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Abstract      

 

Recombination is a main source of genetic variability. However, the potential role of the 

variation generated by recombination in phenotypic traits, including diseases, remains 

unexplored as there is currently no method to infer chromosomal subpopulations based on 

recombination patterns differences. We developed recombClust, a method that uses SNP-

phased data to detect differences in historic recombination in a chromosome population. We 

validated our method by performing simulations and by using real data to accurately predict 

the alleles of well known recombination modifiers, including common inversions in Drosophila 

melanogaster and human, and the chromosomes under selective pressure at the lactase locus 

in humans. We then applied recombClust to the complex human 1q21.1 region, where non-

allelic homologous recombination produces deleterious phenotypes. We discovered and 
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validated the presence of two different recombination histories in these regions that 

significantly associated with the differential expression of ANKRD35 in whole blood and that 

were in high linkage with variants previously associated with hypertension. By detecting 

differences in historic recombination, our method opens a way to assess the influence of 

recombination variation in phenotypic traits. 

 

 

Introduction 

 

Recombination plays a central role in adaptation and evolution, and its influence in human 

disease is becoming increasingly clear [1]. During the last decade, our understanding of 

genome-wide recombination rates and landscape has been greatly increased by the resolution 

and power of high-throughput data and analysis methods on population samples. Methods 

that extract recombination signals from linkage between SNPs have been instrumental [2–6]. 

However, despite these great advances, the outstanding question on how recombination 

variability influences phenotypes has lagged behind as there has not been a method to 

measure recombination variation between individuals for large association studies. A large 

body of theoretical work, initiated by Nei [7], has explored the conditions under which the 

variability of general recombination modifiers evolve [8, 9] yet empirical studies that link 

recombination variability in a genomic region with phenotypic traits and fitness are restricted 

to already known specific modifiers, such as inversions or specific polymorphisms [10–12]. In 

this context, we developed recombClust, a pioneer method to detect recombination variability 

between chromosomes by inferring the differences in recombination histories within a 

genomic region.  
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Recombination produces offspring chromosomes with new combinations of maternal and 

paternal DNA material at each side of a recombination event [13]; making it a main source of 

novel genetic diversity. At the population level, when multiple recombination events have 

occured between two genomic markers, the linkage between them decreases and a random 

association is then observed. Historic recombination patterns were thus successfully extracted 

from the linkage between dense SNP markers, strongly matching direct observations on 

recombination events in sperm samples [14]. Because linkage methods are population-based 

estimates, they have been intensely used to compute accurate recombination rates and 

landscapes in large population samples but, at the same time, have also been disregarded in 

their ability to detect recombination variation between individuals [15], i.e. used to infer 

groups of chromosomes with different recombination histories in a genomic region. However, 

latent variable mixture models can be incorporated to linkage methods to detect the 

underlying mixture of chromosome subpopulations, characterized by different recombination 

patterns. We, therefore, hypothesized that in a genomic region where the recombination 

frequency and location are modified in a subpopulation of chromosomes, the chromosomes 

can be grouped according to consistent recombination histories within the region. The 

detected chromosome groups could then be tested for association with phenotypes, allowing 

the use of large cohorts to study the phenotypic effects of recombination variability in the 

genomic region.  

Here, we proposed a method that leverages chromosomal differences in linkage patterns in a 

genomic region to classify the chromosomes of a population into groups with different 

recombination histories. The method, named recombClust, comprises two steps. First, it fits a 

mixture model for each pair of SNP blocks within a genomic region to classify chromosomes 

into those with a history of high recombination or high linkage between the blocks; second, it 

tests the consistency of the chromosomes’ classification across all the mixture models i.e. all 

SNP block pairs. Chromosome groups with different recombination histories are thus called by 
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the chromosome’s classification into the consistent recombining groups. By estimating the 

proportion of chromosomes with historic recombination at a given point in the region, the 

recombination pattern for each chromosome subpopulation can be reconstructed.  

We tested the performance and adequacy of the method using numerous simulated scenarios 

and demonstrated its ability to detect known recombination modifiers with their correct 

recombination patterns using real data for Drosophila melanogaster and humans. Finally, we 

used the method to i) detect and validate chromosome subpopulations with different historic 

recombination at 1q21.1, a genomic region at risk of deleterious rearrangements leading to 

the thrombocytopenia-absent radius (TAR) syndrome [16, 17], and ii) to associate the 

chromosome groups with changes in gene expression in blood. The method was implemented 

in a computationally efficient tool, compatible with Bioconductor’s packages and the variant 

call format (VCF). The development version is available at https://github.com/isglobal-

brge/recombClust and the final version will be available in Bioconductor. 

Results 

We implemented recombClust, a method to classify chromosomes into groups with different 

recombination histories across a genomic region (Figure 1). The method comprises two steps. 

First, for each pair of SNP blocks in a genomic region, it fits a mixture model of two 

chromosome groups (recomb/linkage), one in which chromosomes display random association 

between the blocks (recomb) and the other where the blocks are found in complete 

association (linkage). Second, recombClust classifies chromosomes into subpopulations (A/B) 

based on a consensus clustering across all the mixture models fitted along the genomic region. 

The chromosome groups A/B are the subpopulations associated with different recombination 

histories, which can be reconstructed from the proportion of chromosomes in the recomb 

group at each point across the genomic region. The underlying chromosome substructructure 
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(A/B) can be used in downstream analysis, such as transcription and methylation profiling or 

association with phenotypes.   

