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6 Visual Computing, Clemson University, Clemson, South Carolina, USA

YThese authors contributed equally to this work.
�These authors also contributed equally to this work.
* nora.castner@uni-tuebingen.de

Abstract

Expert behavior is characterized by rapid information processing abilities, dependent on
more structured schemata in long-term memory designated for their domain-specific
tasks. From this understanding, expertise can effectively reduce cognitive load on a
domain-specific task. However, certain tasks could still evoke different gradations of
load even for an expert, e.g., when having to detect subtle anomalies in dental
radiographs. Our aim was to measure pupil diameter response to anomalies of varying
levels of difficulty in expert and student dentists’ visual examination of panoramic
radiographs. We found that students’ pupil diameter dilated significantly from baseline
compared to experts, but anomaly difficulty had no effect on pupillary response. In
contrast, experts’ pupil diameter responded to varying levels of anomaly difficulty,
where more difficult anomalies evoked greater pupil dilation from baseline. Experts thus
showed proportional pupillary response indicative of increasing cognitive load with
increasingly difficult anomalies, whereas students showed pupillary response indicative
of higher cognitive load for all anomalies when compared to experts.

Introduction 1

Mental imagery is a commonly performed task in many contemporary professions, e.g., 2

radiologists and other medical personnel frequently examine medical radiographs to 3

diagnose and treat patients, airport security scan X-rays of luggage for prohibited items, 4

etc. [1]. In such tasks, expertise is derived from domain knowledge and organized 5

schemata that is optimized for a short period of search. Thus understanding the search 6

process, measuring mental workload, and developing computer-based metrics are of 7

fundamental importance. 8
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Of particular interest is estimation of cognitive load during visual search used in 9

demanding real-world tasks. From a human factors perspective, images with complex 10

features can affect performance, especially in visual search, and so selection of 11

measurement techniques to assess human performance is paramount [2]. One especially 12

important factor in performance is attentional cost, where feature complexity has a 13

measurable effect. It is evaluated by one of four general techniques, namely: image 14

processing, objective (performance) evaluation (e.g., task speed and accuracy), 15

subjective evaluation (e.g., self-reported measures, with the oft-used NASA TLX 16

questionnaire being a good example), and eye tracking, which is our focus, and which 17

can be characterized as a physiological measure [3]. 18

Visual search can be split into two stages: search and verification [2], where 19

verification can further be delineated by decision (target/non-target) and 20

confirmation [4]. It is in the verification stage that we primarily expect to find the 21

decision-making aspect of cognition [5–8]. Consequently, we expect that cognitive load 22

measures will manifest significant responses only during the decision-making aspect of 23

the task, when visual search is complete. Just and Carpenter [4] noted that eye fixation 24

data make it possible to distinguish the three stages of visual performance, although 25

their analysis relied on the relation between fixation duration and angular disparity. In 26

our analysis, we focus on fixations during visual search, disregarding saccades, as the 27

moments when we then compute cognitive load from baseline-related pupil diameter 28

difference measures. Other eye movement measures used in visual search and/or 29

cognitive load measurement may also involve fixation/saccade discrimination [2], or 30

metrics based on pupil diameter or microsaccades. 31

We are particularly interested in examining differences between expert and novice 32

inspectors of dental panoramic radiographs (OPTs), which are information-dense 2D 33

superimpositions of the maxillomandibular region used frequently in all aspects of 34

dental medicine [9]. Due to their heavy reliance on OPTs, dentists undergo professional 35

training and licensing; however, they are still highly susceptible to under-detections and 36

missed information [10–12]. These errors can stem from the technology, e.g. low 37

resolution, high noise, or false positioning, and also interpretation errors [13]. Coupled 38

with concern of patients’ health, accurate interpretation in spite of complex imagery is 39

crucial. Specifically, OPTs have been shown to be less sensitive imagery for certain 40

anomaly types than intraoral(periapical) radiographs, making correct detection more 41

difficult [14,15]. Therefore, less sensitive imagery of an anomaly can evoke higher 42

gradation of difficulty for accurately interpreting it. Expert dentists are more attuned 43

to the gradation of these anomalies and interpret their image areas accordingly. 44

Therefore, further understanding of both expert and novice OPT examination is 45

necessary for effectively improving the training of medical image interpretation. 46

Statement of Contributions 47

To our knowledge, we are the first to apply differentiable pupillometry to the dental 48

imagery visual search domain. Our contribution is two-fold. First, we show that 49

baseline-related pupil difference, as a measure of cognitive load, is sensitive to experts’ 50

processing of anomalies of varying degree of difficulty. Second, we demonstrate 51

methodological use of a multi-eye tracker classroom for collection of novice eye 52

movement data, which can also serve as a future training classroom, e.g., implementing 53

techniques such as Gaze-Augmented Think Aloud [16]. 54

We start by reviewing domain expertise as a precursor to a review of eye-tracking 55

work in visual search with emphasis on estimation of cognitive processes, then focus on 56

metrics based on pupil diameter to estimate cognitive load. 57
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Background Characterizing Expertise 58

Expertise lies in the mind. The theory that expert aptitude develops a more structured 59

long term memory designated for domain-specific tasks [17] offers insight into experts’ 60

faster and more accurate abilities [18]. Long term working memory, proposed by 61

Ericsson and Kintsch [17], offers this explanation for how experts seemingly effortlessly 62

handle their domain-specific tasks. Their memory structuring facilitates their ability to 63

maintain working memory at optimal capacity, avoiding overload, which affects 64

productivity and performance. 65

Expertise and Memory 66

Long-term memory (LTM) manages how we automatically engage in familiar activities 67

without much thought (e.g. riding a bicycle, remembering your childhood phone 68

number). Similarly, expertise is dependent on this capacity. However, the mechanism 69

that effectively accesses domain-specific information in LTM is a distinguishing asset to 70

experts. Generally, working memory is understood as temporary storage for processing 71

readily available information [19] and has two prongs: Short-term and long-term 72

working memory. Where the former relates to structuring available for limited capacity, 73

the latter relates to the structuring available to the larger, long-lasting storage and is of 74

more interest in skill learning [17]. This structuring conceptualization explains why 75

experts intuitively handle their domain specific tasks. For instance, chess players 76

employ memory chunking that enables them to quickly recognize favorable positions 77

and movements with less focus on single pieces [20]. Athletes show faster reaction to 78

attentional cues, especially in interceptive sports, (e.g., basketball), indicating more 79

rapid mental processing [21]. Also, medical professionals have been thought to 80

proficiently employ heuristics in their decision making strategies, i.e., visual search of 81

radiographs [22] or diagnostic reasoning [23,24]. 82

Skill Acquisition and Cognitive Load 83

Developing new skills and the related memory structures for a specific discipline rely 84

heavily on the capacity of working memory. According to Just and Carpenter [25], when 85

the working memory capacity is reached, comprehension is inhibited, leading to negative 86

effects on performance. Effective comprehension then relies on resource allocation [25]. 87

