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Reward has a remarkable ability to invigorate motor behaviour, enabling individuals to select11

and execute actions with greater precision and speed. However, if reward is to be exploited12

in applied settings such as rehabilitation, a thorough understanding of its underlying mech-13

anisms is required. Although reward-driven enhancement of movement execution has been14

proposed to occur through enhanced feedback control, an untested alternative is that it is15

driven by increased arm stiffness, an energy-consuming process that increases limb stability.16

First, we demonstrate that during reaching reward improves selection and execution per-17

formance concomitantly without interference. Computational analysis revealed that reward18

led to both an increase in feedback correction during movement and a reduction in mo-19

tor noise near the target. We provide novel evidence that this noise reduction is driven by a20

reward-dependent increase in arm stiffness. Therefore, reward drives multiple error-reduction21

mechanisms which enable individuals to invigorate motor performance without compromising22

accuracy.23

24
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1 Introduction25

Motor control involves two main components that may be individually optimised, action26

selection and action execution (Chen, Holland & Galea, 2018). While the former addresses27

the problem of finding the best action to achieve a goal amongst a subset of actions, the latter28

is concerned with performing the selected action with the greatest precision possible (Chen,29

Holland & Galea, 2018; Shmuelof et al., 2014; Stanley & Krakauer, 2013). Naturally, both30

processes come at a computational cost, meaning the faster an action is selected or executed,31

the more prone it is to errors – a phenomenon formalised as Fitts’ law (Fitts, 1954). This is32

represented in a speed-accuracy function where accuracy decays as speed increases. Because33

speed-accuracy functions are a hallmark of human limitation in motor control, they have34

been regularly used to quantify performance (Reis et al., 2009; Telgen et al., 2014). For35

example, in skill learning, one may see the speed-accuracy function shift so that higher levels36

of accuracy are observed for any given speed (Reis et al., 2009; Telgen et al., 2014).37

Interestingly, both action selection and action execution are highly susceptible to the38

presence of reward. For instance, introducing monetary reward in a sequence learning task39

leads to a reduction in selection errors, as well as a decrease in reaction times, suggesting40

faster computation at no cost to accuracy (Wachter et al., 2009). Similarly, in a saccade task,41

reward reduced participant’s reaction time whilst making them less sensitive to distractors42

(Manohar et al., 2015). It has also been shown that reward invigorates movement execution43

by increasing peak velocity and accuracy during saccades (Manohar et al., 2015; Takikawa et44

al., 2002) and reaching movements (Carroll et al., 2019; Galaro et al., 2019; Summerside et45

al., 2018). Therefore, this body of work suggests that reward can consistently shift the speed-46

accuracy function, at least in isolation, of both selection and execution. It has also been shown47

that in saccades reward can enhance the selection and execution components concomitantly48

(Manohar et al., 2015). However, it is currently unclear whether this generalizes to more49

complex reaching movements. As the use of reward has generated much interest as a potential50
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tool to enhance rehabilitation procedures for clinical populations (Goodman et al., 2014;51

Quattrocchi et al., 2017), it is crucial to determine whether reward can improve the selection52

and execution components of a reaching movement without interference.53

Another open question is how reward mechanistically drives improvements in perform-54

ance. Recent work in eye and reaching movements suggests that reward acts by increasing55

feedback control, enhancing one’s ability to correct for movement error (Carroll et al., 2019;56

Manohar et al., 2019). However, there are far simpler mechanisms which reward could utilize57

to improve execution. For example, the motor system has the ability to control the stiffness58

of its effectors, such as the arm during a reaching task, by employing co-contraction of ant-59

agonist muscles at once (Gribble et al., 2003; Perreault et al., 2002). This increase in arm60

stiffness results in the limb being more stable in the face of perturbations (Franklin et al.,61

2007), and capable of absorbing noise that may arise during the movement itself (Selen et al.,62

2009; Ueyama & Miyashita, 2013), thus reducing error and improving performance (Gribble63

et al., 2003). Yet, it is unclear whether the reward-based improvements in execution are64

related to increased arm stiffness.65

To address these questions, we devised a reaching task in which participants could be66

rewarded with money as a function of their reaction time and movement time. Occasionally,67

distractor targets of a different colour appeared, and participants were told to withhold68

movement until the correct target subsequently appeared, allowing for a selection component69

to be quantified. In a first experiment, we show that reward improves both selection and70

execution concomitantly, and that the presence or absence of reward, rather than reward71

magnitude modulated this effect. In a second experiment, we asked whether punishment72

had a similar effect to reward. We demonstrate that although both reward and punishment73

led to similar effects, action execution, but not action selection, showed a more global, non-74

contingent sensitivity to punishment. Behavioural and computational analysis suggested75

that in addition to an increase in feedback corrections during movement, reward may have76
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improved motor execution through an increase in arm stiffness leading to a decrease in77

motor noise at the end of the movement. In a third and fourth experiment, we tested78

this hypothesis and provide evidence that this reduction in noise is driven by a reward-79

dependent increase in arm stiffness. Therefore, reward not only invigorates motor execution80

performance by increasing the contribution of feedback control, but also protects against81

noise at the peripheral level via an increase in arm stiffness.82

2 Results83

2.1 Reward concomitantly enhances action selection and action84

execution85

Figure 1. Reaching paradigm. A. Participants reached to a series of targets using a robotic
manipulandum. B. The faster participants moved, the more money they made. Speed was the sum
of movement time and reaction time (MTRT) and the function varied based on two parameters τ1
and τ2. The upper and lower plots show how the function varied as a function of τ1 (τ2 fixed at
800ms) and τ2 (τ1 fixed at 400ms), respectively, for a 10p trial. C. Normal trial. Participants
reached at a single target and earned money based on their performance speed. If they were too
slow (MTRT<τ2), a message “Too slow!” appeared instead of the reward information. Transition
times are indicated below for each screen. A uniform distribution was employed for the transition
time jitter. D. Distractor trial. Occasionally, a first target bearing a different colour appeared, and
participants were told to wait for the second, correct target to appear and reach toward the latter.
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Experiment 1 examined the effect of reward on the selection and execution components of86

a reaching movement. Whilst holding a robotic manipulandum, participants (N=30) made87

discrete reaching movements towards 1 of 4 visual targets presented 20cm away from a cent-88

ral start position (figure 1A). To assess the effect of reward value on reaching performance,89

participants were informed of the upcoming trial type prior to movement onset: 0p, 10p and90

50p. For the 10p and 50p trials participants could earn money based on their combined91

reaction time and movement time. The scoring function which translated performance to92

monetary gain was adaptive (figure 1B), factoring in the recent history of movement times93

and reaction times to ensure participants experienced comparable amounts of reward despite94

idiosyncrasies in individual’s reaction times and movement speed (Berret et al., 2018; Reppert95

et al., 2018; Manohar et al., 2015). To assess selection and execution performance concomit-96

antly, we interleaved normal trials and distractor trials. In normal trials, the target’s colour97

matched the starting position colour (figure 1C), while in distractor trials (42% of trials) a98

distractor target bearing a different colour than the starting position appeared prior to the99

correct target (figure 1D). In this case, participants were instructed to withhold their move-100

ment to the distractor and wait until the correct target appeared before making a movement.101

If participants exited the starting position upon appearance of a distractor, the trial was102

considered as “distracted”. While the probability of initiating reaches to a distractor target103

provided a measure of selection accuracy, the associated reaction times provided a selection104

speed, allowing us to define a speed-accuracy function (Fitts, 1954; Hübner & Schlösser, 2010;105

Manohar et al., 2015). For execution, radial error provided a measure of execution accuracy106

while peak velocity during the reach and movement time provided an execution speed, again107

allowing us to define a speed-accuracy function.108

To analyse if speed-accuracy functions were altered by reward, trials for each reward109

value and participant were sorted as a function of their speed (reaction time for selection and110

peak velocity for execution) and divided into 50 quantiles (Manohar et al., 2015). For each111
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Figure 2. Speed-accuracy functions for selection (A) and execution (B) shift as
reward values increase. The functions are obtained by sliding a 30% centile window over 50
quantile-based bins. A. For the selection panel, the count of non-distracted trials and distracted
trials for each bin was obtained, and the ratio (100*non-distracted/total) calculated afterwards.
B. For the execution component, the axes were inverted to match the selection panel in A, i.e. the
upper left corner indicates faster and more accurate performance. See methods section Data
analysis and text for details.

quantile, the average accuracy (percentage of non-distracted trials and radial error) over a112

30% centile window was obtained. Group averages were then obtained for each quantile in113

the speed and accuracy dimension, and results are displayed in figure 2. As expected, reward114

shifted the speed-accuracy functions for both selection and execution, underlining augmented115

motor performance with reward.116

Comparing each variable of interest individually, participants showed a clear and consist-117

ent improvement in selection accuracy in the presence of reward. Specifically, they were less118

likely to be distracted in rewarded trials, though this was independent of reward magnitude119

(repeated-measures ANOVA, F (2) = 15.8, p < 0.001, partial η2 = 0.35, post-hoc 0p vs 10p120

t(29) = −3.34, p = 0.005, d = −0.61; 0p vs 50p t(29) = −5.32, p < 0.001, d = −0.97; 10p vs121

50p t(29) = −2.21, p = 0.07, d = −0.49; figure 3A). However, this did not come at the cost122

of slowed decision-making, as reaction times remained largely similar across reward values; if123

anything, reaction times were slightly shorter if a large reward (50p) was available compared124

to no-reward (0p) trials, though this was not statistically significant (F (2) = 2.35, p = 0.10,125

partial η2 = 0.07; figure 3B-C).126

In addition, reward led to a marked improvement in action execution by increasing peak127
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Figure 3. Reward enhances performance in both selection and execution. For all bar
plots, data was normalised to 0p performance for each individual. Bar height indicates group
mean, dots represent individual values and error bars indicate bootstrapped 95% CIs of the mean.
A. Selection accuracy, as the percentage of trials where participants initiated reaches toward the
correct target instead of the distractor target. B. Mean reaction times. C. Scatterplot of mean
reaction time against selection accuracy. Values are normalised to 0p trials. The coloured lines
indicate the mean value for each condition, and the solid grey lines indicate the origin, that is, 0p
performance. Data distributions are displayed on the sides, with transversal bars indicating the
mean of the distribution. Triangles indicate 50p trials. D. Mean peak velocity during reaches. E.
Mean movement times of reaches. F. Mean radial error at the end of the reach. G. Mean angular
error at the end of the reach. H. Scatterplot showing execution speed (peak velocity) against
execution accuracy (radial error), similar to C.