Modeling the mixture of chromosomes under recombination and 

linkage 

We developed a mixture model to split the chromosomes of a population into those showing 

high recombination and those showing high linkage history between two SNP blocks 

(Methods). Figure 1A illustrates two instances where the mixture model is fitted at two 

different points in a genomic region. For illustration purposes, only two alleles are shown at 

each SNP block (+,−). The first recombination point is tested by blocks 1/2 where M 

chromosomes are in the recomb group showing random association between the blocks and N 

chromosomes are in the linkage group showing maximum linkage between the blocks. The 

other point is tested by blocks i−1/i where now the N previous chromosomes belong to the 

recomb group and the previous M chromosomes to the linkage group. Note that although the 

model at one point can be ambiguous for some chromosomes (i.e. chrom 1 at 1/2 in Figure 

1A), the final chromosome classification into subpopulations consistent with specific 

recombination patterns is robust when considering other points in the region (chrom 1 at 

i−1/i), as explained in the following section.    

We simulated multiple datasets representing a SNP block pair that flanked one recombination 

point for a group of chromosomes (recomb) but remained in linkage for a second group 

(linkage), see Methods section. We first evaluated how the proportion between recomb and 

linkage populations affected the accuracy of the model to correctly classify the chromosomes, 

varying the proportion between 0.1 and 0.9. We observed that the mixture model had high 

accuracy (>80%) across all the proportion range, being optimal, as expected, when the mixture 

was small, i.e. the mixture frequency approached to 1 or 0 (Sup Figure 1A). We also observed 
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that the model was robust under different initializations of the mixture frequency (Sup Figure 

1B). Overall, our simulations showed that the mixture model was able to robustly split the 

chromosomes into two groups, one with null LD (recomb) and other with full LD (linkage) 

between a pair of 2-SNP blocks. 

We then evaluated the accuracy of the model under different within and between SNP block 

variabilities, using a fix scenario with a 0.5 proportion of mixture between the recomb and 

linkage groups. To test SNP block variability, we simulated multiple two-SNP block pairs, 

flanking a recombination point, and determined the haplotypes across the blocks. We varied 

the number of SNP alleles that were different between the most frequent recomb and linkage 

haplotypes. We thus assessed the extent to which the accuracy of the model was affected by 

increasing differences in haplotype variability between the groups. We observed that the 

mixture model had an accuracy of 75% when most frequent haplotypes were shared between 

groups, and topped to 90% when the difference between the haplotypes was given by only 

one SNP allele (Sup Figure 1C). This suggests a substantial accuracy when the differences in 

mutation frequency between the groups are small, which, in addition, can be boosted by the 

presence of one SNP allele that associates with one of the groups. We then assessed the 

influence of within block variability on model accuracy. For an scenario of full linkage of the 

SNPs within all blocks, which reduces to having blocks of 1 SNP, the accuracy dropped to ~60%, 

showing that larger and more variable SNP blocks increase model’s accuracy (Sup Figure 1D).  

Classifying chromosomes into different recombination histories within 

a genomic region 

The second step of recombClust is a consensus clustering of mixture models at numerous 

points along a genomic region to classify chromosomes into consistent recombining groups 

(A/B) (Figure 1B). Within the region, all possible SNP blocks pairs are tested such that they do 

not overlap and are at a maximum distance of 10kb. For each block pair, a mixture model is 
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fitted and the chromosomes classified into the recomb and linkage groups. Because at one 

point in the region, chromosomes in recomb can be in linkage at another point, a consistent 

classification over the mixture model predictions was considered. For this step, we applied a 

clustering method (k-means) on the first PCA components of the model prediction variables 

obtained from the mixture models fitted along the region. The clusters identified were then 

considered as chromosomes with similar recombination patterns within the region. Mixture 

model classification across the region was used to reconstruct the pattern of classification 

proportion into the recomb and linkage groups, this pattern was then compared with the 

recombination patterns obtained by other linkage based methods, which are applicable only 

when the chromosome subpopulation A/B are initially known.  

We used simulations to test whether the number of chromosomes and the number of 

recombination points affected the accuracy of recombClust to identify subpopulations of 

chromosomes with different recombination patterns. We thus simulated datasets representing 

SNP block pairs that flanked multiple recombination points. We simulated two kinds of 

populations: (1) a mixture population, where one subpopulation (A) belonged to the recomb 

group in half of the points and to the linkage group in the other half while a second 

subpopulation (B) belonged to the linkage and recomb groups, respectively; and (2) a single 

population where all chromosomes belonged to the same recombination groups across all 

recombination points.  

First, to assess false discovery rate and statistical power, we selected several scenarios 

changing the number of chromosomes per population (from 20 to 60) and the number of 

recombination points (from 10 to 100). In all cases, we performed a PCA to the classification 

matrix given by the mixture model probabilities of belonging to a recomb group at each SNP 

block pair (Figure 1B). Then, using k-means, we clustered the first two PC components in two 

groups and considered that recombClust detected differences in recombination patterns when 
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the average silhouette value of the clustering was higher than 0.7 [18] (Sup Figure 2). We 

observed that under single population simulations, recombClust had a false discovery rate  

< 0.05 for recombination points > 70 and for all the number of chromosomes considered (>20). 

In addition, the power to detect different recombination patterns for simulations of 

chromosomes with two different recombination histories achieved 80% for > 25 chromosomes 

and for differences in historical recombination in > 16 points (Sup Figure 3).  