Optimal resource allocation supports rapid convergence to the most appropriate 88

task-solution. Experts can filter out irrelevant information, which is evident in gaze 89

behavior; they focus more on areas relevant to the task solution and less on areas that 90

are irrelevant to the solution [18]. For instance, expert radiologists have more fixations 91

on anomaly prone areas [26–28] and have shorter time to fixation on an anomaly [22,29]. 92

Additionally, when the task becomes too difficult, there is more demand on working 93

memory [30]. Sweller points out that the means-to-an-end problem solving strategies 94

that novices employ can overload working memory [31]. For instance, a student using a 95

trial and error approach to an end goal needs to maintain a history of all their wrong 96

answers so far. Each wrong answer then gets added to the stack, taking up working 97

memory capacity. Cognitive load, or more specifically intrinsic cognitive load [32], is the 98

effect of “heavy use of limited cognitive-processing capability” [31]. For more 99

information, see review by Paas and Ayres [33]. High cognitive load has been shown to 100

have negative effects on performance [30] and effective learning in general [34]. Thus, 101

too high cognitive load can hinder the aspect of learning where the memory structures 102

are developed. 103

Perception of a task as difficult can contribute to higher cognitive load. Although 104

perceived task-difficulty is influenced by acquired knowledge [35], even experts can face 105
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challenging problems that could evoke more load on working memory. It has been found 106

that experts employ more efficient reasoning strategies when accurately evaluating 107

clinical case examinations [36]. However, experts that inaccurately evaluated these 108

examinations also employed reasoning strategies similar to novices [36]. Furthermore, 109

inefficient reasoning strategies were also likely to be elicited in experts in more 110

complicated case examinations [37]. Inefficient reasoning strategies brings back the 111

illustration of the stack in working memory being filled with irrelevant information, 112

exhausting capacity and creating cognitive load. 113

One way to asses levels of cognitive load is the pupillary response [38,39], where 114

pupil size has been shown to increase as a response to memory resources reaching 115

capacity [40,41] as well as when the task becomes too difficult [34,42]. Accordingly, 116

experts have a higher threshold for what is difficult compared to their novice 117

counterparts, which is evident in the pupil response. Therefore, we are interested in 118

expert and novice differences in task difficulty as measured by the pupil diameter. 119

Specifically, expert and novice dentists when interpreting anomalies of varying degree of 120

difficulty in panoramic radiographs. More interesting, our aim is to further understand 121

experts’ perception of difficulty in their domain-specific tasks and whether this affects 122

cognitive load. 123

Eye Movement Behavior Reflective of Cognitive 124

Processes 125

Cognitive processes are evident in the visual search strategy. Generally, visual 126

performance, e.g., during search, has been characterized by metrics derived from the 127

discrimination of fixations and saccades. Fixations are the period when eye movements 128

are relatively still, indicating focus of attention, usually on areas prone to a specific 129

diagnosis [43]. Saccades, the rapid eye movements, are usually made when scanning over 130

irrelevant areas to a specific diagnosis [18]. Kok et al. [44] showed that distinguishable 131

gaze strategies were evident in expert, intermediate, and novice radiologists. Their 132

strategies were affected by top-down (context, knowledge-based) or bottom-up (salient, 133

noticeable images features) aspects of the task. In other words, top-down based gaze 134

behavior can be representative of the cognitive processing during efficient reasoning. 135

Conversely, less efficient reasoning can be linked to bottom-up based gaze behavior, 136

where attention is spread out over areas deemed salient, regardless of if they are relevant 137

to the diagnosis at hand. Additionally, depending on the anomaly, experts employ a 138

mixture of focal and diffusive, or ambient, gaze strategies [44–46]; however, they are 139

more accurate at determining anomalies than novices and intermediates. 140

Beyond gaze strategies based on fixations and saccades, other forms of eye 141

movements that have been used to measure aspects of cognition during visual search 142

include their speed and direction [5], microsaccades [47], pupil diameter oscillation [48], 143

and measures related to pupil diameter itself [49]. Generally, most of these measures 144

concentrating on estimation of cognitive load have produced metrics sensitive to the 145

presence or absence of cognitive load. In this paper, we show that the baseline-related 146

pupil dilation, which has been one of the more consistently reliable measures of 147

cognitive load, can also discriminate varying levels of difficulty in experts’ search of 148

radiograph images. 149

Pupil Diameter as a Measure of Cognitive Load 150

Not only does visual search strategy reflect cognitive processes, but pupil diameter has 151

also been shown to be a robust, non-invasive measurement of cognitive 152

load [34, 38–42,50–55]. Hence, with an increase in task difficulty, the diameter increases, 153
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otherwise known as task-evoked pupillary response. Originally, Kahneman and 154

Beatty [50] linked pupil response to attentional differences. Then, the link between 155

attention and capacity was promoted [42]; where higher load on the working memory 156

showed a larger change in pupil dilation. Additionally, pupillary response has been 157

found to be an indicator of learning [34], where pupil diameter decreased with more 158

experience in a task. This understanding of pupil diameter changes has further been 159

employed as a robust cognitive load classifier [39]. 160

Much of the early research in processing capacity and cognitive load have elicited 161

effects from language or number recall tests [40–42]. However, pupil activity correlates 162

to workload during a variety of other tasks (see review by van der Wel et al. [56]). For 163

instance in visual search tasks, more distractors make the paradigm more difficult, 164

affecting the pupil diameter increase [57]. Furthermore, when asked to recall the 165

amount of objects in the stimuli pupil diameter size increased even more [57]. Backs 166

and Walrath [58] found that monochrome displays evoked longer search time and more 167

pupil dilation than colored displays when performing visual search tasks for both object 168

counting and target finding. 1 Regarding uncertainty during a search task, an increase 169

in pupil diameter was associated with response time and uncertainty of target 170

selection [59]. Although the effects of learning are still apparent, pupil dilation decreases 171

as an effect of training over time [60]. 172

One of the more important takeaways from the visual search literature is the 173

interplay of selective attention, increasing task demand, and the mental effort evoked. 174

