume the strict log-concavity of the noise posterior
as given.

We call the MCKP problem posed by Eq. 12 a strictly convex MCKP problem if and only if the
reward weights Vmc ≡ log p(cnoiseI(m) = c | {cng}) are derived from strictly log-concave distributions.
We will show that the strictly convex MCKP problem admits an exact greedy solution. To set
the stage, consider the unconstrained MAP estimate X∗mc = δ(c, argmaxc Vmc) and observe that it
achieves the total noise target L∗ =

∑
m

∑C
c=0 cX

∗
mc =

∑
m argmaxc Vmc. Clearly, if the specified

total noise target L coincides with L∗, then X∗mc is indeed the optimal solution since each reward
term is individually maximized, the constraint is satisfied with equality, and moving away from
the equality constraint satisfaction implies deviating from the MAP point and thus decreasing
the reward. In a nutshell, our greedy strategy is to take X∗mc as a reference point and iteratively
modify it via best local moves such that the specified noise target is met. To this end, we define
∆ = L− L∗ as the gap between the total noise count of the MAP solution X∗mc and the specified
total noise target. We refer to the sought-after solution as X∗mc(∆). By definition, X∗mc(0) ≡ X∗mc.
We only consider the case ∆ > 0 here. The case ∆ < 0 can be worked out by symmetry. Our
greedy algorithm for solving this problem for ∆ > 0 is as follows. To obtain X∗mc(1) from X∗mc(0),
we consider |M| local moves where the noise count for each coordinate m is increased by 1 while
keeping the other coordinates fixed; we chose the local move that yields the highest possible reward.
Note that we are not considering all possible moves that satisfy the constraint, e.g. removing two
noise counts from a coordinate and adding three counts to another. We proceed with this greedy
strategy in an iterative fashion until we reach the desired ∆.

Theorem S.1. The greedy iterative coordinate ascent algorithm solves the strictly convex MCKP
problem exactly.

Proof. Consider the following objective function:

L(x1, . . . , x|M|) ≡
|M|∑
m=1

C∑
c=0

Wmc δ (c, xm + x∗m) , (29)

where:

Wmc ≡ maxc

[
log p(cnoiseI(m) = c | {cng})

]
− log p(cnoiseI(m) = c | {cng}),

x∗m ≡ argmaxc

[
log p(cnoiseI(m) = c | {cng})

]
,

and xm ∈ {0} ∪ N is the “extra” noise counts allocated to count matrix entry m on the top of
the MAP point x∗m. We refer to the vector of extra noise counts and MAP counts as x and x∗,
respectively. Minimizing L subject to the total noise constraints given in Eq. (12) is equivalent to
solving the MCKP problem. In the new notation, L conveniently achieves its minimum value of
0 at x = 0, which corresponds to the unconstrained MAP point. This is due to implicitly setting
the MAP point as the reference point in the definition of Wmc. The strict log-concavity of noise
posterior distributions implies strict convexity of Wmc in the following discrete sense:

Wm,c+1 +Wm,c−1 > 2Wm,c, m = 1, . . . , |M|, (30)
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which follows from Definition S.1. As a consequence, L emerges as a separable function of strictly
convex one-dimensional functions over non-negative integers. We will use this property repeatedly
to establish the optimality of coordinate ascent moves. We define B(∆) as the subspace of points
that satisfy the total noise constraint with equality at L∗ +∆:

B(∆) =

{(
x1, . . . , x|M|

) ∣∣∣∣∣ ∑
m∈M

xm = L∗ +∆

}
. (31)

We observe that B(∆) is a discrete convex set in the sense that if (x1, . . . , x|M|) ∈ B(∆), then
(x1, . . . , xi + 1, . . . , xj − 1, x|M|) ∈ B(∆) for all i and j. As a consequence, the restriction of L
to B(∆) is also strictly convex, implying that: (1) any local minimum of L over B(∆) is the
global minimum; and (2) the global minimum of L over B(∆) is unique. Therefore, to prove
the optimality of coordinate ascent, it is sufficient to show that the point obtained by applying
coordinate ascent to the minimizer of L in subspace B(∆), namely x∗(∆), yields a local minimum
in the next subspace B(∆ + 1). Global optimality and uniqueness follows from strict convexity.
Consider the set of all |M| local coordinate ascent moves from x∗(∆), and let m̂ be the coordinate
to which adding a noise count accrues the smallest increase in L. This implies:

Wm̂,x∗
m̂(∆)+1 −Wm̂,x∗

m̂(∆) < Wm,x∗
m(∆)+1 −Wm,x∗

m(∆), ∀m ̸= m̂. (32)

We denote the coordinate ascent update of x∗(∆) as x̃(∆ + 1):

x̃m(∆ + 1) = x∗m(∆) + δm,m̂. (33)

The set of nearest neighbor points of x̃(∆+1), namely Nx̃(∆+1), can be written as the union of three
mutually exclusive set of points: (1) N← points obtained by moving backward along coordinate m̂,
and moving forward along another coordinate i ̸= m̂; there are |M|−1 such points; (2) N→ points
obtained by moving further forward along coordinate m̂, and moving backward along another
coordinate i ̸= m̂; there are |M|− 1 such neighbors; (3) N⊥ points obtained by keeping coordinate
m̂ fixed, choosing two other coordinates i, j such that i ̸= j ̸= m̂, moving forward along i and
backward along j; there are (|M| − 1)(|M| − 2) such moves. Put together, the three mutually
exclusive sets comprise |M|(|M| − 1) nearest neighbor points of x̃(∆ + 1),

Nx̃(∆+1) = N← ∪ N→ ∪ N⊥.

We wish to show that L(x ∈ Nx̃(∆+1)) > L(x̃(∆ + 1)). First, we note that the |M| − 1 points in
N← coincide with the |M| − 1 rejected forward moves which by definition lead to a higher value
of L over B(∆ + 1), see Eq. (32). Therefore, all points in N← are directions of ascent. For an
arbitrary point x← ∈ N← obtained by stepping backward along coordinate i and further forward
along m̂, we have:

L(x←)− L(x̃(∆ + 1)) =
[
Wm̂,x∗

m̂(∆)+2 +Wm̂,x∗
m̂(∆) − 2Wm̂,x∗

m̂(∆)+1

]
︸ ︷︷ ︸

> 0

+
[
Wm̂,x∗

m̂(∆)
+1 +Wi,x∗

i(∆)
−1 −Wm̂,x∗

m̂(∆) −Wi,x∗
i (∆)

]
︸ ︷︷ ︸

> 0

> 0.
(34)

The first term is positive due to strict convexity and the second term is positive due to x∗(∆)
being the minimizer of L in subspace B(∆). Finally, for a point x⊥ ∈ N⊥ obtained by stepping
forward and backward along coordinates i and j, respectively, we have:

L(x⊥)− L(x̃(∆ + 1)) = Wi,x∗
i (∆)+1 +Wj,x∗

j (∆)−1 −Wi,x∗
i (∆) −Wj,x∗

j (∆) > 0, (35)

which directly results from x∗(∆) being the minimizer of L in subspace B(∆). Put together, we
have shown that x̃(∆+1) is a local minimizer of L in subspace B(∆+1). Strict convexity implies
that x̃(∆ + 1) is also the unique and global minimizer:

x∗(∆ + 1) ≡ x̃(∆ + 1). (36)
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Therefore, following the iterative coordinate ascent trajectory that connects the MAP point x∗(0)
to x∗(∆) yields the unique solution of the strictly convex MCKP problem. There are ∆ = |L−L∗|
iterations and each iteration involves |M| comparisons to locate the optimal coordinate. Therefore,
the complexity of this algorithm is O(|M| × |L− L∗|). As mentioned earlier, the case ∆ < 0 can
be worked out by symmetry, i.e. replacing “backward” moves with “forward” moves.

In practice, we implement the coordinate ascent strategy by pre-computing, pooling, and sorting
differential coordinate ascents δm,c ≡ Wm,c+1 −Wm,c. Even though the time complexity of this
implementation is O(|M||L − L∗| × log(|M| × |L − L∗|)), it runs faster on GPU hardware by
leveraging parallelism.

