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Abstract

Polygenic adaptation is thought to be ubiquitous, yet remains poorly understood.
Here, we model this process analytically, in the plausible setting of a highly polygenic,
quantitative trait that experiences a sudden shift in the fitness optimum. We show
how the mean phenotype changes over time, depending on the effect sizes of loci that
contribute to variance in the trait, and characterize the allele dynamics at these loci.
Importantly, we describe the two phases of the allele dynamics: a rapid phase in which
directional selection introduces small frequency differences between alleles whose effects
are aligned with or opposed to the shift, which ultimately lead to small differences in
their probability of fixation during a second, longer phase, governed by stabilizing
selection. As we discuss, our key results should hold in more general settings, and have
important implications for efforts to identify the genetic basis of adaptation in humans
and other species.

Introduction
Many traits under natural selection are quantitative, highly heritable, and genetically com-
plex, meaning that they take on continuous values, that a substantial fraction of the pop-
ulation variation in their values arises from genetic differences among individuals, and that
this variation arises from small contributions at many segregating loci. It therefore stands to
reason that the responses to changing selective pressures often involve adaptive changes in
such traits, accomplished through changes to allele frequencies at the many loci that affect
them. In other words, we should expect polygenic adaptation in complex, quantitative traits
to be ubiquitous. This view traces back to the dawn of population and quantitative genetics
(Wright, 1931; Fisher, 1958) and is supported by many lines of evidence (Walsh and Lynch,
2018; Sella and Barton, 2019).

Notably, it is supported by studies of the response to directional, artificial selection on
many traits in plants and animals in agriculture and in evolution experiments (Walsh and
Lynch, 2018; Sella and Barton, 2019). In these settings, selected traits typically exhibit
amazingly rapid and sustained adaptive changes (Weber and Diggins, 1990; Barton and
Keightley, 2002; Hill, 2016), which are readily explained by models in which the change
is driven by small shifts in allele frequencies at numerous loci (Weber and Diggins, 1990;
Hill and Kirkpatrick, 2010), and inconsistent with models with few alleles of large effects
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INTRODUCTION

(Barton and Keightley, 2002; Zhang and Hill, 2005). The potential importance of polygenic
adaptation has also been highlighted by more recent efforts to elucidate the genetic basis of
adaptation in humans. In the first decade after genome-wide polymorphism datasets became
available, this quest was largely predicated on the monogenic model of a hard selective sweep
(Smith and Haigh, 1974; Kaplan et al., 1989), in which adaptation proceeds by the fixation of
new or initially rare beneficial mutations of large effects (e.g., Voight et al., 2006). Subsequent
analyses, however, echoed studies of artificial selection in indicating that hard sweeps were
rare, at least over the past ∼500, 000 years of human evolution (Coop et al., 2009; Hernandez
et al., 2011). Yet humans plausibly adapted in myriad ways during this time period, and
they definitely experienced substantial changes in selection pressures, notably during more
recent expansions across the globe. These considerations refocused the quest for the genetic
basis of human adaptation on polygenic adaptation (Pritchard et al., 2010; Pritchard and
Di Rienzo, 2010).

Findings from genome wide association studies (GWASs) in humans have been central
to this research program. Statistical analyses of GWASs indicate that in humans, heritable
variation in complex traits is highly polygenic (Loh et al., 2015; Shi et al., 2016; Boyle
et al., 2017). For example, for many traits, estimates of the heritability contributed by
chromosomes are approximately proportional to their length (Shi et al., 2016), suggesting
that the contributing variants are numerous and roughly uniformly distributed across the
genome. Such findings reinforced the view that adaptive changes to quantitative traits
are likely to often be highly polygenic, but also implied that their identification would be
difficult, as the changes to allele frequencies at individual loci may be minute. To overcome
this limitation, recent studies pooled signatures of frequency changes over the hundreds to
thousands of alleles that were found to be associated with an increase (or decrease) in a given
trait (Turchin et al., 2012; Berg and Coop, 2014; Robinson et al., 2015; Field et al., 2016;
Berg et al., 2017; Edge and Coop, 2019; Speidel et al., 2019). Initial studies suggest that
polygenic adaptation has affected multiple human traits, but these conclusions have been
called into question with the realization that the results are highly sensitive to systematic
biases in GWASs, most notably due to residual population structure (Berg et al., 2019; Sohail
et al., 2019).

Given that polygenic adaptation is plausibly ubiquitous, yet likely hard to identify, there
is a clear need for a deep understanding of its behavior in populations and footprints in data.
To date, theoretical work has primarily focused on two scenarios. The first is motivated
by the observed responses to sustained artificial selection, modeled either as truncation
selection (Robertson, 1960) or as stabilizing selection, with the optimal phenotype moving
at a constant rate in a given direction (e.g., Bürger and Lynch, 1995; Bürger, 1999; Kopp and
Hermisson, 2009; Matuszewski et al., 2015; Jain and Devi, 2018). In natural populations,
however, quantitative traits are unlikely to be subject to long-term continuous change in
one direction. Instead, considerable evidence indicates that they are often subject to long-
term stabilizing selection (Sella and Barton, 2019), with intermittent shifts of the optimum
in different directions. The second scenario therefore assumes that a sudden change in
the environment induces an instantaneous shift in the optimum of a trait under stabilizing
selection (Lande, 1976; Barton et al., 2009; de Vladar and Barton, 2014; Jain and Stephan,
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2015; Bod’ová et al., 2016; Jain and Stephan, 2017b; Stetter et al., 2018; Thornton, 2019).
Although more elaborate scenarios (where, for example, the optimum and/or strength of
stabilizing selection vary frequently) are also possible, this simple scenario provides a sensible
starting point for thinking about polygenic adaptation in nature, and is our focus here.

Although there has been considerable work on the adaptive response to an instantaneous
change in optimal phenotype, our understanding of this process is still limited. Seminal work
by Lande (1976) described the change in the phenotypic mean assuming that phenotypes are
normally distributed in the population and that the phenotypic variance remains constant
over time. Barton and Turelli (1987) derived recursions for the expected change to higher
moments of the phenotypic distribution, and showed that when phenotypic variation arises
from alleles with large effect sizes, which are strongly selected and rare, the response to
selection introduces skewness in the phenotypic distribution that can substantially affect the
change in the phenotypic mean. Their recursions, however, are not generally tractable, and
their analyses do not extend to the phenotypic response in more realistic cases, in which
phenotypic variation arises from alleles with a wide range of effect sizes. Also, with GWASs
now enabling us, at least in principle, to learn about the genetic basis of the phenotypic
response, we would like to understand the allele dynamics that underlie it.