Second, to confirm that the model detected differences in recombination histories rather than 

allele differences, we compared recombClust classification with that of a PCA on the simulated 

genotypes. For a simulation with chromosome mixture, we observed a neat separation of the 

chromosome subpopulations (Sup Figure 4A) with recombClust, which we did not observe for 

allele differences.   

recombClust accurately classifies inversion status based on differences 

in historic recombination 

The alleles of polymorphic inversions differ in the recombination histories inside the inverted 

region because recombination is suppressed in heterokaryotypes [3]. We, therefore, asked the 

extent to which the inversion alleles, being strong recombination modifiers, could be inferred 

by recombination differences using recombClust. We evaluated the method’s performance to 

predict simulated inversions from the coalescent simulator invertFREGENE and tested its 

accuracy to classify common inversions in Drosophila melanogaster and humans. Using 

invertFREGENE [19], we simulated inversions with different lengths (from 50Kb to 1Mb) and 

frequencies (from 0.1 to 0.9) and tested the prediction accuracy of chromosome classification 

into their inversion alleles. We observed accuracy greater than 90% for inversions larger than 

250Kb (Sup Figure 4B). As expected, accuracy for short inversions was lower as they presented 

fewer recombination points. recombClust’s mean accuracy was higher (95%) for inversion 
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frequencies between 0.2 and 0.8 (Sup Figure 5) but did not correlate with the inversion’s age  

(r = 0.02, p-value = 0.19) (Sup Figure 6).   

We then used recombClust to determine whether the alleles of three common polymorphic 

chromosomal inversions in Drosophila melanogaster (In(2L)t, In(2R)NS and In(3R)Mo) could be 

determined from different recombination histories. We ran recombClust on genome-wide SNP 

data of 205 lines derived from Raleigh, USA population, comprised in the Drosophila Genetics 

Reference Panel (DGRP2)[20, 21] and compared the inferred recombining subpopulations with 

the experimental inversion alleles of the lines. For all the inversions, we observed clear 

clustering in the first PC component of the mixture classification matrix (Figure 2) that resulted 

in a 98% match with the inversion alleles, when a k-means clustering was applied. Likewise, we 

compared the recombClust calling of human inversions at 8p23.1 and 17q21.31 with the 

experimental inversion genotypes, as obtained from the invFEST repository [22] for the 

European subjects of the 1000 Genomes Project. Using SNP-phased data, we found that 

recombClust neatly separated inverted and standard chromosomes (Figure 2) in the first PC 

component of the mixture classification matrix. The k-means clustering of the first PC 

accurately matched the experimental inversion-alleles (8p23.1: 100%, 17q21.31: 99.3%). 

Overall, these results showed that recombination substructure can reliably identify the 

inversion alleles of some common inversions in two different species.  

To test whether recombClust classification reflects differences in historical recombination 

rates, we compared the recombination pattern obtained along the longest human 

polymorphic inversion 8p23.1 with recombClust with the recombination rates estimated with 

FastEPRR [23] independently obtained for each inversion allele (Figure 3). Remarkably, we 

observed that the inferred proportion of chromosomes in the recomb population across the 

genomic region accurately captured the underlying recombination patterns obtained by 

FastEPRR for each of the 8p23.1 inversion alleles. We also observed that the largest 
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differences in recombination proportion were obtained near the recombination hotspots 

obtained by Alves et al [3] (Figure 3).These results confirmed that the chromosome 

subpopulations identified by recombClust are clearly mapped to different recombination 

histories.  

recombClust detects recombination histories associated to ancestral 

differences 

Modifiers of historical recombination patterns include numerous processes other than 

inversions that can act simultaneously on the same genomic region. In particular, differences 

in historical recombination patterns between ancestries can derive from random differences in 

the occurrence of recombination events or from the emergence of hotspot differences 

regulated by ancestry-specific alleles [24]. As such, we asked the extent to which differences 

between human populations could also be detected in loci already under the influence of 

inversion alleles. We, therefore, used recombClust to detect the modifier alleles in the loci 

corresponding to the human inversions at 8p23.1 and 17q21.31 for all the individuals in the 

1000 Genomes Project, covering four different continental populations [25]. We inspected the 

first two PC components of the mixture model predictions for inv-8p23.1 (Sup Figure 7), and 

observed multiple clusters, in which chromosomes segregated both by inversion status and 

ancestry. However, for inv-17q21.31, the additional clusters observed in the standard allele did 

not map to ancestral differences. The observations on both human inversions confirmed that 

that clusters identified in the first PCs of the mixture model predictions can be interpreted as 

non-recombining chromosome groups that differ in inversion status, ancestry, or other 

unobserved factors that suppress recombination between the groups, such as copy number 

variants likely segregating in standard chromosomes at 17q21.31 [26].  

recombClust detects recombination histories associated with selection 
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Chromosomes with advantageous alleles show a decrease in recombination around the locus 

under selection. While selection, like demography, does not have a direct influence on the 

biological process of recombination, they modulate the historical recombination patterns [5]. 

Therefore, we asked whether recombClust was able to detect chromosomes under selection 

and recover their recombination patterns. We studied the LCT locus, a human locus known to 

be under positive selection for lactase tolerance, as defined in PopHumanScan 

(chr2:135770000-136900000, hg19) [27]. We aimed to detect the underlying chromosomes 

under selection and their recombination pattern in the LCT locus, for the European individuals 

of the 1000 Genomes Project. We observed two chromosomes subpopulations (A/B) by 

clustering the first PC components of the mixture classification matrix (allele 1: 60.8%, allele 2: 

39.2%) (Figure 4). Notably, chromosome allele 1 was the most frequent except for the Tuscany 

population (TSI) (Sup Table 1), the only European population which does not show marks of 

selection in the LCT locus, as reported in PopHumanScan [27]. We also observed a strong 

correlation between rs4988235 (C/T(-13910)), the SNP linked to lactose resistance, and the 

inferred subpopulation groups  (r
2
 = 0.64), where the allele conferring lactose resistance (T) 

was very frequent in chromosome allele 1 (83%) and almost absent in chromosome allele 2 

