
 1

Polygenic adaptation after a sudden change in environment 

 

Laura K. Hayward a, 1 and Guy Sella b, c, d, 1 

 

a Department of Mathematics, Columbia University, New York, NY 10027 

b Department of Biological Sciences, Columbia University, New York, NY 10027 

c Department of Systems Biology, Columbia University, New York, NY 10032 

d Program for Mathematical Genomics, Columbia University, New York, NY 10032  

1 To whom correspondence should be addressed: lauhayward@gmail.com or gs2742@columbia.edu 

 

Abstract 

 

Polygenic adaptation in response to selection on quantitative traits is thought to be 

ubiquitous in humans and other species, yet this mode of adaptation remains poorly 

understood. We investigate the dynamics of this process, assuming that a sudden change in 

environment shifts the optimal value of a highly polygenic quantitative trait. We find that 

when the shift is not too large relative to the genetic variance in the trait and this variance 

arises from segregating loci with small to moderate effect sizes (defined in terms of the 

selection acting on them before the shift), the mean phenotype’s approach to the new 

optimum is well approximated by a rapid exponential process first described by Lande 

(1976). In contrast, when the shift is larger or large effect loci contribute substantially to 

genetic variance, the initially rapid approach is succeeded by a much slower one. In either 

case, the underlying changes to allele frequencies exhibit different behaviors short and 

long-term. Over the short term, strong directional selection on the trait introduces small 

differences between the frequencies of minor alleles whose effects are aligned with the 

shift in optimum versus those with effects in the opposite direction. The phenotypic effects 

of these differences are dominated by contributions from alleles with moderate and large 

effects, and cumulatively, these effects push the mean phenotype close to the new 

optimum. Over the longer term, weak directional selection on the trait can amplify the 

expected frequency differences between opposite alleles; however, since the mean 

phenotype is close to the new optimum, alleles are mainly affected by stabilizing selection 

on the trait. Consequently, the frequency differences between opposite alleles translate 
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into small differences in their probabilities of fixation, and the short-term phenotypic 

contributions of large effect alleles are largely supplanted by contributions of fixed, 

moderate ones. This process takes on the order of ~4�� generations (where �� is the 

effective population size), after which the steady state architecture of genetic variation 

around the new optimum is restored.   

 

Introduction 

 

Many traits under natural selection are quantitative, highly heritable, and genetically 

complex, meaning that they take on continuous values, that a substantial fraction of the 

population variation in their values arises from genetic differences among individuals, and 

that this variation arises from small contributions at many segregating loci. It therefore 

stands to reason that the responses to changing selective pressures often involve adaptive 

changes in such traits, accomplished through changes to allele frequencies at the many loci 

that affect them. In other words, we should expect polygenic adaptation in complex, 

quantitative traits to be ubiquitous.  This view traces back to the dawn of population and 

quantitative genetics (1, 2) and is supported by many lines of evidence (3, 4).  

 

Notably, it is supported by studies of the response to directional, artificial selection on 

many traits in plants and animals in agriculture and in artificial evolution experiments (3, 

4). In these settings, selected traits typically exhibit amazingly rapid and sustained adaptive 

changes (5-7), which are readily explained by models in which the change is driven by 

small shifts in allele frequencies at numerous loci (5, 8), and inconsistent with models with 

few alleles of large effects (6, 9). The potential importance of polygenic adaptation has also 

been highlighted by more recent efforts to elucidate the genetic basis of adaptation in 

humans. In the first decade after genome-wide polymorphism datasets became available, 

this quest was largely predicated on the monogenic model of a hard selective sweep (10, 

11), in which adaptation proceeds by the fixation of new or initially rare beneficial 

mutations of large effects (e.g., (12)). Subsequent analyses, however, echoed studies of 

artificial selection in indicating that hard sweeps were rare, at least over the past ~500,000 
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years of human evolution (13, 14). Yet humans plausibly adapted in myriad ways during 

this time period, and they definitely experienced substantial changes in selection pressures, 

notably during more recent expansions across the globe. These considerations refocused 

the quest for the genetic basis of human adaptation on polygenic adaptation (15, 16). 

 

Findings from genome wide association studies (GWASs) in humans have been central to 

this research program. Statistical analyses of GWASs indicate that in humans, heritable 

variation in complex traits is highly polygenic (17-19). For example, for many traits, 

estimates of the heritability contributed by chromosomes are approximately proportional 

to their length (17), suggesting that the contributing variants are numerous and roughly 

uniformly distributed across the genome. Such findings reinforced the view that adaptive 

changes to quantitative traits are likely to often be highly polygenic, but also implied that 

their identification would be difficult, as the changes to allele frequencies at individual loci 

may be minute. To overcome this limitation, recent studies pooled signatures of frequency 

changes over the hundreds to thousands of alleles that were found to be associated with an 

increase (or decrease) in a given trait (20-26). Initial studies suggest that polygenic 

adaptation has affected multiple human traits, but these conclusions have been called into 

question with the realization that the results are highly sensitive to systematic biases in 

GWASs, most notably due to residual population structure (27, 28).   

 

Given that polygenic adaptation is plausibly ubiquitous, yet likely hard to identify, there is a 

clear need for a deep understanding of its behavior in populations and footprints in data. 

To date, theoretical work has primarily focused on two scenarios. The first is motivated by 

the observed responses to sustained artificial selection, modeled either as truncation 

selection (29) or as stabilizing selection, with the optimal phenotype moving at a constant 

rate in a given direction (e.g., (30-34)). In natural populations, however, quantitative traits 

are unlikely to be subject to long-term continuous change in one direction. Instead, 

considerable evidence indicates that they are often subject to long-term stabilizing 

selection (3), with intermittent shifts of the optimum in different directions. The second 

scenario therefore assumes that a sudden change in the environment induces an 

instantaneous shift in the optimum of a trait under stabilizing selection (35-42). Although 
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more elaborate scenarios (where, for example, the optimum and/or strength of stabilizing 

selection vary frequently) are also possible, this simple scenario provides a sensible 

starting point for thinking about polygenic adaptation in nature, and is our focus here.  

 

Although there has been considerable work on the adaptive response to an instantaneous 

change in optimal phenotype, our understanding of this process is still limited. Seminal 

work by Lande (35) focused on the phenotypic response to selection in the infinitesimal 

limit, in which genetic variation arises from infinitely many segregating loci with 

infinitesimal effect sizes (see below). In reality, the number of loci and their effects are 

obviously finite. We would like to understand how this assumption affects the phenotypic 

response. Also, with GWASs now enabling us, at least in principle, to learn about the genetic 

basis of the phenotypic response, we would like to understand the allelic dynamics that 

underlie it.  

 

Several studies have tackled this problem using simulations (e.g., (38, 39)). Although 

illustrative of the dynamics, it is unclear how to generalize their results, given (necessarily) 

arbitrary choices about multiple parameters and the complexity of these dynamics. In turn, 

elegant analytical work by de Vladar & Barton (36) and extensions by Jain & Stephan (37, 

43) afford a general understanding of the allelic dynamics in models with an infinite 

population size. These dynamics, however, are shaped by features of mutation-selection 

balance that are specific to infinite populations. Notably, they strongly depend on the 

frequency of the allele prior to the shift in optimum following deterministically from its 

effect size, and on the critical effect size at which this frequency transitions from being 

dominated by selection to being dominated by mutation. But in real (finite) populations 

(including humans), the frequencies of alleles whose selection effects are sufficiently small 

to be dominated by mutation will be shaped by genetic drift; more generally, variation in 

allele frequencies due to genetic drift will crucially affect the allelic response to selection 

(see below). Thus, we still lack a solid understanding of the allelic dynamic underlying 

polygenic adaptation in natural populations.  
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Here, we follow previous work in considering the phenotypic and allelic responses of 

highly polygenic traits after a sudden change in optimal phenotype. But we do so in finite 

populations and employ a combination of analytic and simulation approaches to 

characterize how the responses varies across a broad range of evolutionary parameters.  