Moreover, this understanding is applicable to medical professionals and the cognitive 175

processes involved during diagnostic interpretation of radiographs, where they are 176

highly exposed to varying difficulties of this task and their student counterparts less so, 177

though they are in the process of learning. Over time, students accumulate more 178

experiences and face more challenging tasks, reducing cognitive load. 179

Factors Affecting Pupillary Response 180

Though it is apparent that pupillary response is a product of cognitive load, other 181

factors have been shown to effect pupil size. For example, changes in luminance in the 182

environment result in the physiological response of constriction or dilation [55]. Age 183

difference has also been shown to affect pupil size differences, where overall pupil size in 184

older adults is smaller than younger adults, though variance between subjects in similar 185

age groups is also quite high [51,55]. With these factors in mind, studies on pupil 186

diameter and load recommend a task-to-baseline comparison in luminance controlled 187

environments [34,38–42,50,53,57,59,61]. A model was developed that measures pupil 188

dilation during workload that accounts for light changes, where task-related changes are 189

still measurable giving varying lighting conditions [62]. Other factors known to affect 190

pupillary response can be fatigue [63,64], caffeine or drug consumption [65,66], and 191

emotion or arousal [67]. Therefore, when measuring pupillary response in relation to 192

cognitive load or mental effort in general, these factors should be controlled in order to 193

avoid such confounds. 194

Related Work 195

When measuring both novice and expert physicians’ performance during clinical 196

multiple choice questions,Szulewski et al. [53] found that novices had a larger pupillary 197

response compared to experts. Also, experts’ pupillary response was not affected by 198

question difficulty or accurate response [53]. Thus, for questions related to field of 199

expertise, trained physicians showed more accurate performance and less cognitive load, 200

1They could not rule out luminance differences as a possible confound.
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whereas novices exhibited greater cognitive load, especially for more difficult 201

questions [53]. 202

Further research in laproscopy found that expert surgeons’ pupil diameter increased 203

as a result of increasing task difficulty during laproscopic procedures [68]. While 204

performing hernia repair surgery, Tien et al. [69] found that junior surgeons had larger 205

pupil sizes than experts and that specific tasks also affected their pupillary response as 206

well. This pupil response due to less experience was corroborated by self-report of task 207

load, where experts experienced less mental demand than juniors [69]. For more 208

references highlighting lower pupillary response as an effect of medical expertise (e.g., 209

surgeons, anesthesiologists, physicians), see Szulewski et al. [70]. 210

Regarding specifically medical image interpretation, Brunyé and colleagues [52] 211

evaluated expert physicians viewing digitized breast biopsies with varying levels of 212

difficulty and their resulting case diagnoses. They found pupil diameter increases as an 213

effect of difficulty in diagnostic decision making, moreso for cases that were accurately 214

diagnosed [52]. They attribute their results to experts’ possible perception of case 215

difficulty during an initial analysis. Therefore, pupil diameter can be indicative of the 216

cognitive processes involved in interpreting medical images and can indicate the level of 217

expertise as well as the degree of difficulty. Brunyé et al. [71] further highlight the 218

prospects that pupillary response in combination with gaze behavior has in 219

understanding uncertainty in medical decision making. 220

One of the earlier studies that have specifically focused on dental expertise and OPT 221

interpretation found that the degree of image difficulty (obvious, intermediate, and 222

subtle pathologies) had an effect on the gaze behavior for both experts and 223

students [72]. They found that experts were shorter with their total search time as well 224

as time to identify (first fixation) an anomaly compared to novices. However, experts 225

used more fixations and longer fixation durations on difficult images compared to 226

obvious images. Students showed no differences in how often and how long they looked 227

at obvious images or difficult images [72]. 228

Castner and colleagues [73] also found a possible effect of degree of difficulty and 229

how often an expert dentist glances at an anomaly before he or she physically labels it 230

as such. Where certain anomalies were only glanced at once to be accurately labeled, 231

and others needed to be glanced at multiple times to be accurately labeled. Moreover, 232

gaze behavior is indicative of the expertise and the cognitive processes involved in 233

interpreting medical images. Additionally, the degree of difficulty in accurate pathology 234

detection can affect gaze behavior, which can be indicative of the reasoning strategies 235

used. For this reason, we are interested in further understanding the cognitive processes 236

during visual search of dental radiographs. Mainly we wish to know how the degree of 237

pathology difficulty can interrupt the flow of efficient expert reasoning. 238

With this intention in mind, we looked at expert and novice dentists’ pupillary 239

response while fixating on anomalies of varying difficulty in panoramic radiographs. Not 240

only do these OPTs have multiple anomalies, but also within one OPT, varying 241

difficulties can be present. Therefore, we are not analyzing an overall impression of easy 242

or difficult image. Rather, through the course of the search strategy, we are extracting 243

when they spot an anomaly and extracting the mental processing at that moment. We 244

propose the degree of anomaly interpretation difficulty can be indicated by changes in 245

the pupillary response; where a larger response is more representative of harder to 246

interpret anomalies. We also hypothesize to find a difference in the pupillary response 247

between experts and novices, as established by prior research. However, whether novices 248

are as attuned to anomaly difficulty as their expert counterparts is also of interest to 249

our work. 250
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Materials and Methods 251

Participants 252

Data collection was performed during summer and winter semesters from 2017 to 2019. 253

Students from semesters six through tenth were recorded during an OPT inspection 254

task. Only the sixth semester students were evaluated three times in each period of 255

data collection due to their curriculum requirement of an OPT interpretation training 256

course. We chose to evaluate the sixth semester students after this course 257

(NsixthM3 = 50), since they were more likely to experience cognitive load due to the 258

increase in conceptual knowledge and OPT reading skills from this course. Fig 1 shows 259

the difference in students as well as experts’ pupil diameters over the stimulus duration. 260

The sixth semester students after this training course (“Six M3” in Fig. 4) have higher 261

overall pupil diameter. 262

Fig 1. Pupil diameter overtime for students and experts. The raw smoothed
pupil diameter overtime of all students collected semesters sixth through tenth and
experts. Smoothed raw data is averaged over 1 second bins. The sixth semester
students were measured on three separate occasions: Before, during, and at the end of
their obligatory training course (as indicated by “M” for measurement). Students had
OPT images presented for 90 seconds, whereas experts had the images presented for 45
seconds.

