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Abstract: 

All cancers share a commonality in genome activation regulated by a systems  endogenous

network distinct from normal tissue, but such a network remains elusive. Here, we unearth a

systems  regulatory  network  endogenous  for  all  types  of  cancers  and  normal  human

respectively from massive data, including all RNAseq data available from SRA and TCGA,

and  reveal  distinctive  systems  realm  for  cancer  and  normal.  In  the  cancerous  realm,

noncoding  RNAs,  especially  pseudogenes,  dominate  endogenous network  modules  and

centrality,  and  they work as the  strongest systems inducers  that cis-regulate their targets.

However in  the  normal  realm proteins  dominate  the  entire  endogenous network centrally

controlled by ribosomal proteins and they trans-regulate their targets. Our finding establishes

a  systems  picture  of  an  endogenous  mechanism overlooking  the  cancerous  and  normal

realm,  in  which noncoding RNAs rule the overall  cancer realm  while proteins govern the

normal one. This fundamentally refreshes the conventional concept of cancerous mechanism.
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INTRODUCTION

All  cancers  generally  result  from  endogenous  genomic abnormality  distinct  from  normal

human  tissue[1–4].  Understanding the universal regulatory mechanisms endogenous in all

cancers helps to develop the general therapeutic strategy to combat cancers. 

 

Numerous gene regulations and networks have been identified for tumorigenesis, but most of

these gene interactions are specific for a given cancer type, which refers to a specific organ

and tissue[5–9]. Thus tumorigenesis mechanisms have been mostly marked as cancer type

specific. However, certain regulations have been found endogenously in all cancer types. For

example, TP53 has been typically characterized as an universal suppressor endogenous for

all  cancers[5].  More  recently,  a  pseudogene  PTENP1 has  also  been  identified  to  be  an

endogenous regulator that  regulates PTEN in  examined cancer types[8,10].  Given million

gene regulations in human genome, the magnitude of endogenous cancerous regulations for

all cancer types should be very large.  These gene regulations usually assemble a systems

cancerous regulatory network distinct from that of normal human. Revealing such systems

networks helps to advance our deep insights toward fundamental mechanisms of cancer and

normal human physiology.

Uncovering such endogenous regulatory networks faces challenges. First of all, the human

regulatory  network  is  complex,  and  emerging  noncoding  RNAs  complicate  this

network[8,9,11].  In  addition,  numerous  conditions  and  factors  contribute  to  a  regulatory

network. Secondly, we have not developed any appropriate biological approaches to reveal a

real  natural  gene  regulation.  Current  biological  approaches  like  knockout  suffer  several

limitations such as transcript compensation and genome alteration[12]. Knocking out a single

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 25, 2021. ; https://doi.org/10.1101/791970doi: bioRxiv preprint 

https://doi.org/10.1101/791970


gene normally results in alterations of thousand gene activation, leading to biased picture of

gene  regulations.  Thirdly,  current  computational  inferences  suffer  high  noise,  with  low

accuracy  <50%[13,14].  Due  to  data  limitation,  computational  inferences  are  also  heavily

biased to the investigated data set. Therefore, the current knowledge of genome-wide gene

regulations still  looks like the picture derived from blind men and an elephant. A complete

picture of any regulatory realm still remains elusive.   

In this present study, we developed a software, FINET[14], to infer  the precise endogenous

gene regulations. Technically,  FINET optimizes elastic-net and stability-selection and infers

any gene regulation without any presumption, such as a noncoding RNA to a protein_coding

gene or  vice  versa.  With  optimizing  parameters  and filtering  out  the  condition-dependent

interactions, FINET actually selects endogenous gene regulations that were consistently true

in all conditions.  These gene regulations reasonably assemble an universal network  for a

given dataset.  To maximize the universality and to make our inferences endogenous for all

cancers and normal human tissue, we processed massive data, including all human RNAseq

data  available  from  Sequence  Read  Archive  (SRA  274469  samples)  and  The  Cancer

Genome Atlas  (  TCGA  11574  samples).  These  data  contained  all  conditions  and cancer

types,   which  promised  us  to  infer  endogenous  regulations.  After  inferring  endogenous

networks from these SRA and TCGA data respectively for normal human and cancers,  we

generated quantitative  patterns  from these  networks  to  reveal  endogenous rulers  for  the

cancerous and normal tissue.