 

The model 

 

We build upon the standard model for the evolution of a highly polygenic, quantitative trait 

subject to stabilizing selection (3, 44-49). An individual’s phenotype is represented by the 

value of a continuous trait, which follows from its genotype by the standard additive model 

(50, 51). Namely, we assume that the number of genomic sites affecting the trait (i.e., the 

target size) is very large, � � 1, and that an individual’s phenotype is given by 

� � ∑ 	
� � 
���
��� � �,       (1) 

where the first term is the genetic contribution, with 
� and 
�� denoting the phenotypic 

effects of the parents’ alleles at site l, and �~�	0, �� is the environmental contribution.  

 

Stabilizing selection is introduced by assuming that fitness declines with distance from the 

optimal trait value positioned at the origin (� � 0). Specifically, we assume a Gaussian 

(absolute) fitness function: 

W	� � exp	� �� 2��⁄ ,       (2) 

where �	
� measures the strength of selection. The specific form of the fitness function is 

unlikely to affect our results under parameter ranges of interest (see below), however. 

Since the additive environmental contribution to the phenotype can be absorbed into �� 

(by replacing it by ��� � �� � ��; e.g., (46, 52)), we consider only the genetic contribution. 

 

The population dynamics follow the standard model of a diploid, panmictic population of 

constant size N, with non-overlapping generations. In each generation, parents are 

randomly chosen to reproduce with probabilities proportional to their fitness (i.e., Wright-

Fisher sampling with fertility selection), followed by mutation, free recombination (i.e., no 

linkage) and Mendelian segregation. We assume that the mutational input per site per 
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generation is sufficiently small such that segregating sites are rarely more than bi-allelic 

(i.e., that � � 4�� � 1, where � is the mutation rate per site per generation). We therefore 

employ the infinite sites approximation, such that the number of mutations per gamete, per 

generation follows a Poisson distribution with mean � � ��. The effect sizes of mutations, 


, are drawn from a symmetric distribution, i.e., with equal probability of increasing or 

decreasing the trait value; further assumptions about this distribution are specified below. 

Table S1 provides a summary of our notation. 

 

Evolutionary scenario and parameter ranges. We assume that at the outset–before the 

shift in optimal phenotype–the population has attained mutation-selection-drift balance. 

We follow previous work on this balance in making several plausible assumptions about 

parameter ranges (e.g., (49)). First, we assume that the per generation, population scaled 

mutational input is sufficiently large for variation in the trait to be highly polygenic 

(specifically, that √2�� � 1). Second, we assume that the expected number of mutations 

affecting the trait per generation, per gamete, is substantially smaller than 1 (� � �� � 1). 

For this assumption to be violated, a trait would have to be extremely polygenic, e.g., in 

humans, the mutational target size, �, would have to exceed ~5 Mb (assuming that 

�  2 · 10
� per bp per generation, including all types of mutations); while we believe that 

our results would still hold qualitatively when � " 1, we leave the investigation of this case 

for future studies. Third, we make the standard assumption that selection coefficients of all 

alleles satisfy # � 1, which implies that the equilibrium selection coefficient #� � 
� ��⁄ �
1 (see below and (2, 46, 53)). Fourth, we assume that a substantial proportion of mutations 

are not effectively neutral, i.e., have $ � 2�#� % 1. This assumption is supported by 

empirically based estimates of persistence time for a variety of traits and taxa (3, 4) and by 

inferences based on human GWASs (49, 54), indicating that quantitative genetic variance is 

not predominantly neutral. Under these assumptions, the phenotypic distribution at 

mutation-selection-drift balance is symmetric and tightly centered on the optimal 

phenotype (Fig. 1). Specifically, the mean phenotype exhibits tiny, rapid fluctuations 

around the optimal phenotype with variance &� � �� 2�⁄  (49); the phenotypic standard 

deviation is considerably greater than these fluctuations, i.e., '� � & (SI Section 2); but 
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the phenotypic variance is much smaller than the curvature of the fitness function, i.e., 

�� � � (49).  

  

Figure 1. The evolutionary scenario. Before the shift in optimum, phenotypes are 

distributed symmetrically, with a mean that is very close to the old optimum and a variance 

that is much smaller than the curvature of the fitness function (� � ��). We consider the 

response to an instantaneous shift in optimum, for the case where the magnitude of the 

shift is smaller than the width of the fitness function (Λ ) '��). See text for further details. 

 

We consider the response to an instantaneous shift of Λ in optimal phenotype at time t=0 

(Fig. 1). We assume that the shift in optimum is greater than the equilibrium fluctuations in 

mean phenotype, i.e., that Λ " &. We further assume that Λ ) '�� and 
 � '��. The latter 

requirements ensure that the maximal directional selection coefficients of alleles, which 

are attained immediately after the shift, satisfy #� � 2 Λ · 
 ��⁄ � 1 (see below and (2, 55)). 

The requirement that 
 � '�� is not particularly restrictive, as it allows for the selection 

coefficients of alleles at equilibrium, #� � 
� ��⁄ , to be as large as 1%. Neither is the 

assumption that Λ ) '��, because, given that the genetic variance before the shift satisfies 

�	0 � ��, it allows for shifts of several equilibrium phenotypic standard deviations (SI 

Section 2 and Fig. S1. 

 

Choice of units. Our analysis allows us to choose the units in which we measure the trait. 

When we study the allelic response, we use units based on the dynamics at mutation-

selection drift balance (before the shift in optimum). The population-scaled selection 
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coefficient at steady state is $ � 2�#� � 2�
,� �-�⁄ � 
,� &�⁄ ; here, the effect size 
, is 

measured in arbitrary units, and �-� is measured in these units-squared, such that the scaled 

selection coefficient has no units. We will measure the trait in units of &. In these units, the 

effect size 
 . 
, &⁄ � √$, the stabilizing selection parameter �� . �-� &� � 2�⁄ , and an 

allele’s contribution to variance is /�	$, 0 � 2$0	1 � 0 (and has units of &�). We also 

measure the distance between the mean and optimal phenotype, 1, and shift in optimum, 

Λ, in units of &. Stating our results in these terms makes their form invariant with respect to 

changes in the population size, �, and the strength of stabilizing selection, ��
�. 

