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ABSTRACT 

The transcriptomic data is being frequently used in the research of biomarker genes 

of different diseases and biological states. Generally, researchers have data from hundreds, 

rarely thousands of specimens at hand. In most cases, the proposed candidate biomarker 

genes and corresponding decision rules fail in prospective research studies, especially for 

diseases with complex polygenic background. The naive addition of training data usually 

also does not improve performance due to batch effects, resulting from various 

discrepancies between different datasets. To get a better understanding of factors 

underlying the observed gene expression data variation, we applied a style transfer 

technique. The most of style transfer studies are focused on image data, and, to our 

knowledge, this is the first attempt to adapt this procedure to gene expression domain. As a 

style component, there might be used either technical factors of data variance, such as 

sequencing platform, RNA extraction protocols, or any biological details about the samples 

which we would like to control (gender, biological state, treatment etc.). The proposed 

solution is based on Variational Autoencoder artificial neural network. To disentangle the 

style components, we trained the encoder with discriminator in an adversarial manner. This 

approach can be useful for both data harmonization and data augmentation – for obtaining 

semisynthetic samples when the real data is scarce. We demonstrated the applicability of 

our framework using single cell RNA-Seq data from Mouse Cell Atlas, where we were able 

to transfer the mammary gland biological state (virgin, pregnancy and involution state) 
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between the samples with semantics (cell types) being preserved and with biologically 

relevant gene expression changes. 

 

BACKGROUND 

The new era of modern life sciences has begun with the development of high 

throughput nucleic acid sequencing methods – new generation sequencing (NGS) 

techniques. The amount of current genomic and transcriptomic data is tremendous and 

grows exponentially. The single cell sequencing methods enabled even more detailed 

description of a transcriptomic landscape that allowed to decipher the very complex nature of 

cellular subtypes, to analyze their developmental patterns and ancestry [1], [2].  

However, current NGS data is highly fragmented due to different sources of technical 

variation associated with particular NGS platforms, sample acquisition and preparation 

procedures, subsequent analysis steps etc. The costs of transcriptomic experiments are still 

high and thus the really big datasets comprising thousands of samples are still rare. One of 

the most frequent tasks in transcriptomic data analysis is the identification of potential 

biomarker genes for various diseases and conditions. In most cases the researchers operate 

with data comprising from tens to hundreds, and, in rare cases, thousands of samples and 

the tens of thousands of genes or individual transcripts. The extremely high dimensionality 

and complex mutual interdependencies make it difficult to achieve the reproducibility in 

prospective studies. The problem is the insufficient volume of any single training dataset, an 

excessively large number of influencing factors and the lack of knowledge about the 

structure of molecular genetic systems. Thus, there is an urgent need in methodological 

approaches capable to analyze heterogenous and limited datasets of high dimensionality, 

suffering from technical noise and different kinds of batch effects. One of the available 

options is to harmonize the quality control procedures and the data analysis pipeline to make 

the resulting gene (transcripts) expression values more comparable. One of the best 

examples of this approach is DEE2 – Digital Expression Explorer 2 (DEE2) [3] – a repository 

of uniformly processed RNA-seq data obtained from NCBI Short Read Archive. There are 

also other examples: ARCHS4 the massive collection of uniformly processed murine and 

human public transcriptomic datasets [4], recount2 [5] etc. However, the most important task 

in transcriptomic data harmonization is the correction of batch effects and in general it 

remains unresolved. 

Currently it is widely accepted that gene expression profiles of the living cells resulted 

from a complex mixture of different biological processes and technical parameters. At the 

moment, there were several attempts to model this kind of data as combinations of certain 

low-dimensional representations corresponding to various biological pathways and 

conditions [6]. In this work we test the hypothesis whether these attributes could be 
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reasonably and controllably changed in silico using the deep learning models. This type of 

transformation was mostly applied to image data to adopt the style of fine art paintings to 

generic images [7]. A large group of image style transfer frameworks uses the pretrained 

models to extract image descriptors in order to build the transfer objective. Due to absence 

of such pretrained models for gene expression data, we stick to adversarial approach: 

separating the features into style and semantic groups using the discriminator network. 

Learning the representations independent of domain with the help of discriminator using 

gradient reversal layer was proposed in [7].  The adversarial decomposition strategy was 

successfully applied to style transfer of texts, for example in this work [8]. In our work, we 

also used cycle-consistency loss for style transfer, which was proposed in [9]. The same 

technique used in domain adaptation for image segmentation tasks can be found in [10]. 