Figure 3–Figure supplement 1. Non-normalised data for all variables in the reward-magnitude

experiment.

velocity that scaled with reward magnitude, although this was driven by three extreme128

values (F (2) = 43.0, p < 0.001, partial η2 = 0.60, post-hoc 0p vs 10p t(29) = −7.40, p <129

0.001, d = −1.35; 0p vs 50p t(29) = −7.61, p < 0.001, d = −1.39; 10p vs 50p t(29) =130

−3.52, p = 0.003, d = −0.64; figure 3D). Unsurprisingly, movement time also showed a131
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similar effect, that is, mean movement time decreased with reward, though this did not132

scale with reward magnitude (F (2) = 15.3, p < 0.001, partial η2 = 0.35, post-hoc 0p vs 10p133

t(29) = 4.07, p < 0.001, d = 0.74; 0p vs 50p t(29) = 4.99, p < 0.001, d = 0.91; 10p vs 50p134

t(29) = 2.08, p = 0.09, d = 0.38; figure 3E). However, this reward-based improvement in135

speed did not come at the cost of accuracy as radial error (F (2) = 0.15, p = 0.86, partial136

η2 = 0.005) and angular error (F (2) = 1.51, p = 0.23, partial η2 = 0.05) remained unchanged137

(figure 3F-H).138

These results demonstrate that reward enhanced the selection and execution compon-139

ents of a reaching movement simultaneously and without interference. Interestingly, these140

improvements were mainly driven by an increase in accuracy for selection and in speed for141

execution. However, reward magnitude had only a marginal impact on the effect of reward142

itself, as opposed to the presence or absence of reward per se. Consequently, for the remaining143

studies, we used the 0p and 50p trial conditions to assess the impact of reward on reaching144

performance.145

2.2 Punishment has the same effect as reward on selection but a146

non-contingent effect on execution147

Next, we asked if punishment led to the same effect as reward, as previous reports have shown148

that they have dissociable effects on motor performance (Galea et al., 2015; Hamel et al.,149

2018; Song & Smiley-Oyen, 2017; Wachter et al., 2009). A new group of participants (N=30)150

experienced a reward and a punishment block in a counterbalanced order. In the reward151

block, 0p and 50p trials were randomly interleaved. Similar to the previous experiment, on152

50p trials participants received money as a result of fast reaction times and movement times.153

The punishment block consisted of randomly interleaved -0p and -50p trials which indicated154

the maximum amount of money that could be lost on a single trial. At the beginning of this155

block, participants were given £11, and on -50p trials, participants lost money as a result of156
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slow reaction times and movement times.157

Figure 4. Reward and punishment speed-accuracy functions for selection (A) and
execution (B) components. The functions are obtained by sliding a 30% centile window over
50 quantile-based bins. A. For the selection panel, the count of non-distracted trials and
distracted trials for each bin was obtained, and the ratio (100*non-distracted/total) calculated
afterwards. B. For the execution component, the axes were inverted to match the selection panel
in A, i.e. the upper left corner indicate faster and more accurate performance. See methods
section Data analysis and text for details.

First, we obtained speed-accuracy functions for the selection and execution components158

in the same way as for experiment 1 (figure 4). While punishment had a similar effect on159

selection (Figure 4A), it produced dissociable effects on execution (Figure 4B). Specifically,160

while peak velocity increased with punishment similarly to reward, it was accompanied by161

an increase in radial error. Although this could suggest that punishment does not cause a162

change in the speed-accuracy function relative to its own baseline (-0p) trials, a clear shift163

in the speed-accuracy function could be seen between the baseline trials of the reward and164

punishment conditions (Figure 4B). Therefore, relative to reward, a punishment context165

appeared to have a non-contingent beneficial effect on motor execution.166

To examine these results further, we fitted a mixed-effect linear model DV ∼ 1 + RP +167

value + RP : value + (1|participant) that included individual intercepts and an interaction168

term, where DV is the dependent variable considered, RP indicated whether the context169

was reward or punishment (i.e. reward block or punishment block) and value indicated170

whether the trial is a baseline trial bearing no value (0p and -0p) or a rewarded/punished trial171

bearing high value (50p and -50p). as in experiment 1, value improved selection accuracy172
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Figure 5. Reward and punishment have a similar effect on selection, but not on
execution. For all bar plots, data was normalised to baseline performance (0p or -0p) for each
individual. Bar height indicates group mean, dots represent individual values and error bars
indicate bootstrapped 95% CIs of the mean. A. Selection accuracy. B. Mean reaction times for
each participant. C. Scatterplot of mean reaction time against selection accuracy. Values are
normalised to 0p trials. The coloured lines indicate mean values for each condition, and the solid
grey lines indicate the origin, that is, 0p performance. Data distributions are displayed on the
sides, with transversal bars indicating the mean of the distribution. Squares and triangles indicate
+50p and (-0p)-0p trials, respectively. D. Mean peak velocity. E. Movement times. F. For radial
error, punishment did not protect against an increase in error, while reward did. However, a
difference can be observed between the baselines (blue bar). G. Angular error. H. Scatterplot
showing execution speed (peak velocity) against execution accuracy (radial error), similar to C.

Figure 5–Figure supplement 1. Non-normalised data for all variables in the reward-punishment

experiment.

Figure 5–Figure supplement 2. Amount of monetary gains and losses in the reward-punishment

experiment. Participants earned on average the same amount of money in the rewarded block as

they lost during the punishment block (see section Experimental design for details).

(β = 9.72, CI = [4.51, 14.9], t(116) = 3.70, p < 0.001; figure 5A) without any effect on173

reaction times (β = −0.007, CI = [−0.015, 0.002], t(116) = −1.53, p = 0.13; figure 5B,C) and174

increased peak velocity and decreased movement time (main effect of value on peak velocity175

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/792598doi: bioRxiv preprint 

https://doi.org/10.1101/792598
http://creativecommons.org/licenses/by/4.0/


β = 0.096, CI = [0.045, 0.147], t(116) = 3.76, p < 0.001; on movement time β = −0.02, CI176

= [−0.033,−0.007], t(116) = −3.15, p = 0.002; figure 5D,E) at no accuracy cost (radial error177

β = −0.085, CI = [−0.001, 0.171], t(116) = 1.96, p = 0.052; angular error β = 0.081, CI178

= [−0.027, 0.189], t(116) = 1.49, p = 0.14; figure 5F-H), therefore replicating the findings179

from experiment 1. Importantly, context (reward vs. punishment) did not alter these effects180

on selection accuracy (main effect of block β = −1.94, CI = [−7.15, 3.26], t(116) = −0.74, p =181

0.46; interaction β = −0.97, CI = [−8.34, 6.39], t(116) = −0.26, p = 0.79; figure 5A), reaction182

times (main effect of block β = −0.003, CI = [−0.006, 0.011], t(116) = −0.66, p = 0.51;183

interaction β = −0.002, CI = [−0.014, 0.010], t(116) = −0.38, p = 0.70; figure 5B) or peak184

velocity (main effect of block β = −0.015, CI = [−0.066, 0.036], t(116) = −0.59, p = 0.56;185

interaction β = −0.024, CI = [−0.047, 0.096], t(116) = −0.67, p = 0.50; figure 5D). Finally,186

in line with the observed speed-accuracy functions, punishment context did affect radial187

accuracy, with accuracy increasing compared to the rewarding context (main effect of block,188

β = 0.10, CI = [0.019, 0.19], t(116) = 2.42, p = 0.017; figure 5F), although no interaction was189

observed (β = −0.07, CI = [−0.19, 0.05], t(116) = −1.16, p = 0.25). This can be directly190

observed when comparing baseline values, as radial error in the -0p condition was on average191

smaller than in the 0p condition (figure 5F, pink plot).192

2.3 Reward reduces execution error through increased feedback193

correction and late noise resistance194

How do reward and punishment lead to these improvements in motor performance? In195

saccades, it has been suggested that reward increases feedback control, allowing for more196

accurate end-point performance. To test for this possibility, we performed the same time-197

time correlation analysis as described in Manohar et al. (2019). Specifically, we assessed how198

much the set of positions at time t across all trials correlated with the set of positions at any199

other time t±n, e.g. t+1 or t−5. If movements are stereotyped across trials, this correlation200
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Figure 6. Time-time correlation maps show that monetary reward and punishment
have a biphasic effect on the reach timecourse. A-C. Time-time correlation maps for all
trial types (0p, 10p 50p) in Experiment 1. Colours represent Fisher-transformed Pearson
correlation values. For each map, the lower left and upper right corners represent the start and
the end of the reaching movement, respectively. Note that the colour maps are non-linear to
enhance readability. D-G. Time-time correlation maps for all trial types (0p,50p,-0p,-50p) in
Experiment 2. H-I. Comparison of fisher-transformed correlation maps with the respective
baseline map (A) for Experiment 1. Clusters of significance after cluster-wise correction for
multiple comparisons are indicated by a solid black line. J-L. Similar comparisons for Experiment
2, with each condition’s respective baseline (D and F). M. Similar comparison when pooling all
contrasts except the baselines contrasts together.