 

Simulations and resources. We compare our analytical results to three layers of 

simulations (see SI Section 4 for further detail). The first realizes the full model described 

above, and is run with a burn in period of 10� generations to attain steady state before the 

shift in optimum. The second traces all alleles (AA) rather than individuals. It assumes 

linkage equilibrium (rather than free recombination), and changes to allele frequencies 

every generation are modeled according to the diffusion approximation detailed below. It is 

also run with a burn-in period of 10� generations before the shift. The third kind of 

simulation traces the dynamic of one allele at the time (OA). To that end: i) we sample 

initial minor allele frequencies from the closed form, equilibrium distributions ((49) and SI 

Section 4), using importance sampling based on the density of variance contributed by 

different minor allele frequencies (SI Section 4); and ii) the change in the population’s 

mean phenotype over time, on which the allelic dynamics depend, is given as input, based 

on either an analytical approximation (see below) or on an average over simulations of the 

second layer. The last two layers allow for greater computational tractability, and their 

results are validated against those from the first layer (Fig. S2). Documented code for 

simulations, numerical analysis, and graphs can be found at 

https://github.com/sellalab/PolygenicAdaptation.  
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Results 

 

Phenotypic response. We first consider how the population’s mean phenotype 

approaches the new optimum. In SI Section 2, we express the mean distance from the new 

optimum, 1	2, as a sum over allelic contributions. We show that under our assumptions, 

the expected, per generation change in this distance is well approximated by 

34Δ1	26 7 �	�	2 ��⁄  · 1	2 � 8�	2 	2��⁄  ,   (2) 

where V�	2 and 8�	2 denote the 2nd and 3rd central moments of the phenotypic 

distribution. Similar expressions were derived by Barton and Turelli (55) under the rare-

alleles approximation and by Bürger (56) under the assumption of a parabolic fitness 

function.  

 

We rely on Eq. 2 to describe the phenotypic response to selection. This response takes a 

simple form in the infinitesimal limit, in which genetic variation at equilibrium arises from 

infinitely many segregating alleles with infinitesimal effect sizes (57-59). In this limit, the 

change in mean phenotype is achieved by infinitesimal changes to allele frequencies at 

infinitely many loci; and as a result, the phenotypic distribution remains normal and the 

phenotypic variance remains constant. Under these assumptions, Eq. 2 reduces to 

34Δ1	26 � �	�	0 ��⁄  · 1	2,      (3) 

which (in continuous time) is solved by  

1�	2 � Λ · exp	�	�	0 ��⁄  · 2.      (4) 

This solution was first derived by Lande (35), and we refer to it henceforth as Lande’s 

solution or approximation. When genetic variance is dominated by loci with small and 

intermediate effect sizes (as defined below) and the shift in optimum is not too large 

relative to the phenotypic standard deviation, changes to the 2nd and 3rd moments of the 

phenotypic distribution are small and the expected phenotypic response is well 

approximated by Lande's solution (Figs. 2A and S3).  
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Figure 2. The phenotypic response to a shift in optimal phenotype. A) Cartoon of the two 

kinds of phenotypic response: i) the Lande approximation, in which the mean approaches 

the new optimum exponentially with time and the phenotypic distribution maintains its 

shape; ii) substantial deviations from Lande’s approximation, in which the mean at first 

approaches the new optimum rapidly but in so doing, the phenotypic distribution becomes 

skewed, after which the mean’s approach slows down to a rate that is dictated by the decay 

of the 3rd moment. B) In both the Lande and non-Lande cases, the mean phenotype initially 

approaches the new optimum rapidly. C) In the non-Lande case, the phenotypic variance 

and skewness increase during the rapid phase and then take a very long time to decay to 

their values at steady state. D) Over the longer term, the approach to the optimum in the 

non-Lande case almost grids to a halt, where its rate can be described by the quasi-static 

approximation (Eq. 5). The simulation results in B-D were averaged over 5000 runs of our 

allelic simulations (AA) (see Model section and SI Section 4), with � � 10�, Λ � 4 · '�	0, 

and '�	0 � 30 · & . In the Lande case, effect sizes were Gamma distributed with 

3	$ � �	$ � 1 ($~Γ	1, 1) and � 7 0.03 (to match �	0 in both cases); in the non-

Lande case, effect sizes were Gamma distributed effect sizes with 3	$ � 24 and �	$ � 36 

($~Γ	6, 4) and � � 0.01. 

 

When alleles with large effects contribute markedly to genetic variance, or when the shift 

in optimum is large relative to the phenotypic standard deviation, changes to the 2nd and 

3rd moments of the phenotypic distribution become more substantial (Fig. 2C; (55)). To see 
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why, consider a pair of minor alleles with the same effect size and initial frequency, where 

the effect of one is aligned with the shift and the effect of the other opposes it. After the 

shift, directional selection increases the frequency of the aligned alleles relative to that of 

the opposing one. The frequency increase of the aligned allele increases variance more than 

the frequency decrease of the opposing allele decreases it, resulting in a net increase to 

variance (Fig. 2C; (36, 43, 55)). The relative changes in frequency and thus the net increase 

in variance are greater for alleles with larger effects. Next consider the 3rd moment. At 

steady state, the contribution of alleles with opposing effects to the 3rd moment cancel out. 

After the shift, the frequency increase of aligned alleles relative to opposing ones 

introduces a non-zero 3rd moment (Fig. 2C). Large effect alleles contribute substantially 

more to this 3rd moment, both because their individual, steady state contribution to the 3rd 

moment is greater to begin with (SI Section 2) and because they exhibit larger relative 

changes in frequency after the shift (see below). By the same token, larger shifts result in 

stronger directional selection and greater relative frequency differences between alleles 

with opposing effects, and thus in greater increases to variance and a greater skew of the 

phenotypic distribution. 

 

The increase in 2nd and 3rd moments after the shift result in a phenotypic dynamic with two 

distinct phases. First, immediately after the shift, the mean phenotype rapidly approaches 

the new optimum, akin to the exponential approach in Lande’s approximation. In this case, 

however, genetic variance increases and thus the exponential rate of approach may 

increase, making the expected approach even faster (Eq. 2). Shortly thereafter, when the 

mean phenotype nears the optimum, the decreasing distance and increasing 3rd moment 

reach the point at which 

1	2  8�	2 	2�	2⁄ .       (5) 

The two terms on the right-hand side of Eq. 2 then approximately cancel out, and the 

dynamic enters a second, prolonged phase, in which the approach to the optimum nearly 

grinds to a halt (Fig. 2D). During this phase, the expected change in mean phenotype can be 

described in terms of a quasi-static approximation given by Eq. 5 (Fig. 2D). The rate of 

approaching the optimum is then largely determined by the rate at which the 3rd moment 

decays. This roughly corresponds to the rate at which the allele frequency distribution 
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equilibrates and steady state around the new optimum is restored (see section on 

“Equilibration time”). 

 

Allelic dynamics. We now turn to the allelic dynamics that underlie the phenotypic 

response. These dynamics can be described in terms of the first two moments of change in 

frequency in a single generation (60, 61). For an allele with effect size 
 and frequency 0, 

we calculate the moments by averaging the fitness of the three genotypes over genetic 

backgrounds (SI Section 1). Under our assumptions, the moments are well approximated 

by 

3	Δ0 7 	
 · 1	2 ��⁄  · 0	1 � 0 � 	
� ��⁄  · 0	1 � 0	�
�

� 0  (6) 

and 

��Δ0� � ��1 � �� 2	⁄ ,       (7) 

which is the standard drift term.  Similar expressions for the first moment trace back to 

Wright (44) and have been used previously to study the response to selection on 

quantitative traits (36, 56, 62, 63). 

 

The two terms in the first moment reflect different modes of selection: directional and 

stabilizing, respectively. The first term arises from directional selection on the trait and 

takes a semi-dominant form with selection coefficient #� � 2
 · 1	2/�	. Its effect is to 

increase the frequency of alleles whose effects are aligned with the shift (and vice versa) 

and its strength weakens as the distance to the new optimum, 1, decreases. The second 

term arises from stabilizing selection on the trait and takes an under-dominant form with 

selection coefficient #� � 
�/��. Its effect is to decrease an allele’s contribution to 

phenotypic variance, 2
�0	1 � 0, by reducing minor allele frequency (MAF); it becomes 

weaker as the MAF approaches ½.  