S.1.10 On the asymptotic bias of canonical Bayes estimators

We mentioned the shortcomings of canonical Bayes estimators as part of our motivations for
developing application-specific integer noise estimators. These include the non-integral estimates
obtained by posterior mean (PM), and the asymptotic bias of posterior mode estimator, also known
as the maximum a posteriori (MAP) estimator. In this section, we study these estimators in more
detail in a simple setting that is related our application. We consider the simplifying limit Φ→ 0
and q(Z) → δ(Z − Z∗) in Eq. (11), focus on a single count matrix entry, and drop the n and g
indices for brevity. In this limit, the posterior is found to be:

p(cnoise | c) = Poisson(c− cnoise |µcell) Poisson(cnoise |λnoise)∑c
cnoise=0 Poisson(c− cnoise |µcell) Poisson(cnoise |λnoise)

= Binomial

(
p =

λnoise

λnoise + µcell
; nsuccess = cnoise; ntrial = c

)
.

(37)

Here, λnoise and µnoise correspond to the noise count and cell count rates at the latent variable
concentration point Z∗. We have also used limΦ→0NegBinom(x |µ,Φ) = Poisson(x |µ). The
binomial equivalence can be either derived by interpreting Poisson variables as the sum of Bernoulli
variables, or by resorting to the algebraic expression of the Poisson probability mass function. In
this limit, we find the PM and MAP estimators to be:

ĉnoisePM = c
λnoise

λnoise + µcell
,

ĉnoiseMAP =

⌊
(c+ 1)

λnoise

λnoise + µcell

⌋
.

(38)

Note that the expression for cnoiseMAP is only valid when the expression appearing in the floor function
is non-integer, which is the case except for a measure zero set of points.

We consider N i.i.d. realizations of cnoise and ccell and study the asymptotic bias of the two
estimators in sample mean. This analysis is an idealization of taking a population of N → ∞
droplets containing identical cells, and checking whether or not the empirical mean of a given
noise estimator converges to λnoise. For the PM estimator, we have:

E
[
ĉnoisePM

]
=

λnoise

λnoise + µcell
Ec∼Poisson(λnoise+µcell)[c] = λnoise. (39)

Therefore, we find PM to be consistent and asymptotically unbiased. However, the estimator
clearly yields non-integer values, which is undesirable. For the MAP estimator, we have:

E
[
ĉnoiseMAP

]
=

∞∑
c=0

Poisson(c |λnoise + µcell)

⌊
(c+ 1)

λnoise

λnoise + µcell

⌋
. (40)

It is easy to see that this estimator is asymptotically biased. The floor term is identically
vanishing for c < c∗ ≡ ⌈µcell/λnoise⌉. In the relatively low-noise limit λnoise ≪ µcell, c∗ becomes
arbitrarily larger than the mode of c, which is ≈ µcell in this limit, and subsequently E

[
ĉnoiseMAP

]
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Figure 6: The relative asymptotic bias βMAP of the MAP estimator of noise counts for a Poisson
model of noise and cell counts. The axes show the respective prior rates. Note the extreme
asymptotic bias βMAP ≈ −1 corresponding to estimating zero noise counts in the regime λnoise ≪
µcell.

becomes arbitrarily smaller than the expected value of λnoise. While the asymptotic bias of the
MAP estimator can be studied analytically, we find it more straightforward to resort to a numerical
study. We define the relative asymptotic bias of the MAP estimator as:

βMAP(λnoise, µcell) ≡
E
[
ĉnoiseMAP

]
− λnoise

λnoise
. (41)

Fig. 6 shows βMAP for a range of noise count and cell count prior rates. We notice βMAP ≈ −1
in the regime λnoise ≪ µcell, as expected from the pathological behavior of the MAP estimator in
the low-noise regime. In this regime, ĉnoiseMAP ≈ 0, implying that no noise count is removed from any
cells.

S.1.11 Implementation Details and Technical Remarks

The default architecture for the encoder network NNz that maps cng to the bundle of z-posterior
location and scale, (zn;µ, zn;σ), has one hidden layer of 500 units, and the encoded dimension of Z
of zn is 100. Similarly, the decoder network NNχ that maps zn to χng has one hidden layer of 500
units, a linear readout, followed by a softmax operation to bring the output to the (G−1)-simplex
of normalized endogenous feature frequencies. The encoding network for yn, d

cell
n , and ϵn, denoted

by NNenc for brevity, works as follows. Inputs to the network consist of raw counts as well as
three additional features which are hand-crafted: (1) the log of total counts per droplet, (2) the
log of the number of nonzero genes per droplet, and (3) the overlap with the current estimate of
the ambient RNA profile (which is calculated as a log probability that the observed droplet counts
were drawn from a Poisson with rate equal to χa

g). Hand-crafted features are concatenated to
counts to form the input to the network. By default, the network has two hidden layers [100, 50].
From the last hidden layer, three separate linear transformations take the hidden state and produce
(1) logit cell probability logitqn, (2) the inverse variance of the gamma distribution for ϵn, and
(3) the log of mean cell sizes dcelln . Weights are initialized using PyTorch defaults, except for the
weights which connect the handcrafted log-counts per droplet input feature to the output for qn,
which are initialized to 1, so that the network starts with an condition that cell probability should
closely follow log counts. Softplus non-linearities are used throughout. In practice, CellBender
results are not very sensitive to the architecture of the encoders, and network architectures can be
changed from the default values using command-line arguments.
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We note that initially learned biological gene expression landscape, NNχ(zn), may itself be
contaminated with background RNA counts. However, as the inference procedure progresses and as
the estimate of the background RNA profile improves, the maximum likelihood principle encourages
the neural network to correct in a self-consistent fashion and learn to represent background-free
gene expression profiles.

For numerical stability and to preclude vanishing gradients, we handle all probabilities in logit-
space in our implementation. During training, the log probability of zn is only added to the ELBO
for droplets which have been found to contain cells (that is, for droplets n where a sample of yn
is 1). The discrete latent variable yn cannot be re-parameterized, and so we use full enumeration
over cell / no cell (yn being 1 or 0) in our variational posterior to reduce variance. This is achieved
using the TraceEnum_ELBO SVI objective available in Pyro. Integration over the continuous latent
variables appearing in the ELBO (Eq. 4) is done using a single Monte Carlo sample.

Training happens in random mini-batches. Each full epoch trains on a fixed subset of barcodes
from the dataset as well as a randomly-sampled subset of empty droplet barcodes that changes
each epoch. This is done in order to cover the tens of thousands of empty droplets without taking
excessive computation time. The fraction of each minibatch that is composed of these randomly-
sampled empty droplets can be specified using a command line argument (by default, we use 20
percent).

The training loop converges typically within about 150 epochs. For a typical 10x scRNA-
seq experiment containing 5-30 thousand cells, the total runtime of the tool ranges around 20
min - 1 hour using an NVIDIA Tesla T4 or K80 GPU, depending on the size of the dataset
and chosen parameters. The stochastic optimizer used is a version of the Adam optimizer with
gradient clipping. A OneCycle learning rate scheduler is used by default. Optimization proceeds
for a pre-defined number of epochs, which can be set via command line arguments. Default is
150 epochs, and the OneCycle scheduler increases the learning rate to 10 times the user-defined
--learning-rate at maximum. The default learning rate is 1e−4.

The tool saves checkpoints at user-defined intervals, which can be used to resume training or
create a new output with a different false positive rate. Checkpoints enable the use of cheaper
preemptible cloud machines via the Terra platform (app.terra.bio). More generally, any workflow
deployment using Cromwell (https://github.com/broadinstitute/cromwell) version 55+ can auto-
matically benefit from this checkpointing functionality, so that a preempted workflow can pick up
where it left off instead of starting from scratch.