will be high because the early position will provide a large amount of information about the201

later or earlier position. On the other hand, if trajectories are variable over time within a trial,202

the correlation will decrease because there will be no consistency in the evolution of position203

over time. Importantly, the latter occurs with high online feedback because corrections are204

not stereotyped, but rather dependent on the random error on a given trial (Manohar et al.,205

2019). If the same mechanism is at play during reaching movements as in saccades, a similar206
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decrease in time-time correlations should be observed.207

All timepoints correlations were performed by comparing position over trials by centiles,208

leading to 100 timepoints along the trajectory (figure 6A-G). Across experiments 1 and 2,209

we observed an increase in time-time correlation in the late part of movement both with210

reward and punishment (figure 6H-K), although this did not reach significance in the 50p-0p211

condition of the second experiment (figure 6J) and was only marginally significant in the212

10p-0p condition (figure 6H). In contrast, the early to middle part of movement showed a213

clear decorrelation that was significant in three conditions but not in the 50p-0p condition214

of the first experiment. Surprisingly, no difference was observed when comparing baseline215

trials from experiment 2 (figure 6L), which is at odds with the behavioural observations216

that radial error was reduced in the -0p condition compared to 0p (figure 5F). Overall,217

although quantitative differences are observed across cohorts, their underlying features are218

qualitatively similar (with the exception of the baselines contrast; figure 6L), displaying a219

decrease in correlation during movement followed by an increase in correlation at the end of220

movement. This suggests that a common mechanism may take place. To assess the global221

trend across cohorts, we pooled all cohorts together a posteriori, and indeed observed a weak222

early decorrelation, followed by a strong increase in correlation late in the movement (figure223

6M). Interestingly, this consistent biphasic pattern across conditions and experiments is the224

opposite to the one observed in saccades (Manohar et al., 2019). Therefore, this analysis225

would suggest that reward/punishment causes a decrease in feedback control during the late226

part of reaching movements. However, a reduction in feedback control should result in a227

decrease in accuracy which was not observed in our data. A more likely possibility is that228

another mechanism is being implemented that enables movements to be performed with229

enhanced precision under reward and punishment.230

One possible candidate is muscle co-contraction. By simultaneously contracting agonist231

and antagonist muscles around a given joint, the nervous system is able to regulate the232
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stiffness of that joint. Although this is an extremely energy inefficient mechanism, it has233

been repeatedly shown that it is very effective at improving arm stability in the face of234

unstable environments such as force fields (Franklin et al., 2003). Critically, it is also capable235

of dampening noise (Selen et al., 2009), which arises with faster reaching movements, and236

therefore enables more accurate performance (Todorov, 2005). Therefore, it is possible that237

increased arm stiffness could, at least partially, underlie the effects of reward and punishment238

on motor performance.239

2.4 Simulation of time-time correlation maps with a simplified dy-240

namical system241

To assess if the correlation maps we observed are in line with this interpretation, we performed242

simulations using a simplified control system (Manohar et al., 2019) and evaluated how it243

responded to hypothesised manipulations of the control system. Let us represent the reach244

as a discretised dynamical system (Todorov, 2004):245

xt+1 = α · xt + β · ut +N (µ, σ) (1)

The state of the system at time t is represented as xt, the motor command as ut, and246

the system is susceptible to a random gaussian process with mean µ = 0 and variance247

σ = 1. α and β represent the environment dynamics and control parameter, respectively.248

For simplicity, we initially assume that α = 1, β = 0 and that x0 = 0. Therefore, any249

deviation from 0 is solely due to the noise term that contaminates the system at every time250

step.251

We performed 1000 simulations, each including 1000 timesteps, and show the time-time252

correlation maps of the different controllers under consideration. First, we assume that no253

feedback has taken place (β = 0, equation 1). The system is therefore only driven by the noise254
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Figure 7. Simulations of time-time correlation map behaviour under different models
of the reward- and punishment-based effects on motor execution. A,D. Time-time
correlation maps of both control models. Colours represent Fisher-transformed Pearson correlation
values. For each map, the lower left and upper right corners represent the start and the end of the
reaching movement, respectively. B,E,G,I,K. Time-time correlation maps of plausible alternative
models. C,F,H,J,L. Comparison of models with their respective baseline models.

Figure 7–Figure supplement 1. Simulations with a bell-shaped noise term to introduce signal-

dependent noise.

Figure 7–Figure supplement 2. Simulations with feedback delay of 400 timesteps.

term (figure 7A). The controller can reduce the amount of noise, e.g. through an increase255

in stiffness (Selen et al., 2009). This can be represented as xt+1 = xt + γ · N (µ, σ) with256

γ = 0.5. However, this would not alter the correlation map (figure 7B-C) as was previously257

shown (Manohar et al., 2019) because the noise reduction occurs uniformly over time. Now,258

if a feedback term is introduced with β = −0.002 and ut = xt, the system includes a control259

term that will counter the noise and becomes:260

xt+1 = xt − 0.002 · xt +N (µ, σ) (2)
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With such a corrective feedback term, the goal of the system becomes to maintain the state261

at 0 for the duration of the simulation. This is equivalent to assuming that x represents error262

over time and the controller has perfect knowledge of the optimal movement to be performed.263

Higher feedback control (β = −0.003) would reduce errors even further. Comparing this264

high feedback model with the low feedback model (equation 2; figure 7D-E), we see that the265

contrast (figure 7F) shows a reduction in time-time correlations similar to what is observed266

in the late part of saccades (Manohar et al., 2019) and in the early part of arm reaches in267

our dataset (figure 6H-K). Since our dataset displays a biphasic correlation map, it is likely268

that two phenomena occur at different timepoints during the reach. To simulate this, we269

altered the original model by including a sigmoidal step function S(t) that is inactive early270

on (S0 = 0) and becomes active (Stf = 1) during the late part of the reach (see section Model271

simulations for details). This leads to two possible mechanisms, namely, a late increase in272

feedback or a late reduction in noise:273

xt+1 = xt + (−0.002 + β · St+1) · xt +N (µ, σ) β = −0.001 (3)

274

xt+1 = xt − 0.002 · xt + (1 + γ · St+1) · N (µ, σ) γ = −0.5 (4)

The results show that a late increase in feedback causes decorrelation at the end of movement275

(equation 3; figure 7G-H), which is the opposite of what we observe in our results. How-276

ever, similar to our behavioural results, a late reduction in noise causes an increase in the277

correlation values at the end of movement (equation 4; figure 7I-J). Therefore, our results278

(figure 6H-K) appear to be qualitatively similar to a combined model in which reward and279

punishment cause a global increase in feedback control and a late reduction in noise (equation280

5; figure 7K-L):281

xt+1 = xt − 0.003 · xt + (1− 0.5 · St+1) · N (µ, σ) (5)
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The simulations displayed here incorrectly assume that the noise term remains the same282

throughout the reach (Shadmehr & Krakauer, 2008; Todorov, 2004) and that feedback can283

account for errors from one timestep to the next, that is nearly immediately (Bhushan &284

Shadmehr, 1999). To explore if these features would alter our observations, we simulated two285

alternative sets of models. A first set included a bell-shaped noise term similar to a reach286

with signal-dependent noise under minimum jerk conditions (figure 7 supplement 1), and a287

second set included a delay of 400 timesteps in the feedback response (figure 7 supplement288

2). Both sets of simulation produced results similar to those observed in the original set of289

models.290

2.5 Quantitative model comparison291

To formally test which candidate model best describes our empirical observations, we fitted292

each of them to the experimental datasets. Each of the five empirical conditions displayed293

in figure 6H-L was kept separate, each condition representing a cohort, and their fit assessed294

separately. While individually fitted models present several advantages over group-level ana-295

lysis, it has been argued that the most reliable approach to determine the best-fit model is to296

assess its performance both on individual and group data and compare the outcomes (Cohen297

et al., 2008; Lewandowsky & Farrell, 2011) and we will therefore follow this approach. We298

included six candidate models in our analysis: noise reduction (one free parameter γ; figure299

7C), increased feedback (one parameter β; figure 7E), late feedback (one parameter β; figure300

7H), late noise reduction (one parameter γ; figure 7J), increased feedback with late noise301

reduction (two parameters β and γ; figure 7L) and an additional model with noise reduction302

and a late increase in feedback control (two parameters β and γ).303

Individual-level analysis resulted in the increased feedback with late noise reduction model304

being selected by a strong majority of participants for each cohort (cohort 1-5: χ2 = [97.6,305

76.8, 74.4, 116.8, 83.2], all p < 0.001, figure 8A), confirming qualitative predictions. The306
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Figure 8. Model comparisons for individual fits. A. Proportion of participants whose
winning model was the one considered (light gray) against all other models (dark gray) for every
cohort. B. Individual and mean BIC values for each participant and each model. Lower BIC
values indicate a better fit. Dots indicate individual BICs, the black dot indicates the group mean
and the error bars indicate the bootstrapped 95% CIs of the mean. BIC: Bayesian information
criterion.

best-fit model for each participant was defined as the model bearing the lowest Bayesian307

information critetion (BIC; figure 8B). This allowed us to account for each model’s complexity,308

because the BIC penalises models with more free parameters. Of note, the “baselines” cohort309

displayed the highest BIC for all models considered. However, this should not be surprising,310

considering that this cohort is the only one that showed no significant trend in its contrast311

map (figure 6L). To confirm that the selected model is indeed the most parsimonious choice,312

we compared the individual-level outcome to a group-level outcome. Each candidate model313

was fit to all individual correlation maps at once, thereby allowing for each free parameter314

to take a single value per cohort. This is equivalent to assuming that the parameters are not315

random but rather fixed effects, allowing us to observe the population-level trend with higher316

certainty, though at the cost of ignoring its variability (Cohen et al., 2008; Lewandowsky &317
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Figure 9. Model comparisons for group-level fits. A. residuals sum of squares for each
model and cohort. Darker colours indicate lower values. B. Same as A for BIC. fb: feedback; noise
red.: noise reduction; BIC: Bayesian information criterion.