Table 1 details both the student and expert data. Experts (Nexperts = 28) from the 263

University clinic volunteered their expertise for the same task that students performed. 264

Experience was defined as professional years working as a dentist and ranged from 1 to 265

43 years (Myears = 9.88). 50% of experts saw between 11 and 30 patients on a given day 266

and the remainder saw less than 10 patients a day. All experts had the necessary 267

qualifications to practice dentistry and or any other dental related specialty: e.g., 268

Prosthodontics, Orthodontics, Endodontics, etc. Due to technical difficulties, eye 269

tracking data was lost for two participants, leaving Nexperts = 26 participants for the 270

eye tracking analysis. 271

Table 1. Participant Data Overview.

Students 6 M3 Experts
N 50 26

Nglasses 12* 9
OPTs viewed/person 20 15

Poor Tracking Ratio** 14.3% 14.3%

*data regarding glasses for one collection is unknown
**Percentage of poor data quality. Proportion of valid
gaze points less than 80%.

Environment 272

Data collection for students took place in a digital classroom (See Fig. 2) equipped with 273

30 remote eye trackers attached to an HP Z Book Laptop with 17inch fullHD display 274

screen running at full brightness. This special setup allows for data collection of up to 275

30 participants simultaneously, minimizing the overall time needed for collection. It has 276

the added benefit of synchronized instructions, meaning that all 30 participants present 277

in the classroom receive the same verbal instructions before starting the experiment. 278

Another benefit is that the data of all 30 subjects is collected under the homogenous 279
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Fig 2. Impressions from the Digital Classroom. This image shows a typical data
collection session with students in the digital classroom. It is equipped to handle up to
30 students simultaneously. Each desk offers a laptop with an attached eye tracker,
allowing for efficient recording sessions and therefore a large sample size within a short
amount of time.

circumstances: Time of the day, day of the week, specific point in the curriculum, and 280

many other factors that could confound participants’ performance. For this study, 281

verbal instructions were given en masse pertaining to a brief overview of the protocol 282

and an explaination of eye tracking, then individual calibrations were performed with a 283

supervised quality check; students could then run the experiment self-paced. 284

Data collection for the experts took place in the university hospital so the experts 285

could conveniently participate during work hours. There, the room used for data 286

collection was dedicated for radiograph reading. The same model remote eye tracker was 287

used for expert data collection and was run with the same sampling frequency on a Dell 288

Precision m4800 Laptop with 17inch fullHD display screen running at full brightness. 289

More important to the current study, both data collection environments had the 290

room illumination levels controlled2 with no effects from sunlight or other outdoor light. 291

The standard maintained illuminance for experimental sessions was between 10 to 50 292

lux: measured with a lux sensor (Gossen Mavo-Max illuminance sensor, MC 293

Technologies, Hannover, Germany). The American Board of Radiology [75] and the 294

Commission of the European Communities advises that environment illumination 295

during radiograph reading should be ambient for the best viewing practices. Ambient 296

light conditions (25–50 lux) optimize contrast perception in radiographs [76–78]. Too 297

bright of an environment can lead to improper luminance transmission [76] from the 298

images, affecting structure discrimination and even effective detection. Therefore, with 299

room illumination controlled, we can evaluate pupillary response independent of 300

environmental illumination changes. 301

Laptops 302

Regarding the screen display and radiograph reading, Goo et al. [77] found effective 303

radiograph reading was not affected by the luminance of the display. Additionally, 304

laptops displays have been found to provide comparable detection performance to other 305

display types [79–81]. However, display standards detailed by multiple medical and 306

radiology commissions are suggested to optimize image quality [75,82]. For instance, 307

pixel density affects comfortable viewing distances of 30 to 60 cm and a monitor 308

luminance should be at least 200 cd/m2 to 420 cd/m2 [75, 83]3. Both the laptop models 309

used for the experimental sessions abided by the comission standards. HP Z Book 15 310

(for students) has screen brightness averages approx. 300cd/m2 [84]. The Dell Precision 311

m4800 (for experts) averages approx. 380cd/m2 [85]. While the screen luminance was 312

also controlled and followed the standard protocols for viewing radiographs, the exact 313

effect of the screen brightness on the pupillary response is out of the scope of this work; 314

rather the pupillary response dependent on mental load during these reading task is the 315

focus. 316

Eye Tracker 317

The SMI RED250 remote eye tracker is a commercial eye tracker with 250Hz sampling 318

frequency, and used for gaze data collection. The software included with the eye 319

2Illuminance is the amount of light on a given space. Luminance is light reflected off a surface [74].
3Depending on nature of radiograph, e.g. Mammography, CT.
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tracking offers an experiment designer (Experiment Center) and event analysis tool 320

(BeGaze). Since the eye tracker has a high sampling frequency, both stable (fixations) 321

and rapid (saccadic) eye movements for static stimuli can be measured. Analysis was 322

performed on the raw gaze data output from the eyetracker: x and y coordinates with 323

timestamps mapped to the screen dimensions. The raw data points also have pupil 324

diameter output in millimeters4 Although the data is raw and has not been run through 325

event detection algorithms, raw gaze points are labeled as fixation, saccade, or blink. 326

We evaluated gaze data for the left eye. 327

Calibration was performed for all participants. Either a 9- or 13-point5 calibration 328

was performed in order to accurately map their gaze to the stimuli presentation. A 329

validation also was performed as a quality check to measure the gaze deviation for both 330

eyes from a calibration point. Therefore, if a participant’s validation indicated a high 331

deviation– over one degree– from one or multiple calibration points, the participant 332

performed another calibration. Calibrations were performed prior to the experiments as 333

well as one or two times during the experimental session, depending on how many 334

images were presented. 335

Data Collection 336

The experimental protocol for the students consisted of an initial calibration, task 337

instruction, then two image phases: Interpretation and Marking. The details of the 338

experimental protocol are found in Fig. 3. Prior to the interpretation, a two second 339

fixation cross was presented. Then, an OPT was presented in the interpretation phase 340

for 90 seconds and the participant was instructed to only search for areas indicative of 341

any pathologies in need of further intervention. After the exploration phase, he or she 342

continued with the marking phase. In the marking phase, the same OPT from the 343

exploration phase was shown with the instruction to only mark the anomalies found in 344

the exploration phase with an on screen drawing tool. There was unlimited time for the 345

marking phase, and continued with a button click. This procedure was repeated for all 346