RESULTS

Systems regulatory networks endogenous in cancers and normal human 
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To assemble a systems regulatory network endogenous for all conditions in all cancers and

normal human respectively, we first needed a complete set of data representing endogenous

genomic activation universal  for  all  conditions.  SRA and TCGA provided such data.  SRA

RNAseq contained various data sets of all conditions. A gene regulation that  is  extracted

from SRA  274469  samples  and  is  consistently  true  in  all  SRA conditions  represents  an

endogenous  regulation  universal  for  normal  human(Figure  S1,  materials  and  methods).

These endogenous regulations in systems level assemble a systems network endogenous for

normal  human.  Similarly,  TGCA provided RNAseq data  for  11574 samples  containing  32

cancer  types[16] and  systems  gene  regulations  extracted  from  these  cancerous  data

constructed a systems endogenous network for cancers.

Secondly,  we  need  a  software  that  can infer  an  accurate  unbiased gene regulation.  We

developed algorithms and a software, FINET[14]. Compared to the current software with high

noise during inference, FINET significantly improves the accuracy, and it can efficiently and

accurately  infer  unbiased  gene  interactions  with  >94%  precision,  true  positives/(true

positives+false positives)  (materials and methods).  FINET filters out all condition-dependent

interactions and only keeps the true endogenous ones independent from any conditions such

as biological sample heterogeneity and sequencing technique variations.    

We  employed  FINET  to  search  all  possible  gene  regulations  in  human  genome  by

systematically treating each gene as a target and selecting its regulators from the rest of all

annotated genes(Figure 1A, materials and methods). In this way, each gene has an equal

chance to be a target or a regulator without any presumption, regardless of its gene category

in protein_coding or noncoding RNA. This search was separately performed for SRA and
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TCGA data,  and the result eventually was assembled into a network for normal human and

cancer respectively. The normal network contained 19,721 nodes (genes) and 63,878 edges (

interactions), and the cancerous one included 25,402 nodes and 61,772 edges (Fig. 1B-1C). 

As expected, our networks were much less complex than those of current reports because we

only collected the reliable interactions endogenous in all conditions, yet these two networks

actually represented two distinct regulatory realms endogenous for normal human and cancer

at  systems  level,  in  which  all  endogenous  layered  crosstalk  of  any  pair  of  genes  were

included.  As  a  validation,  our  network  contained  an  interaction  between  PTEN

(protein_coding) and PTENP1 (a pseudgene of PTEN) (Figure 1D), and this interaction only

existed  in  the  cancer  network  but  did  not  exist in  the  normal  one[17],   consistent  to

experimental reports showing it only in cancers[8,10]. This indicated our network with high

reliability  and  specificity.  Furthermore,  in  contrast  to  conventional  approaches  showing

PTENP1 as a regulator for PTEN only, our systems network  expands this PTENP1-PTEN

interaction  to   a  cancerous  PTENP1  regulatory  network including  several  novel  PTENP1

interactions  (Figure  1D).  PTENP1  also  interacted  with  its-own  antisense_RNA

(PTENP1_AS),  two  pseudogenes  (RP11-181C21.4,  MEMO1P1),  and  a  lincRNA(RP11-

384P7.7).  These  natural  endogenous  interactions  provide  a  complete  systems regulatory

picture  for  PTENP1.  Moreover,  because  our  network  is  universally  true  for  all  types  of

cancers, our result  also suggested PTENP1 regulating PTEN as a universal  endogenous

regulation in all cancers although it was uncovered by conventional approaches with limited

cancer types and conditions. 

Similarly, a complete systems regulatory picture of any universal endogenous regulation can

be easily extracted from our network online[17]. Strikingly, an antisense RNA RP11-335k5.2,
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which was recently uncovered by our clinical data analysis as the most strongest inducer for

all cancers[16], was consistently found here in our cancer network[17], but not in the normal

network. This indicated RP11-335k5.2 indeed as an endogenous cancer driver for all types of

cancers.   