Farrell, 2011). Again, for every cohort except the baseline cohort, the model with lowest318

residuals sum of squares (figure 9A) and lowest BIC (figure 9B) was the increased feedback319

with late noise reduction model – though the increased feedback model BIC was marginally320

lower for the large-reward cohort (ΔBIC= 4) and therefore was a similarly good fit. Finally,321

fitting all non-baseline cohorts yielded the same result.322

Comparing group-level and invidividual-level model comparisons, we observe that the323

same model is consistently selected across all experimental cohorts besides the baselines co-324

hort, corroborating the hypothesis that late noise reduction occurs alongside a global increase325

in feedback control in the presence of reward or punishment. One way to increase noise res-326

istance during a motor task is by increasing joint stiffness, a possibility that we test in the327

following experiment.328

2.6 The effect of reward on end-point stiffness at the end of the329

reaching movement330

Next, we experimentally tested whether the reduction in noise observed in the late part of331

reward trials is associated with an increase in stiffness. For simplicity, we focused on the332
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Figure 10. Reward increases stiffness at the end of movement. A. Individual (top) and
mean (down) stiffness ellipses. Shaded areas around the ellipses represent bootstrapped 95% CIs.
Right and left ellipses represent individual ellipses for the right and left target, respectively. B.
Ellipses area normalised to 0p trials. Error bars represent bootstrapped 95% CIs. C.
Non-normalised area values are also provided to illustrate the difference in absolute area as a
function of target (L: left target, R: right target). D. Ellipse shapes normalised to 0p trials.
Shapes are defined as the ratio of short to long diameter of the ellipse. E. Ellipse orientation
normalised to 0p trials. Orientation is defined as the angle of the ellipse’s long diameter. F. Peak
velocity normalised to 0p trials. Peak velocity increased with reward. G. Stiffness matrix elements
for 50p trials normalised to the stiffness matrix for 0p trials.

Figure 10–Figure supplement 1. Displacement profile at the end of the reaching move-

ment. A. Schematic of the displacement. At the end of the movement, when velocity decreased

behind a threshold of 0.3 m/s, a displacement occasionally occurred in one of 8 possible directions.

Each direction is represented by a colour. B. Average displacement profile over time for the first

participant on the right-hand side target. The upper and lower rows represent variables in the x and

y dimension, respectively. The two vertical black solid lines demark the limit between the ramp-up

and plateau, and plateau and ramp-down phase. Values for each variable were taken as the average

over time during the 140-200ms window (grey area), where the displacement is clamped and most

stable.

Figure 10–Figure supplement 2. Mixed-effect model for stiffness area at the end of the

reaching movement.

Figure 10–Figure supplement 3. Mixed-effect model for stiffness Ky component at the

end of the reaching movement.

reward context only from this point. We recruited another set of participants (N=30) to333

reach towards a single target 20cm away from a central starting position in 0p and 50p con-334

ditions, and employed a well-established experimental approach to measure stiffness (Burdet335

et al., 2000; Selen et al., 2009). Specifically, during occasional “catch” trials (31% trials336
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pseudorandomly interspersed) a fixed-length (8mm) displacement was applied to the robotic337

manipulandum immediately as participants stopped within the target. Because displace-338

ments of this amplitude were noticeable, participants were instructed to ignore them and339

not react, and we employed a low proportion of catch trials to reduce anticipation. The340

displacements were in 8 possible directions arrayed radially around the target (figure 10 sup-341

plement 1A). This displacement was transient, with a ramp-up, a plateau, and a ramp-down342

phase back to the original end-position. As the position was clamped during the plateau343

phase, velocity and acceleration were on average null, removing any influence of viscosity344

and inertia. Therefore, the amount of force required to maintain the displacement during345

plateau was linearly proportional to end-point stiffness of the arm (Perreault et al., 2002).346

The displacement profile of a participant is presented in figure 10 supplement 1B. Using a347

linear regression approach to fit the average recorded force during the plateau (grey area348

in figure 10 supplement 1B) against the displacement direction, we obtained the end-point349

stiffness matrices for all participants and all reward values. Stiffness matrices could then be350

visualised by plotting ellipses using the following equation:351

 x
y

 = K ·

cos t

sin t

 0 6 t 6 2π K =

Kxx Kxy

Kxy Kyy

 (6)

Because arm stiffness is strongly dependent on arm configuration, stiffness ellipses are352

usually oriented, with a long axis indicating a direction of higher stiffness (figure 10). This353

orientation is influenced by several factors, including position in Cartesian space (Mussa-354

Ivaldi et al., 1985). If reward affects stiffness as we hypothesised, the possibility that this355

effect is dependent on a target location must therefore be considered. To account for this,356

two groups of participants (N=15 per group) reached for a target 45° to the right or the left357

of the starting position.358

To quantify the global amount of stiffness, we compared the ellipse area across conditions359
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(figure 10A-C). In line with our hypothesis, the area substantially increased in rewarded360

trials compared to non-rewarded trials (figure 10A,B). This effect of reward was very con-361

sistent across both target positions (figure 10B), even though absolute stiffness was globally362

higher for the left target (figure 10C). On the other hand, other ellipse characteristics, such363

as shape and orientation (figure 10D,E) showed less sensitivity to reward. However, since364

reward also increased average velocity (figure 10F), in line with our previous results, perhaps365

this increase in stiffness is a response to higher velocity rather than reward. To avoid this366

confound, we fitted a mixed-effect linear model, allowing for individual intercepts and target367

position intercept, where variance in area could be explained both by reward and velocity:368

area ∼ 1 + reward + peak velocity + (1|participant) + (1|target). As expected, reward –369

but not peak velocity – could explain the variance in ellipse area (peak velocity: p = 0.31;370

reward: p < 0.001; table in figure 10 supplement 2), confirming that the presence of reward371

results in higher global stiffness at the end of the movement. In contrast, fitting a model with372

the same explanatory variables to the Ky component of the stiffness matrices, which showed373

the greatest sensitivity to reward compared to the other components (figure 10G) revealed374

that not only reward (p < 0.001, Bonferroni corrected) but also peak velocity (p=0.016,375

Bonferroni-corrected; table in figure 10 supplement 3) explained the observed variance376

(model: Ky ∼ 1 + reward+ peak velocity+ (1|participant) + (1|target)). In comparison, no377

significant effects were found to relate to the Kx component (reward: p = 0.14, peak velocity:378

p = 1, Bonferroni-corrected; Kx ∼ 1+reward+peak velocity+(1|participant)+(1|target)).379

Because interactions with nested elements cannot be compared directly using a mixed-380

effect linear model (Schielzeth & Nakagawa, 2013; Zuur et al., 2010; Harrison et al., 2018),381

we employed a repeated-measure ANOVA to compare the interaction between reward and382

target on stiffness. No interaction between reward and target location were observed on area383

(F (1) = 0.069, p = 0.79, partial η2 < 0.001; figure 10A,C).384

We conclude that end-point stiffness is sensitive to both reward and velocity. However, the385
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Figure 11. Reward does not alter stiffness at the start of movement. Individual (top)
and mean (down) stiffness ellipses. Shaded areas around the ellipses represent bootstrapped 95%
CIs. Right and left ellipses represent individual ellipses for the right and left target, respectively.
B. Ellipses area normalised to 0p trials. Error bars represent bootstrapped 95% CIs. C. Stiffness
matrix elements for 50p trials normalised to the stiffness matrix for 0p trials. D. Peak velocity
normalised to 0p trials. E. Ellipse shapes normalised to 0p trials. Shapes are defined as the ratio
of short to long diameter of the ellipse. F. Ellipse orientation normalised to 0p trials. Orientation
is defined as the angle of the ellipse’s long diameter.

Figure 11–Figure supplement 1. Displacement profile at the start of the reaching

movement. A. Schematic of the displacement. At the start of the movement, a displacement

occasionally occurred in one of 8 possible directions. Each direction is represented by a colour. B.

Average displacement profile over time for the first participant. The upper and lower rows represent

variables in the x and y dimension, respectively. The two vertical black solid lines demark the limit

between the ramp-up and plateau, and plateau and ramp-down phase. Values for each variable were

taken as the average over time during the 140-200ms window (grey area), where the displacement

is clamped and most stable.

Figure 11–Figure supplement 2. Mixed-effect model for stiffness area at the start of

the movement.