Several studies have tackled this problem using simulations (e.g., Stetter et al., 2018;
Thornton, 2019). Although illustrative of the dynamics, it is unclear how to generalize their
results, given (necessarily) arbitrary choices about multiple parameters and the complexity
of these dynamics. In turn, elegant analytical work by de Vladar and Barton (2014) and
extensions by Jain and Stephan (2017a,b) afford a general understanding of the allele dy-
namics in models with an infinite population size. These dynamics, however, are shaped
by features of mutation-selection balance that are specific to infinite populations. Notably,
they strongly depend on the frequency of alleles prior to the shift in optimum following
deterministically from their effect size, and on the critical effect size at which this frequency
transitions from being dominated by selection to being dominated by mutation. But in real
(finite) populations (including humans), the frequencies of alleles whose selection effects are
sufficiently small to be dominated by mutation will be shaped by genetic drift; more gener-
ally, variation in allele frequencies due to genetic drift will crucially affect the allele response
to selection (see below). Thus, we still lack a solid understanding of the allele dynamic
underlying polygenic adaptation in natural populations.

Here, we follow previous work in considering the phenotypic and allelic responses of
highly polygenic traits after a sudden change in optimal phenotype. But we do so in finite
populations and employ a combination of analytic and simulation approaches to characterize
how the responses varies across a broad range of evolutionary parameters.

The model
We build upon the standard model for the evolution of a highly polygenic, quantitative trait
subject to stabilizing selection (Wright, 1935a; Robertson, 1956; Turelli, 1984; Keightley
and Hill, 1988; Johnson and Barton, 2005; Simons et al., 2018; Sella and Barton, 2019).
An individual’s phenotype is represented by the value of a continuous trait, which follows
from its genotype by the standard additive model (Falconer, 1996; Lynch and Walsh, 1998).

3 of 37

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 18, 2021. ; https://doi.org/10.1101/792952doi: bioRxiv preprint 

https://doi.org/10.1101/792952
http://creativecommons.org/licenses/by-nc-nd/4.0/


Evolutionary scenario and parameter ranges THE MODEL

Namely, we assume that the number of genomic sites affecting the trait (i.e., the target size)
is very large, L >> 1, and that an individual’s phenotype is given by

z =
L∑

l=1
(al + a′l) + ε, 1

where the first term is the genetic contribution, with al and a′l denoting the phenotypic
effects of the parents’ alleles at site l, and ε∼N(0, VE) is the environmental contribution.

Stabilizing selection is introduced by assuming that fitness declines with distance from
the optimal trait value positioned at the origin (z = 0). Specifically, we assume a Gaussian
(absolute) fitness function:

W (z) = Exp(−z2/(2VS)), 2
where V −1

S measures the strength of selection. The specific form of the fitness function
is unlikely to affect our results under parameter ranges of interest (see below), however.
Additionally, since the additive environmental contribution to the phenotype can be absorbed
into VS (by replacing it by V ′S = VS + VE; e.g., Turelli (1984); Bürger (2000)), we consider
only the genetic contribution.

The population dynamics follow the standard model of a diploid, panmictic population
of constant size N , with non-overlapping generations. In each generation, parents are ran-
domly chosen to reproduce with probabilities proportional to their fitness (i.e., Wright-Fisher
sampling with fertility selection), followed by mutation, free recombination (i.e., no linkage)
and Mendelian segregation. We assume that the mutational input per site per generation
is sufficiently small such that segregating sites are rarely more than bi-allelic (i.e., that
θ = 4Nu � 1, where u is the mutation rate per site per generation). We therefore employ
the infinite sites approximation, in which the number of mutations per gamete per genera-
tion follows a Poisson distribution with mean U = Lu. The effect sizes of mutations, a, are
drawn from a symmetric distribution, i.e., with equal probability of increasing or decreasing
the trait value; further assumptions about this distribution are specified below. App. A
Table 1 provides a summary of our notation.

Evolutionary scenario and parameter ranges.We assume that at the outset—before the
shift in optimal phenotype—the population has attained mutation-selection-drift balance.
We follow previous work on this balance in making several plausible assumptions about
parameter ranges (e.g., Simons et al., 2018). First, we assume that the per generation,
population scaled mutational input is sufficiently large for variation in the trait to be highly
polygenic (specifically, that

√
2NU >> 1). Second, we assume that the expected number

of mutations affecting the trait per generation, per gamete, is small (specifically, that U =
Lu� 0.2). For this assumption to be violated in humans, for example, the mutational target
size, L, would have to exceed ∼1.5 Mb (assuming that u ≈ 1.25 ·10−8 per bp per generation;
Kong et al. (2012); Besenbacher et al. (2016)). We believe that, when the model is extended
to account for effects of pleiotropy, our results should still hold qualitatively for substantially
greater values of U , but this extension is beyond the scope of this paper. Third, we make
the standard assumption that selection coefficients of all alleles satisfy s� 1, which implies
that the equilibrium selection coefficient se = a2/VS � 1 (see below and Wright, 1931,
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Figure 1. The evolutionary scenario. Before the shift in optimum, phenotypes are distributed
symmetrically, with a mean that is very close to the old optimum and a variance that is much
smaller than the curvature of the fitness function (VA(0) � VS). We consider the response to an
instantaneous shift in optimum, for the case where the magnitude of the shift is smaller than the
width of the fitness function (Λ /

√
VS). See text for further details.