Overall, our networks provide a reliable  and comprehensive resource for understanding the

complete systems pictures of endogenous regulations in the cancer and normal genome. 

Overall noncoding RNA crosstalk are unexpectedly activated at cancers

Multilayered crosstalk among proteins and various types of noncoding RNAs play key roles in

physiologic states but the complete picture of crosstalk endogenous in cancers and  normal

human tissues remains elusive[8,9].  Here we first examined the picture by grouping activated

genes into gene sets via set algorithms[18], which clusters a network into sub-network sets on

the  basis  of  node  and  edge  properties.  By  using  gene  annotated  categories  as  node

attributes,  we  separated  the  entire  network  into  5  gene  category  sets,  including

protein_coding  (referred  as  protein  hereafter),  lincRNA,  processed-pseudogene  (p-

pseudogene),  antisense  RNA  (antisense),  and  others that  pooled  the  rest  of  gene

categories(Figure 1B-1C). 

In normal tissue, the majority of proteins and p-pseudogenes were mostly either separated or

self-targeted, in which targets and their regulators at the same gene category(referred as self-

regulation thereafter), but most of antisense RNAs and lincRNAs were highly crosstalked to

proteins(Figure 1B). However, in cancer these 5 sets were overall separated, and the density

of the protein set became less than normal(Figure 1B_1C), indicating that cancerous protein-
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protein crosstalk declined but crosstalk  within noncoding RNAs increased. Statistically, we

counted the regulators and their targets in each gene category in both normal and cancer

(Table S1, Table S2). Overall, at normal the total crosstalk around proteins occupied 87.7%

(56039/63878), and the rest 12.3% was around noncoding RNAs (Table S1). However,  for

cancer  the overall crosstalk around proteins significantly declined to 73.9% (45660/61774),

and crosstalk around noncoding RNAs increased to 26.1% (Table S2) (p-value = 0.02157,

Pearson's Chi-squared test with Yates' continuity correction, referred as chisq-test thereafter).

We next counted the specific gene category interactions. The interactions from proteins to

proteins at normal counted for  82.5% (52692/63878,  Table S1), but declined to 64.8% at

cancer (40053/61774,  Table S2). The protein regulators and protein targets also decreased

from normal to cancer, but noncoding RNA regulators and targets dramatically increased in

cancer (Figure 1E,  p-value < 2.2e-16, Chisq-test).  These indicated the primary regulatory

crosstalk shifted from normal protein domination to cancerous noncoding RNAs.

To further explore the detailed targets of noncoding RNAs, we plotted the primary targets of

three  abundantly  categorized  noncoding  RNAs,  including  antisense,  lincRNA,  and  p-

pseudogene. Targets of noncoding RNAs primarily contained not only proteins but also self-

regulated genes such as p-pseudogenes primarily regulate p-pseudogenes (Figure 1F, Table

S1, Table S2). These self-targets of all three categorized noncoding RNAs were significantly

induced by cancer (p-value = 1.46e-08,  Figure 1F). For example, p-pseudogenes targeted

self-targets,  p-pseudogenes,  with  significantly  increasing  from 1288 at  normal  to  2185 at

cancer(Figure 1F). This indicated that noncoding RNAs, especially p-pseudogenes, increase

self-regulation in cancer.  
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Together,  protein  crosstalk  dominate  the  normal  network,  but  noncoding  RNA crosstalk

become  unexpectedly  activated  in  cancers.  Noncoding  RNAs  significantly  turn  to  self-

regulation in cancers. 

Network  module  composition  shifts  from normal  proteins  to  cancerous noncoding

RNAs

To understand the module differences between normal and cancer network, we examined

module  member  compositions.  We  identified  modules  by  network  topology[19] and  then

clustered modules into  either  protein  module (proteins occupied >  50% of  members in  a

module) or noncoding module (noncoding RNAs > 50% of members in a module, materials

and methods). Modules with 50% of proteins or noncoding RNAs were ignored. At normal

protein modules occupied 60.52% out of total 38 modules and noncoding modules only took

28.94%  (Figure  2A,  table  S3)),  while  cancerous  modules  significantly  changed  their

compositions,  in  which  protein  modules  reduced  to  47.29%  and  noncoding  modules

increased to 45.94% of total 74 cancer modules (p-value = 0.02963, chisq-test)(Figure 2A,

table S4). Theoretically the network modules execute the primary functions for a network.