(<1%). The ability of recombClust to detect chromosomes under selection was further 

confirmed by the proportion of chromosomes in recomb along the locus for each chromosome 

subpopulation. As expected, we confirmed that recombination appeared flat in group A (under 

selection) but not in B (not under selection) across the LTC locus (Figure 4). We also recovered 

the recombination patterns independently obtained with FastEPRR, for each chromosome 

subpopulation. Recombination peaks for chromosome allele 2 were found between genes 

R3HDM1 and DARS genes, matching previously reported recombination peaks [28]. 

recombClust detects recombination differences in complex genomic 

regions 
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The region at 1q21.1 between chr1:145,399,075-145,594,214 (hg19) [29] is prone to various 

deleterious rearrangements by non-allelic homologous recombination (NAHR) at the 

numerous segmental duplications (SD) in the region [16]. The rearrangements include 

microdeletions leading to the thrombocytopenia-absent radius (TAR) syndrome and a range of 

multiple neurodevelopmental phenotypes caused by duplications and deletions distal to the 

TAR region [16]. As strong control of recombination is expected in regions regions at risk of 

NAHR during meiosis [30], we hypothesized that different recombination histories would be 

detectable in region and aimed to determine their functional correlates.  

We ran recombClust across the region chr1:145.35-145.75Mb characterized by four blocks of 

segmental duplications. The most common deletion for the TAR syndrome is observed 

between the first and third block [31] while the smallest reported deletion was found between 

the second and third block [16] (Figure 5). We first analyzed the European individuals of the 

1000 Genomes project and observed two clear clusters in the first two PCs of the classification 

matrix across mixture models. We defined two chromosome subpopulations (subpopulation 1: 

80.9%, subpopulation 2: 19.1%) that were in Hardy-Weinberg equilibrium (P = 1) and thus 

confirmed our hypothesis for the presence of different recombination histories in the region. 

For each group, we estimated the recombination pattern given by the proportion of 

chromosomes in recomb (Figure 5), observing important differences between the groups. 

Notably chromosomes in subpopulation 2 had higher recombination proportion than those in 

subpopulation 1 along the region except for the small interval containing the genes LIX1L and 

RBM8A, the causative gene of TAR syndrome [29]. However, the highest differences in 

recombination proportions were observed between the third and fourth SD blocks, where 

subpopulation 1 showed null recombination; suggesting a stronger suppression of 

recombination for this group of chromosomes. We fully validated the chromosome 

subpopulations and their recombination patterns using the Whole Genome Sequencing data of 
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287 European individuals from the Genotype-Tissue Expression project (GTEx) (Figure 5). We 

thus obtained strong evidence for the existence of two recombination histories in the region.     

We further asked whether the recombination histories could have a functional role. We tested, 

using RNA-sequencing data in blood from the GTEx project, if the expression levels of the 

genes in 1q21.1 were associated with the two different recombination histories. We found a 

significant differential expression of ANKRD35 (log fold change = 0.18, P = 6.7×10
-4

) and noted 

that the SNP rs10910843, an eQLTs of ANKRD35 in blood [32], was in high linkage with the 

chromosome subpopulations. We additionally found that the SNP rs72704264, a risk factors 

for hypertension [33], was also in high linkage with the subpopulations, showing likely 

functional links associated to the different recombination histories.  

Discussion 

recombClust is the first method to classify chromosomes into different subpopulations based 

on the inference of the recombination histories along genomic regions. Linkage methods for 

detecting historic recombination patterns have been important to characterize the distribution 

of recombination hot-spots between species and ancestries [34–36]. While current methods 

aim is to robustly estimate the recombination rate between markers by coalescent modeling, 

accounting for selection and demographic effects, they do not detect recombination variation 

between individuals. recombClust fills this gap, further allowing to test the association 

between differences in recombination histories with phenotypes.  

recombClust assumes that there is  an inverse relationship between recombination and linkage 

between genetic markers (SNP-blocks). However, the similarity of the recombination patterns 

obtained with recombClust with those obtained with FastEPRR shows that this assumption is 

not inaccurate. This is because recombClust is also the first method to incorporate the spatial 

correlation of the recombination signal along a genomic region, which other linkage methods 
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do not. Consequently, demographic and selection signals, which induce spatial correlation, are 

directly extracted from the data (Figures 5-6). Additional analyses are, however, required to 

identify the nature of different recombination histories and to determine whether they are 

due to ancestry, selection or the presence of chromosomal rearrangements affecting the 

recombination within the region. In particular, the method successfully split the groups of 

chromosomes being selected in the LCT locus from those which are not, accurately giving a flat 

recombination pattern to the group under selection. This is an added advantage with respect 

to methods like FastEPRR in the computation of recombination patterns because recombClust 

explicitly extracts the selection signal from the data by identifying the chromosomes under 

selection as those with a flat recombination pattern in the locus. Our analyses showed that at 

the LCT locus, the pattern differences between chromosomes groups where large, further 

suggesting a novel approach in the detection of selection signals. 

We have shown that when recombination modifiers are expected to affect a genomic region, 

such as inversions, recombClust can be reliably used to infer its alleles in large population 

samples. recombClust can, for instance, be added to other methods that genotype inversion 

from SNP data, offering an additional signal derived from recombination patterns [37]. 

However, we expect that the limitations of these methods also apply to recombClust, such as 

inversions being ancient and not recurrent. Recombination modifiers acting on small targeted 

sequences that are not expected to show a spatial-extended historic pattern require further 

methodological developments, like merging the mixture model with coalescent modeling. In 

general, recombination modifiers whose effects cannot be observed in historical 

recombination patterns are beyond linkage methods.  