 

The relative importance of the two modes of selection varies as the mean distance to the 

new optimum, 1, decreases. We therefore divide the allelic response into two phases: a 

rapid phase, immediately after the shift, in which the mean distance to the new optimum is 

substantial and changes rapidly, and a subsequent, prolonged equilibration phase, in which 
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the mean distance is small and changes slowly (SI Section 3; (43)). We delimit the rapid 

phase by the time at which the distance 1	2� first equals & � '�	 2�⁄  or 8�	2� �	2�⁄ . 

When Lande’s approximation applies, the distance 1	2� � &, where & equals the standard 

deviation of the distance from the optimum at steady state (when 1 � 0). When deviations 

from Lande’s approximation are substantial, the distance 1	2� � 8�	2� �	2�⁄ " &, where 

8�	2� �	2�⁄  is the distance at which the expected change in 1 is halved due to the 

increase in the 2nd and 3rd moments of the phenotypic distribution (Eq. 2). In the latter 

case, the distance 1 during the equilibration phase will be larger, but under plausible 

parameter values it will be small in either case (SI Section 2). While the definition of the 

end of the rapid phase is somewhat arbitrary, our analysis is insensitive to the choice. 

 

The change in mean phenotype during the rapid phase is driven by the differential effect of 

directional selection on minor alleles whose effects are aligned and opposed to the shift in 

optimum (Fig. 3). Considering a pair of minor alleles with opposing effects and the same 

initial frequency, selection increases the frequency of the aligned allele relative to the 

opposing one. By the end of the rapid phase, the frequency differences across all aligned 

and opposing alleles drive the mean phenotype close to the new optimum (Fig. 2A). 

Deviations from Lande’s approximation manifest as prolonged, weak directional selection 

during the equilibration phase, which further increases the expected frequency difference 

between aligned and opposing alleles. However, given that we are considering a highly 

polygenic trait, the expected frequency difference between a pair of opposing alleles will be 

small. This small difference causes aligned alleles to have a slightly greater probability of 

eventually fixing during the equilibration phase (Fig. 3). Over a period on the order of 4� 

generations (see below), the frequency differences between aligned and opposing alleles 

are replaced by a slight excess of fixed differences between them, and the steady state 

genetic architecture is restored around the new optimum. In the following sections, we 

describe these processes quantitatively. Specifically, we ask how the relative contribution 

of alleles to phenotypic change during the two phases depends on their effect size and 

initial frequency. 
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Figure 3. A cartoon of the allelic dynamic. We divide the allelic dynamics into rapid and 

equilibration phases, based on the rate of phenotypic change, and consider the trajectories 

of alleles with opposing effects of the same size, which start at the same initial minor 

frequency. During the rapid phase, alleles whose effects align with the shift slightly 

increase in frequency relative to those with opposing effects. During the equilibration 

phase, this frequency difference can increase further and eventually leads aligned alleles to 

fix with slightly greater probabilities than opposing ones.  

 

The allelic response in the rapid phase. We can describe changes to allele frequencies 

during the rapid phase with a simple deterministic approximation. The duration of the 

rapid phase is much shorter than the time scale over which genetic drift has a substantial 

effect (2�~ 1 � � 2�⁄  generations; SI Section 3.2), allowing us to rely only on the first 

moment of change in allele frequency (Eq. 6). Additionally, deviations of the distance 1	2 

from Lande’s approximation during this phase have negligible effects (Fig. 2B and SI 

Section 2), allowing us to assume that 1	2 � 1�	2 (Eq. 4). Lastly, when relative frequency 

changes are small, we can substitute the frequency in the first moment by its initial value. 

With these simplifications, we can integrate the first moment over time to obtain an explicit 

approximation for frequency changes. 

 

Consider a pair of minor alleles with opposing effects of size 
 and initial frequency 0� 

before the shift in optimum. Using our simple approximation, we find that the frequency 

difference between them at the end of the rapid phase is   

Δ0��� 	$, 0� �  0��� 	$, 0�  � 0��
 	$, 0�  2	
 ��⁄  · 0�	1 � 0� ? 1�	tA2
��

�

 

� 4Λ � 1�	2�6 · 2 
0�	1 � 0� �	0⁄ .  (8) 
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Similarly, the contribution of the pair to the change in mean phenotype is 

Δ���� 	
, 0� �  2
 · Δ0��� 	
, 0�  4Λ � 1�	2�6 · 2 /�	
, 0� �	0⁄ , (9) 

where /�	
, 0� � 2
�0�	1 � 0� is the contribution to variance of an allele with effect size 


 and frequency 0�. Thus, the pair’s contribution to phenotypic change is proportional to its 

contribution to phenotypic variance before the shift in optimum. 

 

The expected relative contribution of all alleles with a given effect size and initial frequency 

is therefore proportional to their expected initial, steady state contribution to phenotypic 

variance. We will focus on the contribution per unit mutational input of alleles with a given 

effect size. To this end, we measure the trait value in units of & � '�� 2�⁄  and express 

allelic effect sizes in terms of the scaled selection coefficients at steady state (when 1 � 0, 

$ � 2�#� � 
� in these units (see Model section). Expressing our results in this form 

makes them invariant with respect to changing the population size, �, stabilizing selection 

parameter, ��, mutational input per generation, 2��, and distribution of effect sizes, B	$. 

In these terms, the expected contribution of alleles with given effect size and initial MAF to 

phenotypic change is 

Δ���	$, 0�  4Λ � 1�	2�6 · /	$, 0� �	0⁄ ,    (10) 

and the marginal contribution of alleles with a given effect size is  

Δ���	$ � C Δ���	$, 0A0�/�

�
 4Λ � 1�	2�6 · /	$ �	0⁄ ,  (11) 

where /	$, 0�  4$D
�����
��� and 

/	$  4$ · C exp4�$0	1 � 06 A0 �� �⁄

�
4√$DawsonFL√$/2M are the corresponding 

densities of variance per unit mutational input at steady state (SI Section 3.1). The absolute 

expected contributions follow from multiplying these expressions by the mutational input 

per generation, 2�� · B	$. Specifically, as we would expect, the total change in mean 

phenotype during the rapid phase is Δ��� � 2�� · C Δ���	$ · B	$A$ � Λ � 1�	2� (as 

�	0 � 2�� · C /	$ · B	$A#).  

 

The relative contribution of alleles with given effect size and initial MAF to phenotypic 

change follows from their expected contribution to variance at steady state (Eqs. 10 and 11, 
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and Fig. 4). The properties of /	$ imply that (Fig. 4A): i) the relative contribution of alleles 

with small effect sizes ($ � 1 scale linearly with $ (/	$ 7 2$, measured in units of &�); ii) 

the contribution of alleles with moderate and large effect sizes (roughly $ � 2�
� " 3) are 

on the same order (/	$~4) and much greater than for small effect ones; and iii) the 

contribution is maximized for $  10 (/	10  5.2) (see (49) for intuition about these 

properties). While large and moderate effect alleles make similar contributions to 

phenotypic change, the MAFs of large effect alleles before the shift are much lower than the 

MAFs of moderate ones (Fig. 4B), because they are subject to stronger stabilizing selection. 