This module pattern shifting from proteins to noncoding RNAs suggested noncoding RNAs as

the key rulers in cancer regulatory realm. 

Noncoding RNAs serve as the centrality in cancerous network but ribosomal proteins

dominate in the normal

To understand the core controllers of the normal and cancerous networks, we investigated the

centrality of normal and cancer networks (materials and methods). At normal proteins worked
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as the primary centrality (top 1000, Figure 2B) and ribosomal proteins dominated the top 20

centrality in normal (Fig. 2C). The top 1 centrality, RPS23, abundantly interacted with proteins

and  noncoding  RNAs  (Figure  2D),  but at  cancer  the  interactions  of  RPS23  declined

dramatically (Figure 2E). Based on gene ontology (GO)[20], these top 20 centrality in normal

networks performed crucial functions in translation (RPL18, RPL3, RPL30, RPL39, RPS10,

RPS23, RPS28). Consistently, the functions for the whole normal network and modules (table

S3)  were also relevant to translation and negative regulations, suggesting ribosomal proteins

as the delicately regulatory core of the normal human genome. 

In contrast,  p-pseudogenes dominated the cancerous centrality (Figure 3A, materials and

methods) and most of these centrality worked as cancer inducers (regulators with coefficient

> 0 and < 0 were respectively referred as inducers and repressors during FINET inferences,

materials and methods, Figure 3B). Most of these inducers were p-pseudogenes(Figure 3C),

and all top 20 centrality were p-pseudogenes (Figure 3D). This indicated p-pseudogenes as

the primary rulers for cancers.  

These pseudo-gene interactions escalated in cancers have been shown in our database. For

example, cancers activated much more interactions in the top listed pseudo-gene(Figure 3D),

ENSG00000250144.1, than normal (Figure 3E).  

These data suggest that ribosomal proteins serve as the most important regulatory core for

protein-dominated normal network, but noncoding RNAs, especially p-pseudogenes, primarily

control the center of cancerous realm. 
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Noncoding RNAs and proteins respectively serve as the strongest regulators in  the

cancerous and normal network

To understand the strongest regulators governing normal and cancer genome and to make

our  pattern  robust,  we  examined  the  composition  of  the  top  300  regulators  and  their

corresponding targets based on their absolute coefficient rankings. For pattern recognition

and clear  illustration,  we only  presented any gene category  with  abundance >  10%.   At

normal,  proteins worked as the strongest inducers. From the top 300 to top 10 inducers,

proteins  occupied  60% to  50%  respectively  (Figure  4A left).  LincRNAs  came  next  and

occupied ~20%. These inducers mostly targeted proteins and p-pseudogenes (Figure 4A

right).  Yet  in  cancer,  proteins  even did  not  show up (<10%),  instead,   noncoding RNAs

dominated the top inducers, including p-pseudogene, antisense RNA and lincRNA (Figure 4B

left). For example, p-pseudogenes counted 70% out of top 10, suggesting p-pseudogenes as

the primary strongest drivers in cancer genome, instead of proteins as conventionally thought.

Interestingly, these cancerous inducers almost purely targeted proteins(Figure 4B right). This

suggested  that  proteins  work  as  targets  at  cancer  instead  of  as  cancerous  drivers.  The

conventional practice treating protein-coding genes as cancerous drivers is very misleading.

Consistently, our result from big clinical data also found p-pseudogenes as the primary drivers

universal for all types of cancers[16].  

As  for  the  strongest  repressors,  almost  all  repressors  and their  targets  were  proteins  at

normal (Figure 4C). However, cancerous repressors contained proteins, p-pseudogenes, and

antisense RNAs, with at least 10% at each (Figure 4D). Surprisingly, regardless of normal

and cancerous repressors, almost all their targets were proteins >85%, and noncoding RNA

targets in any categories were too low to show (<10%). This pattern revealing  proteins as
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targets for both inducers and repressors in cancer interprets why the current observations

have focused on proteins, yet treating protein-targets as cancerous drivers is fundamentally

misleading.  Nonconding RNAs, especially  p-pseudogenes,  serve as the primary universal

drivers for all types of cancers.