OPTs. In total, the participants view 20 OPTs with a short break after the first ten. 347

Fig 3. Outline of Experimental Session. Initially, there was a calibration and
procedural instructions. Then for each image, there is a fixation cross for baseline data,
the exploration phase (45s duration for experts and 90s for students), instructions for
the marking phase, and the marking phase (unlimited time). Students received two sets
of 10 OPTs with a break in between and experts received one set of 15 OPTs with a
break after the first seven.

The diagnostic task for the expert group was highly similar to that of the students. 348

However, it was determined that 90 seconds is too long of a duration for the experts, 349

since much of the previous literature has shown experts are faster at scanning 350

radiographs [18, 22, 27, 28, 72, 87–89]. Therefore, the exploration phase was shortened to 351

a duration of 45 seconds. Additionally, due their busy schedules, experts only viewed 15 352

OPTs, with a short pause after the first seven. 353

Both students and experts were able to move their head during the experiment, 354

although they were instructed to move their head as little as possible. Further details of 355

one of the student data collections can be found in Castner et al. [90] and expert data 356

collections can be found in Castner et al. [73]. 357

4Millimeters extrapolated from pupil height and width dimensions in pixels [86].
5The first data collection of the sixth semester students was done with 13 points. However, the other

data collections were done with 9 points. The sixth semester students and experts analyzed for this
work both performed 9-point calibrations.
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(a) Low Data Quality Example (b) High Data Quality Example

Fig 4. Data Quality Example. This graph shows raw pupil signals of the left and
right eye over the course of image presentation. Red and green dots in the lower part
show when the eye tracker labels the data point as a blink. The particular subject in 4a
had a high tracking ratio (98%) for this image, even though there is the possibility that
many data samples are missing and incorrectly labeled as blinks. The participant in 4b
also has a high tracking ratio, though the data appears to be acceptable with typical
blink durations detected and little signal loss.

Pupil Data 358

Gaze Signal Only gaze data from the interpretation phase was of interest to this 359

work, since gaze data from the marking phase was affected by the use of the screen 360

drawing-tool. Initially, the raw gaze data was examined for signal quality. The eye 361

tracker reports proportion of valid gaze signal to stimulus time as the tracking ratio. 362

Therefore, if a participant’s tracking ratio for an OPT was deemed insufficient–less than 363

80%–we omit his or her data for this OPT. If overall, a participant has poor tracking 364

ratios for the majority of OPTs he or she viewed (i.e. maximum of three images with 365

acceptable tracking ratios), the total gaze data for that participant was removed. This 366

preprocessing stage can assure that errors (e.g. post-calibration shifts, poor signal due 367

to glasses) in the gaze data are substantially minimized. Table 1 gives the distribution 368

of participants and the percent of datasets excluded due to low tracking ratio (Last 369

row): 199 datasets were initially excluded on the grounds of poor quality data. 370

Blink Information The tracking ratio does not take into account when the eye 371

tracker detects a blink. Nevertheless, inaccurately detected blinks created an alarming 372

number of cases with acceptable tracking ratios even though there was an inordinate 373

amount of undetected gaze. Fig. 4b shows an example of a participant’s gaze signal 374

(indicated by the pupil diameter value at a given time) for the left and right eye for a 90 375

second OPT presentation. This participant had a tracking ratio of 98%, but it is 376

apparent that a large portion of the left eye gaze signal– approximately 33.5 seconds– is 377

labeled as a blink by the eye tracker. 378

Upon investigation, standard and simple implementations for blink detection define 379

a minimum duration threshold that detects a blink if there is no gaze signal for this 380

threshold or longer [43]. The minimum blink duration in the current data set is 70 ms, 381

as corroborated by the SMI manual [86] 6. However, it also states that it is not possible 382

for their implementation to distinguish a blink from pupil signal loss [86]. Consequently, 383

the main issue stems from the apparent lack of a maximum blink duration threshold. 384

The question becomes, did the student in Fig. 4a close his or her eye –Pirate style– for 385

almost half of the stimulus, or is this simply a situation where the left eye was not 386

detected for more than half the time? 387

Extra criteria was necessary to further detect and exclude datasets with pupil signal 388

loss mislabeled as a blink. We overestimated the threshold for atypical blink durations, 389

setting this value to 5000 ms, to account for situations where a participant could 390

possibly be rubbing his or her eye/s or possibly even closing the eye shortly. This 391

threshold could then optimally leave an acceptable amount of pupil data for the entire 392

stimulus presentation (90 or 45 seconds). Since baseline data was the two second 393

fixation cross presented directly before each stimulus, we set the threshold blink 394

duration to 500 ms and added an extra criteria of a minimum 200 pupil samples to 395

6In general, other parameters that can further customize blink detections can be pupil diameter
change and velocity [43]
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effectively extract enough samples for an acceptable pupil diameter baseline. Therefore, 396

an initial quality check was low tracking ratio exclusion. Then, the second data quality 397

check removed data sets if blink durations were atypical. These datasets were excluded 398

from the final analysis, leaving 570 datasets from 72 participants (48 students, 24 399

experts). 400

Pupil Diameter Data analysis was done for the left eye. As previously mentioned, 401

the raw gaze signal is divided into the labels blink, fixation, or saccade. Thus, we can 402

determine when the gaze signal is indicative of fixation-like behavior and saccade-like 403

behavior. For further signal processing, we removed gaze coordinates and pupil data for 404

the raw data points labeled as saccades (since visual input is not perceived during rapid 405

eye movements [43]). Data points with a pupil diameter of zero or labeled as a blink 406

were also removed. Additionally, data points 100 ms before and after blinks were 407

removed, due to pupil size distortions from partial eye-lid occlusion. Lastly, the first 408

and last 125 data points in the stimulus presentation were removed due to stimulus 409

flickering. [91–93] The remaining data was smoothed with a third order low-pass 410

Butterworth filter with a 2Hz cutoff as illustrated by the purple data points in Fig. 5. 411

Fig 5. Smoothed Pupil Signal. Raw signal from the left eye (orange) and the
smoothed signal (purple) with a butterworth filter with 2Hz cuttoff.