The expected frequency difference between pairs of opposing alleles is greatest for 

moderate effect sizes (Fig. 4C), because it is proportional to 3	2
0�	1 � 0� � 41 √$⁄ 6 ·
/	$ (Eq. 8) and /	$ is similar for moderate and large effect sizes. Additional properties of 

the allelic response during the rapid phase are presented in Fig. S4. 

 

Figure 4. The allelic response during the rapid phase. A) Alleles with moderate and large 

effects make the greatest contribution to phenotypic change (per unit mutational input). 

The results of our simple approximation are compared with a more accurate one (see SI 

Section 3.2) and with simulations. B) The average MAF of aligned and opposing alleles at 

the end of the rapid phase decreases with effect size. C) The expected frequency difference 
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between pairs of opposing alleles is greatest for moderate effect sizes. Simulation results 

for each point were averaged over 105 runs of our individual allele (OA) simulation, 

assuming � � 10�, Lande’s approximation with '�=25&, and the shifts specified in the 

legend box.  

 

When the shift in optimum is large relative to the phenotypic standard deviation, our 

simple approximation becomes less accurate (Fig. 4A). This is most pronounced for alleles 

with large effects, which experience greatest change relative to their MAF before the shift 

(as a result of which, substituting the initial frequency into the 1st moment entails greater 

inaccuracy). These cases can be accurately described using more elaborate approximations 

(Fig. 4A and SI Section 3.2). Importantly, the qualitative behaviors we outlined are also 

seen.  

 

The allelic response in the equilibration phase. Over the long run, the small frequency 

differences between opposite alleles that accrued in the rapid phase translate into small 

differences in their fixation probabilities (Fig. 3). Weak directional selection during the 

equilibration phase amplifies these differences in fixation probabilities. We begin by 

treating fixations under the assumption that Lande’s approximation works well, which 

implies that this amplification is negligible, after which we turn to the general case. When 

Lande’s approximation applies, we can approximate the fixation probability of an allele 

with effect size 
 and initial frequency 0� in two steps. First, we use our deterministic 

approximation to calculate its frequency at the end of the rapid phase, 0�. Second, because 

directional selection has a negligible effect during the equilibration phase, we assume that 

1 � 0 and rely on the diffusion approximation to derive the fixation probability N	$, 0� (SI 

Section 3.2). 

 

Consider a pair of opposite minor alleles, with effect size 
 (and corresponding $) and 

initial frequency 0�, which reach frequencies 0�� and 0�
 by the end of the rapid phase. If we 

assume that the frequency changes during the rapid phase are small, we can approximate 

the pair’s expected long-term, fixed contribution to phenotypic change by 

 Δ��� 	$, 0�  2
4N	$, 0�� � N	$, 0�
6        
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 2
 ��

��
	$, 0� · Δ0��� 	
, 0� � ��

��
	$, 0� · Δ���� 	
, 0�.  (12) 

In SI Section 3.2 we show that  

��

��
	$, 0� � 2O	$ /	$, 0�⁄ , 

where O	$ . 2$� �⁄ · D
� �⁄ 	√N · Erf4√$ 2⁄ 6S  and /	$, 0� is the steady state density of 

variance per unit mutational input. From Eqs. 10-12, we find that the expected fixed 

contribution per unit mutational input of alleles with given effect size and initial MAF is 

Δ��	$, 0�  ��

��
	$, 0� · Δ���	$, 0�  24Λ � 1�	2�6 O	$ �	0⁄ . 

(note that this expression does not depend on the initial frequency). Further assuming that 

weak directional selection during the equilibration phase has the same proportional effects 

on expected frequency differences as directional selection during the rapid phase, and thus 

replacing Λ � 1�	2� by Λ, we find that 

Δ��	$, 0�  2Λ O	$ �	0⁄ .      (13) 

The expected marginal contribution of alleles with a given effect size follows and is 

Δ��	$ � C Δ��	$, 0A0� �⁄

�
 Λ O	$ �	0⁄ .    (14) 

 

When large effect alleles contribute markedly to genetic variance before the shift, however, 

this approximation substantially underestimates the long-term change in mean phenotype. 

To see why, note that O	$ ) /	$ for any $, but the difference becomes large when $ % 4 

(Fig. 5A and SI Section 3.2). If the bulk of variance before the shift arises from alleles with 

$ ) 4 then �	0  2�� · C /	$ · B	$A$�

�
 2�� · C O	$ · B	$A$�

�
. Our approximation 

for the long-term change in mean phenotype then satisfies 

Δ�� � 2�� · C Δ��	$ · B	$A$  Λ · 	2�� · C O	$ · B	$A$ �	0⁄  Λ. 

Hence, our approximation for the change in mean is only slightly smaller than the shift in 

optimum (Fig. 5A). However, when large effect alleles contribute markedly to genetic 

variance, the same reasoning implies that our approximation for the change in mean is 

substantially smaller than the shift, and is thus a substantial underestimate. In this case, 

deviations from Lande’s approximation are substantial: the prevalence of large effect 

alleles leads to a quasi-static decay of the distance 1 during the equilibration phase (Fig. 2D 

and section on “phenotypic response”), and the prolonged, weak directional selection that 
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results markedly amplifies the difference in fixation probabilities between opposite alleles. 

This amplification, which is not accounted for in our simple approximation, ensures that 

the long-term change in mean phenotype equals the shift in optimum (Fig. S5 and SI 

Section 3.3). 

 

Figure 5.  Contrasting the short and long-term allelic contributions to phenotypic 

adaptation reveals massive turnover in the genetic basis of adaptation during the 

equilibration phase. A) Comparison of the relative short and long-term contributions of 

alleles as a function of effect size, assuming Lande’s approximation (Eqs. 11 and 14). 

Simulation results for each point were averaged over 105 runs of our individual allele 

simulation (OA), assuming Lande’s approximation with '�=25&, � � 10�, and the shifts 

specified in the legend box. While our simple approximation for the fixed contributions 

performs well in these examples, the theoretical curve for the long-term contribution 

(corresponding to O	$) is always below the curve for the short-term contribution 
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(corresponding to /	$), and the difference becomes substantial for $ % 4. In other words, 

the approximation underestimates the fixed contribution when large effect alleles 

contribute markedly to genetic variance. B) Comparison of the relative short and long-term 

contributions as a function of effect size, using our generalized approximation for fixed 

contributions (Eq. 16). We assume the effect size distribution corresponding to the non-

Lande case described in Fig. 2, which has an amplification factor of T  4.77. Long-term 

stabilizing selection diminishes the contribution of alleles with large effects and amplifies 

that of alleles with small and moderate effects (red arrow); long-term, weak directional 

selection amplifies the contribution of alleles with small and moderate effects (blue arrow). 

Simulation parameters also correspond to the non-Lande case in Fig. 2, with the shift sizes 

indicated in the legend. Simulation results for each point were averaged over 105 runs of 

our individual allele simulation (OA), where 1	2 was averaged over 103 allelic simulations 

(AA). C) The same results presented in B, with the short- and long-term relative 

contributions weighted by the mutational distribution of effect sizes ($~Γ	6, 4) and 

squared effect sizes (on the x-axis) shown on a linear rather than a log scale. The shaded 

blue area corresponds to the increase in the contribution of moderate effect alleles over the 

long-term and the shaded dark gray area corresponds to the decrease in the contribution of 

large effect alleles over the long-term; their equal size illustrates how the short-term 

contribution of large effect alleles is supplanted by longer-term fixations of moderate effect 

alleles. D) Comparison of the relative short and long-term contributions as a function of 

initial MAF, based on our approximations (Eqs. 10 and 15) and assuming the same effect 

size distribution as in B and C, corresponding to the non-Lande case. Long-term stabilizing 

selection diminishes the contribution of alleles with lower initial MAF and amplifies that of 

alleles with higher initial MAF (red arrow); long-term, weak directional selection amplifies 

the contribution of alleles, regardless of their initial MAF (blue arrow). Consequently, the 

proportional long-term contribution of alleles with lower initial MAFs is diminished 

relative to their short-term contribution, an effect most pronounced for large effect sizes. 