Figure 11–Figure supplement 3. Mixed-effect model for stiffness Ky component at the

start of the movement.

velocity-driven increase in stiffness is specific to the dimension that this velocity is directed386

toward, while the reward-driven increase in stiffness is non-directional, at least in our task.387

This is likely because our task does not distinguish direction of error (i.e. error in the y388

dimension is not more punishing than in the x dimension) and so error must be reduced in389

all dimensions (Selen et al., 2009).390
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2.7 Reward does not alter end-point stiffness at the start of the391

movement392

Finally, the time-time correlation maps also suggest that the increase in stiffness should393

only occur at the end of the reaching movement, since the early and middle parts show an394

opposite effect (decorrelation). Therefore, an increase in end-point stiffness should not be395

present immediately before the reach. To test this, participants (N=20) reached to 2 targets396

positioned 20cm away and 45° to the left and right of the starting position. On occasional397

catch trials (31% trials), a displacement akin to the previous experiment occurred in one of398

8 possible directions at the time normally corresponding to target onset but after the reward399

information had been displayed (figure 11 supplement 1). Because participants voluntarily400

moved into the starting position after it appeared, they had sufficient time to process the401

reward information. Unlike the previous experiment, reward and velocity in the subsequent402

reach had no impact on stiffness, either by area (reward: p = 0.35; peak velocity: p = 0.75,403

table in figure 11 supplement 2) or by the matrix component Ky (reward: p = 0.19; peak404

velocity: p = 0.45, table in figure 11 supplement 3), corroborating our interpretation of the405

correlation map (figure 11).406

3 Discussion407

In this study, we demonstrated that reward has the ability to simultaneously improve the408

selection and execution components of a reaching movement. Specifically, reward promoted409

the selection of the correct action in the presence of distractors, whilst also improving exe-410

cution through increased speed and maintenance of accuracy. These results led to a shift in411

the speed-accuracy functions for both selection and execution. In addition, punishment had412

a similar impact on action selection and execution, although its impact was non-contingent413

for execution, in that it enhanced performance across all trials within a block, irrespective of414
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the value of the current trial. Computational analysis revealed that the effect of reward on415

execution involved a combination of increased feedback control and noise reduction, which416

we then showed was due to an increase in arm stiffness at the end of the reaching movement417

– but not at the start of the movement. Overall, we confirm previous observations that418

feedback control increases with reward and offer a new error-managing mechanism that the419

control system employs under reward: regulation of arm stiffness.420

Our results add to the previous literature arguing that reward increases execution speed421

in reaching (Chen, Holland & Galea, 2018; Pasquereau et al., 2007; Summerside et al., 2018)422

and saccades (Manohar et al., 2019, 2015; Takikawa et al., 2002). However, our results423

deviate from several reports in some respects. First, in a serial reaction time study, it was424

demonstrated that reward and punishment both reduced reaction times in humans (Wachter425

et al., 2009), while reaction times are not significantly altered by reward and punishment426

in our study. However, serial reaction time tasks strongly emphasise reaction times as a427

measure of learning independently of other variables, and interestingly, the authors show428

that punishment also led to a non-contingent effect on performance, while reward did not,429

similar to our results. A possible interpretation is that the motor system presents a similar430

bias to punishment to what is regularly reported in prospect theory and decision-making431

literature (??) – a phenomenon dubbed “loss aversion”. Next, radial accuracy has been432

shown to improve with reward, both in monkeys (Kojima & Soetedjo, 2017; Takikawa et al.,433

2002) and humans (Manohar et al., 2019, 2015), but these studies all focused on saccadic434

eye movements. In contrast, one reported case in a reaching task showed improvements in435

angular accuracy (Summerside et al., 2018). However, accuracy requirements in their no-436

reward condition were minimal, possibly allowing for larger improvements to be expressed437

compared to our task, and potentially explaining why we did not observe similar improvement438

in radial or angular accuracy. Finally, while other studies have shown that speed-accuracy439

functions can shift with practice (Reis et al., 2009; Telgen et al., 2014), it is noteworthy440
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that reward has a capacity to do so in what seems a nearly instantaneous time-scale, that441

is, from one trial to the next. Indeed, trials bearing different reward values were randomly442

intertwined in our study, meaning that this shift occurs within one trial. In contrast, the443

shift in speed-accuracy function observed with motor learning can take hours or even days444

to occur (Telgen et al., 2014).445

3.1 Implications of increased stiffness with reward446

While it is well established that stiffness has a beneficial effect on motor performance, our447

work provides the first set of evidence that this mechanism is employed in a rewarding context.448

Stiffness itself could be regulated through a change in co-contraction of antagonist muscles,449

which is a simple but costly method to increase stiffness and enhance performance against450

noise (Gribble et al., 2003; Selen et al., 2009; Ueyama & Miyashita, 2013; Ueyama et al.,451

2011). The presence of reward may make such cost “worthy” of the associated metabolic452

expense (Todorov, 2004), as has been shown in reaching in non-human primates (Ueyama453

& Miyashita, 2014). Another possibility is that the stretch reflex is increased, leading to a454

stronger counter-acting force produced against the perturbation. For instance, the stretch455

reflex is sensitive to cognitive factors such as postural threat (standing next to a signficant456

height; Horslen et al., 2018). Nevertheless, the contribution of stiffness in reward-based457

performance has implications for current lines of research on clinical rehabilitation that focus458

on improving rehabilitation procedures using reward (Goodman et al., 2014; Quattrocchi459

et al., 2017). While several studies report promising improvements, excessive stiffness may460

expose vulnerable clinical populations to increased risk of fatigue and even injury. Careful461

monitoring is therefore required to avoid this possibility.462
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3.2 Saccades and reaching movements differ in their utilization of463

stiffness control with reward464

Contrary to our findings, previous work on saccades shows that reward had no effect on465

stiffness (Manohar et al., 2019). Therefore, our results demonstrate that reaching movements466

differ from saccadic control, in that it employs an additional error-managing mechanism. Why467

do saccadic and limb control employ dissociable control approaches?468

A first explanation may be the difference in motor command profile. Saccadic control dis-469

plays a remarkably stereotyped temporal pattern of activity, in which the saccade is initiated470

by a transient burst of action potentials from the motoneurons innervating the extraocular471

muscles (Joshua & Lisberger, 2015; Robinson, 1964). Critically, this burst of activity always472

reaches an output frequency close to its maximum nearly instantaneously in an all-or-nothing473

fashion (Joshua & Lisberger, 2015; Robinson, 1964), with only marginal variation based on474

reward and saccade amplitude (Manohar et al., 2019; Reppert et al., 2015; Robinson, 1964;475

Xu-Wilson et al., 2009). In comparison, motor commands triggering reaching movements476

present a great diversity of temporal profiles depending on task requirements, and often477

do not reach maximum stimulation level. This difference between the two controllers may478

result in a difference in the temporal pattern of motor unit recruitment. According to the479

size principle (Llewellyn et al., 2010), low-force producing, high-sensitivity motor units are480

always recruited first during a movement. However, those motor units are also more noisy481

due to their higher sensitivity (Dideriksen et al., 2012). Since saccades always rely on an482

all-or-nothing input pattern, all motor units may be quickly recruited, including high-force,483

low-sensitivity motor neurons that are normally recruited last. This would drastically re-484

duce the production of peripheral noise, thus making co-contraction unnecessary (Dideriksen485

et al., 2012). This is in line with previous work showing peripheral noise has a minimal486

contribution to overall error in eye movements (Van Gisbergen et al., 1981) compared to487
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internally generated noise (Manohar et al., 2019). Interestingly, evidence of the opposite has488

been reported for reaching, suggesting that execution rather than planning noise is dominant489

in reaching errors (van Beers et al., 2004). These dissociable activation patterns of motor490

commands could potentially explain the differences in error-managing mechanisms between491

saccadic control and reaching.492

A second possibility is that the muscles considered in saccade and reaching have different493

size and innervation density. Although eyes muscles are smaller, they are remarkably more494

innervated than most peripheral skeletal muscles (Floeter, 2010; Porter et al., 1995) such as495

arm muscles recruited for reaching, leading to a greater quantity of motor units. Interestingly,496

it has been shown that motor noise arising at the muscle level scales negatively with the497

number of motor units in that muscle (Hamilton et al., 2004). This may lead to reduced498

levels of execution noise for eye movements compared to reaching movements, making stiffness499

regulation less necessary for saccades. However, this falsely assumes that the physiology of500

motor units in extraocular muscles is the same as in limb muscles (Buchthal & Schmalbruch,501

1980), and so this last interpretation should be considered with care.502

3.3 Increased feedback control and reward503

It is less clear what kind of feedback control may play a role in reward-driven improvements.504

Feedback control encompasses several processes that share the aim of tracking of deviation505

from a motor plan to correct for it, with varying amount of delay to allow for travelling506

from the peripheral sensory receptors to the brain. This includes the spinal stretch reflex507

(∼25ms delay; Weiler et al., 2019), transcortical feedback (∼50ms; Pruszynski et al., 2011)508

and visual feedback (∼170ms for fast involuntary visual feedback responses; Carroll et al.,509

2019). While spinal stretch reflex is extremely fast, it is difficult to assume an effect of reward510

or motivation occurring at the spinal level. On the other hand, transcortical feedback includes511

primary motor cortex processing (Pruszynski et al., 2011), a structure that shows sensitivity512
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to reward (Bundt et al., 2016; Galaro et al., 2019; Thabit et al., 2011). Consequently, an513

exciting possibility for future research is that transcortical feedback gain is directly enhanced514

by the presence of reward. Indirect evidence suggests that this may be the case, as feedback515

control of matching timescales is sensitive to urgency in reaching (Crevecoeur et al., 2013).516

