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Abstract 10 

Rapid advances in sequencing technology have resulted in the availability of genomes from 11 

organisms across the tree of life. Accurately interpreting the function of proteins in these 12 

genomes is a major challenge, as annotation transfer based on homology frequently results in 13 

misannotation and error propagation. This challenge is especially pressing for organisms whose 14 

genomes are directly obtained from environmental samples, as interpretation of their physiology 15 

and ecology is often based solely on the genome sequence. For complex protein (super)families 16 

containing a large number of sequences, classification can be used to determine whether 17 

annotation transfer is appropriate, or whether experimental evidence for function is lacking. Here 18 

we present a novel computational approach for de novo classification of large protein 19 

(super)families, based on clustering an alignment score matrix obtained by aligning all sequences 20 

in the family to a small subset of the data. We evaluate our approach on the enolase family in the 21 

Structure Function Linkage Database. 22 

 23 

Availability and implementation 24 

ASM-Clust is implemented in bash with helper scripts in perl. Scripts comprising ASM-Clust are 25 

available for download from https://github.com/dspeth/bioinfo_scripts/tree/master/ASM_clust/  26 

  27 
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Introduction 28 

The rapid advances in sequencing technology have led to a dramatic increase in available 29 

genome sequences. This genomic data has provided new perspectives on big questions in 30 

biology, such as the diversity of life, the distribution of metabolic traits across the tree of life, 31 

and the origin of eukaryotes (Hug et al. 2016; Zaremba-Niedzwiedzka et al. 2017; Borrel et al. 32 

2019). In addition, each newly available genome sequence contains novel protein sequences, 33 

yielding novel protein families of unknown function and expanding families with previously 34 

characterized representatives. Automatic functional annotation of novel protein sequences is 35 

generally done by annotation transfer from known homologous proteins, either using sequence 36 

alignment or hidden markov models (Altschul et al. 1990; Finn, Clements, and Eddy 2011). This 37 

approach can, and often does, result in misinterpretation of the function of proteins in 38 

mechanistically diverse superfamilies, and is prone to subsequent error propagation (Schnoes et 39 

al. 2009). Accurately interpreting the function of novel proteins is one of the grand challenges in 40 

biology, and relies heavily on availability of experimental data. Classifying mechanistically 41 

diverse protein superfamilies provides insight in knowledge gaps, can indicate whether 42 

annotation transfer is appropriate, and can help guide future experiments. 43 

There are various automatic tools available for classification of proteins into isofunctional 44 

families using sequence similarity, active site characteristics, and phylogenetic relationships 45 

(Brown, Krishnamurthy, and Sjölander 2007; Lee, Rentzsch, and Orengo 2010; de Melo-46 

Minardi, Bastard, and Artiguenave 2010; Leuthaeuser et al. 2016; Knutson et al. 2017). 47 

Alternatively, the structure of a protein family can be interactively explored using sequence 48 

similarity networks (SSNs) (Atkinson et al. 2009; Copp et al. 2018). SSNs are constructed based 49 

on pairwise all vs all alignment, with each node in the network representing a sequence, and each 50 

edge between two nodes representing the alignment between sequences. Clusters of nodes can be 51 

manually selected, or identified using a clustering algorithm such as MCL (Enright, Van 52 

Dongen, and Ouzounis 2002). SSNs are a powerful method to investigate protein families, but 53 

the network visualization limits the number of sequences that can be included, and alignments 54 

between separate domains of multi-domain proteins may confuse the analysis. 55 

Here we present ASM-Clust, an alternative method that uses alignment score matrix (ASM) 56 

clustering. For each input sequence, ASM-Clust generates a profile consisting of a large number 57 

of alignment scores, including both presence/absence and weight, and uses this profile to classify 58 
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each sequence. For a dataset containing N sequences, alignments are generated for all N 59 

sequences against a randomly selected subset of n sequences, and taking each alignment score, or 60 

a zero if the sequence did not align to the reference. This results in a matrix of N x n values 61 

which is subsequently visualized using t-distributed stochastic neighbor embedding (t-SNE) 62 

(Van der Maaten and Hinton 2008; Van der Maaten 2014), and can be clustered using DBscan 63 