 

While our simple approximation underestimates the absolute contribution of alleles to 

phenotypic change, it does quite well at predicting the relative contribution of alleles with 

different effect sizes and initial frequencies (Fig. 5B and C). We can therefore generalize our 

approximations, such that 

Δ��	$, 0�  T · ��
��

	$, 0� · Δ���	$, 0�  2T · Λ O	$ �	0⁄  (15) 

and 

Δ��	$  T · Λ O	$ �	0⁄ ,      (16) 

where the amplification factor T is determined by the requirement that the long-term 

change in mean phenotype equals the shift in optimum. This requirement yields  
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T . �	0 	2��⁄ C O	$ · B	$A# � C /	$ · B	$A# C O	$ · B	$A#⁄ . 

Importantly, T depends only on the mutational distribution of effect sizes, B	$. This 

generalized approximation follows from assuming that the amplification of the difference 

in the fixation probabilities of opposite alleles due to directional selection during the 

equilibration phase behaves as if all the frequency differences at the end of the rapid phase 

were amplified by a factor of T (SI Section 3.3). In that sense, T can be interpreted as an 

allelic measure of the deviation from Lande’s approximation. 

 

Our generalized approximation accounts for deviations from Lande’s approximation that 

arise from large effect alleles but not for those that arise from large shifts in optimum (see 

section on “phenotypic response”). With larger shifts, the rapid phase would be longer and 

during this phase, directional selection would be stronger, leading to greater frequency 

differences between opposite alleles than our simple approximation suggests. Large 

frequency differences between opposite alleles also undermine the accuracy of our Taylor 

approximation for the difference in their fixation probabilities. In SI Section 3.3, we derive 

approximations that account for these effects, as well as those of weak directional selection 

during the equilibration phase, and are thus more accurate for any shift size and effect size 

distribution (Fig. 5B and S6). Nonetheless, our generalized simple approximation captures 

the salient features of the long-term allelic contribution to phenotypic adaptation (Fig. 5). 

 

Notably, this approximation captures the dramatic turnover in the genetic basis of 

adaptation during the equilibration phase (Fig. 5B-D). Over the long-term, the short-term 

contribution of large effect alleles ($ % 30) is almost entirely wiped out, and is supplanted 

by the contribution of moderate effect alleles ($  5) (Figs. 5B, C, and S7). Moreover, for 

any given effect size, the proportional long-term contribution of alleles with lower initial 

MAFs is diminished relative to their short-term contribution, all the more so for large effect 

sizes (Figs. 5D and S8). For instance, for an effect size $ � 35, alleles with initial MAFs 

below 0.05 account for more than 99% of the short-term contribution but for only ~10% of 

the (much smaller) long-term contribution (Figs. 5D & S8).  
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We can understand this turnover by considering the effects of stabilizing selection during 

the equilibration phase. As noted, stabilizing selection induces selection against minor 

alleles, which weakens as MAF increase and becomes 0 at MAF = ½. Now consider how it 

affects a pair of alleles with opposite, moderate or large effect. If their initial frequencies 

are very low, both alleles will have low MAFs at the end of the rapid phase. Consequently, 

they will both be strongly selected against during the equilibration phase and will almost 

certainly go extinct. In the long-run, their expected contribution to phenotypic adaptation 

is therefore diminished. In contrast, if the alleles’ initial MAF is sufficiently high, the relative 

increase in the aligned allele’s frequency by the end of the rapid phase causes it to be 

subject to substantially weaker selection than is the opposing allele. In the extreme in 

which the aligned allele has exceeded frequency ½, the direction of selection on it is even 

reversed. In such cases, the pair’s expected contribution to phenotypic adaptation will be 

amplified. This reasoning suggests that, for a given effect size, there is a critical initial MAF 

< ½ such that the long-term contribution of alleles that start above it is amplified and the 

contribution of those that start below it is diminished.  

 

Weak directional selection during the equilibration phase also affects this behavior, 

however, by amplifying the long-term contribution of alleles with any initial MAF (Fig. 5D). 

Consequently, for a given amplification factor T " 1, the contribution of alleles with 

sufficiently small effect sizes are amplified for any initial MAF, as Δ��	$, 0� " Δ���	$, 0� 

for any 0� " 0 (Fig. 5D). In turn, for sufficiently large effect sizes, the curves for Δ��	$, 0� 

and Δ���	$, 0� intersect (Fig. 5D) and thus the critical frequency exists; in our 

approximation, it is the frequency where T · VN V0⁄ 	$, 0� � 1 (Eq. 15 and Fig. 5D). These 

considerations explain why, for sufficiently large effect sizes, the long-term contribution of 

alleles with low initial MAFs is diminished relative to their short-term contribution. 

 

The turnover among alleles with different effect sizes can be explained in similar terms. 

Alleles with large effect sizes almost always start from low MAF, because they are subject 

to strong stabilizing selection before the shift (Figs. 4B). They are therefore highly unlikely 

to exceed the critical initial frequency, and their expected long-term contribution to 
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phenotypic adaptation is therefore diminished (Fig. 5A-C). However, changes to the 

frequencies of these alleles skew the phenotypic distribution, leading to prolonged, weak 

directional selection that amplifies the long-term contribution of small and moderate effect 

alleles (Fig. 5B and C). In our approximation, this amplification will occur for effect sizes 

that satisfy T · O	$ " /	$ (Eqs. 11 and 16). These considerations explain why the 

contributions of alleles with small and moderate effects supplant those of alleles with large 

effects over time (Fig. 5B and C). They also highlight that deviations from Lande’s 

approximation are critical to understanding the allelic response, even when these 

deviations are modest and Lande’s approximation provides a decent description of the 

phenotypic response. 

 

Additional properties of the equilibration process. While the change in mean 

phenotype results from the preferential fixation of alleles whose effects are aligned with 

the shift, our results suggest that the expected number of these fixations is only slightly 

greater than the number of fixations with opposing effects (Fig. 6). The proportional excess 

of aligned fixations increases with the shift in optimum and allelic effect size, and for 

sufficiently large effect sizes, practically all fixations are of aligned alleles (Fig. 6C). Unless 

the contribution of alleles of small and moderate effects to genetic variance is negligible, 

however, the number of fixations of such large effect alleles and their contribution to 

phenotypic change will be small (Figs. 6A, B, and 5A-C). With the exception of this extreme 

case, we would therefore expect most fixations and contribution to phenotypic change to 

be of alleles with small and moderate effects (Figs. 6A, B, and 5A-C), for which the 

proportional excess of aligned fixations is modest (Fig. 6B). 
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Figure 6. The excess of fixations of alleles whose effects are aligned with the shift, for three 

shifts in optimum. A) The fixation probabilities of aligned and opposing alleles as function 

of their effect size. For large effect sizes, the fixation probabilities become vanishingly 

small, whereas for small and moderate effect sizes, the difference in the fixation 

probabilities of alleles with opposing effects is small. B) Close up on the difference in the 

fixation probabilities between alleles with opposing effects. C) The proportional excess of 

fixations of aligned alleles among all fixations as a function of effect size. 