In this work we applied adversarial decomposition methodology to disentangle the 

biological and technical sources of variation in single cell RNA-Seq data. In our approach we 

used no prior dimensionality reduction as it makes strong assumptions about the data. For 

example, PCA tries to maximize the variance in projected dimensions and in case of heavy 

outliers and non-symmetric distribution the result becomes unstable at least if one doesn’t 

apply the robust covariance estimates. Another common problem is that top PCs often 

extract the technical variation. Besides, we assume it’s unlikely that biological states can be 

modelled by simple linear combinations of some low dimensional basis vectors since 

different sorts of non-linear relations are common for gene regulation circuits e.g., logical 

XOR patterns, various feedback loops and conditional dependencies etc. Given the highly 

hierarchical modular organization of cellular regulatory pathways and the clonal nature of the 

cells, deep neural network-based approaches seem to be the most feasible for the tasks 

involving gene expression. For example, an approach with deep generative modeling for 

scRNA-Seq data normalization and domain adaptation was recently proposed in [6]. Another 

approach to gene expression data modelling with autoencoders was presented in [11] – the 

authors induced the sparsity of network weights by connecting only the genes from the same 

functional group to the same hidden neuron. This is a step towards interpretability of 

autoencoder models. Authors of [12] and [13] successfully used variational autoencoders 

(VAE) as a non-linear dimensionality reduction method for gene expression data from 

different cancer subtypes and cell types, respectively. In [14] the autoencoder with ZINB-

likelihood loss was effectively used as a denoising tool on gene expression data. Inspired by 

these results we decided to study if different components of gene expression data variance 

can be disentangled with adversarial decomposition methodology and if such disentangled 

representation might be of interest from a biological point of view.  
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MATERIALS AND METHODS 

Dataset. The data was taken from Murine Cell Atlas (scMCA). This dataset 

comprising numerous murine single cell gene expression profiles was produced with cost-

effective high throughput Microwell-seq platform [15], that allowed to analyze over 400,000 

single cells from 51 mouse tissues and organs extracted from several animals at varying 

physiological conditions. The original scMCA data contains gene expression profiles for over 

800 major murine cell types. The detailed annotation was provided by the authors for over 

200,000 single cells. A detailed description of the data can be found in the original paper [15] 

and online [16]. This dataset was selected due to the following major reasons: (1) it 

contained the huge amount of data obtained with a consistent methodology by the same 

research group thus presumably making the technical dispersion less profound; (2) since the 

samples belong to different animals, distinct organs/tissues and physiological conditions one 

could build a model to decompose these sources of variation.  

For building the models we selected a subset of 45497 samples corresponding to 

single cells derived from murine mammary glands of virgin and pregnant mice and also from 

involution state (24395, 9737 и 11365 samples respectively). This subset was selected both 

due to its volume and the ease of interpretation of distinctions between conditions. The 

samples from lactating animals were excluded as they were clearly isolated (data not shown) 

and different cellular types were barely distinguishable. We kept 20% of the data (with 

keeping the same proportion of biological states) as a test set, and 15% of the remaining 

data was used for validation. The original raw gene expression counts were used as inputs. 

15987 genes were taken into consideration. The gene expression tables used in our study 

can be found in supplementary tables (ST1). To reduce the cell type labelling complexity, we 

decided to switch to more general cell types categories, presuming that the expression 

patterns between the cells of common origin should be more consistent than those of 

different cellular types. The complete data annotation used in our experiments is listed in 

supplementary table ST2. We considered the cellular types as the element of data 

semantics. Among the major goals was to control the preservation of related cell types under 

the style transfer procedure.  

 

Autoencoder architecture. We use beta-VAE [17] (with beta=0.0003) as a 

backbone for our encoder-decoder architecture. Beta-VAE is a simple modification of vanilla 

VAE with additional hyperparameter aimed to weight a contribution of Kullback-Leibler 

divergence with prior distribution to the total loss. We train our encoder with discriminator in 
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an adversarial fashion in order to eliminate the information about one categorical variable 

(namely, biological state). To make the decoder be able to reconstruct the initial expression 

with absence of this information in the latent variables, we add learned representation of 

one-hot encoding of the category to the latents before feeding it to the decoder. This kind of 

architecture makes us able to perform style transfer: after encoding of the initial expression, 

we can choose a target category before decoding. We use LeakyReLU nonlinearities and 

batch normalization in the encoder layers. The architecture scheme is presented on Fig. 1. 