1935b; Turelli, 1984). Fourth, we assume that a substantial proportion of mutations are not
effectively neutral, i.e., have S = 2Nse ' 1. This assumption is supported by empirically
based estimates of persistence time for a variety of traits and taxa (Walsh and Lynch, 2018;
Sella and Barton, 2019) and by inferences based on human GWASs (Simons et al., 2018;
Zeng et al., 2018), indicating that quantitative genetic variance is not predominantly neutral.
Under these assumptions, the phenotypic distribution at mutation-selection-drift balance is
symmetric and tightly centered on the optimal phenotype (Fig. 1). Specifically, the mean
phenotype exhibits tiny, rapid fluctuations around the optimal phenotype with variance
δ2 = VS/(2N) (Simons et al., 2018); the phenotypic standard deviation is considerably
greater than these fluctuations, i.e.,

√
VA >> δ (SI Section 2.2); but the phenotypic variance

is much smaller than the curvature of the fitness function, i.e., VS >> VA (Simons et al.,
2018).

We consider the response to an instantaneous shift of Λ in optimal phenotype at time t = 0
(Fig. 1). We assume that the shift in optimum is greater than the equilibrium fluctuations
in mean phenotype, i.e., that Λ > δ. We further assume that Λ /

√
VS and a �

√
VS.

The latter requirements ensure that the maximal directional selection coefficients of alleles,
which are attained immediately after the shift, satisfy sd = 2 · (Λ · a)/VS � 1 (see below and
Wright, 1931; Barton and Turelli, 1987). The requirement that a�

√
VS is not particularly

restrictive, as it allows for the selection coefficients of alleles at equilibrium, se = a2/VS, to
be as large as 1%. Neither is the assumption that Λ /

√
VS, because, given that the genetic

variance before the shift satisfies VA(0) � VS, it allows for shifts of several equilibrium
phenotypic standard deviations (SI Section 2.2 and Fig. S2.2). Lastly, we assume that the
shift is not massive relative to the equilibrium phenotypic standard deviation, specifically
that Λ/

√
VA(0) / 1/2 ·

√
2NU . This condition ensures that adaptation to the new optimum

requires only a small average frequency change per segregating site (see SI Section 2.2).
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Given that we assume that the trait is highly polygenic, specifically that
√

2NU � 1,
this condition allows for shifts of several equilibrium phenotypic standard deviations. Our
assumptions on parameter values and their rational are summarized in App. A Table 2

Choice of units.Our analysis allows us to choose the units in which we measure the trait.
When we study the allelic response, we use units based on the dynamics at mutation-
selection-drift balance (before the shift in optimum). The population-scaled selection co-
efficient at steady-state is S = 2Nse = 2Nã2/ṼS = ã2/δ2; here, the effect size ã is measured
in arbitrary units, and ṼS is measured in these units-squared, such that the scaled selection
coefficient has no units. We will measure the trait in units of δ. In these units, the effect
size a ≡ ã/δ =

√
S, the stabilizing selection parameter VS ≡ ṼS/δ

2 = 2N , and an allele’s
contribution to variance is v∗(a, x) = 2a2x(1 − x) (and has units of δ2). We also measure
the distance between the mean and optimal phenotype, D, and shift in optimum, Λ, in units
of δ. As shown below, stating our results in these terms makes their form invariant with
respect to the population size, N , and the strength of stabilizing selection, V −1

S .

Simulations and resources.We compare our analytical results to three layers of simulations
(see SI Section 5 for further detail). The first realizes the full model described above. It is
run for a burn-in period of 10N generations before the shift and for a period of 12N gener-
ations after, to attain steady-state both before and after. The second traces all alleles (AA)
rather than individuals. It assumes linkage equilibrium (rather than free recombination),
and changes to allele frequencies every generation are modeled according to the diffusion ap-
proximation detailed below. It is also run with a burn-in period of 10N generations before the
shift and for 12N generations after. The third kind of simulation traces the dynamic of one
allele at the time (OA). To that end: i) when we simulate the selection response from stand-
ing variation (as opposed to new mutations), we sample initial minor allele frequencies from
the closed form, equilibrium distributions (Eq. S2.11), using importance sampling based on
the density of variance contributed by different minor allele frequencies (SI Section 2.1); and
ii) the change in the population’s mean phenotype over time, on which the allele dynamics
depend, is given as input, based on either an analytical approximation (see below) or on an
average over simulations of the second layer. The OA simulation is run until the focal allele
fixes or goes extinct. The last two layers allow for greater computational tractability, and
we validate our main results against simulations from the first layer (Figs. S5.1 and S5.2
and SI Section 5). Documented code for simulations, numerical analysis, and graphs can be
found at https://github.com/sellalab/PolygenicAdaptation1D.

Results
Phenotypic response.We first consider how the population’s mean phenotype approaches
the new optimum. In SI Section 1.2, we express the mean distance from the new optimum,
D(t), as a sum over alleles’ contributions. We show that under our assumptions, the expected,
per generation change in this distance is well approximated by

E (∆D(t)) ≈ −VA(t)/VS ·D(t) + (1−D2(t)/VS) · µ3(t)/(2VS), 3
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where VA(t) and µ3(t) denote the 2nd and 3rd central moments of the phenotypic distribu-
tion. Similar expressions were derived by Barton and Turelli (1987) under the rare-alleles
approximation and by Bürger (1991) under the assumption of a parabolic fitness function.

We rely on Eq. 3 to describe the phenotypic response to selection. This response takes
a simple form in the infinitesimal limit, in which genetic variation at equilibrium arises from
infinitely many segregating alleles with infinitesimal effect sizes (Fisher, 1919; Bulmer, 1980;
Barton et al., 2017). In this limit, the change in mean phenotype is achieved by infinites-
imal changes to allele frequencies at infinitely many loci, without changing the frequency
distribution. Consequently, the phenotypic distribution remains normal and the phenotypic
variance remains constant. Under these assumptions, Eq. 3 reduces to

E (∆D(t)) = −VA(0)/VS ·D(t), 4
which (in continuous time) is solved by

DL(t) = Λ · Exp(−VA(0)/VS · t). 5
This solution was first derived by Lande (1976), and we refer to it henceforth as Lande’s
solution or approximation. When genetic variance is dominated by loci with small and
intermediate effect sizes (as defined below), the trait is highly polygenic, and the shift in
optimum is not too large (relative to the phenotypic standard deviation), changes to the
2nd and 3rd moments of the phenotypic distribution are small and the expected phenotypic
response is well approximated by Lande’s solution (Figs. 2A, S7.2 and S7.3).