S.1.12 Single-cell analysis workflow and cell quality control details

Analysis workflows for single-cell data were carried out in scanpy [17] version 1.9.1. We employed a
rudimentary cell quality control (QC) post-CellBender, i.e. removing cells using percentile-based
thresholds on UMI count, gene count, and mitochondrial read fraction. UMAPs were created
after (1) finding highly variable genes using the seurat_v3 algorithm implemented in scanpy, (2)
normalizing counts per cell, (3) log-scaling counts, (4) scaling counts of 2000 highly-variable genes,
and (5) performing PCA on those scaled values for the highly-variable genes. A nearest neighbor
graph was constructed with 20 neighbors based on cosine distance in PC space (top 25 PCs).
Clustering was performed using the Leiden algorithm at the same resolution for both raw and
post-CellBender data. Dataset-specific cell QC thresholds and the statistics of initial and final
cell calls are as follows:

pbmc8k scRNA-seq dataset: We remove top 5% of high UMI count droplets and top 5% of high
unique gene count droplets (to eliminate doublets), as well as top 10% of high mitochondrial read
fraction droplets, and no lower cutoff for total number of genes per droplet. This left 7515 cells
remaining out of an initial 8903 droplets.

rat6k snRNA-seq dataset: We remove top 15% of high UMI count droplets and top 15% of high
unique gene count droplets (to eliminate doublets), as well as top 10% of high mitochondrial read
fraction droplets, and eliminate droplets with fewer than 100 genes. This left 5868 cells remaining
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out of an initial 10445 droplets.

pbmc5k CITE-seq dataset: We remove top 5% of high UMI count droplets and top 5% of high
unique gene count droplets (to eliminate doublets), as well as top 10% of high mitochondrial read
fraction droplets, and a lower cutoff of 300 genes per droplet. This left 4451 cells remaining out of
an initial 5754 droplets.

hgmm12k scRNA-seq dataset: No cell QC was performed before creating the hgmm12k results plots:
all the CellBender “non-empty” droplets are included.

S.1.13 pbmc5k CITE-seq dataset quality control and normalization

For the plot in Fig. 5e, the following antibody features were omitted due to low correlation be-
tween antibody counts and mRNA counts per cluster in the raw data: CD34_TotalSeqB (also has
very low mRNA counts), CD45RA_TotalSeqB and CD45RO_TotalSeqB (where the poor correlation
to PTPRC mRNA counts which is understood given the high splicing specificity of PTPRPC
in different immune subtypes which make the expectation of having a linear correlation mean-
ingless in principle), CD69_TotalSeqB, CD137_TotalSeqB, CD197_TotalSeqB, CD274_TotalSeqB,
IgG1_control_TotalSeqB, IgG2a_control_TotalSeqB, and IgG2b_control_TotalSeqB. Low cor-
relation was defined as a slope of less than 1 for a fit using weighted ordinary least squares when
plotting log1p antibody counts versus log1p mRNA counts. The following features were omitted
due to low mRNA counts in the raw data: CD15_TotalSeqB, CD25_TotalSeqB, CD278_TotalSeqB,
and PD-1_TotalSeqB. Low mRNA counts was defined as the maximum mean-expression value
over all clusters being ≤ 0.2 counts. Leaving out these features was for clarity of presentation (the
scaling transformation, below, does not work well for those outliers), but the excluded features are
all plotted in Supplementary Fig. S16a-b.

The scaling transformation used to plot data in Fig. 5e, by collapsing all data onto a single
line, is as follows. The raw RNA expression data is x, while the raw antibody data is y:

xrescaled =
x

std(x)
,

yintermediate =
y

std(y)
,

m =
xrescaled · yintermediate

xrescaled · xrescaled
,

yrescaled =
yintermediate

m
.

S.1.14 Simulated data generation

Data were simulated according to a model which was slightly and intentionally mis-specified for
CellBender’s model, in that each cell within a cell type k is not given the exact same underlying

expression profile χ
(k)
g , but instead each cell has its expression profile drawn from a Dirichlet

distribution with a common set of concentration parameters for each cell type, α
(k)
g . Thus the

data will be a bit overdispersed compared to CellBender’s model. Details of the simulations are
included in a notebook for code reproducibility, and the data simulation function is included as
part of the CellBender package.

The simulator first samples the base gene expression profiles for k cell types, α
(k)
g , from flat

Dirichlet distributions, e.g. α
(0)
g ∼ Dir(α), α

(1)
g ∼ Dir(α), etc. These k cell-type expression profiles

are then optionally made to be artificially similar to α
(0)
g via a parameter η by applying the

transformation α
(k)
g ← (1−η)α

(k)
g +(η)α

(0)
g . χambient

g is set to the (normalized) average of the α
(k)
g ,

weighted by the number of simulated cells of each type and the average UMI per cell type. Then,
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for a given cell type k with n cells, the simulation proceeds as:

χ(k)
ng ∼ Dir(α(k)

g ), for all cells n

ϵn ∼ Gamma(ϵα, ϵα)

dn ∼ LogNormal(dµ, dσ)

dempty
n ∼ LogNormal(dempty

µ , dempty
σ )

ρn ∼ Beta(ρα, ρβ)

yn = 1 if cell, otherwise 0

µ(k)
ng = (1− ρn)ynϵndnχ

(k)
ng

λng = ϵn[(1− ρn)d
empty
n χambient

g + ρnχ̄g(yndn + dempty
n )]

ccellng
(k) ∼ NegBinom(mean = µng, overdispersion = Φ)

cnoiseng ∼ Poisson(λng)

c(k)ng = ccellng
(k) + cnoiseng

(42)

where the simulated counts for cell type k are c
(k)
ng , and χ̄g is the same as χambient

g in these simula-
tions, and all the other variables not specified above are hyperparamter inputs to the simulation.
Cells are simulated with yn = 1 and empty droplets are obtained by setting yn = 0. Cell counts are
simulated, one cell type k at a time, followed by empty droplets, in order to obtain a full dataset.

S.2 The phenomenology of systematic background noise counts
in droplet-based single-cell assays

In this section, we review the phenomenology of systematic background noise counts by examining
four exhibits in different experiments. Next, we review a number of mechanisms that satisfactorily
explain all aspects of the phenomenology. Some of these mechanisms have been noted by other
authors, though we provide them in one place for completeness.

Exhibit 1: Examining the counts of total unique UMIs per droplet in a typical 10x scRNA-seq
experiment reveals that there are thousands of high-count droplets followed by a much larger
number of low-count droplets (See Supplementary Fig. S4a,e and note the logarithmic scale of the
axes). Here, the word “counts” is used as shorthand for counts of unique UMIs summed over all
genes. The number of high-count droplets typically agree in order of magnitude with the expected
number of cells given the protocol [2]. The low-count droplets typically have tens to hundreds
of UMIs each (i.e. far fewer counts than high-count droplets), and significantly outnumber the
expected number of cells. Therefore, these droplets are unlikely to have their counts originating
from a physically encapsulated cell.

Exhibit 2: Experiments with mixtures of different cell types have shown that some of the tran-
scripts in each droplet do not originate from the cell encapsulated within the droplet. That is,
even for droplets that do contain cells, there is still some exogenous background noise in the count
matrix. Fig. 4a shows a scRNA-seq dataset generated using a mixture of human and mouse cells
from 10x Genomics. It is noticed that for a few percent of the count data, human transcripts are
assigned to a droplet where the vast majority of transcripts are mouse, and vice-versa. This mixing
can happen when a human cell and a mouse cell are captured in the same droplet, but these “dou-
blets” can be easily identified due to the fact that they have tens of thousands of counts from each
species (doublets are excluded from Fig. 4a). Even droplets that do not contain doublets still have
nonzero counts from transcripts of the other species (see the inset of Fig. 1c, for example). Droplets
with tens of thousands of human counts typically have a few hundred mouse counts, and vice-versa.