Pre-Determined Ground Truths 412

The sixth semester students evaluated in this study (M3: post training course) viewed 413

20 OPTs and the experts evaluated viewed 15 of the same OPTs. The OPTs were 414

chosen from the university clinic database by the two expert dentists involved in this 415

research project, and were determined to have no artifacts and technological errors. 416

Both dentists independently examined the OPTs and the patient work-ups and further 417

consolidated together to determine groundtruths for each image. Two OPTS were 418

negative (no anomalies) controls. 419

Anomaly Ground Truths Additionally, the level of difficulty for each anomaly was 420

pre-determined. Fig. 6 shows four OPT images viewed in the experiment. Anomalies 421

are illustrated in green, yellow, and red, and represent easy, medium, and difficult 422

respectively7. For example, the green anomalies in Fig. 6 (A) are dental cyst (1) and 423

insufficient root canal fillings. (2a,b) in Fig. 6 (C) are an example of elongated lower 424

molars due to missing antagonists. The yellow anomalies in Fig. 6 (B) are irregular 425

forms of the madibular condyle (1,3) and (2) is an apical translucency indicative of 426

inflammation due to a contagious (bacterially colonized) root canal filling. The red 427

anomalies in this image are approximal caries (4) and a maxillary sinus mass. Anomalies 428

indicated by the white dashed circles were determined as ambiguous, e.g. the nature of 429

their difficulty and or pathology is unclear. For example, in Fig. 6(B)(7,8) are impacted 430

wisdom teeth, though it is uncertain whether this will become a problem for the patient 431

and therefore is regarded as potentially pathologic. (6) is an apical translucency at the 432

mesial root apex and it is unclear whether it is indicative of an inflammation. Therefore, 433

they were kept in this analysis even though the nature of their difficulty is unclear. 434

Anomaly Maps We created maps for the 15 OPTs evaluated (See Fig. 7) using 435

Matlab 2018. As input, all OPTs were loaded as .png files with their respective 436

7This classification was set up in a blinded review and the consent process of two senior dentists
(6th and 7th authors).
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Fig 6. OPTs with Pre-determined Ground Truth. Example of the OPTs used
in the experiment. Pre-determined ground truths are indicated by the ellipses and their
colors indicate the level of difficulty each anomaly is: Green(least difficult), yellow
(intermediary), red (most difficult) and white (nature of difficulty unclear). Image (D)
is a negative control image with no anomalies.

anomalies– all colored red. Thresholding for red values was performed to automatically 437

get the pixel coordinates of the ellipse edges. Then, the ellipses were filled with the 438

poly2mask() function. Anomalies automatically extracted from this process were 439

double checked for overlapping and had their boundaries corrected. Certain anomalies 440

inside another and that were highly similar in nature, such as (2a,b) in Fig. 6(C), were 441

grouped together as one anomaly. Other anomalies too close together and too different 442

in pathology, such as (3,8) in Fig. 6(C), were excluded from the analysis, due to possible 443

spatial accuracy errors in the gaze. Similarly, anomalies that were denoted by too small 444

of an ellipse were padded to have a larger pixel area,e.g. (4) in Fig. 6(B), to account for 445

an spatial accuracy errors in the gaze. Each segmented anomaly is given a 446

distinguishing integer for its respective pixels. Raw gaze points from the left eye are 447

then mapped to the map and gaze coordinates receive the corresponding integer value. 448

Fig 7. Map of Ground Truths. For image (B) in Fig. 6. Each anomaly is
segmented and given a distinguishing interger. Raw gaze points from the left eye are
then mapped to the map and gaze coordinates receive the corresponding value. These
distinguishing values are further linked to the pre-determined anomaly difficulty in
order to get a count of how many raw gaze hits landed on each anomaly type.

Gaze Mapping to Anomaly 449

For both students and experts, we plotted the raw gaze points that landed in each 450

anomaly and extracted its level of difficulty. For simplicity, we will refer to them as gaze 451

hits. For all hits on an anomaly for a participant, we calculated the median pupil 452

diameter. The median pupil diameter for each anomaly was then subtracted from the 453

respective baseline data for that image. Therefore, the difference from baseline could be 454

indicative of diameter increase (positive value) or diameter decrease (negative value) 455

compared to baseline. 456

With the gaze hits on anomalies of varying difficulties, we can evaluate the pupillary 457

response of both experts and students during anomaly fixations. The pupillary response, 458

as measured by change from baseline, can then provide insight into the mental/cognitive 459

load both groups are undergoing while interpreting the anomalies. 460

Results 461

Overall Change from Baseline 462

Independent of gaze on anomaly behavior, we looked at participants’ median pupil 463

diameter for each image compared to baseline median pupil diameters. We favored the 464

median over the mean, because it has greater robustness towards noise and outliers. 465

Fig. 8 shows the average of the median pupillary response from baseline for both 466

students and experts. Overall, students (M = 0.314, SD = 0.315) had a larger change 467

from baseline than experts (M = 0.057, SD = 0.353 : t(568) = −8.824, p < 0.001). 468
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Fig 8. Median Pupil Change From Baseline. The average pupillary response
from baseline for students (blue bar) and experts (red bar) during visual search of the
whole OPT, regardless of gaze on anomalies. Standard errors for both groups are
indicated by the black lines. Students had significantly larger pupillary response from
baseline while visually inspecting the OPTs.