When alleles with large effects contribute markedly to genetic variance, the trait is not
highly polygenic or the shift in optimum is large, changes to the 2nd and 3rd moments of the
phenotypic distribution and consequently deviations from Lande’s approximation become
more substantial (Figs. 2C , S7.2 and S7.3; Barton and Turelli, 1987). In SI Section 6
we investigate the relationship between model parameters and deviations from Lande’s ap-
proximation in more depth. For intuition, consider a pair of minor alleles with the same
initial frequency and magnitude of effect, where the effect of one is aligned with the shift
and the effect of the other opposes it. After the shift, directional selection increases the fre-
quency of the aligned allele relative to that of the opposing one. The frequency increase of
the aligned allele increases variance more than the frequency decrease of the opposing allele
decreases it, resulting in a net increase to variance (Fig. 2C ; Barton and Turelli, 1987;
de Vladar and Barton, 2014; Jain and Stephan, 2017a). The relative changes in frequency
and thus the net increase in variance are greater for alleles with larger effects. Next consider
the 3rd moment. At steady-state, the contributions of alleles with opposing effects to the
3rd moment cancel out. After the shift, the frequency increase of aligned alleles relative to
opposing ones introduces a non-zero 3rd moment (Fig. 2C). Large effect alleles contribute
substantially more to this 3rd moment, plausibly because their individual, steady-state con-
tribution to the 3rd moment is greater to begin with (see SI Section 2.3 and Fig. S2.1B)
and because they exhibit larger relative changes in frequency after the shift (see section on
the allelic response in the rapid phase and SI Section 3). By the same token, with larger
shifts and lower polygenicity, directional selection causes greater relative frequency differ-
ences between alleles with opposing effects, and thus greater increases to variance and a
greater skew of the phenotypic distribution.
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Figure 2. The phenotypic response to a shift in optimal phenotype. A) Cartoon of the two
kinds of phenotypic response: i) the Lande approximation, in which the mean approaches the
new optimum exponentially with time and the phenotypic distribution maintains its shape; ii)
substantial deviations from Lande’s approximation, in which the mean approaches the new optimum
rapidly at first, but during this time the phenotypic distribution becomes skewed, causing the
mean’s approach to slow down dramatically, to a rate that is dictated by the decay of the 3rd

moment. B) In both the Lande and non-Lande cases, the mean phenotype initially approaches
the new optimum rapidly. This approach is described by Lande’s approximation, and thus almost
identical in the two cases (which is why only the Lande curve is visible). C) In the non-Lande
case, the phenotypic variance and skewness increase during the rapid phase and then take a very
long time to decay to their values at steady state. D) Over the longer-term, the approach to the
optimum in the non-Lande case almost grids to a halt, where its rate can be described by the
quasi-static approximation (Eq. 6). The simulation results in B-D were averaged over 2500 runs
of our allele simulations (AA) (see section on simulations and resources and SI Section 5), with
N = 104, Λ = 4 ·

√
VA(0), and

√
VA(0) = 29δ. In the Lande case, squared effect sizes were Gamma

distributed with E
(
a2) = V

(
a2) = 1 (S = a2∼Γ(1, 1)) and U ≈ 0.03 (to match VA(0) in the non-

Lande case); in the non-Lande case, squared effect sizes were Gamma distributed with E
(
a2) = 16

and V
(
a2) = 256 (a2∼Γ(1, 16)) and U = 0.01.
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The increase in 2nd and 3rd moments after the shift result in a phenotypic dynamic
with two distinct phases. First, immediately after the shift, the mean phenotype rapidly
approaches the new optimum, akin to the exponential approach in Lande’s approximation.
In this case, however, genetic variance increases and thus the exponential rate of approach
may increase, making the expected approach even faster (Eq. 3). Shortly thereafter, when
the mean phenotype nears the optimum, the decreasing distance and increasing 3rd moment
reach the point at which

D(t) ≈ µ3(t)/(2VA(t)). 6

The two terms on the right-hand side of Eq. 3 then approximately cancel out, and the
dynamic enters a second, prolonged phase, in which the approach to the optimum nearly
grinds to a halt (Fig. 2D). During this phase, the expected change in mean phenotype
can be described in terms of a quasi-static approximation given by Eq. 6 (Figs. 2D and
S7.1). The rate of approaching the optimum is then largely determined by the rate at which
the 3rd moment decays. This roughly corresponds to the rate at which the allele frequency
distribution equilibrates and steady-state around the new optimum is restored (see section
on other properties of the equilibration process).

Allele dynamics.We now turn to the allele dynamics that underlie the phenotypic response.
These dynamics can be described in terms of the first two moments of change in frequency
in a single generation (Crow and Motoo, 1970; Ewens, 2012). For an allele with effect size a
and frequency x, we calculate the moments by averaging the fitness of the three genotypes
over genetic backgrounds (SI Section 1). Under our assumptions, the moments are well
approximated by

E(∆x) ≈ (a ·D(t)/VS) · x(1− x)− (a2/VS) · (1−D2(t)/VS) · x(1− x)(1/2− x) 7

and
V (∆x) ≈ x(1− x)/(2N), 8

which is the standard drift term. Similar expressions for the first moment trace back to
Wright (1935a) and have been used previously to study the response to selection on quanti-
tative traits (Barton, 1986; Bürger, 1991; Charlesworth, 2013; de Vladar and Barton, 2014).

The two terms in the first moment reflect different modes of selection: directional and
stabilizing, respectively. The first term arises from directional selection on the trait and takes
a semi-dominant form with selection coefficient sd = 2a ·D(t)/VS. Its effect is to increase the
frequency of alleles whose effects are aligned with the shift (and vice versa) and its strength
weakens as the distance to the new optimum, D, decreases. The second term arises from
stabilizing selection on the trait and takes an under-dominant form with selection coefficient
se = a2/VS · (1 − D2(t)/VS). Its effect is to decrease an allele’s contribution to phenotypic
variance, 2a2x(1− x), by reducing minor allele frequency (MAF); it becomes weaker as the
MAF approaches 1/2.