Exhibit 3: The phenomenon of non-zero RNA counts in empty droplets is even seen in experi-
ments where the preparation is entirely devoid of cells but rather contains a high concentration of
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spike-ins (e.g. see the publicly available ercc dataset from 10x Genomics [2]). In this experiment,
approximately 1000 droplets were prepared from the same spike-in soup and used for library pro-
duction. Quite curiously, the total counts vs. sorted barcode plot looks similar to experiments
that include cells: a first region including approximately 1000 high-count droplets, followed by
thousands of droplets with approximately 100 UMIs each. The appearance of the second region
resembling “empty droplets” is unexpected, since all droplets are filled uniformly with the same
amount of spike-in transcripts.

Exhibit 4: The phenomenon of increased exonic read fraction among empty droplets in snRNA-
seq data. When cells are lysed to liberate nuclei, lots of cytoplasmic RNAs are also liberated,
becoming cell-free ambient RNA. Despite washing steps, it is still clear that these cytoplasmic
RNAs, enriched for higher exon fraction, are present at higher proportions in empty droplets. See
Fig. 1d for an example demonstrating this for a snRNA-seq dataset.

Based on these four exhibits, we review and identify several distinct mechanisms that explain
the full phenomenology of background RNA in droplet-based scRNA-seq experiments. In what
follows, we assume an mRNA capture assay for concreteness, however, as mentioned earlier, the
same phenomenology identically applies to all other barcoded molecular features, including pro-
tein (CITE-seq), chromatic accessibility (scATAC-seq), and Perturb-seq sgRNA guides, as should
become clear from the discussion.

Sequencing or synthesis errors in the droplet barcode– The presence of uncorrected se-
quencing errors in droplet barcodes or impurity of synthesized barcodes on capture beads will result
in a spreading of transcripts across droplets. In particular, one expects a net flow of transcripts
from RNA-rich (cell-containing) droplets to otherwise RNA-free (cell-free) droplets. Quantitative
estimates of barcode sequencing error indicate that far more empty droplets are observed than
can be explained by sequencing error alone. The effective provisions for barcode error-correction
employed by the 10x Genomics scRNA-seq protocol (using a whitelist, no homo-polymers, and a
Hamming distance ≥ 2 between droplet barcodes) allows most barcode sequencing errors to be
corrected. In our simulations using typical base substitution and insertion/deletion error rates, we
found that at most 2 percent of erroneous droplet barcodes were corrected to the wrong barcode.
Given that a typical 10x v2 scRNA-seq experiment yields less than 5 percent invalid barcodes,
we estimate that at most 1 in 1000 transcripts would be mis-assigned due to wrong barcode error
correction. This rate is 3 orders of magnitude lower than what is required to produce non-zero
transcript counts in empty droplets as seen in typical experiments. The presence of error or impu-
rity in barcode synthesis, however, might still explain part of the background RNA phenomenology.
Unfortunately, details of the 10x barcode synthesis protocol are not public.

Presence of ambient molecules in the cell suspension– Cell-free “ambient” RNA that is
physically present in the cell suspension and is encapsulated in a droplet will clearly contribute
to the background while generating non-zero transcript counts in otherwise empty droplets. This
mechanism is shown schematically in Fig. 1b. Cell-free RNA is present in the aqueous cell sus-
pension, either as a result of normal biological processes or as a result of tissue dissociation, cell
death, or other stresses experienced by cells during the isolation protocol which may cause cells to
die or lyse (see Fig. 1a). Such a mechanism has been proposed by others as well [1, 11, 32, 42].

Barcode swapping and PCR chimera formation– Swapping of droplet barcode between
transcripts during mixed-template PCR amplification via formation of heteroduplex/chimeric
molecules [12–14], and/or on the flowcell during sequencing [58], will spread transcripts across
droplets and generate a background. Chimeric fragments incorporate mRNA sequences from one
original molecule and a droplet barcode (and UMI) either from a different original molecule or
from a previously unused barcoded capture oligo. In the 10x Genomics protocol, there is a large
amount of sequence complementarity, both in the Illumina primers as well as in the poly(T) region
(the means by which these molecules were captured in the first place). As PCR progresses through
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many rounds, primers are depleted. Eventually, extension could be primed by (1) incomplete
extension products from other molecules, as suggested by Dixit [13], or by (2) unused and inad-
equately washed capture oligos that were used to capture poly(A)-tailed mRNAs at the outset.
These mechanisms would both result in transcripts which are assigned to the wrong droplets. This
process of chimera formation is prone to occur in all mixed-template PCR reactions, and is not
unique to scRNA-seq library preparation protocols [14]. The hallmark of PCR chimeras is a rela-
tively lower read per UMI (“family size”) compared to non-chimeric and properly amplified cDNA
molecules. It has been shown that identifying and removing library fragments with small read
per UMI (e.g. 1) is highly effective in removing off-target cross-species counts in species-mixing
experiments [13].

Cross-contamination of capture oligo beads on the microfluidic device– The capture
oligo gel beads (referred to as GEMs in the 10x Genomics scRNA-seq protocol) flow in a mi-
crofluidic channel (see Fig. 1b, green hexagons). The GEMs are tightly packed in the channel
to achieve a precise flow control that allow their super-Poisson loading into droplets [2]. Since
these gel beads are soluble in certain conditions in aqueous solution, it is reasonable to expect
that some small number of capture oligos could be released from the GEM in the channel, leading
to cross-contamination due to “ambient” capture oligos from other GEMs. Therefore, even if the
GEMs were synthesized with high barcode purity to begin with, there could be some mixing in
the microfluidic device. The downstream effect is similar to GEM impurity or barcode error, and
produces a background. The appearance of thousands of low-count droplets in the spike-in exper-
iment (cf. Exhibit 3 above) is likely to be associated with this mechanism.

We may summarize the above mechanisms in two main categories:

Physically encapsulated exogenous molecules– The mRNAs were physically present in the
droplet at the time the droplet was formed. This is the “soup” or cell-free ambient RNA hypothesis
(depicted in Fig. 1a-b). A small amount of cell-free ambient RNA was present in solution (due to
cell death, lysis, etc.) at the time the droplets were formed, and some of this ambient RNA was
packaged into each droplet, along with cells.

Barcode misassignment– The mRNAs were not physically present in the droplet at the time
the droplet was formed, but were later assigned to that droplet. This could happen in one of two
ways: (1) a molecule’s droplet barcode was physically swapped to a cell-containing droplet barcode
at some point in the protocol, (2) a molecule was mis-assigned to a different droplet barcode due
to sequencing error or capture oligo impurity or contamination.

These two explanations could lead to different “background RNA” profiles. If cell-free ambient
RNA was physically packaged into each droplet, then each droplet should contain a small sample
of this same RNA profile, which could be related to cell expression or could be slightly different
(for example, it could in principle incorporate an exogenous contaminant or a higher proportion
of mitrochondrial mRNA if the source of cell-free RNA is related to cell death). If the cause of
background RNA is instead barcode swapping, sequencing error, or capture oligo impurity, then it
would be expected that the background RNA profile would be exactly the average of all the RNA
sequenced in the experiment, because these mechanisms act at random.

S.3 Obtaining and Using CellBender

We have implemented the model and the inference method using the Pyro probabilistic program-
ming language [16] and PyTorch [59] and presented it as a user-friendly, production-grade, and
stand-alone command line tool. We internally refer to the background noise removal algorithm
implemented in CellBender as remove-background. In the future, together with the community
of CellBender users and developers, we hope to extend CellBender in exciting new directions
and to other high-throughput cell biology assays.
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CellBender can be obtained from https://github.com/broadinstitute/CellBender. Addi-
tional documentation is available at https://cellbender.readthedocs.io. CellBender modules
are also available as workflows on Terra (app.terra.bio), a secure open platform for collaborative
omics analysis, and can be run on the cloud with zero setup.

S.3.1 CellBender remove-background inputs

The current version of CellBender remove-background (0.3.0) takes the following file formats as
input: (1) raw HDF5 file from 10x Genomics’ CellRanger v2+ count pipeline, (2) raw MTX file,
with accompanying TSV files, in CellRanger format, (3) raw DropSeq DGE file, (4) H5AD file in
AnnData format [17], (5) raw BD Rhapsody CSV file, (6) Loom file readable by AnnData. Ensure
that empty droplets are included in the file. The AnnData, DropSeq DGE, and CellRanger MTX
formats are particularly general, and data from other sources can be massaged into one of those
formats.