 

Over the long-run, these fixations move the mean phenotype all the way to the new 

optimum, and genetic variation around this optimum returns to its steady state form. The 

time scale for equilibration is set by the fixation time of the alleles that underlie long-term 

phenotypic change. We can use the diffusion approximation to calculate the expected time 

to fixation of alleles with a given effect size and direction (SI Section 3.3; Fig. 7). As the 

perturbations to allele frequencies due to directional selection are fairly minor, the 

expected time to fixation of alleles with a given effect size is well approximated by their 

fixation time at steady state, i.e., assuming that their initial frequencies follow the 

equilibrium distribution and that they are only subject to stabilizing selection afterwards 

(Fig. 7). Because selection accelerates fixation (64), fixation times are longer for alleles with 

smaller effect sizes. We can therefore think about the equilibration process as taking 
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different times for alleles with distinct effect sizes. Based on the expected fixation times for 

alleles with small effects, which are the longest, we would expect steady state genetic 

variation around the new optimum to be restored by on the order of ~4� generations after 

the shift in optimum (Fig. 7). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The equilibration time of alleles with different effect sizes. The effects of 

directional selection on opposite alleles are shown assuming Lande’s approximation with a 

shift of Λ � '�	0 � 25 · &. In Fig. S9 we show these effects for other parameter choices, 

including cases in which the phenotypic dynamic deviates from Lande’s approximation. 

The frequency increase of aligned relative to opposing alleles shortens the fixation times of 

the aligned alleles and lengthens those of the opposing ones. However, these effects are 

minor (too minor to be seen in this case) and the fixation times of both aligned and 

opposing alleles are well approximated by the fixation times at steady state. The fixation 

times are slightly shorter than those for newly arising mutations because most of the 

alleles that fix are already segregating when the shift in optimum occurs. 

 

Discussion 

 

Here, we investigated the phenotypic and genetic adaptive response to selection on a 

highly polygenic quantitative trait in a simple yet highly relevant setting, in which a sudden 

change in environment shifts the trait’s optimal value. The phenotypic response to 

selection was previously studied by Lande (35). He predicted that after the shift the 

population’s mean phenotype will approach the new optimum exponentially, at a rate that 

is proportional to the additive genetic variance in the trait. This prediction, however, is 

predicated on the idealized infinitesimal model, in which the genetic variance arises from 
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an infinite number of segregating loci with infinitesimally small effects. We have extended 

this work to more realistic assumptions of a large but finite number of loci with a 

distribution of finite effect sizes. We found that Lande’s prediction works well when the 

shift in optimum is not too large relative to genetic variance in the trait and the variance is 

dominated by loci with small and moderate effect sizes, which are defined based on the 

selection acting on these loci before the shift. When the shift is greater or when loci with 

large effects contribute markedly to genetic variance, the initial, rapid change in mean 

phenotype is followed by a pronounced quasi-static phase, governed by changes to the 3rd 

moment of the phenotypic distribution, in which the mean phenotype takes much longer to 

catch up to the new optimum.  

 

We also characterized the genetic basis of these adaptive phenotypic changes. The closest 

previous work assumed an infinite population size (36, 37, 40, 43), and we found that 

relaxing this assumption leads to entirely different behavior. Notably, in infinite 

populations, small effect alleles whose frequencies before the shift are dominated by 

mutation and equal ½ make the greatest contribution to phenotypic change after the shift 

(see Introduction). In contrast, in any real (finite) population, the frequencies of such small 

effect alleles are dominated by genetic drift rather than mutation. More generally, variation 

in allele frequencies due to genetic drift, which is absent in infinite populations, critically 

affects the allelic response to selection. 

 

To study the allelic response, we divided it into two periods: a rapid phase, immediately 

after the shift, and a subsequent, prolonged equilibration phase. During the rapid phase, 

the population’s mean distance to the optimum is substantial and changes rapidly. 

Directional selection on the trait increases the frequency of minor alleles whose effects are 

aligned with the shift relative to minor alleles with opposing effects (given the same effect 

size and initial frequency). By the end of the rapid phase, the cumulative effect of these 

frequency differences pushes the mean phenotype close to the new optimum, but because 

this effect is spread over myriad alleles, the frequency difference between any individual 

pair of opposing alleles is fairly small. Specifically, we found that an allele’s contribution to 

phenotypic change is proportional to its contribution to phenotypic variance before the 
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shift, implying that alleles with moderate and large effect sizes make the greatest per site 

contributions to phenotypic change, while alleles with moderate effect sizes experience the 

greatest frequency changes. The expected frequency differences between opposing alleles 

is amplified by prolonged, weak directional selection during the subsequent equilibration 

phase, and this amplification is pronounced when the phenotypic approach to the new 

optimum deviates markedly from Lande’s approximation.  

 

Over the long run, stabilizing selection on the trait transforms these small frequency 

differences into a small excess of fixed aligned alleles relative to opposing ones, and 

cumulatively this excess moves the population mean all the way to the new optimum. This 

transformation process involves a massive turnover in the properties of the contributing 

alleles. Notably, the transient contributions of large effect alleles are supplanted by 

contributions of fixed moderate, and to a lesser extent, small effect alleles. This process 

takes on the order of 4�� generations, after which the steady state architecture of genetic 

variation around the new optimum is restored.  

 

Our finding that large effect alleles almost never sweep to fixation appears at odds with the 

results of previous studies of similar models. These discrepancies are largely explained by 

earlier papers considering settings that violate our assumptions, notably about 

evolutionary parameter ranges. For instance, some studies assume that large effect alleles 

segregate at high frequencies before the shift in optimum (e.g., (65)), which is presumably 

uncommon in natural populations and in any case, violates our assumption that the trait is 

at steady state before the shift. Other models implicitly consider quantitative traits of 

intermediate genetic complexity; while such traits likely exist, there are to our knowledge 

few well-established examples. Notably, Thornton (38) observes sweeps in cases in which 

the trait is not highly polygenic (violating our assumption that √2�� � 1). Relatedly, 

Chevin and Hospital (66) observe sweeps in cases in which a single newly arising mutation 

of large effect contributes substantially to genetic variance, which violates our assumptions 

that genetic variation is highly polygenic and is not predominantly effectively neutral (i.e., 

that alleles with $ % 1 contribute substantially). Although it remains to be seen, we believe 
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that this architecture is much less common, given mounting evidence, reviewed in the 

Introduction, which suggests that traits are often highly polygenic, and other 

considerations, notably estimates of persistence time (3, 4) and inferences based on human 

GWASs (49, 54), which indicate that quantitative genetic variation is not predominantly 

neutral.  

 

Lastly, Stetter et al. (39) considered a huge shift in the optimal trait value (e.g., of ~90 

phenotypic standard deviations), resulting in a massive drop in fitness (violating our 

assumption that Λ ) '��)—although shifts in optimum need not be that large to result in 

some fixations of large effect alleles. While there are many examples of rapid and large 

environmental fluctuations, e.g., due to seasonal fluctuations or weather systems, they 

occur on a much shorter time scale than fixation (although they might have some effect on 

genetic architecture; see below). In turn, little is known about the magnitude of shifts in 

optimal trait values over the time scales of large effect, beneficial fixations. While it seems 

plausible that moderate shifts, which fall within our assumed parameter ranges, are 

common, we cannot rule out that larger shifts are common as well. The response to such 

larger shifts is not covered by our analysis and clearly warrants further study. 