Gaze on Anomalies 469

To evaluate whether anomaly difficulty had an effect on student and expert pupillary 470

response, we ran a one-way AVOVA for both experts and students. There were no 471

significant effects of anomaly difficulty on student pupillary response 472

(F (3, 930) = 1.33, p = 0.26). However, there were significant effects of anomaly difficulty 473

on expert pupillary response (F (3, 458) = 4.39, p = 0.0046). Experts had small pupil 474

diameter change from baseline (MExpert = 0.246,SDExpert = 0.370) except when gazing 475

at more difficult anomalies. Students had large changes from baseline 476

(MStudent = 0.367, SDStudent = 0.306) for all anomaly difficulties; Fig 9 details this 477

behavior. 478

A 2 × 4 factor ANOVA to test for interactions found significant effects for expertise 479

(F (1, 1388) = 161.68, p < 0.001), anomaly (F (3, 1388) = 3.87, p = 0.009), and the 480

interaction between expertise and anomaly difficulty (F (3, 1388) = 2.76, p = 0.041). 481

Post hoc analysis with Bonferroni correction for anomaly difficulty on the expert data 482

revealed significant differences for the more difficult anomalies (M = 0.246,SD = 0.370) 483

compared to least difficult (M = 0.0514, SD = 0.396, t(207) = −3.0582, p = 0.002) and 484

ambiguous (t(150) = −0.3988, p = −0.044) Meaning, experts had the highest pupil size 485

change from baseline for more difficult anomalies, especially compared to least difficult 486

and ambiguous anomalies, which both had less pupil diameter change from baseline. 487

Fig 9. Median Pupil Change From Baseline for Gaze on Anomalies. The
median pupil diameter change from baseline for students (blue bars) and experts (red
bars) when gazing on anomalies of varying difficulty. Standard errors are indicated in
black. Students had larger pupillary response from baseline compared to experts but
this effect was homogeneous for the differing anomalies. Whereas experts showed a
pupillary response behavior as an effect of increasing difficulty. Though it is unclear as
to the nature of the anomalies pre-defined as ambiguous.

Discussion 488

We measured pupil diameter change from baseline when gazing on anomalies of varying 489

difficulty during visual search of dental panoramic radiographs. We found that the 490

gradation of anomalies in these images had an effect on expert pupillary response. 491

Anomaly gradation did not have an effect on student pupillary response. 492

Students showed larger and more homogenous pupil size change from baseline for all 493

anomaly gradations compared to experts. Thus for students, pupillary response was 494

independent of whether an anomaly was easy or difficult to interpret. This effect was 495

also found during visual inspection of the whole image (Fig. 8). Students showed 496

significantly larger pupillary response than experts, which has been supported by the 497

previous literature [52,53,69–71,94]. This response has also been indicative of higher 498

cognitive load [25,40–42,50,53,92]. For instance, Tien et al. [69] found that novices 499

have more higher memory load compared to an expert performing the same task. This 500

behavior can be likened to students’ lack of conceptual knowledge and experience 501

producing them to “think harder” [95,96] to interpret these images. 502
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The more interesting takeaway from this work is the lack of influence of anomaly 503

gradation on student cognitive processing. One would imagine that even the most 504

pronounced of anomalies would make the recognition process easier. However, the 505

pupillary response indicates that, regardless of how conspicuous, the level of mental 506

workload remains constant. The large pupil size could be reflective of learning during 507

the task, where students are developing the proper memory structures as theorized by 508

Ericsson and Kintsch [17]and Sweller [31]. Additionally, it could reflect that they have 509

not yet developed the conceptual knowledge to quickly recognize the image features 510

indicative the specific anomalies or how to interpret their underlying patholgies. Even 511

for easy anomalies, they may be unsure of whether they accurately interpreted or not. 512

Therefore, pupillary response while focusing on anomalies during visual search of 513

OPTs suggests students employ similary cognitive strategies for differing anomaly 514

gradations. Patel et al. [36] found this similar behavior when novices interpreted clinical 515

case examinations. Furthermore, previous reseearch has found systematic gaze 516

strategies were similary present in students searching medical images [22,28,44]. 517

Systematic search has also been shown to affect larger pupil dilation [97]. Systematic 518

search evokes more load on the working memory, however, this is what the students are 519

generally being trainied to perform, when they first get exposed to these images [89, 98]. 520

Conversely, experts showed a strong pupillary response to anomaly gradation. 521

Where the least difficult to interpret anomalies showed less change from baseline, then 522

the intermediary anomalies, and finally the largest response was for the most difficult 523

anomalies (Fig. 9). Meaning, as the gradation of difficulty increases so does the pupillary 524

response. This behavior, however, was not evident for the ambiguous anomalies, which 525

showed the smallest response change from baseline. This behavior effect may lie in the 526

nature of the uncertainty of these anomalies. As determined by the two experts involved 527

in the project, this category was a mixture of potential areas that may or may not have 528

included an anomaly: Or even an anomaly, but with no cause for alarm. Therfore, it is 529

uncertain how difficult, easy, or even existing these anomalies were. 530

Nevertheless, when expert dentists perform a visual inspection of an OPT, they gaze 531

in many areas that potentially have a multitude of differing pathologies or even 532

positional and summation errors. Depending on the gradation of the area they are 533

focusing on, proper interpretation may need to evoke differing processing strategies. In 534

general, as task difficulty increases, so does the workload [68] and correspondingly, the 535

pupil dilation [30,42,48,99]. Patel et al. [37] found more cognitive load in physicians 536

examining more complicated case examinations. Duchowski et al. [47] also showed 537

increased cognitive load during decision-making of increasingly difficult abstract stimuli, 538

but did so using microsaccade rate. Chi et al. also found that experts can more 539

accurately determine how difficult a problem is [100]. 540

Gaze behavior in expert dentists was also shown to change with difficult images [72]. 541

Castner and colleagues [73] also found that different image types evoked either more or 542

less fixations in order to accurately detect anomalies. The current work went one step 543

further and found changes within the visual search of an OPT in contrast to the overall 544

response to interpretation of such an image. In visual search, employing a top-down 545

strategy means that someone uses his or her acquired knowledge and understanding of 546

the current problem to focus on the relevant aspects of an image to effectively process 547

it [26, 98,98]. Moreover, prior knowledge to a problem has been shown to reduce 548

cognitive load [31,33, 40, 53]. An expert generally knows in what areas of the OPT they 549

are prevalent and how they are illustrated in the image features. Therefore, from these 550

top-down effects, an expert can quickly recognize an image feature as a specific anomaly. 551

In contrast to overall visual inspection, were we found that experts showed low average 552

change from baseline. When inspecting specific areas, pupil dilation fluctuation can be 553

indicative to changes in workload even for experts. Although, experts have a higher 554
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threshold for perceived difficulty than students, it is assumed that they still experience 555

tasks or subtasks they perceive as difficult or can be uncertain about. 556

However, if all anomalies and their pathologies were equally prevalent and salient in 557