S.3.2 CellBender remove-background outputs

The output of CellBender remove-background provides several useful quantities: (1) inferred
background-subtracted count matrix, (2) probability that each droplet contains a cell, (3) low-
dimensional latent representation of gene expression for each cell, and (4) the ambient profile,
among other latent variables.

There is an input parameter --fpr which controls the expected “nominal false positive rate”,
where a false positive is a real count that has erroneously been identified as background and
removed. Setting nFPR to 0.01 means that the algorithm will remove as much noise as possible
while controlling the expected removal of real signal to ≈ 1% above the estimated dataset-wide
noise level. It is to be understood that this constraint is enforced in expectation and is approximate:
assuming the model fits the data perfectly (no model misspecification), the estimate will be correct.
There is an inherent trade-off in noise-reduction where the removal of more noise comes at the
expense of removal of more signal. The nFPR parameter allows the user to control that trade-
off. Multiple false posistive rate inputs will result in multiple output count matrices. Since we
marginalize over cnoiseng and ccellng during training, constructing the output ccellng at a given nFPR is a
several-step process, and is detailed in Supplemental Sec. S.1.4.

The probability that each droplet contains a cell is given by qn, the latent variable encoded
by NNy. The low-dimensional latent representation of gene expression is given by the encoded
zn;µ for each cell. And the ambient RNA profile is inferred as χa

g. By default, CellBender

remove-background creates an HTML output report, showing several diagnostics including the
progress of the inference procedure and salient changes in the output count matrix, making rec-
ommendations and issuing warnings as necessary.

S.4 Data Availability

The datasets used in this study are the following:

pbmc8k: The publicly available PBMC 8k dataset from 10x Genomics called “8k PBMCs from
a healthy donor”, run with v2 chemistry and analyzed with CellRanger 2.1.0, available at
https://www.10xgenomics.com/resources/datasets/8-k-pbm-cs-from-a-healthy-donor-2-
standard-2-1-0.

heart600k: The published dataset from the Broad-Bayer Precision Cardiology Lab called
“Single-nuclei profiling of human dilated and hypertrophic cardiomyopathy” [23], run with
10x Genomics 3’ capture v3 chemistry and analyzed with CellRanger 4.0.0, available at
https://singlecell.broadinstitute.org/single cell/study/SCP1303/single-nuclei-

profiling-of-human-dilated-and-hypertrophic-cardiomyopathy.
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hgmm12k: The publicly available HGMM 12k dataset from 10x Genomics called “12k 1:1 Mixture
of Fresh Frozen Human (HEK293T) and Mouse (NIH3T3) Cells”, run with v2 chemistry
and analyzed with CellRanger 2.1.0, available at https://www.10xgenomics.com/resources/
datasets/12-k-1-1-mixture-of-fresh-frozen-human-hek-293-t-and-mouse-nih-3-t-3-

cells-2-standard-2-1-0.

pbmc5k: The publicly available PBMC 5k dataset with antibodies from 10x Genomics called “5k
Peripheral Blood Mononuclear Cells (PBMCs) from a Healthy Donor with a Panel of TotalSeq™-B
Antibodies (Next GEM)”, run with v3 Next GEM chemistry and analyzed with CellRanger 3.1.0,
available at https://www.10xgenomics.com/resources/datasets/5-k-peripheral-blood-
mononuclear-cells-pbm-cs-from-a-healthy-donor-with-cell-surface-proteins-next-

gem-3-1-standard-3-1-0.

rat6k: A snRNA-seq dataset from healthy Wistar rat left atrium, comprising approximately 6000
nuclei, processed on 10x Genomics platform using v2 chemistry and analyzed with CellRanger
3.1.0. Dataset provided by Patrick Ellinor’s group at the Broad Institute as part of the Broad-Bayer
Precision Cardiology Lab. Experiment performed by authors Alessandro Arduini and Amer-Denis
Akkad.. The dataset will be made publicly available upon publication.

S.5 Software packages used

Details of all software packages used are included in Supplementary Table S1.

Table S 1: Details of software packages used.

Package Version Reference URL
CellBender 0.3.0 (this work) https://github.com/broadinstitute/CellBender
Pyro 1.8.1 Ref. 16 https://github.com/pyro-ppl/pyro
PyTorch 1.11.0 Ref. 59 https://github.com/pytorch/pytorch
Scanpy 1.9.1 Ref. 17 https://github.com/scverse/scanpy
Harmony-pytorch 0.1.7 https://github.com/lilab-bcb/harmony-pytorch
Limma 3.48.3 Ref. 60 https://rdrr.io/bioc/limma
Voom (Limma) Ref. 55 https://rdrr.io/bioc/limma/man/voom.html

S.6 Supplementary Results

A set of Jupyter notebooks used to make all plots in this paper is available, showing all details of
every analysis.

S.6.1 Examining inputs and CellBender outputs

Here we show two datasets: one scRNA-seq, pbmc8k, and the other snRNA-seq, rat6k. Fig. S 4
panels (a) and (e) show the UMI curves from the raw CellRanger data. Several “regions” of the
UMI curves can be identified and have been labeled: (1) cells, in green, (2) the “empty droplet
plateau”, in red, and (3) putative barcode errors, in blue/gray. The two datasets share these three
regions, but the UMI curves are quite different. In the PBMC dataset, very deep sequencing has
led to a large number of UMIs per cell (large for 10x 3’ capture v2 chemistry). The fact that this
is whole-cell and that the PBMCs exist as separate cells suspended in blood makes it relatively
easier to isolate these cells and capture them, whole, in droplets. This leads to a sharp distinction
between cells and empty droplets. Fig. S4b shows that, between droplet 8000 and 10,000 on a
rank-ordered plot, the UMI count (rather) sharply transitions from cells, with around 4000 UMI
counts, to empty droplets, with around 100 UMI counts. The “empty droplet plateau” in the UMI
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curve in panel (a) can be seen to extend several tens of thousands of droplets, to near droplet
80,000. This number reflects the total number of whitelisted 10x barcodes that were physically
present in the library. Beyond this plateau region is a long stretch of possibly several hundred
thousand more barcodes, most with fewer than 10 UMI counts, and the vast majority with only 1
or 2 counts. This region, labeled “putative barcode errors”, is hypothesized to contain a mixture
of barcode sequencing errors (which were unable to be corrected to their true whitelist barcode)
as well as potential impurities in barcode / bead manufacture.

The snRNA-seq dataset, on the other hand, is much more challenging in terms of calling cells.
Fig. S4 panels (e) and (f) show that there is a large region of several thousand droplets, from
rank-ordered droplet 8000 to 15000, where the UMI count is quite low, and very similar to the
UMI count in empty droplets. For many of these droplets, it is unclear if a nucleus is present at
all. These particular nuclei were isolated from Wistar rat heart tissue. During tissue dissociation
and cell lysis (which takes place in order to obtain nuclei), a large amount of cytoplasmic material
is liberated and becomes free in solution. Nuclei also have fewer starting mRNA molecules than
whole cells. All of these experimental details commonly result in snRNA-seq experiments having
the median UMI count per nucleus (here 472) much closer to the median UMI count per empty
droplet (here 78). Calling cells (nuclei) is much more difficult, and the CellBender result is shown
in Fig. S4f. A comparison with other cell calling algorithms is shown in Fig. 3.

After cell quality control steps (see S.1.12), we plot the top two principal components of the
CellBender latent space in Fig S4c,g. The labels obtained from the traditional scanpy workflow
(S.1.12) are shown as colors, and happen to agree quite well with the groupings of cells in the
CellBender latent space. This provides some evidence that CellBender is able to learn a prior
that encodes “cell type”.

Comparing panel (h) with (d) shows that a larger fraction of counts were removed from many
genes in the snRNA-seq dataset (h). The higher ratio of noise to signal in the nuclei dataset is
responsible for this greater removal of counts. These plots, as well as several others, are included
in an HTML output report produced by CellBender.