The relative importance of the two modes of selection varies as the mean distance to
the new optimum, D, decreases. We therefore divide the allelic response into two phases: a
rapid phase, immediately after the shift, in which the mean distance to the new optimum is
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substantial and changes rapidly, and a subsequent, prolonged equilibration phase, in which
the mean distance is small and changes slowly (Jain and Stephan, 2017a). We define the
end of the rapid phase as the time, t1, at which Lande’s approximation for the distance to
the optimum DL (t1), equals the standard deviation of the distance from the optimum at
steady-state δ =

√
VS/2N , i.e.,

t1 ≡ (VS/VA(0)) · Ln (Λ/δ) ∼ (1/U) · Ln (Λ/δ) 9

(in SI Section 2.2 we show that VS/VA(0) ∼ 1/U). This definition is somewhat arbitrary,
as the transition between phases is gradual, but it roughly captures the change in allele
dynamics (Fig. S7.1). Moreover, our analysis is insensitive to this particular choice (we
only use in comparing analytic and simulation results for the rapid phase).

Figure 3. A cartoon of allele dynamics. We divide the allele dynamics into rapid and equilibration
phases, based on the rate of phenotypic change, and consider the trajectories of alleles with opposing
effects of the same size, which start at the same initial minor frequency. During the rapid phase,
alleles whose effects align with the shift slightly increase in frequency relative to those with opposing
effects. During the equilibration phase, this frequency difference can increase further and eventually
leads aligned alleles to fix with slightly greater probabilities than opposing ones.

The change in mean phenotype during the rapid phase is driven by the differential effect
of directional selection on minor alleles whose effects are aligned and opposed to the shift
in optimum (Fig. 3). Considering a pair of minor alleles with opposing effects of the same
size and the same initial frequency, selection increases the frequency of the aligned allele
relative to the opposing one. By the end of the rapid phase, the frequency differences
across all aligned and opposing alleles drive the mean phenotype close to the new optimum
(Fig. 2A). Deviations from Lande’s approximation manifest as prolonged, weak directional
selection during the equilibration phase, which further increases the expected frequency
difference between aligned and opposing alleles. However, given that we are considering a
highly polygenic trait, the expected frequency difference between a pair of opposing alleles
will be small. This small difference causes aligned alleles to have a slightly greater probability
of eventually fixing during the equilibration phase (Fig. 3). Over a period on the order of 2N
generations (see below), the frequency differences between aligned and opposing alleles are
replaced by a slight excess of fixed differences between them, and the steady-state genetic
architecture is restored around the new optimum. In the following sections, we describe
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The allelic response in the rapid phase RESULTS

these processes quantitatively. Specifically, we ask how the relative contribution of alleles to
phenotypic change during the two phases depends on their effect size and initial frequency.

The allelic response in the rapid phase.We can describe changes to allele frequencies dur-
ing the rapid phase with a simple deterministic approximation. The duration of the rapid
phase is much shorter than the time scale over which genetic drift has a substantial effect
(t1 ∼ 1/U � 2N generations; see Eq. 9), allowing us to rely only on the first moment
of change in allele frequency (Eq. 7). Additionally, deviations of the distance D(t) from
Lande’s approximation during this phase have negligible effects (Figs. 2B and S3.1D-F),
allowing us to assume that D(t) = DL(t) (Eq. 5). Lastly, when relative frequency changes
are small, we can use a linear approximationin which we substitute the frequency in the first
moment by its initial value. With these simplifications, we can integrate the first moment
over time to obtain an explicit approximation for frequency changes.

Consider a pair of minor alleles with opposing effects of size a and initial frequency x0
before the shift in optimum. Using our linear approximation, we find that the frequency
difference between them at the end of the rapid phase is

∆x∗t1(a, x0) = xt1(a, x0)− xt1(−a, x0) ≈ 2 · (a/VS) · x0(1− x0)
∫ t1

0
DL(t)dt

= (Λ−DL(t1)) · 2ax0(1− x0)/VA(0). 10

The contribution of the pair to the change in mean phenotype is

∆z∗t1(a, x0) = 2a ·∆x∗t1(a, x0) ≈ (Λ−DL(t1)) · 2 · v∗(a, x0)/VA(0), 11

where v∗(a, x0) = 2a2x0(1− x0) is the contribution to variance of an allele with effect size a
and frequency x0. Thus, the pair’s contribution to phenotypic change is proportional to its
contribution to phenotypic variance before the shift in optimum.

The expected relative contribution of all alleles with a given effect size and initial fre-
quency is therefore proportional to their expected initial, steady-state contribution to phe-
notypic variance. We will focus on the contribution per unit mutational input of alleles with
a given effect size. To this end, we measure the trait value in units of δ =

√
VS/(2N) and

express allele effect sizes in terms of the scaled selection coefficients at steady-state (when
D = 0), S = 2Nse = a2 in these units (see the model section). Expressing our results in
this form makes them invariant with respect to changing the population size, N , stabilizing
selection parameter, VS, mutational input per generation, 2NU , and distribution of effect
sizes, g(a). In these terms, the expected contribution of alleles with given effect size and
initial MAF to phenotypic change is

∆zt1(a, x0) ≈ (Λ−DL(t1)) · v(a, x0)/VA(0), 12

and the marginal contribution of alleles with a given effect size is

∆zt1(a) =
∫ 1/2

0
∆zt1(a, x)dx ≈ (Λ−DL(t1)) · v(a)/VA(0), 13
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where v(a, x0) ≈ 4a2 · Exp (−a2x0(1− x0)) and v(a) ≈ 4a2 ·
∫ 1/2

0 Exp (−a2x(1− x)) dx =
4a ·D+ (a/2) are the corresponding densities of variance per unit mutational input at steady-
state, and D+ is the Dawson function (SI Section 2.2). The absolute expected contributions
follow from multiplying these expressions by the mutational input per generation, 2NU ·g(a).
Specifically, as we would expect, the total change in mean phenotype during the rapid phase
is ∆zt1 = 2NU ·

∫∞
0 ∆zt1(a) · g(a)da ≈ Λ−DL(t1) (as VA(0) = 2NU ·

∫∞
0 v(a) · g(a)da).