We also showed that recombClust can detect differences in recombination histories in complex 

regions prone to non-allelic homologous recombination (NAHR) and, therefore, likely 

subjected to tight regulation of recombination [30]. We discovered and validated the existence 
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or two recombination histories in the 1q21.1 locus at risk of deleterious syndromes. Detailed 

analyses are needed to disentangle the nature of the recombination modifiers acting on the 

region, which can be, for instance, a mixture of genomic rearrangements, epigenetic marks or 

functional mechanisms regulating double strand breaks that avoid NAHR [30]. In addition, the 

question arises of whether the recombination between the chromosome subpopulations 

confers specific risks to deletions and duplications in the offspring. As for the subpopulations’ 

relation with more common phenotypes, we observed a strong linkage with a risk factor for 

hypertension showing probable implications of recombination variation with this trait within 

1q21.1. We, therefore, showed an approach to measure the impact of different recombination 

histories on phenotypes, opening a way to study how recombination variation influences 

traits.   

Methods 

recombClust description 

We proposed a method to classify chromosomes according to the combinations of SNP alleles 

across a genomic region that are allowed by different recombination patterns. Consider a 

situation where two recombination patterns are latent in the chromosome population 

generating two chromosome subpopulations in a given genomic region (Sup Figure 8). A first 

subpopulation of chromosomes comprises those that have recombined at any of three given 

points within the region, and a second subpopulation comprises those that have recombined 

at any of two other points. In this case, we can see, for instance, that while two specific 

haplotypes G1 and H1 are compatible with the recombination pattern 1, they are maximally 

different in mutation content at each SNP variant. In addition, H1 is more similar in mutation 

content to H2 than G1 is to H1, despite H1 and H2 belonging to different recombination 

subpopulations. In this work, we proposed the method recombClust that first classifies 
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chromosomes into those that have recombined in point between two markers and those that 

have not, and second, it computes a consensus classification of chromosomes across all points, 

separating the population of chromosomes according to different recombination patterns 

along the segment.    

Mixture model to classify a fraction of recombining chromosomes.  

The first step of recombClust is the classification of chromosomes that have recombined at 

one point flanked by two SNP blocks. We therefore propose to model the likelihood that a 

chromosome in the sample is drawn from a mixture of chromosomes that highly recombined 

at the point (recomb) and that remained in complete LD (linkage) (Figure 1A). The likelihood is 

therefore given by a mixture of two latent chromosome groups (recomb/linkage). In the first 

group, we model the recombination at a point that lies in the sequence interval between a pair 

of SNP blocks (i=1, 2) of length �. Phased SNP alleles are encoded by 0 or 1, the haplotype of a 

chromosome at block i is a random variable denoted �� � �0,1�� and the haplotype of the joint 

blocks is the random variable given by the concatenation of the block variables ��� 	 �� 
 ��. 

Under this model, the recombination completely breaks the LD between the SNP blocks (r2 = 0) 

in the recomb subpopulation and therefore �� and �� are statistically independent. Therefore, 

the probability that a chromosome is observed with haplotype ��� in a chromosome group 

under recombination is: 

 �����	
��� 	 ���| ��, ��� 	 ��� 	 ��| ��� � ��� 	 �� | ���
 (1) 

 given the haplotype frequencies �� and ��. 

For the second chromosome group, we consider that there is no recombination and we model 

the SNP blocks to be in complete LD (r
2
 = 1). For the chromosomes in the linkage group, �� and 

�� are completely linked. �� can be unambiguously mapped to �� (�: �� � ��). Under this 

model, the probability of observing haplotype ��� is: 
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 ���������� 	 ���| �, �� 	 ���� 	 ��| ��, �� 	 ���� 0, ���������  
(2) 

where � are the frequencies of ��.  

We define the mixture model with two components, following equations (1) and (2). The 

model represents a chromosome population with a mixture of recomb and linkage groups with 

proportion �. We therefore assume that the probability of observing a chromosome with 

haplotype ��� is 

�	������ ��� 	 ���| ��,��,!�,", �#
	 ������	
��� 	 ���| ��, ��� $ 1 % ������������ 	 ���| !�, "� 

(3) 

where �� and �� are the frequencies of haplotypes �� and �� in recomb, !� is the haplotype 

frequencies of �� in linkage, where " is the function linking �� to ��.  

Given a set of & independent chromosomes (' 	 1, . . . &), we denote the random variable for 

the joint blocks over all chromosomes as )�� 	 ���� , ���� , . . . ���	 � and therefore the likelihoods 

of observing the data *�� under the mixture model is: 

 
�	������*��� 	 + �	������ ���� 	 ���� | ��, ��,!�, ", �#

	

���
 

(6) 

The mixture model parameters are determined using an Expectation-Maximization (EM) 

algorithm. For each chromosome, we define a hidden variable ,�-�0,1�. This variable indicates 

if the chromosome belongs to the recomb or the linkage groups. The EM algorithm updates 

the model parameters iteratively maximizing the expectation of the data. Given the 

parameters of the model ., . 	 ��, �� , !�, ", ��, we define the probability that chromosome k 

belongs to the linkage group, ��,�.� 	 � ,� 	 0|���� , .#. Similarly, the probability that 

individual ' belongs to the recomb group given . is ��,�.� 	 � ,� 	 1|���� , .#. For each ' 

the probability of belonging to any group is 1 and, therefore, ��,�.� $ ��,�.� 	 1. In each 

step of the EM algorithm, we find the value of ./ that maximizes: 
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.� � ������� � �� �!"1 $ % �& ' (����"���� | ��� , �*&+ ' ,	,�"-& . � �"% �(��"���� | ���, ���&& ' ,�,�"-&/
�

���

 

(7) 

 

We therefore update the mixture likelihood by ./given by:   

 �0 	 0�"&0�11!�" 1 % �0� ' ��.�# $ !�"  �0 ' ��.�#2 
(8) 