This suggests that transcortical feedback gains can also be pre-computed before movement517

initiation to meet task demands. Finally, recent work shows that reward can indeed modulate518

visual feedback control in reaching (Carroll et al., 2019) at timescales of 170-220ms after519

movement onset, much faster than usually considered for this type of feedback control (Carroll520

et al., 2019; Kasuga et al., 2015). Despite this remarkable speed, considering our typical521

movement times, this would imply that feedback control is increased only after about half522

of the movement. Therefore, a more conservative possibility is that both transcortical and523

visual feedback gains increase in the presence of reward, though the former remains to be524

proved empirically.525

In saccades, it has been shown that the feedback controller that underlies reward-driven526

improvements is located further upstream, at the movement computation stage. Indeed,527

although saccadic control is ballistic and therefore feedforward, the cerebellum can provide528

some form of feedback to adjust the end part of a saccade trajectory based on errors in529

the forward model prediction (Robinson, 1981; Chen-Harris et al., 2008; Frens & Donchin,530

2009). More recently, Manohar et al. (2019) demonstrate that it is this feedback loop that531

accounts for the observed improvements in feedback control during saccades. Interestingly,532

evidence in humans show that cerebellar forward models do contribute to feedback control in533

reaching to compensate for sensory delays (Miall et al., 2007), and more recently, optogenetics534

manipulation in mice confirmed its involvement in enhancing end-point precision based on535

reaching kinematics (Becker & Person, 2019). Therefore, it is possible that reward also536

enhances this feedback loop, though this would only contribute to reducing noise arising537

at the higher, computational stage rather than at effector stage (Manohar et al., 2019).538
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Furthermore, it should be noted that both in saccadic and reaching tasks, empirical evidence539

shows this form of feedback contributes exclusively during the last portion of the movement,540

which is in contradiction with what we observe here.541

3.4 Limitations of the model542

The model we employ presents several assumptions and limitations. First, it reduces the543

movement to errors over time, because it only deals with the deviation from zero. This is544

similar to assuming that a perfect knowledge of the movement to be performed is already ac-545

quired, because deviations are only a function of the noise term. Furthermore, since the model546

is concerned with maintaining the system at a given value rather than “travelling” to a novel547

position, the expected bell-shaped profile of motor commands (Shadmehr & Krakauer, 2008;548

Todorov, 2004) is abstracted away, and thus the noise term is not signal-dependent (Todorov,549

2005). However, additional simulations show that adding a bell-shaped noise term does not550

qualitatively alter the observations of the original set of models. Furthermore, these simpli-551

fications can be overlooked when considering model selection, because it is only concerned552

about a directional change from an arbitrary control model (i.e. increase versus decrease553

in time-time correlation). However, it may impede reliable parameter estimation because it554

remains an abstraction that excludes particular features such as two-dimensional reaches or555

signal-dependent noise. Finally, noise can arise from different sources (e.g. planning noise,556

execution noise and sensory noise) with a different impact on the final reaching behaviour557

measured (Dhawale et al., 2017). Future work using simulations based on a more complete558

model of the arm may provide further information regarding the evolution of saccadic and559

reaching profiles over time and allow reliable parameter estimation.560
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3.5 Conclusion561

In this study, we show that reward can improve the selection and execution components of562

reaching movement simultaneously. While we confirm previous suggestions that enhanced563

feedback control contributes to this improvement, we introduce a novel, peripheral rather than564

central mechanism by showing that global end-point stiffness is regulated by the monetary565

value of a given trial. Therefore, reward drives multiple error-reduction mechanisms which566

enable individuals to invigorate motor performance without compromising accuracy.567

4 Methods568

4.1 Participants569

30 participants (2 males, median age: 19, range: 18-31) took part in experiment 1. 30 parti-570

cipants (4 males, median age: 20.5, range: 18-30) took part in experiment 2. 30 participants571

(10 male, median age: 19.5, range: 18-32) took part in experiment 3, randomly divided into572

two groups of 15. 20 participants (2 male, median age: 19, range: 18-20) took part in exper-573

iment 4. All participants were recruited on a voluntary basis and were rewarded with money574

(£7.5/h) or research credits depending on their choice. Participants were all free of visual575

(including colour discrimination), psychological or motor impairments. All the experiments576

were conducted in accordance with the local research ethics committee of the University of577

Birmingham, UK.578

4.2 Task design579

Participants performed the task on an end-point KINARM (BKIN Technologies, Ontario,580

Canada). They held a robotic handle that could move freely on a plane surface in front of581

them, with the handle and their hand hidden by a panel (figure 1A). The panel included a582
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mirror that reflected a screen above it, and participants performed the task by looking at the583

reflection of the screen, which appeared at the level of the hidden hand. The sampling rate584

was 1kHz.585

Each trial started with the robot handle bringing participants 4cm in front of a fixed586

starting position, except for experiments 3-4 to avoid interference with the perturbations587

during catch trials. A 2cm diameter starting position (angular size ∼3.15°) then appeared,588

bearing a colour that matched one of several possible reward values, depending on the exper-589

iment. The reward value was also displayed in 2cm-heigh text (angular size ∼3.19°) under590

the starting position (figure 1C-D). Because colour luminance can affect salience and there-591

fore detectability, luminance-adjusted colours were employed (see http://www.hsluv.org/).592

The colours employed were, in red-green-blue format, [76,133,50] (green), [217,54,104] (pink)593

and [59,125,171] (blue) for 0, 10 and 50p, respectively, and distractor colours were either594

green, pink or blue. To ensure that a specific colour did not bias the amount of distracted595

trials, we fitted a mixed-effect model distracted ∼ colour+(1|participant)+(1|reward) with596

colour a 3-level categorical variable encoding the colour of the distractor target. Distractor597

colour did not explain any variance in selection error (p = 1.72×10−69, p = 0.46 and p = 0.82598

for the intercept, pink and blue colours, respectively) confirming that the observed effect was599

not driven by distractor colours. From 500 to 700ms after participants entered the starting600

position (on average 587±354ms after the starting position appeared), a 2cm target (angular601

size ∼2.48°) appeared 20cm away from the starting position, bearing the same colour as the602

starting position. Participants were instructed to move as fast as they could towards it and603

stop in it. They were informed that a combination of their reaction time and movement time604

defined how much money they would receive, and that this amount accumulated across the605

experiment. They were also informed that end-position was not factored in as long as they606

were within 4cm of the target centre.607

The reward function was a close-loop design that incorporated the recent history of per-608
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formance, to ensure that participants received similar amounts of reward, and that the task609

remained consistently challenging over the experiment (Manohar et al., 2015; Reppert et al.,610

2018). To that end, the reward function was defined as:611

rt = rmax ·max(1− e(
MTRT−τ2

τ1
)
, 0) (7)

where rmax was the maximum reward value for a given trial, MTRT the sum of reaction612

time and movement time, and τ1 and τ2 adaptable parameters varying as a function of613

performance (figure 1B). Specifically, τ1 and τ2 were the median of the last 20 trials’ 3-4th614

and 16-17th fastest MTRTs, respectively, and were initialised as 400 and 800ms at the start615

of each participant training block. τ values were constrained so that τ1 < τ2 < 900 is always616

true. In practice, all reward values were rounded up (or down in the punishment condition617

of experiment 2) to the next penny so that only integer penny values would be displayed.618

Targets were always of the same colour as the starting position (figure 1C). However,619

in experiments 1-2, occasional distractor targets appeared, bearing a different colour than620

the starting position (green, pink or blue depending on the correct target’s colour; figure621

1D). Participants were informed to ignore these targets and wait for the second target to622

appear. Failure to comply in rewarded and punished trials resulted in no gains for this trial623

and an increase in loss by a factor of 1.2, respectively. The first target (distractor or not)624

appeared 500-700ms after entering the starting position using a uniform random distribution,625

and correct targets in distractor trials appeared 300-600ms after the distractor target using626

the same distribution.627

When reaching movement velocity passed below a 0.3 m/s threshold, the end position was628

recorded, and monetary gains were indicated at the centre of the workspace. After 500ms,629

the robotic arm then brought the participant’s hand back to the initial position 4cm before630

the starting position.631
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In every experiment, participants were first exposed to a training block, where all targets632

had the same reward value equal to the mean of all value combinations used later in the633

experiment (e.g. if the experiment had 0p and 50p trials, the training reward amounted to634

25p per trial). Participants were informed that money obtained during the training will not635

count toward the final amount they would receive. Starting position and target colours were636

all grey during training. The τ values obtained at the end of training were then used as637

initial values for the actual task.638

4.3 Experimental design639

4.3.1 Experiment 1: reward-magnitude640

There were 4 possible target locations positioned every 45° around the midline of the work-641

space, resulting in a 135° span (figure 1A). Participants first practiced the task in a 48-trial642

training block. They then experienced a short block (24 trials) with no distractors, and then643

a main block of 168 trials (72 distractors, 42.86%). Trials were randomly shuffled within each644

block. Reward values used during the task were 0, 10 and 50p.645

4.3.2 Experiment 2: reward-punishment646

The same 4 target positions were used as experiment 1, and participants first practiced the647

task in a 48 trials training block. Participants then performed a no-distractor block and a648

distractor block (12 and 112 trials) in a rewarded condition (0p and 50p trials) and then in a649

punishment condition (-0p and -50p trials), in a counterbalanced fashion across participants.650

In the distractor blocks, 48 trials were distractor trials (42.86%). Before the punishment651

blocks, participants were told that they would start with £11 and that the slower they652

moved, the more money they lost. This resulted in participants gaining on average a similar653

amount of money on the reward and punishment blocks. They were also informed that if654
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they missed the target or went to the distractor target, their losses on that trial would be655

multiplied by a factor of 1.2. The reward function was biased so that:656

rt = −rmax ·max(1− e(
MTRT−τ2+a

τ1+b
)
, 0) (8)