S.6.2 Downstream differential expression in a simulated sample cohort

One major use case for CellBender is to remove noise from datasets in such a way that several
datasets can be fairly compared afterward using a differnetial expression analysis. This is especially
important for large-scale atlas-building efforts, and case-control studies where several samples have
been measured. In a cohort setting, it is important to set nFPR = 0 to avoid over-correction beyond
the expected noise budget. Using larger values of nFPR naturally imparts a bias on the output
by preferentially keeping only the most certain cell counts, which is unsuitable when aggregating
data from many samples.

In order to show the effect of CellBender on such downstream differential expression testing
in a cohort setting, we have constructed a simulated cohort of six samples (A1, A2, A3, B1, B2,
B3), split into two batches of three samples each. Data are simulated as in S.1.14, using the
full noise model with a mean of 500 UMI counts per empty droplet in all simulated datasets.
Each simulated dataset is composed of two cell types, whose expression profiles are taken to be the
average expression profiles of the cardiomyocytes and fibroblasts in the rat6k dataset. This is done
for the purpose of being able to examine a dotplot with real gene names. Simulated cardiomyocytes
in these simulations have a mean UMI count of 10000, while fibroblasts have a mean UMI count of
5000. The only difference between samples from batch A and batch B is that samples from batch
A have 1000 cardiomyocytes, while samples from batch B have 4000 cardiomyocytes. All samples
have 2000 fibroblasts, and the noise profile in all samples is taken to be the average expression
over the entire experiment, which only differs between batches due to the different number of cells
present. The three samples in each group (A or B) are not simulated using identical parameters.
Instead, a “batch effect” between samples labeled (1, 2, 3) is simulated by raising the expression
profiles to the power (0.75, 1.0, 1.25) respectively, and normalizing. The batch effect generated
this way is quite large, and harmony-pytorch is used to correct for this batch effect and align the
cell types across samples.
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The simulated cohort is constructed this way in order to have a clear expected outcome: that
when we perform a differential expression test between cardiomyocytes from batch A and batch
B, there should be no differentially-expressed genes. The same for fibroblasts when testing is
performed between batch A and batch B. The samples are simulated so that the true expression
profiles of these cell types are the same in both batches. Any differentially-expressed genes that
show up in the raw data are due to background noise. Given that simulated cardiomyocytes have
2x more UMIs and that the background noise is taken as the average expression over the entire
experiment, we expect to see cardiomyocyte genes (which vary in the background noise across
batches due to the different numbers of cardiomyocytes) as spurious differentially-expressed genes
in fibroblasts. We also expect this spurious differential expression to disappear with CellBender

pre-processing.
The simulated cohort is shown in Fig. S5a. As expected, when fibroblasts are tested for

differentially expressed genes between batches A and B, the raw data shows that many genes come
up significant (Fig. S5d). However, after CellBender, these spurious results have been eliminated
and no new spurious results have been introduced (Fig. S5g, where labeled genes are the same as
in panel d). The CellBender data shown here used nFPR = 0.01. Note that nFPR settings of
0.02 and higher do result in over-correction, which results in spurious differential expression results
that are different from the raw data (while the spurious results from the raw data still disappear).
While nFPR 0.01 did not lead to over-correction in this case, we still recommend setting nFPR
= 0 in a cohort as a conservative measure. Differential expression testing was performed with
limma-voom as in [23], summing over cells in the same cluster and sample to create pseudobulk
vectors (as recommended in [61]), fitting the model ‘∼ 0+cluster : batch’, and examining contrasts
for cluster comparisons across batches.

S.6.3 pbmc8k additional information

A violin plot of LYZ is shown in Supplementary Fig. S8b for each cluster in the dataset pbmc8k
before and after CellBender, and shows markedly improved cell-type-specificity of LYZ expression
as compared to the raw data in (a).

UMAP plots of per-cell expression before and after CellBender are included in Fig. S9 for four
genes which were highly expressed and which were targeted by CellBender due to high ambient
expression. Comparison of the UMAP with the labeled version in Fig. 2c allows identification
of these cell types. It can be seen, for example, that NKG7 expression becomes more specific to
NK cells and CD8+ T cells and T gamma delta cells (Fig. S9a), while CST3 becomes much more
specific to monocytes, progenitors, and pDCs.

Differential expression tests (here a simple Wilcoxon test in scanpy using counts from either
the raw CellRanger data or CellBender, after normalizing and log-transforming) show marked
increases in specificity of four monocyte genes (LYZ, CST3, S100A8, S100A9) to the cluster “0:
Monocytes C” as compared with cluster “4: B Naive”. The log2-fold changes typically increase
substantially (by a factor of two), showing that even in a dataset that is relatively clean to begin
with, CellBender significantly sharpens the differential expression signal. The gene PTPRC is
also included as a “control” gene, since the expression of PTPRC is ubiquitous in immune cells,
and it should not become more specific to one cell type or another after CellBender. We see that
CellBender appropriately changes this log fold change estimate very little.

The data plotted in Fig. 2e quantifies the probability that each cell type is responsible for
the expression of genes which have been removed by CellBender, broken down into bins of “how
much” of each gene was removed. For example, the highly-removed genes (> 22%) are preferentially
coming from basophils. A breakdown of this data on an individual-gene level is shown in Fig. S 6.
Panel (a) shows the top ten genes by removed fraction, and the HPA reference shows that those
genes are likely, more often than not, to come from basophils and neutrophils. As a point of
comparison, panel (b) shows genes which CellBender has largely left alone, and they are much
more randomly distributed across cell types in the reference. Additionally, some genes of interest,
including some major PBMC marker genes, are shown in Fig. S 7.
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Table S 2: Differential expression effect size (log2 fold change from scanpy Wilcoxon test) between
“Monocytes C” (cluster 0) and “B Naive” (cluster 4).

Raw data After CellBender
LYZ 6.07 13.56
CST3 5.44 10.03
S100A8 6.06 12.95
S100A9 5.87 11.60
PTPRC 0.53 0.68

S.6.4 heart600k additional information

The heart600k dataset was published with CellBender v0.2.0 results available as part of the
dataset on the Single Cell Portal (see S.4). We did not re-run CellBender’s v0.3.0 version on
this dataset, but instead used the published results, which are the data shown in Fig. 2i-q. The
main difference is using posterior regularization noise estimation strategy in CellBender v0.2.0
compared to to MCKP-based noise estimator in CellBender v0.3.0 which is expected to leave the
results unchanged for the purposes of our discussion.

Similar to the previous PBMC analysis, Fig. S 10 shows that top-removed genes by CellBender
can be attributed mainly to cardiomyocytes, and to some extent epicardial cells (this time, based
not on an external reference, but on the dataset itself). This is quite consistent with observations
of high amounts of background noise in cardiomyocyte marker genes including TTN and RYR2.
Several marker genes of interest, including these two, are shown in Fig. S 11.

S.6.5 Remark on cell QC and mitochondrial reads

The intended use of CellBender remove-background is as part of a data processing pipeline,
where CellBender comes after creation of a count matrix and before cell QC. Importantly, using
all of the CellBender “non-empty” droplets downstream may not be appropriate, since not all
“non-empty” droplets are high quality. We note that mitochondrial reads are often used as a cell
QC metric downstream. In Fig. S12, we show that the low-UMI-count cells in the “arms” of the
log-log plot of cross-species counts actually have very high mitochondrial read fraction compared
to the high-quality cells.

S.6.6 Cells called on the single-nuclei rat6k dataset

Table S 3: Cells called by various methods for the rat6k dataset, before and after cell QC.