 

Other factors that we have not considered may also affect polygenic adaptation. Most 

notable among them is pleiotropy. Given that quantitative genetic variation affecting one 

trait often affects many other traits (3, 19, 67-69), alleles that would have been positively 

selected because of their effect on the trait under directional selection may be selected 

against because of their adverse effects on other traits. Moreover, pleiotropy is known to 

affect the genetic architecture of a given trait at steady state (49), which we have shown to 

shape the allelic response to selection on that trait. Pleiotropy is therefore likely to affect 

which alleles contribute to phenotypic change at the different phases of polygenic 

adaptation (see (70) for related considerations for simple traits). Linkage disequilibrium 

(LD) may have an effect as well, perhaps most notably for minor alleles with large effects, 

which start at low frequencies and experience strong directional selection during the rapid 

phase. Before the shift, large effect alleles located in genomic regions with low 
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recombination and high functional density are more likely to be in LD with, for example, 

alleles with countervailing effects on the focal trait (71) or deleterious effects on other 

traits. If this were the case, then directional selection during the rapid phase might be 

effectively weaker, because it would act on extended haplotypes rather than on individual 

alleles. 

 

In addition, the demography of a population, notably its size, as well as the selection 

pressures on quantitative traits are likely to change over a shorter time scale than it takes 

the genetic architecture of complex traits to equilibrate. When these changes occur over 

the ~4�� generations preceding a shift in optimal trait value, they would affect the genetic 

architecture of the trait and consequently its response to selection. Changes in population 

size influence the number of segregating sites affecting a trait and the distribution of their 

frequencies and contributions to variance, with more recent population sizes affecting 

strongly selected variation more than weakly selected variation (3, 72-74). The effects of 

varying selection will depend on the attributes of this variation in ways that await further 

study.  

 

While the effects of all of these factors on the response to a shift in optimum warrant 

investigation, we expect the response to follow from the principles we outlined. Notably, 

we expect the short-term contribution of alleles to phenotypic change to be proportional to 

their contribution to variance before the shift, and their long-term contribution to arise 

from differences between the fixation probabilities of alleles with opposite effects, caused 

by the opposing effects of directional selection on their frequencies. Thus, while all of these 

factors are likely to affect the response, we expect the main features of the dynamics we 

portrayed to remain largely intact. These features include the role of the 3rd moment of the 

phenotypic distribution in slowing down phenotypic adaptation near the new optimum; 

the transient contribution of large effect alleles to phenotypic adaptation; and the long-

term importance of alleles with moderate effects.  

 

As polygenic adaptation in quantitative traits is likely ubiquitous, our conclusions have 

potentially important implications. One is that, contrary to adaptation mediated by 
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selective sweeps of initially rare, large effect, beneficial alleles (10, 11, 75-78), polygenic 

adaptation might have minor effects on patterns of neutral diversity. The effects of selected 

alleles on neutral diversity at linked loci follow from their trajectories (79). Our results 

indicate that directional selection on a highly polygenic trait introduces only small changes 

to allele frequencies at individual loci, which amount to minor perturbations to the allelic 

trajectories expected under stabilizing selection at steady state (also see (38, 66)). Indeed, 

alleles with large effects exhibit only small, transient changes; among alleles with moderate 

effects, there is a long-term excess of fixations of those whose effects are aligned with the 

shift relative to those whose effects are opposed, but this excess is small (Fig. 6) and the 

trajectories of the alleles that fix are largely driven by weak stabilizing selection (Fig. 7). 

Thus, our results indicate that the effects of polygenic adaptation on neutral diversity 

should be minor (other than perhaps for massive shifts in optimal trait values, as noted 

above).  

 

In contrast, long-term stabilizing selection on quantitative traits likely has substantial 

effects on neutral diversity patterns. Specifically, selection against minor alleles induced by 

stabilizing selection may well be a major source of background selection and is expected to 

affect neutral diversity patterns in ways that are similar to those of background (purifying) 

selection from other selective origins (80-82). 

 

Another implication of our results pertains to the search for the genetic basis of human 

adaptation, as well as adaptation in other species. Efforts to uncover the identity of 

individual adaptive genetic changes on the human lineage were guided by the notion that 

their identity would offer insight into what “made us human”. Under the plausible 

assumption that many adaptive changes on the human lineage arose from selection on 

complex, quantitative traits, this approach may not be as informative as it appears (15, 19). 

Our results indicate that after a shift in the optimal trait value, the number of fixations of 

alleles whose effects are aligned to the shift are nearly equal to the number of alleles that 

are opposed (Fig. 6). Moreover, the alleles that fix are a largely random draw from the 

vastly greater number of alleles that affect the trait, both in the sense of being those that 

happened to segregate at high MAFs at the onset of selection and because of the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2019. ; https://doi.org/10.1101/792952doi: bioRxiv preprint 

https://doi.org/10.1101/792952
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31

stochasticity of fixation. Thus, in this plausible scenario, it becomes meaningless to say that 

any given fixation was adaptive, and arguably uninteresting to focus on the particular 

subset of alleles that happened to reach fixation. In contrast, identifying the traits that 

experienced adaptive changes promises to provide important insights. Recent efforts to do 

so pool the signatures of frequency changes over many loci that were found to be 

associated with a given trait in GWAS (20-26), an exciting approach that has also proven to 

be technically challenging (27, 28). A better understanding of the process of polygenic 

adaptation should help to guide such efforts.   
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Symbol Definition 

� Population size 

� Expected number of mutations per gamete per generation affecting the trait  

�� Width of the Gaussian fitness function  

& Magnitude of fluctuations around the optimum at steady state (= '��/	2� ) 


 An allele’s effect on the trait 

$ An allele’s scaled selection coefficient at steady-state (� 
� in units of &�) 

B	$ The mutational distribution of scaled selection coefficients 

Λ The size of the shift in optimum 

2 Time after shift in optimum 

�	2 The additive genetic variance (and second moment of the trait distribution)  

8�	2 The third moment of the trait distribution 

1	2 Distance between the mean phenotype and optimum 

1�	2 Lande’s approximation for 1	2 

2� The time at the end of the rapid phase 

0��	$, 0� 

0�
	$, 0� 

Expected frequency of an allele that is aligned (+) or opposed (-) to the shift with 

selection coefficient $ and initial frequency 0�  

Δ0��	$, 0� Expected frequency difference between opposite alleles (� 0��	$, 0� � 0�
	$, 0�) 

Δ���	$, 0� Expected contribution to phenotypic change of a pair of opposite alleles 

/�	$, 0 An allele’s contribution to phenotypic variance (� 2
�0	1 � 0) 

Δ��	$ 

Δ��	$, 0� 

Expected contribution to phenotypic change per unit mutational input of alleles 

with selection coefficient $, or with selection coefficient $ and initial frequency 0� 

/	$ 

/	$, 0� 

Steady state density of phenotypic variance per unit mutational input of alleles 

with selection coefficient $, or with selection coefficient $ and frequency 0� 

N	$, 0 Fixation probability under stabilizing selection with selection coefficient $ and 

initial frequency 0 

O	$ Relative long-term contribution to phenotypic change  

T Amplification factor of the long-term contribution to phenotypic change  

(� C /	$B	$
�

A$/ C O	$B	$
�

A$ ) 

Table S1. Summary of notation. 
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