With a = 268.5 and b = −71.4. The update rule was also altered, with τ1 and τ2 the657

median of the last 20 trials’ 15-16th and 17-18th fastest MTRTs, respectively. These changes658

were obtained by fitting the performance data of the reward-magnitude experiment to a659

punishment function with free a and b parameters and free updating indexes to minimise the660

difference in average losses compared to the average gains observed in the reward-magnitude661

experiment. On average, participants gained £5.40 in the reward condition and lost £5.63662

in the punishment condition (paired t-test: t(29) = −0.55, p = 0.58, d = −0.1; figure 5663

supplement 2).664

4.3.3 Experiment 3: end-reach stiffness665

In this task, each of two groups reached to a target located 20cm from the starting position,666

at +45 and −45° from the midline for the first and second group, respectively. On occasional667

catch trials, when movement velocity passed under a 0.3m/s threshold, a 300ms-long, 8mm668

displacement pushed participants away from their starting position and back, allowing us669

to measure end-point stiffness (see section Data analysis and figure 10 supplement 1). No670

distractor trials were employed in this experiment.671

Participants performed two training sessions, one with no catch trials (25 trials) and one672

with 4 catch trials out of 8 trials, in four possible directions from 0 to 270° around the end673

position to familiarise participants with the displacement. Participants then performed the674

main block with 64 catch trials out of 200 trials (32%) and 0p and 50p reward values. During675

the main block, displacements were in 1 of 8 randomly assigned directions from 0-315° around676
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the end-position (figure 10 supplement 1A). We used sessions of 233 trials to ensure session677

durations remained short, ruling out any effect of fatigue on stiffness as co-contraction is678

metabolically taxing. To ensure that any measure of stiffness was not due to differences in679

grip position or a loose finger grip, participant’s hands were restricted with a solid plastic680

piece which held the wrist straight and a reinforced glove that securely strapped the fingers681

around the handle during the entire task.682

4.3.4 Experiment 4: start-reach stiffness683

The experiment was identical to experiment 3, except that the catch trials occurred in the684

start position (figure 11 supplement 1A) at the time the target was supposed to appear.685

To ensure participants remained in the starting position, two different targets (±45° from686

midline) were used to maintain directional uncertainty. Participants had 24 trials during the687

no-catch-trial training, 16 trials during the catch-trial training (8 catch trials), and 200 trials688

during the main block, with 64 (32%) catch trials. Displacements always occured 500ms689

after entering the starting position, to avoid a jitter-induced bias in stiffness measurement.690

In non-catch trials, targets also appeared after a fixed delay of 500ms.691

4.4 Data analysis692

All the analysis code is available on the Open Science Framework website, alongside the ex-693

perimental datasets at https://osf.io/7as8g/. Analyses were all made in Matlab (Math-694

works, Natick, MA) using custom-made scripts and functions.695

Trials were manually classified as distracted or non-distracted. Trials that did not include696

a distractor target were all considered non-distracted. Distracted trials were defined as trials697

where a distractor target was displayed, and participants initiated their movement (i.e. exited698

the starting position) toward the distractor instead of the correct target. If participants699

readjusted their reach “mid-flight” to the correct target or initiated their movement to the700
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right target and readjusted their reach to the distractor, this was still considered a distracted701

trial. On very rare occasions (<20 trials in the whole study), participants exited the starting702

position away from the distractor but before the correct target appeared; these trials were703

not considered distracted.704

Reaction times were measured as the time between the correct target onset and when705

the participant’s distance from the centre of the starting position exceeded 2cm. In trials706

that were marked as “distracted” (i.e. participant initially went to the distractor target), the707

distractor target onset was used. In distractor-bearing trials, the second target did not require708

any selection process to be made, as the appearance of the distractor informed participants709

that the next target would be the right one. For this reason, reaction times were biased710

toward a faster range in trials in which a distractor target appeared, but participants were711

not distracted by it. Consequently, mean reaction times were obtained by including only712

trials with no distractor, and trials with a distractor in which participants were distracted.713

For the same reason, trials in the first block were not included because no distractor was714

present, and no selection was necessary. For every other summary variable, we included all715

trials that were not distracted trials, including those in the first block.716

In experiments 1-2, we removed trials with reaction times higher than 1000ms or less than717

200ms, and for non-distracted trials we also removed trials with radial errors higher than718

6cm or angular errors higher than 20°. Overall, this resulted in 0.3% and 0.7% trials being719

removed from experiment 1 and 2, respectively. Speed-accuracy functions were obtained720

for each participant by binning data in the x-dimension into 50 quantiles and averaging721

all y-dimension values in a x-dimension sliding window of a 30-centile width (Manohar et722

al., 2015). Then, each individual speed-accuracy function was averaged by quantile across723

participants in both the x and y dimension.724

Time-time correlation analyses were performed exclusively on non-distracted trials. Tra-725

jectories were taken from exiting the starting position to when velocity fell below 0.1m/s.726
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They were rotated so that the target appeared directly in front of the starting position, and727

y-dimension positions were then linearly interpolated to a hundred evenly spaced timepoints.728

We focused on the y dimensions because it displays most of the variance (figure 12). Correl-729

ation values were obtained on y-positions and fisher-transformed before follow-up analyses730

(Manohar et al., 2019).731

For experiments 3-4, positions and servo forces in the x and y dimensions between 140-732

200ms after perturbation onset were averaged over time for each catch trial (Franklin et733

al., 2003; Selen et al., 2009). Then, the stiffness values were obtained using multiple linear734

regressions (function fitlm in Matlab). Specifically, for each participant, Kxx and Ka
xy were735

the resulting x and y coefficients of Fx ∼ 1 + x + y and Ka
yx and Kyy were the resulting x736

and y coefficients of Fy ∼ 1 + X + Y . Data points whose residual was more than 3 times737

the standard error of all residuals were excluded (1.56% and 2.27% for experiment 3 and 4,738

respectively). Then, we can define the asymmetrical stiffness matrix:739

Ka =

Kxx Ka
xy

Ka
yx Kyy

 (9)

And the symmetrical stiffness matrix that we will use in subsequent analysis:740

K =

 Kxx
Ka
xy+Ka

yx

2

Ka
xy+Ka

yx

2
Kyy

 =

Kxx Kxy

Kxy Kyy

 (10)

These matrices can be projected in Cartesian space using a sinusoidal transform (equation741

6), resulting in an ellipse. This ellipse can be characterised by its shape, orientation and742

ratio, which we obtained using a previously described method (Perreault et al., 2002).743
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4.5 Statistical analysis744

Although for most experiments we employed mixed-effect linear models to allow for individual745

intercepts, we used a repeated-measure ANOVA in experiment 1 to compare each reward746

magnitudes against each other independently. This allowed us to assess the effect of reward747

without assuming a magnitude-scaled effect in the first place. Paired-sample t-tests were748

used when one-way repeated-measure ANOVA reported significant effects, and effect sizes749

were obtained using partial η2 and the Cohen’s d method. For experiment 2, we used mixed-750

effect linear models. For experiments 3 and 4, mixed-effect linear models were also used to751

account for a possible confound between reward and peak velocity in stiffness regulation, while752

accounting for individual differences in speed using individual intercepts. Since experiment753

3 included a nested design (i.e. participants were assigned either to the right or left target754

but not both), we tested for an interaction using a two-way mixed-effect ANOVA to avoid755

an artificial inflation of p-values (Zuur, 2009). For all ANOVA, Bonferroni corrections were756

applied where appropriate, and post-hoc paired-sample t-tests were used if ANOVA produced757

significant results. Bootstrapped 95% confidence interval of the mean were also obtained and758

plotted for every group.759

Since trials consisted of straight movements toward the target, we considered position760

in the y dimension – i.e. radial distance from the starting position – to obtain time-time761

correlation maps because it expresses most of the variability. To confirm this, reach tra-762

jectories were rotated so the target was always located directly in front, and error distribu-763

tion in the x and y dimension was compared for both experiment 1 (figure 12A-B) and 2764

(figure 12C-D). The y dimension indeed displayed a larger spread in error (experiment 1:765

t(11156) = −16.15, p < 0.001, d = −0.31; experiment 2: t(14852) = −13.68, p < 0.001, d =766

−0.22). Time-time correlation maps were analysed by fitting a mixed-linear model for each767

timepoint (Manohar et al., 2019; Zuur, 2009) allowing for individual intercepts using the768

model z ∼ reward + (1|participant), with z the fisher-transformed Pearson coefficient ρ for769
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that timepoint. Then clusters of significance, defined as timepoints with p-values for reward770

of less than 0.05, were corrected for multiple comparisons using a cluster-wise correction and771

10,000 permutations (Maris & Oostenveld, 2007; Nichols & Holmes, 2002). This approach772

avoids unnecessarily stringent corrections such as Bonferroni correction by taking advantage773

of the spatial organisation of the time-time correlation maps (Maris & Oostenveld, 2007;774

Nichols & Holmes, 2002).775

Figure 12. Distribution of errors at the end of the reach in the x and y dimension.
A. Density function of errors in the x and y dimensions for experiment 1. B. Scatterplot of x
versus y error after rotation of all target locations to a frontal location. The horizontal and
vertical grey lines indicate the centre of the target, and the circle indicates its size. Density
distributions can be observed on the sides. C-D. Same as A-B for experiment 2.