 
��0 	 0�"&0��� 3 !�"1� ����  | ��#2 ' ��,�.�

	

���
 

(9) 

 
��0 	 0�"&0��� 3 !�"1� ���� | ��#2 ' ��,�.�

	

���
 

(10) 

 
!�0 	 0�"&0��� 3 !�"1� ���� | !�#2 ' ��,�.�

	

���
 

(11) 

  

We estimate haplotype frequencies ��, ��, and !� in close form using Lagrange multipliers, 

following Sindi et al. [38]. In particular, we obtain  

 �0 	 ��.�
��.� $ ��.� 

 

(12) 

Where ��.� and ��.� are the probabilities that a chromosome in the population belongs to 

the linkage or the recomb groups (��.� 	 ∑ ��,�.�	��� ; ��.� 	 ∑ ��,�.�	��� ). We consider 

that a chromosome k belongs to recomb if ��,� > 0.5. The function "/ is defined using a greedy 

algorithm which sequentially pairs each observed ��, in decreasing order by their frequency, 

with the �� for which the observed frequency of ���, is maximum and has not been previously 

paired. The final ./ is such that its square root difference with the previous estimate is lower 

than machine precision. In addition, for numerical stability we set the zero in equation 2 to  

10-5.  

Clustering of chromosomes into different recombination patterns  

Differences in recombination patterns are given by the recombination points in which only a 

fraction of chromosomes showed historical recombination. In the second step of recombClust, 
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a consensus clustering is performed on all the recombination points tested over a genomic 

region to determine whether individual chromosomes are consistently classified into different 

recombination patterns. Therefore, to detect a subpopulation of chromosomes across the 

region based on their recombination patterns, recombClust first extensively fits the mixture 

model between numerous non-overlapping 2-SNP blocks. For each model, the method 

computes the probability that the chromosomes belong to the recomb group. Finally, 

recombClust produces a consensus classification of the chromosomes by clustering the first 

principal component of the recomb probabilities matrix across all mixture models fitted in the 

genomic region (Figure 1B).  

Extraction of recombination patterns along a genomic region 

We defined recombClust recombination patterns as the proportion of chromosomes that have 

recombined in each subpopulation at different points inside a target region. We started by 

dividing the target region in non-overlapping windows. In each window, we selected those 

models overlapping the window. In each model, we assigned a chromosome to recomb group 

if its probability of belonging to the recomb group was higher than 0.5. Then, we consider that 

the chromosome belonged to recombining group in a given window when it was assigned to 

the recomb group in more than half of the models. We defined non-overlapping windows of 

50Kb for human ~4Mb inversion 8p23.1 and the ~1Mb LCT region and of size 20Kb in the 

0.4Mb 1q21.1 region.  

Simulation to assess mixture model performance  

We evaluated the accuracy of the mixture model to classify individual chromosomes with 

extensive simulations. 200 instances of a reference scenario were generated and compared 

with the 200 instances of multiple scenarios under different SNP block and between 

chromosome group variabilities. For one instance of the reference scenario, we simulated 

1000 chromosomes in the recomb and the linkage groups each, given be the random and full 

linkage association between a pair of two-SNP blocks, respectively. For the recomb group, the 
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chromosome alleles at each SNP were drawn from a binomial distribution whose frequency 

was independently sampled from a uniform distribution (unif(0.55, 0.95)), assuming no LD 

within the blocks and between blocks. For the linkage group, SNPs within the blocks were 

independent but the pair of blocks, flanking the recombination point, was in maximum LD. We 

then considered that the most frequent haplotype for the joint SNP blocks was the same in 

both subpopulations and given by the SNP alleles with maximum frequency, so the overall 

linkage in the total population was of D’=1. Different scenarios were obtained by changing the 

parameters of these simulations, where assessed the performance of the mixture model, given 

by the accuracy to correctly classify chromosomes into the recomb/linkage groups. We first 

assessed the extent to which the accuracy of the model was affected by the genetic variability 

between populations, by considering that the differences between the most frequent block-

pair haplotypes in each chromosome group  was increasingly higher. We did this by changing 

the number of SNP alleles that were different between the most frequent haplotypes in each 

group.  

We also assessed the influence of within block variability on model accuracy, by taking blocks 

where the linkage between the SNPs in the block was maximum. This scenario reduces to 

having blocks of 1 SNP. Finally, we evaluated how the proportion between recomb and linkage 

populations affected the mixture model performance. We simulated different scenarios where 

the proportion of the recomb population ranged between 0.1 and 0.9. We test the model the 

reference scenario and using different initializations for the mixture frequency.  

Performance of recombClust to detect chromosomes with different 

recombination histories 

We also evaluated the performance of classifying the chromosomes under different 

recombination patterns using simulated inversions. As inversion polymorphisms produce 

chromosomal subpopulations that differ in their recombination patterns, we tested the ability 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2019. ; https://doi.org/10.1101/792747doi: bioRxiv preprint 

https://doi.org/10.1101/792747
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

21 

of recombClust to detect inversion status in simulated inversions. We simulated an inversion of 

800 Kb and a frequency of 20% using invertFREGENE [19] to evaluate the mixture model at 

different recombination points. We varied the inversion length (from 50 Kb to 1 Mb) and 

inversion frequency (from 0.1 to 0.9) to evaluate the overall recombClust performance to call 

the inversion status of the chromosomes. Each combination of frequency and length was run 

100 times. In all simulations, we used the default values of invertFREGENE parameters 

(recombination: 1.25 × 10-7, mutation rate: 2.3 × 10-7).  