Discriminator scheme is FC(1024)-BatchNorm-LeakyReLU-FC(1024)-BatchNorm-

LeakyReLU-FC(3). 

 

Autoencoder training. For the training of our autoencoder, we use mean squared 

error (MSE) as a reconstruction loss function. Moreover, a cyclic consistency loss (with 

weight 0.2) is used: we obtain the encodings for a batch, make a random style transfer, and 

then transfer the style back at the second forward-pass through the autoencoder. 

Reconstruction loss between the values obtained this way and the initial expression is a 

cycle consistency loss. In order to enforce the hidden representation to not contain any 

information about biological state, we maximize Shannon entropy of discriminator predictions 

as generator loss. This adversarial loss contributes to the overall loss with weight 0.07.  

Discriminator is trained with log-loss objective. 

For the regularization we use L2 weight penalty with weight of 0.001 for autoencoder 

along with VAE-regularization. For adversarial training stabilization, we have used gaussian 

instance noise [18] with variance 0.01 for discriminator. 

Autoencoder and discriminator were trained for 1000 epochs with batch size of 128 

with RAdam optimizer [19] with learning rate 0.0001, and per-epoch learning rate decay 

factor of 0.992. Also, clipping the gradient down to unite norm was used. 

 For the downstream analysis of autoencoder outputs, we substitute the predicted 

negative values with zero. Several experiments with ReLU activation used as the last layer 

to prevent the appearance of negative outputs were conducted, but these led to poor model 

convergence. 

 

MA-plots construction. Each point on the MA-plot is a gene. Sum of expression of 

each gene was calculated across all samples belonging to the particular cell type in the 

same state and 1.0 was added to avoid division by zero problem. The abscissa is calculated 

as an average of log2-transformed expression of a gene in two compared states. The 

ordinate is the log2 transformation of the fold change of expression between two compared 

states. 
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Differential gene expression and gene set enrichment analysis. Differential gene 

expression analysis was performed using RPM-normalized expression counts. The statistical 

significance was assessed with Mann-Whitney test with multiple testing p-value correction 

using FDR procedure. Several cellular types were processed separately: (1) 

Stromal/Luminal/Alveolar cells – those functionally involved in mammary gland development 

and lactation and (2) Dendritic cells – antigen presenting cells that were expected to display 

less profound differences between virgin, pregnant and involution states. GO- and KEGG-

enrichment analysis were performed with the online resource ShinyGO (v0.60) [20]. The lists 

of murine genes, associated with certain GO-categories were taken from Gene Ontology 

Browser at Mouse Genome Informatic portal [21]. 

 

RESULTS 

Our research was aimed to disentangle the information about the cell type and 

biological state in the low-dimensional representation of gene expression data. While 

information about biological state is determined by its one-hot encoding which is fed to 

decoder, to keep the representation disentangled, we must eliminate this information from 

the latent variables obtained with the encoder. To achieve this, we used the dedicated 

discriminator, and the worse was its performance on the testing set, the better was the 

obtained disentanglement (minimum 33% since we have three classes).  

It turns out that after training, the discriminator accuracy on the testing set was 63.2% 

with the following confusion matrix: 

 

 Involution Pregnancy Virgin 

Involution 660 248 325 

Pregnancy 16 964 225 

Virgin 73 482 719 

Table 1. The confusion matrix of biological state prediction on the test dataset. 

 

 The disentanglement can be also illustrated with the following examples. Fig. 2 and 

Fig. 3 depict the 2D projections of the testing samples obtained with tSNE using either the 

original gene expression values or the recovered expression obtained with our model, 

respectively. The samples are colored according to cell types (A) and to physiological states 

(B). One can readily see the clusters corresponding to cell types and to biological states on 

both these plots. However, when similar visualization was built using the extracted latent 
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representations of the samples as input (Fig. 4), there were no clusters corresponding to 

different physiological states, but the clusterization of cell types was still observed. 

