Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Polygenic adaptation after a sudden change in environment

View ORCID ProfileLaura K. Hayward, Guy Sella
doi: https://doi.org/10.1101/792952
Laura K. Hayward
aDepartment of Mathematics, Columbia University, New York, NY 10027
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Laura K. Hayward
  • For correspondence: lauhayward@gmail.com gs2742@columbia.edu
Guy Sella
bDepartment of Biological Sciences, Columbia University, New York, NY 10027
cDepartment of Systems Biology, Columbia University, New York, NY 10032
dProgram for Mathematical Genomics, Columbia University, New York, NY 10032
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: lauhayward@gmail.com gs2742@columbia.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Polygenic adaptation in response to selection on quantitative traits is thought to be ubiquitous in humans and other species, yet this mode of adaptation remains poorly understood. We investigate the dynamics of this process, assuming that a sudden change in environment shifts the optimal value of a highly polygenic quantitative trait. We find that when the shift is not too large relative to the genetic variance in the trait and this variance arises from segregating loci with small to moderate effect sizes (defined in terms of the selection acting on them before the shift), the mean phenotype’s approach to the new optimum is well approximated by a rapid exponential process first described by Lande (1976). In contrast, when the shift is larger or large effect loci contribute substantially to genetic variance, the initially rapid approach is succeeded by a much slower one. In either case, the underlying changes to allele frequencies exhibit different behaviors short and long-term. Over the short term, strong directional selection on the trait introduces small differences between the frequencies of minor alleles whose effects are aligned with the shift in optimum versus those with effects in the opposite direction. The phenotypic effects of these differences are dominated by contributions from alleles with moderate and large effects, and cumulatively, these effects push the mean phenotype close to the new optimum. Over the longer term, weak directional selection on the trait can amplify the expected frequency differences between opposite alleles; however, since the mean phenotype is close to the new optimum, alleles are mainly affected by stabilizing selection on the trait. Consequently, the frequency differences between opposite alleles translate into small differences in their probabilities of fixation, and the short-term phenotypic contributions of large effect alleles are largely supplanted by contributions of fixed, moderate ones. This process takes on the order of ~4Ne generations (where Ne is the effective population size), after which the steady state architecture of genetic variation around the new optimum is restored.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted October 03, 2019.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Polygenic adaptation after a sudden change in environment
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Polygenic adaptation after a sudden change in environment
Laura K. Hayward, Guy Sella
bioRxiv 792952; doi: https://doi.org/10.1101/792952
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Polygenic adaptation after a sudden change in environment
Laura K. Hayward, Guy Sella
bioRxiv 792952; doi: https://doi.org/10.1101/792952

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4383)
  • Biochemistry (9599)
  • Bioengineering (7094)
  • Bioinformatics (24865)
  • Biophysics (12615)
  • Cancer Biology (9958)
  • Cell Biology (14354)
  • Clinical Trials (138)
  • Developmental Biology (7950)
  • Ecology (12107)
  • Epidemiology (2067)
  • Evolutionary Biology (15989)
  • Genetics (10925)
  • Genomics (14743)
  • Immunology (9870)
  • Microbiology (23676)
  • Molecular Biology (9485)
  • Neuroscience (50872)
  • Paleontology (369)
  • Pathology (1539)
  • Pharmacology and Toxicology (2683)
  • Physiology (4016)
  • Plant Biology (8657)
  • Scientific Communication and Education (1509)
  • Synthetic Biology (2397)
  • Systems Biology (6436)
  • Zoology (1346)