Drosophila Melanogaster and human inversions 

We tested whether recombClust could characterize chromosomal inversions using differences 

in recombination patterns in Drosophila Melanogaster and in humans. We used recombClust 

to infer inversion status of chromosomes for three well known inversions: In(2L)t (2L:2225744-

13154180, dm6), In(2R)NS (2R:11278659-16163839, dm6) and In(3R)Mo (3R:17232639-

24857019). We used SNP data from DGRP2 lines [20, 21], excluding individuals with call rate  

< 95% and SNPs having any missing or a MAF < 5%, classified the lines into the underlying 

recombination patterns computed by recombClust and compared the classification with 

experimental inversion genotypes [21]. 

We used recombClust to classify phased chromosomes into underlying recombination patterns 

within human inversions at 8p23.1 (chr8:8055789-11980649, hg19) and 17q21.31 

(chr17:43661775-44372665, hg19). We used SNP phased data from the 1000 Genomes project 

[25]. We inferred the recombination modifier variants with recombClust and compared them 

with the experimental inversion genotypes available in the invFEST repository [22].  

Recombination substructure in the susceptibility region of TAR 

syndrome 

We ran recombClust across the region chr1:145.35-145.75Mb characterized by four blocks of 

segmental duplications. This region is prone to deleterious rearrangements by non-allelic 
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homologous recombination (NAHR), which can lead to the thrombocytopenia-absent radius 

(TAR) syndrome. We analyzed the 503 European individuals from the 1000 Genomes project 

and the 528 European individuals of Genotype-Tissue Expression (GTEx) project [39]. We 

obtained GTEx data from dbGAP (accession code: phs000424.v7.p2), we phased it with 

SHAPEIT [40] and we selected those individuals classified as European by peddy [41] with a 

probability higher than 0.9. In the recombClust analysis, we included SNPs with a MAF > 0.05 

and performed the consensus clustering across the detected points with a hierarchical 

clustering. In GTEx, we used the first two PCs of the chromosome subpopulation probabilities 

while in 1000 Genomes we only used the second PC. We tested Hardy-Weinberg equilibrium 

using SNPassoc [42].  

We studied whether the chromosome genotypes, derived from the chromosome 

subpopulations, were associated with gene expression and phenotype differences between 

individuals. We evaluated the association with gene expression in whole blood using GTEx 

data, using the gene raw counts from recount2 (33). For each tissue, we removed genes with 

less than 10 counts in more than 90% of the samples. We tested the association between the 

chromosome alleles and gene expression, applying a robust linear regression with limma [43] 

to log2 CPM values obtained with voom [44]. We included sex, platform, top three genome-

wide principal components and variables from PEER as covariates. 
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Additional File 1: .pdf. Supplementary Figures and Tables. Sup Figures 1-8, Sup Table 1  
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Table and Figure Legends 
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Figure 1: recombClust scheme. recombClust is a method to classify chromosomes into underlying recombination 

patterns using SNP data, it comprised two steps illustrated at the top and bottom of the figure. A) Mixture model 

fitting at different recombination points. Colours represent two main haplotypes. In the chromosome 

subpopulation on the left, there is recombination between the blocks in P chromosomes as they have all possible 

allele combinations between the SNP blocks 1/2, illustrated in geometrical figures. Q chromosomes are in high 

linkage. Whereas, for the population on the right, the opposite situation is observed for SNP blocks i-1/i. At each 

point the population is a mixture of P and Q chromosomes into the recomb and linkage groups. B) Chromosome 

classification into recombination patterns A and B. The mixture models provide a classification at each point, the 

first PCs of the classification matrix across all mixture models along the genomic region can detect clusters of 

chromosomes for which their classifications are similar, and therefore share similar recombination patterns. Each 

chromosome is assigned to a recombination subpopulation. The recombination pattern for each chromosome 

subpopulation can be reconstructed from the proportion of chromosomes in the recomb group at each point in the 

genomic region (not shown).   
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Figure 2: PCAs of recombClust probabilities for chromosomal inversions in Drosophila Melanogaster and human.  

First two principal components of chromosomes, derived from the recombination classification at multiple 

recombination points along different inverted regions. Each point is a chromosome. Clusters mapping the inversion 

status in both Drosophila and human inversions are clearly observed. Chromosomes with known inversion 

genotypes are coloured (green: standard, blue: inverted). A-C) Drosophila inversions in DGRP2 lines. D-E) Human 

inversions in the European individuals of the 1000 Genomes project. 
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Figure 3: Underlying recombination patterns in human inversions 8p23.1 for the European individuals of the 1000 

Genomes Project. Ideogram for the 8p23.1 inverted region showing the transcripts in the region. Alves et al peaks: 

approximate location of recombination hotspots for standard or inverted chromosomes identified by Alves and 

colleagues [3]. FastEPRR recombination rate: recombination rate obtained from FastEPRR independently for 

standard and inverted chromosomes. Recombination difference: raw and smoothed difference in recombination 

rates between standard and inverted chromosomes as computed from FastEPRR. Recomb proportion: proportion of 

chromosomes belonging to recomb population in the chromosome subpopulations detected by recombClust, which 

accurately predicted inversion status. Difference in recomb proportion: raw and smoothed difference in the 

proportion of chromosomes belonging to recomb population in inverted and standard chromosomes, as predicted 

by recombClust.  
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Figure 4: Underlying recombination patterns in the LCT locus.   A) First two principal components of chromosomes, 

derived from the recombination classification at multiple recombination points along the LCT locus.  B) Ideogram for 

the LCT locus under selection showing the genes in the region.  Bhérer et al recombination rate: recombination rates 

reported by Bherer and colleagues [28]. FastEPRR recombination rate: recombination rate obtained from FastEPRR 

independently for chromosomes with alleles 1 and 2 detected by recombClust. Recombination difference: raw and 

smoothed difference in recombination rates between alleles 1 and 2 as computed from FastEPRR. Recomb 

proportion: proportion of chromosomes belonging to recomb population in the chromosome subpopulations  with 

alleles 1 and 2, correctly predicting a flat pattern for the allele 1 that is under selection. Difference in recomb 

proportion: raw and smoothed difference in the proportion of chromosomes belonging to recomb population in in 

alleles 1 and 2. 
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Figure 5: Underlying recombination patterns in the TAR syndrome locus. A) Chromosome subpopulations with 

different recombination pattern between the coordinates chr1:145.35-145.75 (hg19), as detected in the genomic 

data  of the 1000 Genomes and GTEx projects. B) Transcriptomic analyses for the genes in the region identified that 