 

Style transfer validation. In order to validate the style transfer, we train neural 

network classifier  to predict the biological state on the raw expression from the train set, 

transfer the style of all test examples in all possible ways (including keeping the original 

style, therefore obtaining 3 times larger test set, because we are considering three styles) 

and evaluate the accuracy of classifier prediction on this set. As the ground truth in this 

experiment we take a style in which the sample was transferred.  The architecture was the 

following: Input(200)-FC(512)-FC(256)-Output(3) with LeakyReLU nonlinearities; we used 

Adam optimizer with learning rate of 0.0003, batch size of 2 and 10 epochs. High accuracy 

of such classification points that synthetic samples of some category share category-defining 

features with its raw counterpart. The prediction accuracy was 89.2% with the following 

confusion matrix: 

 

 Involution Pregnancy Virgin 

Involution 3365 114 233 

Pregnancy 266 3433 13 

Virgin 459 111 3142 

 

Table 2. The confusion matrix of biological state prediction on the testing dataset, 

transformed with autoencoder into all possible states with style transfer procedure. 

The detailed description of the training procedure can be found at project home on 

Github. 

 

Calibration procedure. Yet another, simpler approach to validate our model is what 

we call a calibration procedure. It is designed to control that keeping the original sample 

style while passing the sample through the model provides less deviation of expression than 

an arbitrary style transfer. Namely, we take a sample, transfer its style in all possible ways 

and check if L2-distance between the original and decoded expression achieves the smallest 

value when the initial sample style is used. Turns out that it’s the case for 78.4% of the test 

samples and 93.6% of training samples. Worth mentioning that in the testing set the average 

difference between the best and the second-best category is 0.008 for correctly calibrated 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2019. ; https://doi.org/10.1101/791962doi: bioRxiv preprint 

https://doi.org/10.1101/791962
http://creativecommons.org/licenses/by-nc/4.0/


samples and eight times lower (0.001) for incorrectly calibrated ones. It means that switching to 

another style does not affect such samples that much. 

 

Preservation of cell types. In order to demonstrate the preservation of semantics, 

we used cell types annotation. We expect that the cell type must be almost invariant to style 

transfer. To demonstrate this, again, we trained a neural network classifier to recognize the 

cell type on the raw expression from the training set and evaluated it on a transferred test set 

expression. The architecture was the following: Input(200)-FC(512)-FC(256)-Output(13) with 

LeakyReLU nonlinearities; we used Adam optimizer with learning rate of 0.00001, batch size 

of 2 and 1 epoch. The accuracy equals to 77% for samples which passed through the 

autoencoder with no style transfer (and equals to 86,5% for the raw test set data taken as-is, 

with no autoencoder involved). So that, accuracy drop is 9% while we have reduced 

dimensionality in more than 70 times, from 15987 to 210.  For transferred samples, the 

accuracy decreased to 59.5%. This value is fairly low due to severe class imbalance of 

different cell types among different biological states in the training set. Namely, for 

Pregnancy state there are 1652 Epithelial cells, which is a major class, but in Involution state 

they are totally absent. After discarding such cases form evaluation, the accuracy increased 

to 74.0%.  The accuracy of a trivial baseline (always predicting the major class) is 24.2%. 

 

Biological examination of gene expression changes after encoding and 

decoding transformation. The verification was performed using differential gene 

expression analysis and gene set enrichment analysis with GO and KEGG categories. 

Differential gene expression analysis was performed using RPM-normalized expression 

counts. The statistical significance was assessed with Mann-Whitney test with multiple 

testing p-value correction using FDR procedure. Several cellular types were processed 

separately: (1) Stromal/Luminal/Alveolar cells – those functionally involved in mammary 

gland development and lactation and (2) Dendritic cells – antigen presenting cells that were 

expected to display less profound differences between virgin, pregnant and involution states.  

 

GO-enrichment analysis of Stromal/Luminal/Alveolar cells of top 100 genes found to be 

differentially expressed in samples of virgin and pregnant mice 

Enrichment 

FDR 

Genes 

in list 

Total 

genes 

Functional Category GO ID 

4.1E-06 22 1117 Epithelium development GO:0060429 

1.0E-05 16 621  Epithelial cell differentiation GO:0030855 

4.0E-05 37 3437 Animal organ development GO:0048513 

4.9E-04 24 1855 Tissue development GO:0009888 
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5.3E-04 12 503  Morphogenesis of an epithelium GO:0002009 