(Ester et al. 1996).  64 

 65 

Implementation 66 

ASM-Clust is implemented in bash with helper scripts in perl, and will take a protein fasta file as 67 

the sole input. Fasta files are processed with ASM_clust.sh, which 1) randomly selects a subset 68 

of n sequences (default 1000), 2) aligns the entire dataset to the subset of n sequences, 3) 69 

combines all scores into a matrix (inserting 0 for query-database pairs that did not produce an 70 

alignment), and 4) reduces the matrix to 2 dimensions using t-SNE (Figure 1a). For flexible 71 

usage, ASM-Clust supports alignment using DIAMOND (Buchfink, Xie, and Huson 2015), 72 

BLAST (Altschul et al. 1990), or MMSeqs2 (Steinegger and Söding 2017), and uses MMSeqs2 73 

as default alignment software. Clustering results are comparable between different alignment 74 

software (Supplemental Figure S1). Other user-defined options are the number of sequences in 75 

the subset (default 1000), the main t-SNE parameter “perplexity” (default 1000) and maximum 76 

iterations (default 5000) for dimensionality reduction, and the number of threads used by the 77 

alignment software (default 1). Although the clustering is generally similar with multiple 78 

randomly chosen subsets (Supplemental Figure S2), the subset can be defined for reproducibility. 79 

The output of ASM_clust.sh can be visualized as a scatterplot where each dot represents a 80 

sequence, and clusters are readily apparent (Figure 1b, Supplemental figure S1-S3). This format 81 

allows additional annotation with sequence features, such as taxonomy, length, or composition. 82 

The visualization in Figure 1b and Supplementary Figures S1-S3 was created using R, with the 83 

ggplot2 package, and clusters were called using the dbscan package. The t-SNE result and the 84 

annotation data downloaded from SFLD were combined prior to visualization. Clusters obtained 85 

with ASM-Clust can be further refined by iteratively applying the method to a subset of poorly 86 

resolved data, such as the “hub”s cluster (Supplementary Figure S3). The smaller total number of 87 

sequences in the second iteration, combined with lowering the perplexity value of the t-SNE, 88 
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increases the resolving power of the analysis for clades with a small number of sequences, thus89 

resolving rare classes with few members (Supplementary Figure S3).  90 

 91 

 92 

93 

 94 

Figure 1. ASM-clust workflow overview and enolase superfamily example. 95 

A) ASM-Clust workflow overview and B) example of the ASM-Clust output on the structure96 

function linkage database (SFLD) enolase superfamily (48,850 sequences). The clusters are97 

colored by SFLD subgroup: enolase (red), galactarate dehydratase (orange), glucarate98 

dehydratase (light green), mandelate racemase (dark green), mannonate dehydratase (light blue),99 

methylaspartate-ammonia lyase (dark blue), muconate cycloisomerase (purple), muconate100 

cycloisomerase (syn) like (pink), and no assigned subgroup (gray). The isofunctional ‘glucarate101 
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dehydratase’ subgroup is split in two clusters, indicated with GDH1 and GDH2. C) Phylogenetic 102 

analysis of the ‘glucarate dehydratase’ subgroup (clustered at 70% identity), and D) sequence 103 

length comparison confirms the clear separation of the two clusters.  104 

 105 

Results 106 

ASM-Clust was tested on the enolase superfamily in the gold-standard Structure Function 107 

Linkage Database (SFLD) (Akiva et al. 2014). Sequences and annotation data table were 108 

downloaded from the SFLD website (http://sfld.rbvi.ucsf.edu) and all 48,850 sequences were 109 

clustered using ASM-Clust with default settings, and visualized using R (Fig 1b). The 110 

‘mannonate dehydratase’ and ‘muconate cycloisomerase (syn) like’ subgroups, each containing 111 

only a single isofunctional family, are well resolved. As expected, the functionally diverse 112 