Noncoding RNAs serve as the deadliest inducers in cancers

To understand the cancerous association of noncoding RNAs, we calculated the HR (hazard

ratios)  of  top  300  inducers  in  the  cancer  network  as  described  above  (Materials  and

methods).  Among  these  inducers,  p-pseudogenes  and  all  noncoding  RNAs  (including  p-

pseudogenes)  had  significant  higher  HR  than  proteins,  with  pvalue=0.01  between  p-

pseudogenes  and  proteins  and  pvalue=0.0027  between  noncoding  RNAs  and  proteins

(Figure  4E).  To  further  confirm  this  result,  we  examined  these  HR differences  between

proteins,  p-pseudogenes  and  noncoding  RNAs  in  top  deadliest  inducers  derived  from

unbiased survival analysis of all  cancer type data from TCGA[16](Materials and methods).

Similarly, both p-pseudogenes and noncoding RNAs had significant higher HR than proteins,

with  pvalue=0.00061  and  0.00063  respectively(Figure  4F).  These  results  consistently

indicated  that  noncoding  RNAs,  especially  p-pseudogenes,  play  more  important  roles  in

causing cancer death than proteins.  This and our previous results[16] provide strong systems

evidences to validate our systems network results showing noncoding RNAs as the most

important drivers for tumorigenesis, instead of proteins.          

Noncoding RNAs primarily turn to regulate their local targets at cancer
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Understanding the systems distribution of distances between regulators and their targets help

to understand the functional framework of genome regulations but it remains debated[8,9,21–

23]. To capture the systems profiling of target distances altered by cancer, we compared it to

that of normal in top four gene categories, including protein, p-pseudogene, lincRNA, and

antisense. To overlook the profiling, we clustered the targets by chromosomes via using  set-

algorithm as done in figure 1 above. At normal, all chromosome sets were mixed up but these

sets  were  clearly  separated  at  cancer  (Figure  5A-5B),  indicating  that  noncoding  RNAs

increasingly  targeted  their  self-chromosome  targets  at  cancer  compared  to  normal.

Statistically,  most of normal genes worked as trans-regulators regulating their targets outside

their  chromosomes(Figure 5C).  Especially,  more than 80% p-pseudogene targets located

outside chromosome, and 70% protein and 55% lincRNA targets were also located outside

chromosome. Furthermore, p-pseudogenes and proteins rarely regulated their targets with

overlapped sequences (inside genes, Figure 5C). However, in cancer most regulators of all

categories turn to regulate their local targets (<1M bp Figure 5D). Specifically, more than 80%

of lincRNAs and antisense RNAs worked locally. 

However, these antisense RNAs and pseudogenes rarely regulated their cognates at both

normal and cancer(Figure 5E). Furthermore, cancer stimulated the non-cognate proportion.

The non-cognate rate for antisense increased from normal 22.8% to cancerous 60%, and this

for p-pseudogene also increased from 17.6% (normal) to 33.5% (cancer).  In contrast, the

cognate proportion shifted slightly from 85 (1.4% normal) to 241 (4.2% cancer) for antisense,

and  from  73  (0.6%  normal)  to  254  (2.3%  cancer)  for  pseudo-gene  (Figure  5E).  This

suggested  primary  noncoding  RNAs  as  cis-regulators  in  cancers,  but  not  as  cognate

regulators as recently proposed[24].     
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This together suggests that regulations switch from normal trans-regulations to cancerous cis-

regulations. 

DISCUSSION

This  study  revealed  a  complete  systems  picture  of  endogenous  regulatory  mechanisms

regulating the cancer and normal realm, in which noncoding RNAs endogenously rule the

cancerous  regulatory  realm  while  proteins  govern  the  normal.  Numerous  regulatory

mechanisms have been uncovered for regulating cancers and normal physiology, but they are

biased  to  a  given  biological  experiment  and  are  condition-dependent  and  thus  are  not

universally endogenous for all conditions. The systems mechanism  endogenous across all

conditions remain unknown. Here, we revealed that proteins control normal human regulatory

realm at systems level and ribosomal proteins endogenously govern the core of the normal

realm.  Ribosomal  proteins  have  been  known as important  factors  in  controlling  cell  type

specific physiology and pathology[25], but we found more important role for them in which

they actually work as an universal endogenous center to regulate whole human normal realm

via interacting with other proteins and noncoding RNAs. This realm is dominated by proteins

working  as  trans-regulators  to  regulate  proteins  as  their  primary  targets,  consistent  with

current practices in biology in which proteins are treated as both key regulators and targets.