4.6 Model simulations776

The simulation code is available online on the Open Science Framework URL provided above.777

Simulation results were obtained by running 1000 simulations and obtaining time-time correl-778

ation values across those simulations. The sigmoidal step function S(t) used for simulations779
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of the late component was a Gaussian cumulative distribution function such as:780

S(t) =
1

σ ·
√

2π

∫ t

−∞
e

−(x−µ)2

2σ2 dx (11)

with σ = 0.5, µ = 0.8 (or 800 for a 1000 timesteps simulation) and t0 < t < tf is the781

simulation timestep. It should be noted that the use of a sigmoidal function is arbitrary782

and may be replaced by any other step function, though this will only alter the simulation783

outcomes quantitatively rather than qualitatively. Values of the feedback control term are784

taken from Manohar et al. (2019). On the other hand, different noise terms were taken for our785

simulations because previous work only manipulated one parameter per comparison, whereas786

we manipulated both noise and feedback at the same time in several models (equations 4787

and 5) and the model is more sensitive to feedback control manipulation than to noise term788

manipulation.789

Two alternative sets of models were used to assess the effect of signal-dependent noise790

and delay in feedback corrections, respectively. For the first set, the noise term was redefined791

as N
(
µ, σ(t)

)
with:792

σ(t) = 16 ·
( t
tf

)2 − 32 ·
( t
tf

)3
+ 16 ·

( t
tf

)4
+ 0.5 (12)

with equation 12 being proportional to the velocity profile of a minimum jerk reaching move-793

ment (Flash & Hogan, 1985). Here, the equation was adjusted so that 0.5 6 σ(t) 6 1.5,794

σ(0) = σ(tf ) = 0.5 and σ(tf/2) = 1.5. The second set of models included a delay in feedback795

corrections, so that the feedback term β · xt and its equivalent in different model variations796

became β · xt−399. A four hundred timesteps delay was chosen because observed movement797

times in the reward-magnitude and reward-punishment experiments were on average between798

350-400ms (figure 3 supplement 1E and figure 5 supplement 1E), resulting in a feedback delay799

of ∼ 350×400/1000 = 140ms, which is within the range of feedback control delays expressed800
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during reaching tasks (Pruszynski et al., 2011; Carroll et al., 2019).801

Regarding model selection, comparisons were performed by fitting each of five datasets802

to six candidate models:803

xt+1 = xt + γ · N (µ, σ) (13)
804

xt+1 = xt + β · xt +N (µ, σ) (14)
805

xt+1 = xt − 0.002 xt +
(
1 + γ · St+1

)
· N (µ, σ) (15)

806

xt+1 = xt +
(
− 0.002 + β · St+1

)
· xt +N (µ, σ) (16)

807

xt+1 = xt + (−0.002 + β) · xt +
(
1 + γ · St+1

)
· N (µ, σ) (17)

808

xt+1 = xt +
(
− 0.002 + β · St+1

)
· xt + (1 + γ) · N (µ, σ) (18)

with equation 13 representing a model with noise reduction, equation 14 a model with in-809

creased feedback control, equation 15 a model with late noise reduction, equation 16 a model810

with late increase in feedback control, equation 17 a model with increased feedback and late811

noise reduction and equation 18 a model with late noise reduction and increased feedback.812

The free parameters were β and γ, with the last two model including both of them and all813

the others including one, according to the equations. S(t) was a step function as indicated814

in equation 11 and was fixed. 1000 simulations were done with 100 timesteps per simulation.815

Time-time correlation maps were then fisher-transformed and substracted to a control model816

xt+1 = xt+N (µ, σ) for equation 13 and xt+1 = xt−0.002·xt+N (µ, σ) for all other models to817

obtain contrast maps. The resulting contrast maps were then fitted to the empirical contrast818

maps obtained to minimise the sums of squared errors for each individual for individual-level819

analysis, and across individuals for the group-level analysis. Of note, rather than fitting820

the model to the across-participant averaged contrast map in the group-level analysis, the821

model minimised all the individual maps at once, allowing for a single model fit for the group822
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without averaging away individual map features. The optimisation process was done using823

the fminsearch function of the Optimization toolbox in Matlab. The free parameter search824

was initialised with β0 = 0 and γ0 = 0. Model comparisons were performed by finding the825

model with lowest BIC, defined as BIC = n log(RSS/n) + k log n with n = 1002 = 10000826

the number of timepoint per participant map, k the number of parameters in the model827

considered and RSS the model’s residual sum of squares.828
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Figure 3–Figure supplement 1. Non-normalised data for all variables in the reward-

magnitude experiment.
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Figure 5–Figure supplement 1. Non-normalised data for all variables in the reward-

punishment experiment.

1054

Figure 5–Figure supplement 2. Amount of monetary gains and losses in the reward-

punishment experiment. Participants earned on average the same amount of money in the

rewarded block as they lost during the punishment block (see section Experimental design

for details).
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Figure 7–Figure supplement 1. Simulations with a bell-shaped noise term to introduce

signal-dependent noise.
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Figure 7–Figure supplement 2. Simulations with feedback delay of 400 timesteps.
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Figure 10–Figure supplement 1. Displacement profile at the end of the reaching

movement. A. Schematic of the displacement. At the end of the movement, when velocity

decreased behind a threshold of 0.3 m/s, a displacement occasionally occurred in one of

8 possible directions. Each direction is represented by a colour. B. Average displacement

profile over time for the first participant on the right-hand side target. The upper and lower

rows represent variables in the x and y dimension, respectively. The two vertical black solid

lines demark the limit between the ramp-up and plateau, and plateau and ramp-down phase.

Values for each variable were taken as the average over time during the 140-200ms window

(grey area), where the displacement is clamped and most stable.
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Model:

area ∼ 1 + velocity + reward + (1|target) + (1|participant)

Number of observations 60 AIC 1562.1

Fixed effects coefficients 3 BIC 1574.6

Random effects coefficients 32 Log-Likelihood −775.03

Covariance parameters 3 Deviance 1550.1

Fixed effects coefficients (95% CIs):

variable estimate SE t-statistic DF p-value lower CI upper CI

intercept 1.58e+5 1.09e+5 1.4411 57 0.15501 -61456 3.77e+5

velocity 84461 83260 1.0144 57 0.31467 -82266 2.51e+5

reward 52737 15180 3.4741 57 0.00099 22340 83134

Random effects covariance parameters (95% CIs):

variable levels type estimate lower CI upper CI

target 2 std 89384 28576 279590

participant 30 std 1.2749 96198 1.69e+5

error 60 residual std 48540 37688 62518

Figure 10–Figure supplement 2. Mixed-effect model for stiffness area at the end

of the reaching movement.
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Model:

Ky ∼ 1 + velocity + reward + (1|target) + (1|participant)

Number of observations 60 AIC 731.43

Fixed effects coefficients 3 BIC 743.99

Random effects coefficients 32 Log-Likelihood −359.71

Covariance parameters 3 Deviance 719.43

Fixed effects coefficients (95% CIs):

variable estimate SE t-statistic DF p-value lower CI upper CI

intercept -178.28 80.817 -2.206 57 0.031432 -340.11 -16.447

velocity -205.92 75.341 -2.7331 57 0.008341 -356.78 -55.049

reward -66.893 16.903 -3.9575 57 0.000212 -100.74 -33.046

Random effects covariance parameters (95% CIs):

variable levels type estimate lower CI upper CI

target 2 std 8.60e−5 NA NA

participant 30 std 107.1 79.9 143.6

error 60 residual std 58.18 45.16 74.94

Figure 10–Figure supplement 3. Mixed-effect model for stiffness Ky component

at the end of the reaching movement.
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Figure 11–Figure supplement 1. Displacement profile at the start of the reaching

movement. A. Schematic of the displacement. At the start of the movement, a displacement

occasionally occurred in one of 8 possible directions. Each direction is represented by a colour.

B. Average displacement profile over time for the first participant. The upper and lower rows

represent variables in the x and y dimension, respectively. The two vertical black solid lines

demark the limit between the ramp-up and plateau, and plateau and ramp-down phase.

Values for each variable were taken as the average over time during the 140-200ms window

(grey area), where the displacement is clamped and most stable.
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Model:

area ∼ 1 + velocity + reward + (1|participant)

Number of observations 40 AIC 1000.4

Fixed effects coefficients 3 BIC 1009.9

Random effects coefficients 20 Log-Likelihood −495.22

Covariance parameters 2 Deviance 990.45

Fixed effects coefficients (95% CIs):

variable estimate SE t-statistic DF p-value lower CI upper CI

intercept 176720 105090 1.6817 37 0.10106 -36206 389640

velocity -34147 106840 -0.3196 37 0.75107 -250630 182330

reward 11547 12086 0.95537 37 0.34559 -12942 36036

Random effects covariance parameters (95% CIs):

variable levels type estimate lower CI upper CI

participant 20 std 104260 75922 143160

error NA residual std 22268 16332 30360

Figure 11–Figure supplement 2. Mixed-effect model for stiffness area at the start

of the movement.
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Model:

Ky ∼ 1 + velocity + reward + (1|participant)

Number of observations 40 AIC 460.82

Fixed effects coefficients 3 BIC 469.27

Random effects coefficients 20 Log-Likelihood −225.41

Covariance parameters 2 Deviance 450.82

Fixed effects coefficients (95% CIs):

variable estimate SE t-statistic DF p-value lower CI upper CI

intercept -421.01 134.26 -3.188 37 0.0029121 -700.04 -155.98

velocity 184.74 138.08 1.3379 37 0.18909 -95.041 464.53

reward -12.34 16.319 -0.75617 37 0.45434 -45.406 20.726

Random effects covariance parameters (95% CIs):

variable levels type estimate lower CI upper CI

participant 30 std 97.543 70.244 135.45

error NA residual std 32.425 23.767 44.237

Figure 11–Figure supplement 3. Mixed-effect model for stiffness Ky component

at the start of the movement.
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