‘muconate cycloisomerase’ and ‘mandelate racemase’ subgroups each partition into multiple 113 

discrete clusters (Figure 1b). The isofunctional ‘enolase’ and ‘glucarate dehydratase’ subgroups 114 

also result in multiple clusters (Figure 1b). Phylogenetic analysis of the ‘glucarate dehydratase’ 115 

subgroup confirms that the observed clusters respond to distinct clades that can also be separated 116 

by sequence length (Figure 1c & 1d, Supplementary methods). The smaller methylaspartate 117 

ammonia-lyase and galactarate dehydratase subgroups (307 and 25 sequences respectively) are 118 

more clearly resolved when ASM-clust is iteratively rerun on the “hub” cluster with a lower 119 

perplexity value (Supplemental Figure S3). When prior high-quality annotation is not available, 120 

clusters can be inspected for phylogeny, taxonomic distribution, and conserved residues to assess 121 

whether they represent functionally divergent sequences.  122 

ASM-Clust can retrieve clades from a complex superfamily with tens of thousands of sequences, 123 

without prior reduction of the dataset. We expect this to become increasingly relevant as the 124 

amount of sequence data from phylogenetically diverse organisms continues to grow rapidly, and 125 

meaningful information can be overlooked while pre-clustering a sequence dataset. 126 
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Funding 128 

This work was supported by the US Department of Energy, Office of Science, Office of 129 

Biological and Environmental Research under award number DE-SC0016469 to Victoria J. 130 

Orphan. Daan R. Speth was supported by the Netherlands Organisation for Scientific Research, 131 

Rubicon award 019.153LW.039.  132 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2019. ; https://doi.org/10.1101/792739doi: bioRxiv preprint 

https://doi.org/10.1101/792739
http://creativecommons.org/licenses/by/4.0/


 6

References 133 

 134 

Akiva, Eyal, Shoshana Brown, Daniel E. Almonacid, Alan E. Barber 2nd, Ashley F. Custer, 135 

Michael A. Hicks, Conrad C. Huang, et al. 2014. “The Structure-Function Linkage Database.” 136 

Nucleic Acids Research 42 (Database issue): D521–30. 137 

 138 

Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. “Basic Local 139 

Alignment Search Tool.” Journal of Molecular Biology 215 (3): 403–10. 140 

 141 

Atkinson, Holly J., John H. Morris, Thomas E. Ferrin, and Patricia C. Babbitt. 2009. “Using 142 

Sequence Similarity Networks for Visualization of Relationships across Diverse Protein 143 

Superfamilies.” PloS One 4 (2): e4345. 144 

 145 

Borrel, Guillaume, Panagiotis S. Adam, Luke J. McKay, Lin-Xing Chen, Isabel Natalia Sierra-146 

García, Christian M. K. Sieber, Quentin Letourneur, et al. 2019. “Wide Diversity of Methane and 147 

Short-Chain Alkane Metabolisms in Uncultured Archaea.” Nature Microbiology 4 (4): 603–13. 148 

 149 

Brown, Duncan P., Nandini Krishnamurthy, and Kimmen Sjölander. 2007. “Automated Protein 150 

Subfamily Identification and Classification.” PLoS Computational Biology 3 (8): e160. 151 

 152 

Buchfink, Benjamin, Chao Xie, and Daniel H. Huson. 2015. “Fast and Sensitive Protein 153 

Alignment Using DIAMOND.” Nature Methods 12 (1): 59–60. 154 

 155 

Copp, Janine N., Eyal Akiva, Patricia C. Babbitt, and Nobuhiko Tokuriki. 2018. “Revealing 156 

Unexplored Sequence-Function Space Using Sequence Similarity Networks.” Biochemistry 57 157 

(31): 4651–62. 158 

 159 

Enright, A. J., S. Van Dongen, and C. A. Ouzounis. 2002. “An Efficient Algorithm for Large-160 

Scale Detection of Protein Families.” Nucleic Acids Research 30 (7): 1575–84. 161 

 162 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2019. ; https://doi.org/10.1101/792739doi: bioRxiv preprint 

https://doi.org/10.1101/792739
http://creativecommons.org/licenses/by/4.0/


 7

Ester, M., H. P. Kriegel, J. Sander, and X. Xu. 1996. “A Density-Based Algorithm for 163 

Discovering Clusters in Large Spatial Databases with Noise.” KDD: Proceedings / International 164 

Conference on Knowledge Discovery & Data Mining. International Conference on Knowledge 165 

Discovery & Data Mining. https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf. 166 

 167 

Finn, Robert D., Jody Clements, and Sean R. Eddy. 2011. “HMMER Web Server: Interactive 168 

Sequence Similarity Searching.” Nucleic Acids Research 39 (Web Server issue): W29–37. 169 

 170 

Hug, Laura A., Brett J. Baker, Karthik Anantharaman, Christopher T. Brown, Alexander J. 171 