Figure 4. The allelic response during the rapid phase. A) Alleles with moderate and large effects
make the greatest contribution to phenotypic change (per unit mutational input). The results of
our linear approximation are compared with a more accurate nonlinear one (see SI Section 3.1.2)
and with simulations. B) The average MAF of aligned and opposing alleles at the end of the rapid
phase decreases with effect size. C) The expected frequency difference between pairs of opposing
alleles is greatest for moderate effect sizes. Simulation results for each point were averaged over
2.5 · 105 runs of our one allele (OA) simulation, assuming N = 104, Lande’s approximation with√
VA = 17δ, and the shifts specified in the legend.

The relative contribution of alleles with given effect size and initial MAF to phenotypic
change follows from their expected contribution to variance at steady-state (Eqs. 12 and 13,
and Fig. 4). The properties of v(a) imply that (Fig. 4A): i) the relative contribution of
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alleles with small effect sizes (a2 � 1) scale linearly with S = a2 (v(a) ≈ 2a2, measured
in units of δ2); ii) the contribution of alleles with moderate and large effect sizes (roughly
S = a2 > 3) are much greater, and fairly insensitive to the effect size (with v(a) ∼ 4);
and iii) the contribution is maximized for a2 ≈ 10 (v(

√
10) ≈ 5.2) (see Simons et al., 2018,

for intuition about these properties). While large and moderate effect alleles make similar
contributions to phenotypic change, MAFs of large effect alleles before the shift are much
lower than the MAFs of moderate ones (Fig. 4B),because they are subject to stronger
stabilizing selection. The expected frequency difference between pairs of opposing alleles is
greatest for moderate effect sizes (Fig. 4C), because it is proportional to E (2ax0(1− x0))
(Eq. 10), which increases with v(a)/a and v(a) is similar for moderate and large effect
sizes. Additional properties of the allelic response during the rapid phase are presented in
SI Section 3.

When the polygenicity is low and/or the shift in optimum or effect sizes are large our
linear approximation becomes less accurate (Fig. 4A). Specifically, minor alleles exhibit
large relative changes in frequency such that substituting the initial MAF for the frequency
in Eq. 7 for the 1st moment is inaccurate. In SI Section 3.1.2 we derive a nonlinear approx-
imation that is more accurate in these cases (Figs. 4A, S3.2 and S3.3 ). Nonetheless, the
qualitative behaviors we outlined remain intact.

The allelic response in the equilibration phase.Over the long run, the small frequency
differences between opposite alleles that accrue during the rapid phase translate into small
differences in their fixation probabilities (Fig. 3). In the non-Lande case, prolonged weak
directional selection during the equilibration phase amplifies these differences in fixation
probabilities. We approximate fixation probabilities in two steps. First, we model the effect
of directional selection on frequency as an instantaneous, deterministic pulse. Second, we
apply the diffusion approximation for the fixation probability, assuming stationary stabilizing
selection (D = 0), genetic drift, and the initial frequency after the pulse. We further assume
that the relative changes in allele frequencies due to directional selection are small, such
that we can use approximations that are linear in this change; but in SI Section 4, we derive
nonlinear approximations that relax this assumption.

The Lande case.When Lande’s approximation is accurate, directional selection is non-
negligible only briefly after the shift. This justifies approximating its effects as if they were
caused by an instantaneous pulse. It also suggests that mutations that arise after the shift in
optimum contribute negligibly to phenotypic change, because fairly few of them arise when
directional selection is non-negligible and their fixation probabilities and thus the difference
in fixation probabilities between mutations with opposite effects are tiny (given that they
start from an initial frequency of 1/2N).

Consider a pair of opposite minor alleles, with effect size a and initial frequency x0.
Modeling the effects of directional selection on their frequencies as an instantaneous pulse,
and assuming that these effects are small, we find that the resulting frequency differences
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between them is approximated by

∆x∗d(a, x0) ≡ xd(a, x0)− xd(−a, x0) ≈ 2ax0 (1− x0) ·
∫ ∞

0
(DL (τ) /VS) dτ

= 2ax0 (1− x0) · Λ/VA (0) . 14

Consequently, the pair’s expected contribution to phenotypic change is approximated by

∆z∗d(a, x0) ≡ 2a ·∆x∗d(a, x0) ≈ 2v∗(a, x) · Λ/VA (0) , 15

and the contribution of such pairs per unit mutational input is approximated by

∆zL
d (a, x0) ≈ 2v(a, x) · Λ/VA (0) , 16

where, as before, v∗(a, x) = 2a2x(1 − x) is an allele’s contribution to genetic variance and
v(a, x) is the steady-state (initial) density of variance per unit mutational input, and we use
the superscript L to denote that this applies to the Lande case.

We approximate a pair’s expected long-term, fixed contribution to phenotypic change by
calculating the difference in fixation probabilities of the opposite alleles given their frequency
after the pulse, again assuming that the effects of the pulse are small. Namely,

∆z∗∞(a, x0) ≈ 2a (π(a, xd(a, x0))− π(a, xd(−a, x0)))

≈ 2a · ∂π
∂x

(a, x0) ·∆x∗d(a, x0) = ∂π

∂x
(a, x0) ·∆z∗d(a, x0). 17

where π(a, x) denotes the fixation probability of an allele with effect size a and initial fre-
quency x under stationary stabilizing selection and drift. In SI Section 2 we derive the
diffusion approximation for π(a, x) and show that

∂π

∂x
(a, x0) = 2f(a)/v(a, x0), 18

where f(a) ≡ 2a3 · Exp (−a2/4) / (
√
π · Erf (a/2)). From Eqs. 14-18, we find that the

expected fixed contribution per unit mutational input of pairs of alleles is

∆zL
∞(a, x0) ≈ ∂π

∂x
(a, x0) ·∆zL

d (a, x0) ≈ 2Λ · f(a)/VA(0). 19

Note that this expression does not depend on the initial frequency! The expected marginal
contribution of alleles with a given effect size follows and is