5.3E-04 12 500  Gland development GO:0048732 

1.8E-03 7  167  Mammary gland development GO:0030879 

2.1E-03 10 404  Epithelial cell proliferation GO:0050673 

2.6E-03 39 4627 System development GO:0048731 

2.6E-03 2  2    Proximal/distal pattern formation involved in 

metanephric nephron development 

GO:0072272 

GO-enrichment analysis of Stromal/Luminal/Alveolar cells of top 100 genes found to be 

differentially expressed in samples of pregnant mice and animals with mammary gland 

involution 

Enrichment 

FDR 

Genes 

in list 

Total 

genes 

Functional Category GO ID 

2.2E-04 36 3522 Response to stress GO:0006950 

2.2E-04 12 448  Response to oxidative stress GO:0006979 

2.2E-04 27 2100 Cell death GO:0008219 

2.2E-04 28 2378 Response to external stimulus GO:0009605 

2.2E-04 25 1949 Programmed cell death GO:0012501 

4.5E-04 24 1909 Apoptotic process GO:0006915 

4.6E-04 22 1654 Positive regulation of molecular function GO:0044093 

5.4E-04 26 2247 Catabolic process GO:0009056 

5.9E-04 24 1985 Cellular catabolic process GO:0044248 

6.5E-04 22 1728 Regulation of cell death GO:0010941 

Table 3. GO-enrichment analysis of top 100 differentially expressed genes observed in 

Stromal/Luminal/Alveolar cells in virgin vs. pregnant and involution vs. pregnant 

comparisons. The top 10 enriched categories are shown. 

 

GO-enrichment analysis demonstrated that used data contained relevant biological 

signals (Table 3). When Stromal/Luminal/Alveolar cells taken from mammary glands of 

pregnant mice were compared against those of virgin mice, the top 100 upregulated 

differentially expressed genes were found to be significantly enriched with epithelium 

development, epithelial cell differentiation, mammary gland development GO categories. The 

top 200 upregulated genes were also found to be significantly associated with progesterone-

mediated oocyte maturation and prolactin signaling KEGG pathways. The top 100 

upregulated differentially expressed genes found with comparison of 

Stromal/Luminal/Alveolar cells from mice with mammary gland involution against those of 

pregnant animals were found to be significantly enriched with GO categories related to 

apoptosis, stress response and catabolism (Table 3). When similar analysis was performed 
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using dendritic cell samples, the top 100 differentially expressed upregulated genes were 

found to be significantly enriched with GO categories related to defense and immune 

responses, cytokine production, dendritic cell differentiation etc. (data not shown).  

Besides the examination of original expression profiles, we also made a comparison 

between the samples after the "style transfer" procedure: when samples of pregnant mice 

were transformed into a virgin or involution state, virgin – to pregnant or involution, involution 

– to pregnant or virgin. As an example, Fig. 5 shows MA-plots with comparison of Virgin 

versus Pregnant states of stromal cells (shown with blue dots), and Virgin versus artificial 

Virgin state created from Pregnant by style transfer (shown with orange). The overlay of 

these MA-plots provides a clear illustration that gene expression of original Virgin state is 

closer to that of artificially obtained Virgin than to original Pregnant samples. 

However, the similar GO- and KEGG-enrichment analysis of recovered gene 

expression and semisynthetic samples obtained with style transfer was less straightforward 

since there were numerous changes associated with basic GO categories. Thus, we decided 

to compare the variation of gene expression associated with relevant GO categories: 

mammary gland development (GO:0030879) and positive regulation of apoptotic process 

(GO:0043065). The highest variance in expression of genes involved in mammary gland 

development was observed in samples from pregnant mice (Fig. 6). The similar results were 

observed both in stromal and luminal cells (A) and also with using all the cells (B). The 

recovered expression was similar to original values, but the most interesting is that the style 

transfer from Virgin state to Involution and Pregnancy and from Involution to Virgin and 

Pregnancy resulted in biologically relevant changes in gene expression (the two lower 

panels of Fig. 6A and Fig. 6B). The similar analysis of genes involved in apoptosis regulation 

revealed two different pictures (Fig. 7). When only stromal, luminal and alveolar cells were 

considered the maximal variance was observed in samples from pregnant mice, and the 

second-high values were observed in samples from virgin mice (Fig. 7A, the top panels), 

however when all the cell types were considered the maximal variance was observed in 

samples from involuting mammary gland – as it was expected (Fig. 7B, the top panels). 

However, the results of style transfer (Fig. 7, the bottom panels) also demonstrate that the 

variance in apoptosis-related genes is higher in Involution state. The contradiction observed 

when only stromal, luminal and alveolar cells were considered might be due to the striking 

differences in proportions of various cell types. Thus, from here we can propose the 

additional advantage of style transfer procedure as it might be of help in studying gene 

expression changes resulted from certain biological or technical traits using the same initial 

data and treating the resulting samples as paired data. 