Probst, Cindy J. Castelle, Cristina N. Butterfield, et al. 2016. “A New View of the Tree of Life.” 172 

Nature Microbiology 1 (April): 16048. 173 

 174 

Knutson, Stacy T., Brian M. Westwood, Janelle B. Leuthaeuser, Brandon E. Turner, Don 175 

Nguyendac, Gabrielle Shea, Kiran Kumar, et al. 2017. “An Approach to Functionally Relevant 176 

Clustering of the Protein Universe: Active Site Profile-Based Clustering of Protein Structures 177 

and Sequences: Functionally Relevant Clustering of Protein Superfamilies.” Protein Science: A 178 

Publication of the Protein Society 26 (4): 677–99. 179 

 180 

Lee, David A., Robert Rentzsch, and Christine Orengo. 2010. “GeMMA: Functional Subfamily 181 

Classification within Superfamilies of Predicted Protein Structural Domains.” Nucleic Acids 182 

Research 38 (3): 720–37. 183 

 184 

Leuthaeuser, Janelle B., John H. Morris, Angela F. Harper, Thomas E. Ferrin, Patricia C. 185 

Babbitt, and Jacquelyn S. Fetrow. 2016. “DASP3: Identification of Protein Sequences Belonging 186 

to Functionally Relevant Groups.” BMC Bioinformatics 17 (1): 458. 187 

 188 

Melo-Minardi, Raquel C. de, Karine Bastard, and François Artiguenave. 2010. “Identification of 189 

Subfamily-Specific Sites Based on Active Sites Modeling and Clustering.” Bioinformatics  26 190 

(24): 3075–82. 191 

 192 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2019. ; https://doi.org/10.1101/792739doi: bioRxiv preprint 

https://doi.org/10.1101/792739
http://creativecommons.org/licenses/by/4.0/


 8

Schnoes, Alexandra M., Shoshana D. Brown, Igor Dodevski, and Patricia C. Babbitt. 2009. 193 

“Annotation Error in Public Databases: Misannotation of Molecular Function in Enzyme 194 

Superfamilies.” PLoS Computational Biology 5 (12): e1000605. 195 

 196 

Steinegger, Martin, and Johannes Söding. 2017. “MMseqs2 Enables Sensitive Protein Sequence 197 

Searching for the Analysis of Massive Data Sets.” Nature Biotechnology 35 (11): 1026–28. 198 

 199 

Van der Maaten, Laurens, and Geoffrey Hinton. 2008. “Visualizing Data Using T-SNE.” Journal 200 

of Machine Learning Research: JMLR 9 (Nov): 2579–2605. 201 

 202 

Van Der Maaten, L. 2014. “Accelerating T-SNE Using Tree-Based Algorithms.” Journal of 203 

Machine Learning Research: JMLR.  204 

http://www.jmlr.org/papers/volume15/vandermaaten14a/vandermaaten14a.pdf. 205 

 206 

Zaremba-Niedzwiedzka, Katarzyna, Eva F. Caceres, Jimmy H. Saw, Disa Bäckström, Lina 207 

Juzokaite, Emmelien Vancaester, Kiley W. Seitz, et al. 2017. “Asgard Archaea Illuminate the 208 

Origin of Eukaryotic Cellular Complexity.” Nature 541 (7637): 353–58. 209 

 210 

 211 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2019. ; https://doi.org/10.1101/792739doi: bioRxiv preprint 

https://doi.org/10.1101/792739
http://creativecommons.org/licenses/by/4.0/


1) Subset n sequences 2) Align N sequences to subset n

(1)

(2)

(3)

(4)

(N)

(1)

(2)

(3)

(4)

(N)

ref 1 ref n

136

205

123
98

156

85

83

77
61

97

3) Build N x n Matrix

(1)

(2)

(3)

(4)

(N)

(...)

(...) (...) (...)

ref 1 ref n(...)ref 2 ref 3
85

83

77
61

97

136

205

123
98

156

0

124

0
112

0

0

0

123
87

65

(...)

Tree scale:   0.1

A

B C

D

0

500

1000

1500

400 425 450 475 500-25 0 25 50
-50

-25

0

25

GDH1

GDH2

GDH1

GDH2

GDH1

GDH2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2019. ; https://doi.org/10.1101/792739doi: bioRxiv preprint 

https://doi.org/10.1101/792739
http://creativecommons.org/licenses/by/4.0/