However,  this  normal  protein-dominant  realm cannot  be  applied  to  cancers.  Cancers  are

endogenously regulated by noncoding RNAs. Noncoding RNAs, especially p-pseudogenes,

serve  as  the  primary  centrality  and  the  strongest  inducers,  and  they  also  control  the

cancerous modules functioning for the entire systems realm. This parallels with our recent

observation from clinical data showing noncoding RNAs as the universal deadliest drivers for

all  types of cancers[16]. Our finding conceptually refreshes cancer systems mechanism in
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which noncoding RNAs drive cancers, instead of proteins as conventionally thought[26–28].

This presents a novel basis for understanding the cancerous fundamental .

Pseudogenes  were once thought  as junk DNAs but recently they have been reported as

regulators for cognate genes, in which they might regulate their corresponding protein-coding

genes[8].  For  example,  pseudo-gene  PTENP1  regulates  PTEN  in  cancer.  However,  the

number of known functional pseudogenes are very limited and the functions of these pseudo-

genes have been thought as secondary. Here, we systematically revealed that the abundant

pseudogenes were activated in cancer and these pseudogenes functionally worked as the

most important cancer drivers instead of secondary  regulators as thought. This was validated

by  clinical  data  in  our  paralleled  study[16].  In  contrast  to  the  conventional  validation  via

biochemistry  in  vitro  in  which  results  might  not  be  applied  to  in  vivo  regulations,  we

systematically  validated  these  noncoding  RNA  regulations  by  clinical  data  as  in  vivo

evidences[16], which ensures our results more reliable than in vitro results. 

Pseudogenes rarely target their cognate  genes, but they mostly regulate their remote targets

outside the chromosomes. Pseudogenes should execute their functions in a way similar to

proteins as trans regulators and drivers. This further suggested that pseudogenes might act

as flexible and energy-saving activators for various physiologic conditions.  This opens the

block around pseudo-genes to  explore  their  functions in  other  physiologic  conditions  like

stress stimulation.  

Understanding  the  majority  of  noncoding  RNAs  working  as  cis-  versus  trans-regulators

provides  the  first  step  to  understand  their  functions  and  mechanisms,  but  it  remains

controversial  due  to  lack  of  knowing  the  complete  crosstalk  involved  in  all  noncoding
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RNAs[8,9,11].  Here,  we revealed that  different  types of  noncoding RNAs have their  own

target-distance  patterns  varying  with  physiologic  states,  but  universally,  the  majority  of

noncoding RNAs works as trans in normal, even antisense RNAs have only ~50% working in

local (<1M). This parallels with the recent observation showing trans-regulation patterns in

noncoding RNAs[29]. However, in cancer the majority of noncoding RNAs such as antisense

RNAs and lincRNAs turns to target the local genes (<1Mb) as cis-regulators but not their

cognates. Only a very limited number of noncoding RNAs target their cognates. Therefore,

the hypothesized mechanism of noncoding RNAs executing their functions via bindings to

complementary sequences of their cognates is misleading. In general, normal noncoding and

coding genes primarily work as trans-regulators, but cancerous noncoding RNAs primarily

serve as cis-regulators but not cognate-regulators.   

Gene regulatory networks have been widely studied, but most of them have been derived

from gene pair studies and condition-dependent experiments[8,11]. In addition, the current

network inference approaches have suffered high noises and recently increasing noncoding

RNA species have complicated the network inferences[8,9,11,13,14],  resulting in seriously

biased observations and leaving an actual blackbox of gene crosstalk. Here, we developed

software to reveal the all endogenous crosstalk as systems networks hidden in massive data.