ANKRD35 transcription is significantly associated with the chromosome population substructure. Ideogram for the 

analyzed region showing the transcripts and the four segmental duplication blocks originating the common and 

minimal deletions associated to the TAR syndrome. The tracks also show the recomb proportion for each 

population as given by recombClust for the 1000 Genomes and for GTEx, demonstrating high reproducibility for the 

recombination patterns. The recombination differences of the recombination patterns between chromosome 

subpopulations is also shown. In the lower track, LD between the SNPs in the region and the chromosome 

subpopulations. SNP eQTLs for ANKRD35 are depicted in blue and the risk factor for hypertension (rs72704264) is 

shown in green.  
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Sup Figure 1: Evaluation of the mixture model under different simulated scenarios. Each plot contains the accuracy 
for classifying all chromosomes and the accuracies to classify recomb or linkage chromosomes (i.e. sensibility). π: 
proportion of chromosomes belonging to recomb population. π0: recomb proportion initial value. Different Major 
Alleles: SNPs having different major alleles in recomb and linkage populations. Full Linkage Blocks: Number of blocks 
without variability, i.e. they can be considered as a single SNP. Accuracies contain the mean and standard error 
computed from 200 simulations of each scenario.  
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Sup Figure 2: Accuracy of recombClust to detect datasets with a population mixture. Average silhouette value 
indicates how reliable was recombClust clustering in a given dataset. Dashed lines mark critical cut-off (>0.7: very 
reliable structure; 0.5-0.7: reliable structure; <0.5: unreliable clustering). Mixture datasets contains two 
subpopulations with non-overlapping recombination points, while single datasets contain one population. Average 
silhouette values contain the mean and standard error computed from 1000 simulations of each scenario. 
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Sup Figure 3: recombClust evaluation in simulated datasets with a known population mixture. We computed FPR 
and power based on simulated datasets. Half of the datasets contained a mixture population and the other half one 
population. A dataset with an average silhouette value of 0.7 was considered as supporting a mixture population by 
recombClust. Each point is the FPR and power of 2000 simulations. 
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Sup Figure 4:  recombClust accuracy for detecting subpopulations with different recombination patterns. A-left) 
Detection of recombination patterns on simulated data by clusters on the PCs of the prediction matrix across 
mixture models on 10 recombination points. Five different recombination points were simulated for each 
subpopulation A and B, where the other subpopulation remained in linkage. The first PC shows a clear separation of 
the subpopulations. A-right) To test mutation differences between the subpopulations, we computed the PC for the 
genotype matrix of the markers flanking the 10 recombination points. In this case the PCs did not showed a clear 
separation between the chromosome subpopulations. B) The figure shows the match between the chromosome 
subpopulations as obtained by recombClust and inversion status of chromosomes, for 9,000 simulated inversions at 
a given size (1000 simulations at 9 different inversion frequencies). The figure shows the mean accuracy and 
standard error. recombClust identifies inversion status by recombination differences with high accuracy, particularly 
for inversions > 250Kb. 
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Sup Figure 5: recombClust accuracy for different inversion frequencies. Accuracy is the proportion of phased 
chromosomes correctly classified. Each boxplot includes 500 simulations.  
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Sup Figure 6: recombClust accuracy for different inversion ages. Accuracy is the proportion of phased chromosomes 
correctly classified. Each point is the accuracy of an independent simulation.  
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Sup Figure 7: Identification of chromosomal subpopulations of different ancestries from differences in the 
recombination patterns within two inversions. The figures show the first two PCA components for the all mixture 
model predictions at numerous recombination points across inv-8p23.1 and inv-17q21.31, computed for all 1000 
Genomes ancestries. Chromosomes are clearly separated by inversion status (Std, Inv) and ancestry. For inv-8p23.1 
clear ancestral groups are identified within inversion status whereas ancestry is mixed within each inv-17q21.31 
status. Colored points indicate experimentally validated observations of inversion status and ancestry. 
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Sup Figure 8: Representation of two chromosomal subpopulations with different recombination patterns in a 

genomic segment. Lines represent the possible chromosomes present in population 1 (blue) and population 2 (red). 

Each SNP has two alleles (A and B) and is labelled with a number. Recombination points are placed between SNPs 

where A and B alleles are joined by a line. G1 and H1 are two possible chromosomes from population 1 and H2 is 

one of the possible chromosomes from population 2. The dotted box contains a recombination point present in 

population 1 but not in population 2. 
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Sup Table 1: recombClust allele frequencies in LCT locus for different European populations. Allele 1 is more 
frequent in all populations by TSI, the only population that do not show a selection mark based on iHS. CEU: Utah 
residents (CEPH) with Northern and Western European ancestry. FIN: Finnish in Finland. GBR: British in England and 
Scotland. IBS: Iberian populations in Spain. TSI: Toscani in Italy. 

 Allele 1 Frequency Allele 2 Frequency  

CEU 79.8% 20.2% 

FIN 65.7% 34.3% 

GBR 74.2% 25.8% 

IBS 59.8% 40.2% 

TSI 28.5% 71.5% 
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