∆zL
∞(a) =

∫ 1/2

0
∆z∞(a, x)dx ≈ Λ · f(a)/VA(0). 20

Hence, the function f approximates how the relative long-term contribution of alleles depends
on their effect sizes (Fig. 5A).
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Figure 5. The long-term (fixed) allelic contribution to phenotypic adaptation. We show the
relative contribution of alleles as a function of effect size, based on our linear approximations and
on simulations with the two shift sizes specified in the caption. A) The Lande case. Our theoretical
prediction is described by the function f(a) (Eqs. 13 and 20) and simulation details are the
same as in Fig. 4. Our prediction for the long-term contribution (corresponding to f(a)) is always
below the prediction for the short-term (corresponding to v(a)). The difference becomes substantial
for a2 ' 4, implying that the linear Lande approximation underestimates the fixed contribution
when large effect alleles contribute markedly to genetic variance. B) The non-Lande case. Here,
we assume the same effect size distribution as in Fig. 2, which yields an amplification factor of
1 + C ≈ 2.2 (Eq. 22). Our theoretical prediction for the joint contribution of standing variation
and new mutations is described by the function (1 + C) · f(a) · Λ/VA(0) (Eq. 28). We calculate
the relative contribution of alleles in each effect size bin (between the gray gridlines), by dividing
the contribution of all fixations in the bin by the mutation rate per generation corresponding to
that bin. In both cases, long-term stabilizing selection diminishes the contribution of alleles with
large effects and amplifies that of alleles with small and moderate effects (red arrows). In the non-
Lande case, long-term, weak directional selection amplifies the contribution of alleles with small
and moderate effects (blue arrow). See Figs. S4.1-S4.8 for other attributes of the long-term
allelic response and for the nonlinear approximations.

We expect the total long-term allelic contribution to equal the shift in optimum, Λ. In
our linear Lande approximation, the total contribution is

2NU ·∆zL
∞ = 2NU ·

∫ ∞
0

∆zL
∞(a) · g(a)da ≈ Λ · 2NU ·

∫∞
0 f(a) · g(a)da
VA(0) 21

= Λ ·
∫∞

0 f(a) · g(a)da∫∞
0 v(a) · g(a)da = Λ

1 + C
.
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where we note that VA(0) = 2NU ·
∫∞

0 v(a) · g(a)da and define

C ≡
∫∞

0 v(a) · g(a)da∫∞
0 f(a) · g(a)da − 1. 22

Thus, C � 1 is a necessary condition for our approximation to be accurate. Given that
f(a) < v(a) for any a, but the difference is substantial only for a ' 2 (Fig. 5A), this
condition implies that the bulk of variance before the shift arises from alleles with a < 2.
When alleles with larger effects contribute substantially to genetic variance before the shift
(and C is not negligible) then Lande’s approximation becomes inaccurate. The prevalence
of large effect alleles leads to a quasi-static decay of the distance D during the equilibration
phase (Fig. 2D and the section on phenotypic response), and the resulting prolonged, weak
directional selection markedly amplifies the difference in fixation probabilities between op-
posite alleles. Our linear Lande approximation does not account for this amplification, and
it therefore underestimates the total long-term allelic contribution.

The non-Lande case.We can, however, extend our approximation to account for the amplifi-
cation in the non-Lande case. To this end, we modify our instantaneous pulse approximation
for a pair of opposite alleles (Eq. 14) to

∆x∗d(a, x0) ≡ xd(a, x0)− xd(−a, x0) ≈ 2ax0 (1− x0) ·
∫ t∗

0
(D (τ) /VS) dτ

= 2ax0 (1− x0) · (1 + A) · Λ/VA (0) 23

where t∗ is the effective number of generations over which an allele is subject to direc-
tional selection (because alleles segregate for a finite time) and A is defined such that
(1 + A) ·

∫∞
0 DL (τ) dτ =

∫ t∗
0 D (τ) dτ (although the justification for the instantaneous pulse

approximation is less obvious in this case, since t∗ can be on the order of 2N generations;
see SI Section 4.2). Following the same steps as in the Lande case, we then find that the
expected long-term (fixed) contribution per unit mutational input of pairs of alleles with a
given effect size and initial MAF is

∆z∞ (a, x0) ≈ 2 · (1 + A) · Λ · f(a)/VA(0) 24

and that their expected marginal contribution for a given effect size is

∆zv
∞ (a) ≈ (1 + A) · Λ · f(a)/VA(0), 25

where the superscript v denotes that these contributions originate from variation that seg-
regated before the shift in optimum.

In the non-Lande case, the fixation of mutations that arise after the shift in optimum can
also contribute substantially (Fig. S6.2B), because prolonged, weak directional selection
can produce a substantial difference in the numbers of fixations of mutations with opposite
effects. In SI Section 4.2.2), we follow the same approach that we applied for standing
variation to show that the relative long-term contribution of new mutations with a given
effect size can be approximated by

∆zm
∞(a) ≈ B · Λ · f (a) /VA(0), 26
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where B > 0 (we provide an explicit expression for B in SI Section 4.2.2). Thus, similar to
what we found in the Lande case, the function f approximates how the relative long-term
contribution of alleles depends on their effect sizes, but here it applies to both standing
variation and new mutations (Fig. 5B).

To gain further understanding of the non-Lande case, we consider the joint contribution
of standing variation and new mutations. Equating the total contribution with the shift in
optimum we find that

2NU ·∆z∞ = 2NU · (∆zv
∞ + ∆zm

∞) ≈ 1 + A+B

1 + C
· Λ = Λ, 27

with C defined in Eq. 22. This implies that A + B = C and that the proportional con-
tributions of standing variation and new mutations are (1 + A)/(1 + C) and B/(1 + C),
respectively. It also implies that the contribution per unit mutational input of alleles with a
given effect size a is

∆z∞(a) = ∆zv
∞(a) + ∆zm

∞(a) ≈ (1 + C) · Λ · f (a) /VA(0). 28

Thus, in the linear approximation, prolonged weak directional selection amplifies the rel-
ative contribution of alleles of any given effect size by the same factor of (1 + C) (Figs.
5B and S4.8 ). The amplification C is therefore an allelic measure of the deviation from
Lande’s approximation (see Figs. S6.1 and S6.2), and, intriguingly, it depends only on the
mutational distribution of effect sizes (Eq. 22).