Without  any presumption,  we generated the  unbiased quantitative  patterns  from systems

networks and revealed the systems mechanisms from the data patterns, which made our

results reliable.  To ensure our networks were robust, we only included interactions with high

precision.  High  precision  selections  dramatically  reduced  the  false  positives  and  all

interactions in our networks do not depend on any conditions. Obviously, some conventional

interactions might not be found in our network due to they are conditional-dependent, not

endogenous. Indeed we intentiontally missed numerous interactions that were conditionally

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 25, 2021. ; https://doi.org/10.1101/791970doi: bioRxiv preprint 

https://doi.org/10.1101/791970


dependent  because  including  those  condition-dependent  interactions  could  dramatically

introduce noise[14]. This practice to filter out noise to ensure reproducibility  is also of first

most concern in experimental biology, in which biologists normally conduct many experiments

to prove true gene regulation. Here our computational algorithm has systematically revealed

thousands of  reliable regulations in two systems networks. These networks are invaluable

and  provide  a  novel  foundation  to  advance  our  insights  into  cancer  and  human  normal

physiology.
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Figure legends

Figure 1. Gene regulatory networks endogenous in cancers and normal human. A, the

workflow of this study. B-C, Completed gene regulatory network endogenous in normal (B)

and  cancer(C).  The  nodes  (genes)  and  edges  (interactions)  were  grouped  into  5  gene

category sets, including protein (light green), antisense(blue), lincRNA (pink), p_pseudogene

(red), and the rest (other, lightblue). D, an example of sub_network, PTEN interacting with

PTENP1  in  the  cancer  network  directly  extracted  from our  network  database.  E,  overall

distribution of regulators and their targets at normal and cancer. The top 5 most abundant

categories  were  shown.  F,  The  target  distribution  of  three  categorized  noncoding  RNAs,
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antisense, lincRNA, and p-pseudogene, at normal (n_) and cancer (c_). Targets were counted

separately when the three individual noncoding RNAs as regulators.  Self denotes the targets

as self-categorized genes. For example, c_self  antisense represents cancerous antisense

RNAs that were targeted by cancerous antisense RNAs.   

Figure  2.  Network  module  compositions  and  normal  network  centrality.  A,  module

composition differences between normal and cancer network. B, Compositions of top 1000

normal network centrality. C, Top 20 normal centrality. D-E, RPS23 first neighbors in normal

(D) and cancer(E).

Figure 3. Cancer network centrality. A, Compositions of top 1000 cancer network centrality.

B,  proportion  of  inducers  and  repressors  in  top  1000  cancer  network  centrality.  C,

compositions  of   inducers  in  top  cancer  centrality(B).  D,  top  20  cancer  centrality.  E,

ENSG00000250144.1 has more interactions in cancers than normal.  Please note that the

gene symbol was different in the two annotation versions as labeled in the figure and our

database. 

  

Figure 4. Top 300 strongest inducers and repressors at the normal and cancer network.

The composition of strongest inducers and repressors at normal and cancer network (A-D). A,

The top 300 strongest inducers (left) and their targets (right) of normal network. B, the top 300

strongest cancerous inducers and their targets.  C, the top 300 strongest repressors and their

targets at normal. D, The top 300 strongest cancerous repressors and their targets.  Clinic

data of top cancerous inducers(E-F). E, comparison of hazard ratio (HR) between protein, p-

pseudogenes and noncoding RNAs in top 300 strongest inducers in the cancer network built

by this present study. F, HR profiling of top 480 deadliest inducers directly extracted from Cox

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 25, 2021. ; https://doi.org/10.1101/791970doi: bioRxiv preprint 

https://doi.org/10.1101/791970


proportional-hazards model  analysis  of  all  TCGA RNAseq data[16].  P-values (above line)

were calculated by t-test. 

Figure 5. Target distance distribution. A-B, lincRNA regulatory network in normal (A) and

cancer(B). These two networks were grouped by chromosome to show crosstalk between

chromosomes. C-D, target location distribution of top abundant gene categories (>10%) in

normal (C) and cancer (D). OutChro represents targets locating outside chromosome, and M

denotes million bp inside the chromosome. E, the percentage of cognates and non-cognates

targeted by antisense RNAs and pseudogenes at  normal  and cancer.  Non denotes non-

cognate   
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