 

DISCUSSION 
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Construction of information-rich, low-dimensional representations of gene expression 

profiles, remains a challenging task. Availability of such representations is a gateway to 

successful data harmonization, domain adaptation and deeper understanding of 

interconnections between expression of various genes. The proposed framework allows to 

investigate gene expression profile shifts when some specific, pre-defined categorical factor 

of variation changes. The framework performs dimensionality reduction of gene expression 

data in such a way that hidden variables are disentangled into two separate domains where 

one subgroup is fully interpretable and accounted for chosen, pre-defined factors of variation 

and another, larger group of hidden variables is designed to contain no information from 

controlled factors. So that, we can controllably change the factor(s) and see the impact on 

the gene expression level. This leads us to possibilities to harmonize the data by using batch 

codes, or sequencer model as factors of style and to perform the downstream analysis on 

the latent variables (which also dramatically reduces the dimensionality, and therefore helps 

to control overfitting) instead of raw expression, or transferring all of the samples to the same 

style. Ability to observe gene expression of synthetic samples makes possible their analysis 

with classical bioinformatic approaches, for example to check which genes show differential 

expression when you switch the technical factors of variation with style transfer.   

The proposed approach can help to solve different problems associated with real 

transcriptomic data, e.g., to reduce the variance associated with batch effects, to check the 

data for outliers, to reduce the data dimensionality retaining the relevant biological 

information. Generative adversarial neural networks could also be used for data 

augmentation, and, which is of particular interest, with a style transfer approach one can 

generate realistic examples to upsample the rare cases or even to produce the cases lacked 

in the current data. 

Our future efforts on the framework will be mostly conducted towards increasing the 

fidelity of the generated samples and evaluating our approach on different datasets and 

comparing its performance with the existing frameworks. Also, future research will include 

the induction of sparsity in both encoder and decoder weights to figure out its effect on 

performance of the framework in terms of disentanglement and applicability of generated 

samples to downstream pipelines. Moreover, the sparse weights promise some insights on 

what genes affect each other expression and affected by choice of the style. 

 

SUPPLEMENTARY DATA 

Supplementary tables with data and annotation can be found online:  

DOI:  10.6084/m9.figshare.9925115 

This data contains the following tables: 
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ST1 – original_expression.csv – the selected subset of original raw gene expression counts 

from scRNA-Seq experiments from DOI: 10.1016/j.cell.2018.02.001 

(https://figshare.com/articles/MCA_DGE_Data/5435866) – only mammary gland samples 

were used; 

ST2 – transfer_annotation.csv – samples annotation table (both original and those obtained 

with style transfer) 

ST3 – reconstructed_expression.csv – gene expression values of original samples obtained 

with the developed VAE model; 

ST4 – transferred_expression.csv – semisynthetic samples obtained with the developed 

style transfer procedure. 

The source code can be found at: https://github.com/NRshka/stvae-source  
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FIGURE LEGENDS 

 

Fig. 1. The autoencoder architecture scheme. 

 

Fig. 2. Visualization of original samples with tSNE. Raw expression values were used, 

samples were colored according to cell types (A) and physiological state (B). tSNE perplexity 

was set to 30. 

 

Fig. 3. Visualization of reconstructed samples with tSNE. Gene expression values 

reconstructed with VAE model were used, samples were colored according to cell types (A) 

and physiological state (B). tSNE perplexity was set to 30. 

 

Fig. 4. Visualization of the samples with tSNE using the learned latent representation. 

The latent variables of the testing samples were obtained with pre-trained encoder. The 

samples were colored according to cell types (A) and physiological state (B). tSNE perplexity 

was set to 30. 

 

Fig. 5. MA-plots comparing the gene expression in stromal cells from murine 

mammary glands in original and transformed samples. The comparison of original 

samples is shown with blue; the comparison between the original virgin state and the virgin 

state produced from pregnancy with style transfer is shown with orange color. 

 

Fig. 6. Variation in gene expression related to mammary gland development 

(GO:0030879) in Stromal and Luminal cells (A) and in all cells (B). 

 

Fig. 7. Variation in gene expression related to positive regulation of apoptotic process 

(GO:0043065) in Stromal, Luminal and Alveolar cells (A) and in all cells (B). 
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