Method Before cell QC After cell QC Fraction surviving QC
CellRanger v2 5852 3805 0.650
CellRanger v3 5869 3823 0.651
EmptyDrops 3109 1161 0.373
CellBender 10351 5878 0.566
Exclusive to CellBender 3922 1645 0.419

We run CellBender remove-background, CellRanger v2.1.1, CellRanger v3.0.2, and
EmptyDrops (as in Bioconductor v3.9) with the default arguments other than (retain = 1000,
lower = 80, ignore = 10). We removed all droplets outside of the union of cell calls made by the
four methods. Next, we ran a standard scanpy analysis to cluster the cells and to find marker
genes. Cells with mitochondrial read fraction greater than the 90th percentile have been removed,
as well as cells with fewer than 100 unique genes expressed at nonzero levels. Cells with UMI count
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Table S 4: Cells called by various methods for the rat6k single-nuclei RNA-seq dataset, after cell
QC, and clustered at Leiden resolution 0.5.

Detected Cells (per cluster, after cell QC)
Method 0 1 2 3 4 5 6 7 8 9 Total
Union 1842 1658 688 631 362 302 190 155 28 22 5878
CellRanger 2.1.1 1226 1221 559 237 213 167 92 57 19 14 3805
CellRanger 3.0.2 1234 1228 560 239 214 166 92 57 19 14 3823
EmptyDrops 36 198 49 232 161 287 21 149 18 10 1161
CellBender 1842 1658 688 631 362 302 190 155 28 22 5878

or gene count higher than the 85th percentile are also eliminated. These filters are employed to
remove outliers and doublets from the analysis.

We notice after cell QC that (1) CellBender calls more cells than CellRanger or EmptyDrops,
and (2) CellBender does not miss any of the cells called by the other methods. We argue below that
(1) the extra calls made by CellBender are valid, and (2) excluding these cells implies discarding
a significant, and biased, slice of the dataset. Cells called by each method, after cell QC, are shown
in Table S4.

On the one hand, we notice that the extra cell calls made by CellBender are distributed
essentially uniformly across the ten clusters. Crucially, the extra cell calls do not form a cluster of
their own: had these extra cells actually been empty droplets, we would expect their expression
profile to regress toward the background profile and cluster together. Even for clusters enriched
with extra calls by CellBender (e.g. cluster 6), we find very specific marker genes (Fig. 3d
shows that cluster 6 cells are pericytes). Again, this would not be expected if CellBender were
erroneously identifying empty droplets (which would not be marked by unique marker genes that
are absent from the other cell clusters).

We notice that the other methods, in particular EmptyDrops, fail to call a large fraction of cells
in the most populous clusters. For instance, EmptyDrops has detected only 45 cells from cluster
3 (after quality-controlling cells as described above), compared to 680 cells called by CellBender

remove-background (see Table S 4). This cluster, which can be unambiguously identified as car-
diomyocytes, is populous while also producing disproportionately more transcripts per nucleus.
This implies that the ambient background profile is likely to closely resemble that of cardiomy-
ocytes.

EmptyDrops (run with lower UMI threshold set to 100, surely-cell retain threshold set to 1000,
and Bonferroni-corrected FDR < 1%) calls many low-UMI-count cells that CellRanger v2 and v3
miss, though it also misses a large number of relatively high-UMI-count droplets along the rank-
ordered UMI plot. We notice that the most populous clusters are also the most enriched in cell
calls missed by EmptyDrops (Clusters 0, 1, 3; see Table S4). We believe that the issue originates
from the frequentist approach used in EmptyDrops. Since the background profile indeed resembles
the gene expression profile of the most abundant and transcript-rich cell types, the expression
profiles of these cells are accidentally compatible with the background. Therefore, the Dirichlet-
Multinomial p-values obtained on a single-droplet basis may not reach statistical significance for
droplets that contain one of the major cell types, in particular, if the background pseudo-count
scale α (a model parameter in EmptyDrops) is determined to be too large. By default, EmptyDrops
determines α via a maximum likelihood procedure. We found that overriding α manually and
using a smaller value generates more statistically significant cell calls, as expected.

CellBender does not suffer from this caveat since it effectively performs Bayesian model com-
parison using informative priors for both hypotheses (empty model yn = 0, non-empty model
yn = 1; see Methods). The expression profile and the expected UMI count of the abundant cell
types (and the background) are initially learned from the low- and high-count droplets, this prior
information is used in comparing the two models, and the priors and posteriors are updated until
a self-consistent solution is achieved.
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Cell type labels in Fig. 3c were provided by author SF, as these cell types are closely related to
ongoing projects in the Precision Cardiology Lab at the Broad Institute, and several manuscripts
involving these cells are in preparation.

S.6.7 Denoising mixed-species hgmm12k

Additional quantification of removal of cross-species background noise in the hgmm12k dataset is
shown here in several ways. Linear versions of the log-log plots from Fig. 4a-b are shown in Fig.
S 13. The linear axis plots highlight the remaining linear trend in the DecontX data in panel (b),
where cross-species counts increase in proportion to the total UMI count in a droplet.

The quartiles of remaining cross-species “contaminating” counts can be found in Table S 5.
The suffixes on the CellBender data refer to the specified nominal false positive rate (nFPR) when
the tool was run. The data show that truly only a handful of cross-species counts remain, even at
the default nFPR of 0.01. These same data are shown graphically in Fig. S 14. It can be seen that
CellBender removes nearly twice as much background noise using default settings than DecontX
using default settings.

Table S 5: Removal of cross-species comtaminant counts from 10x Genomics human-mouse mix-
ture dataset hgmm12k by CellBender and DecontX. Removal summarized as quartiles of fraction
of cross-species counts remaining in cells (Frac), as well as raw counts (Count).

Data Contaminant Count: Q1 Median Q3 Frac: Q1 Median Q3
raw human 255 295 345 2.4e-02 2.8e-02 3.3e-02
cellbender 0.01 human 12 19 29 1.2e-03 1.9e-03 3.1e-03
cellbender 0.05 human 4 7 10 4.7e-04 7.1e-04 1.1e-03
cellbender 0.1 human 1 3 5 1.6e-04 3.1e-04 4.8e-04
decontx human 44.2 54.8 71 4.9e-03 5.1e-03 5.4e-03
raw mouse 158 194 228 9.8e-03 1.1e-02 1.4e-02
cellbender 0.01 mouse 12 22 39 1.0e-03 1.5e-03 2.6e-03
cellbender 0.05 mouse 6 11 17 5.1e-04 7.5e-04 1.1e-03
cellbender 0.1 mouse 3 6 9 2.8e-04 4.2e-04 6.3e-04
decontx mouse 22.3 27.9 34.9 1.4e-03 1.6e-03 1.7e-03

S.6.8 Concordance between nFPR and the empirical FPR

The nFPR parameter controls the total noise target in aggregate whereas the empirical FPR
in simulated datasets is assessed at a more granular level, depending on one’s choice of micro-
or macro- averaging, per cell or per gene. Nevertheless, we expect a good degree concordance
between the two. This is shown for a particular simulated dataset in Table S6. The offset at nFPR
= 0 is caused by the fact that the nominal false positive rate is a target for “extra” noise counts
removed in addition to the level of noise expected to be present in the dataset, see Supplementary
Section S.1.5.

S.6.9 CITE-seq pbmc5k additional information

Fig. S15 shows some additional information about CD45 isoform expression in the pbmc5k dataset.
Panel (a) is a dotplot showing marker genes for several cell types common in PBMC datasets, along
with which clusters these genes show up in. Panel (b) tentatively names the clusters and shows a
UMAP. Panel (c) shows the expression of PTPRC (the gene for CD45), along with the CD45RO
isoform and the gene HNRNPLL. CD45RO is expected to correlate with HNRNPLL expression,
since HNRNPLL is a related splicing factor, which we see it does. This trend is less visually clear
in a UMAP of the raw data. The major cell types expressing CD45RO appear to be monocytes
C/NC/I, along with T CD8+ EM / TE / gamma delta, and T reg / helper.
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Table S 6: Target nominal false positive rate (nFPR) parameter versus the empirical FPR of
the CellBender output for the simulated data shown in Fig. 4c-g. Note that the results are
dataset-dependent.