OPTs or any other medical image types, experts could effortlessly detect the vast array 558

of issues with 100 percent accuracy. Also in this case, training of accurate detection 559

would increase solely from more exposure. Naturally, interpretation of medical images is 560

not this simple and certain image or pathology features can avert the true diagnosis. 561

Experts are more robust at determining more difficult or subtle 562

anomalies [12,28,72,89,101]. Although harder to detect anomalies evoke behavior 563

indicative of task-difficulty [34,42]. More subtle anomalies evoked behavior that is likely 564

of more thorough inspection. 565

Experts, though reknowned for their streamlined processing abilities, are able to 566

selectively allocate their attention to relevant information and is evident in the pupillary 567

response. However, selective attention coupled with focus on an area perceived as 568

challenging can increase the pupil dilation even further as we found in our investigation. 569

Similar to students, albeit perceived to a lesser extent and only for difficult anomalies, is 570

the effect of uncertainty on the pupil size when looking at these specific image features. 571

Conclusion 572

In short, we found evidence of workload in experts as well as differences between expert 573

and novice workload during visual inspection of dental OPTs. However, it should be 574

noted that there were age differences between the two groups. Due to the sensitivity of 575

the expert demographic data, we did not record their ages; but we can expect them to 576

be older than their student counterparts. Age has been found to have an effect on the 577

average pupil size [51,55]. For this reason, we measured a change from baseline. 578

Additionally, Van Gerven et al. [54] found that pupillary response to workload in older 579

adults is not as pronounced as in younger adults. However, their population was adults 580

in their late sixties and early seventies compared to adults in their early twenties [54]. 581

Though we cannot say exactly how old our expert population was, they were all still 582

working in the clinic and therefore more than likely to be younger than early seventies. 583

Also, their years of experience in the clinic (average of 10 years) suggests they were 584

more middle aged (30 to 45 years old). Further research is needed to better address this 585

limitation control for possible age difference effects on pupillary response. 586

Another limitation to this work could be the technical problem associated with the 587

eye tracker data collection. We removed data sets determined as poor quality; however, 588

spatial resolution errors can accumulate within an experimental session if a participant 589

moves too much. Then, the gaze appears to have a shifted offset, which would affect 590

precision in determining if a participant looked at an anomaly. To control for this error, 591

we increased the areas of smaller ground-truth anomalies and excluded anomalies that 592

were too close and too different in nature. The total gaze hits on each type of anomaly 593

were not evenly distributed, with more gaze hits on easier and intermediary anomalies. 594

Students used more total gaze hits due to longer OPTs persentation time, but the 595

distributions were highly similar to experts. Future research can further untangle the 596

differences in gaze hits on easier and difficult anomalies, while controlling for 597

presentation time differences. 598

Although a majority of expert studies have established that experts are more robust 599

at accurately solving their domain-specific tasks than their student 600

counterparts [17,18,26,102], pupillary response during anomaly inspection in connection 601

to detection performance is also of interest for furture work. It would be interesting to 602

see whether pupil diameter may be indicative of not only anomaly difficulty but also 603

accurate detection of difficult anomalies. 604
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The temporal scanpath information is also an interesting direction for future 605

research, where systematic search in students and its effect on workload and pupillary 606

response. For example, how often do “look backs” on anomaly areas occur and does the 607

pupil dilation increase with each look back. Also, whether easy or more conspicuous 608

anomalies are viewed at first and how the pupillary response in students incorporates 609

this initial information. Following up on the understanding that systematic search 610

produces more memory load as measured by pupil dilation [97], would also be 611

interesting to replicate with temporal information from our findings. 612
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94. Brunyé TT, Gardony AL. Eye tracking measures of uncertainty during
perceptual decision making. International Journal of Psychophysiology.
2017;120:60–68.

95. Ahern S, Beatty J. Pupillary responses during information processing vary with
Scholastic Aptitude Test scores. Science. 1979;205(4412):1289–1292.

96. Verney SP, Granholm E, Marshall SP. Pupillary responses on the visual
backward masking task reflect general cognitive ability. International Journal of
Psychophysiology. 2004;52(1):23–36.

97. Attar N, Schneps MH, Pomplun M. Working memory load predicts visual search
efficiency: Evidence from a novel pupillary response paradigm. Memory &
cognition. 2016;44(7):1038–1049.

98. Kundel HL, Nodine CF, Carmody D. Visual scanning, pattern recognition and
decision-making in pulmonary nodule detection. Investigative radiology.
1978;13(3):175–181.

99. Chen S, Epps J. Using Task-Induced Pupil Diameter and Blink Rate to Infer
Cognitive Load. Human–Computer Interaction. 2014;29(4):390–413.
doi:10.1080/07370024.2014.892428.

100. Chi M, Glaser R, Rees E. Expertise in problem solving: Advances in the
psychology of human intelligence. Hillsdale, NJ: Erlbaum. 1982; p. 1–75.

101. Kundel HL, Nodine CF, Krupinski EA, Mello-Thoms C. Using gaze-tracking
data and mixture distribution analysis to support a holistic model for the
detection of cancers on mammograms. Academic radiology. 2008;15(7):881–886.

102. Kundel HL, Nodine CF, Conant EF, Weinstein SP. Holistic component of image
perception in mammogram interpretation: gaze-tracking study. Radiology.
2007;242(2):396–402.

September 30, 2019 22/23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2019. ; https://doi.org/10.1101/792374doi: bioRxiv preprint 

https://doi.org/10.1101/792374
http://creativecommons.org/licenses/by/4.0/


Supporting information

Table 2. Supplementary Table. Raw Gaze Count on Anomaly.

Anomaly
Type

Less Difficult Intermediate More Difficult Ambiguous

Total 471 448 173 304
Student 312 296 124 202
Expert 159 152 49 102

Supplementary Table. Table of Expert and Student Gaze Counts. shows
the gaze hits on each anomaly type for both students and experts. For both levels of
expertise, the least difficult and intermediate have the most gaze hits. The following are
the ambiguous and the most difficult anomalies. Students had overall more gaze hits
than experts; however, this may be attributed to the 90 second viewing time they had
in comparison to the 45 second viewing time that the experts had.
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