Target nFPR Empirical FPR
0 0.026

0.01 0.033
0.02 0.040
0.03 0.049
0.04 0.057
0.05 0.067
0.06 0.076
0.07 0.086
0.1 0.116
0.2 0.217
0.5 0.456
0.6 0.516
0.7 0.569
0.9 0.648

Fig. S16 shows the concordance of RNA counts and antibody counts before and after
CellBender for all the “Antibody Capture” features in the pbmc5k dataset. Panel (a) is the
raw data, showing that correlations do exist, but that for every antibody, there are significant
counts even when the RNA counts go to zero. Panel (b) shows the same data after CellBender,
and we see that the antibody counts are more often near zero in clusters where the RNA counts are
zero. This leads to an increase in the Pearson correlation between the fraction of cells per cluster
with nonzero RNA and antibody counts, as shown in panel (c), which leads to greatly sharpened
biological inferences about cell-type specificity of expression.
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Figure S 4: UMI curves from the raw data together with various CellBender outputs for the (a-d)
pbmc8k and (e-h) rat6k datasets. (a,e) The raw UMI curves, annotated with areas of cells and
empty droplets. Notably, the distinction is much more difficult in (e), the nuclei dataset extracted
from heart tissue. (b,f) Cells probabilities inferred by CellBender on same UMI curves from
(a,e) respectively. The region of transition from “surely-cell” to “surely-empty” is much broader
in the snRNA-seq dataset. (c,g) First two principal components of the latent gene expression
embedding inferred by CellBender, colored by Leiden clustering from a separate scanpy analysis.
The structure very closely reflects the labels attributed by that separate analysis. (d,h) Scatter
plots showing removal of each gene by CellBender (each dot is a gene, MALAT1 is off-scale).
Several top denoised genes are indicated.
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Figure S 5: Systematic background noise as a source of batch variation and spurious differential
expression across batches. (a) Setup of the cohort of simulated datasets, where there are two
cell types whose expression profiles are taken from real data (rat6k) for cardiomyocytes and
fibroblasts. The only difference between simulations from batch A and batch B is the number
of cardiomyocytes. Noise ends up being different in the two batches due to these cell number
differences. The “truth” in this simulated cohort is that there are no differences between a cell
type’s expression profile between batches. (b-d) Raw data. (e-g) CellBender denoised data.
(b) Dotplot showing top cardiomyocyte and fibroblast marker genes. Background noise causes
marker genes to show up in the off-target cell type at a low level. (e) Marked cleanup of the
dataset at an aggregate level. (c,f) The cardiomyocytes show no differentially expressed genes
between batch A and B, before or after CellBender. (d) In the raw data, many genes show up as
being significantly differentially-expressed due to background noise. (g) After CellBender, these
spurious results have disappeared (a few of which are labeled). Benjamini-Hochberg-corrected
FDR value for significance (red dotted line) is 0.01 in all volcano plots.
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Figure S 6: (a) The top ten genes ranked by fraction removed by CellBender (above an expression
cutoff) from the pbmc8k dataset, indicating that many of these highly-removed genes have high
expression in basophils and neutrophils. (b) For comparison, the bottom ten genes ranked by
fraction removed (above an expression cutoff). These genes are much more random as far as
cell-type specificity. The HPA immune reference [38] was used to attribute TPM expression for
these genes to the immune cell types in the reference.

55

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 12, 2022. ; https://doi.org/10.1101/791699doi: bioRxiv preprint 

https://doi.org/10.1101/791699
http://creativecommons.org/licenses/by-nc-nd/4.0/


���������������������������
����������
���	������	�
���������������������������������	�����������
	�	���

Figure S 7: Selected genes of interest, showing fraction removed by CellBender from the pbmc8k
dataset, along with expression per cell type. The HPA immune reference [38] was used to attribute
TPM expression for these genes to the immune cell types in the reference.
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Figure S 8: Violin plots showing the count distributions of lysozyme, LYZ, per cluster before
and after CellBender denoising (nFPR 0.01). The off-target counts are effectively removed, with
counts remaining in clusters 0 (CD14+ monocytes C), 10 (FCGR3A+ monocytes NC), and 12
(plasmacytoid dendritic cells).
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Figure S 9: UMAPs created from the CellBender-analyzed pbmc8k data, showing increased ex-
pression specificity of marker genes for different cell types after CellBender denoising as compared
to the raw data.
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Figure S 10: (a) The top ten genes ranked by fraction removed from heart600k by CellBender

(above an expression cutoff) from the heart600k dataset, indicating that many of these highly-
removed genes have high expression in cardiomyocytes (as well as epicardial cells). (b) For
comparison, the bottom ten genes ranked by fraction removed (above an expression cutoff).
These bottom genes are fairly random in terms of cell-type specificity. The heart600k dataset
was used to attribute TPM expression (computed as normalized gene expression per cell type
times 1e6) for these genes to each cell type.
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Figure S 11: Selected genes of interest, showing fraction removed by CellBender from the
heart600k dataset, along with expression per cell type. The heart600k dataset was used to
attribute TPM expression (computed as normalized gene expression per cell type times 1e6) for
these genes to each cell type.

10
1

10
2

10
3

10
4

10
5

Human counts

10
0

10
1

10
2

10
3

10
4

M
ou

se
 c

ou
nt

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ito

ch
on

dr
ia

l f
ra

ct
io

n

10
1

10
2

10
3

10
4

10
5

Human counts

10
0

10
1

10
2

10
3

10
4

M
ou

se
 c

ou
nt

s

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ito

ch
on

dr
ia

l f
ra

ct
io

n

Figure S 12: Fraction of reads per droplet that align to mitochondrial genes in the hgmm12k

dataset. Gray dots are determined to be empty droplets by remove-background. (Right) Col-
orbar axis is truncated to a maximum of 0.3 to enhance contrast. This highlights the fact that,
while the high-mitochondrial-fraction droplets are clearly not empty, they may not be desirable for
downstream analysis either. Further cell QC is needed above and beyond remove-background’s
elimination of empty droplets.
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Figure S 13: hgmm12k dataset, showing same results as in Fig. 4a-b, along with data plotted on
linear axes. (a) CellBender (CB) run at several nFPR values. (b) DecontX as a benchmark. A
residual linear trend of remaining cross-species counts is visible (note the slope of blue points).
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a b

Figure S 14: Quantification of removal of cross-species counts from hgmm12k dataset (data are the
same data as Fig. S 13) (a) The number of contaminant counts in cells from the other species.
Boxes represent the first to third quartile, with the median drawn as a line. The whiskers are
1.5 times the interquartile range. (b) Same data as panel (a), but as a fraction of the total cell
counts.
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Figure S 15: pbmc5k CITE-seq dataset. (a) Marker genes and proteins for several immune cell
types commonly observed in PBMC datasets, showing in which Leiden cluster they appear (post-
CellBender data shown). (b) UMAP of the pbmc5k data, colored by Leiden cluster, and labeled
based on the dotplot in (a) along with other marker genes. (c) Distribution of the gene PTPRC,
one measured isoform CD45RO (after CellBender), and the distribution of HNRNPLL, a positive
splicing factor for CD45RO. CellBender increases the specificity of CD45RO expression (raw data
can be found in Fig. 5c for comparison).
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Figure S 16: (a) Scatter plots of each measured antibody in the pbmc5k CITE-seq dataset. Raw
data from CellRanger, where dots are mean counts in each of the 14 clusters, along with linear
fits using weighted ordinary least squares. Numeric values on axes are log1p of unnormalized
counts. Most antibodies exhibit a reasonably strong correlation between RNA counts and anti-
body counts. Notable exceptions include CD45RA and CD45RO, which are different and typically
mutually exclusively expression isoforms of the same gene, PTPRC, and CD34, CD69, CD137,
and CD274, where antibody counts and RNA counts do not seem well-correlated in the raw data.
(b) Same as (a), but using the output data from CellBender. Most fits have intercepts very
near zero, and the linear relationships are preserved. (c) Pearson correlation between fraction of
cells with nonzero RNA and fraction of cells with nonzero counts of the corresponding antibody,
for raw data and after CellBender. The increased correlation leads to much greater cluster
specificity. Bars with Pearson correlation < 0 are omitted.
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