When polygenicity is low, the shift in optimum is large or effect sizes are large, our linear
approximations become less accurate (SI Section 4.2 and Figs. S4.2 and S4.5). In these
cases, directional selection causes large relative changes in MAFs and using the initial MAF
in the instantaneous pulse approximation (i.e., in Eqs. 14 and 23) becomes inaccurate.
Large changes in frequency also undermine the accuracy of our Taylor approximation of
fixation probabilities (Eq. 17). In SI Section 4, we show that the linear approximations
are accurate when a · (1 + A)Λ/VA (0) � 1 (with A = 0 in the Lande case) and we derive
nonlinear approximations that are more accurate when this condition is violated (Figs.
4A, S4.2 and S4.5 ). Even in these cases, however, the linear approximations capture the
salient features of the long-term allelic contribution to phenotypic adaptation (Figs. 5 and
S4.2 -S4.8 ).

Turnover in the genetic basis of adaptation.Notably, our linear approximations capture the
dramatic turnover in the genetic basis of adaptation during the equilibration phase (Fig. 6).
In the long run, the short-term contribution of large effect alleles (S = a2 ' 30) is almost
entirely wiped out, and is supplanted by the contribution of moderate effect alleles (a2 ≈ 5)
(Figs. 6A, S4.4 and S4.8). Moreover, for any given effect size, the proportional long-term
contribution of minor alleles that segregated at low frequencies before the shift is diminished
relative to their short-term contribution, all the more so for large effect sizes (Figs. 6B and
S4.3). For instance, for an effect size a2 = 35, minor alleles with initial frequencies below
0.05 account for more than 99% of the short-term contribution but for only ∼ 10% of the
(much smaller) long-term contribution (Figs. 6B and S4.3).
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Figure 6. The genetic basis of adaptation turns over during the equilibration phase. A) The
short-term contribution of large effect alleles is supplanted by the contribution of moderate effect
alleles. As an illustration, we show the results of the linear approximation for the non-Lande
case in Fig. 5B (Eqs. 13 and 28). Specifically, we weight the short- and long-term relative
contributions by the mutational input and use a linear (rather than log) scale for the squared effect
sizes. This way we can see that the decrease in the contribution of large effect alleles (shaded dark
gray area) equals the increase in the contribution of moderate effect alleles (shaded blue area). B)
The proportional long-term contribution of alleles that segregated at low MAFs before the shift is
diminished relative to their short-term contribution, an effect most pronounced for large effect sizes.
As an illustration, we show the linear approximations for the contribution of alleles with a given
effect size as a function of their initial MAF (Eqs. 12, 19 and 24) for the same non-Lande case as
in A, with a shift of Λ = 2

√
VA(0). To this end, we estimate the amplification factor for standing

variation (1 +A) from the allele simulations described in the legend of Fig. 5 (see SI Section 4.2).
In both the Lande and non-Lande cases, long-term stabilizing selection diminishes the contribution
of alleles with lower initial MAF and amplifies the contribution of alleles with higher initial MAF
(red arrow). In the non-Lande case, prolonged, weak directional selection amplifies the contribution
of alleles, regardless of their initial MAF (blue arrow).
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We can understand this turnover by considering the effects of stabilizing selection during
the equilibration phase (App. B Fig. 2). As noted, stabilizing selection on the trait
induces selection against minor alleles, which weakens as MAF increases and vanishes at
MAF = 1/2. Now consider how it affects a pair of alleles with opposite, moderate or large
effect. If their initial frequencies are very low, both alleles will have low MAFs at the end
of the rapid phase. Consequently, they will both be strongly selected against during the
equilibration phase and will almost certainly go extinct (App. B Fig. 2). In the long-run,
their expected contribution to phenotypic adaptation is therefore diminished. In contrast,
if the alleles’ initial MAF is sufficiently high, the relative increase in the aligned allele’s
frequency by the end of the rapid phase causes it to be subject to substantially weaker
selection than is the opposing allele. In the extreme in which the aligned allele has exceeded
frequency 1/2, the direction of selection on it is even reversed (App. B Fig. 2). In such
cases, the pair’s expected contribution to phenotypic adaptation will be amplified. This
reasoning suggests that, for a given effect size, there is a critical initial MAF < 1/2 such that
the long-term contribution of alleles that start above it is amplified and the contribution of
those that start below it is diminished (Figs. 6B and App. B Fig. 3).

The turnover among alleles with different effect sizes can be explained in similar terms.
Alleles with large effect sizes almost always start from low MAF, because they are subject
to strong stabilizing selection before the shift (Fig. 4B). Consequently, they are highly
unlikely to exceed the critical initial frequency and their expected long-term contribution
to phenotypic adaptation is diminished (Figs. 5A and 6A). However, changes to the
frequencies of these alleles skew the phenotypic distribution, leading to prolonged, weak di-
rectional selection that amplifies the long-term contribution of small and moderate effect
alleles (Fig. 6B). In our linear approximation, this amplification will occur for effect sizes
that satisfy (1 + C) · f(a) ' v(a) (Fig. 5B). These considerations explain why the contri-
butions of alleles with small and moderate effects supplant those of alleles with large effects
(Figs. 5A and 6A). They also highlight that deviations from Lande’s approximation are
critical to understanding the allelic response, even when they have small phenotypic effects.

Other properties of the equilibration process.While long-term phenotypic adaptation arises
from an excess in fixations of aligned relative to opposing alleles, this excess and the increase
in the total number of fixations are typically small relative to the number of fixations at
steady-state (Fig. 7). The proportional excess of both aligned fixations and total fixations
decrease with increased polygenicity and increase with the shift in optimum and allele effect
size (Fig. 7B and C). For sufficiently large effect sizes, practically all fixations are caused
by the shift and are of aligned alleles (Fig. 7B and C). However, with the exception of
extreme cases in which the contribution of alleles of small and moderate effects to genetic
variance is negligible, the number of fixations of such large effect alleles and their contribu-
tion to phenotypic change will be small (Figs. 5 and 7A). Typically, most fixations and
contribution to phenotypic change will arise from alleles with small and moderate effects
(Figs. 5 and 7A), for which the proportional excess of aligned and total fixations is modest
(Fig. 7B and C).

In the long run, these fixations move the mean phenotype all the way to the new optimum,
and genetic variation around the new optimum returns to steady-state. A proxy for the
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Other properties of the equilibration process RESULTS

Figure 7. While long-term phenotypic adaptation arises from an excess in fixations of aligned
relative to opposing alleles, this excess and its effect on the total number of fixations is typically
small. A) The fixation probabilities of aligned and opposing alleles as function of their effect size.
For large effect sizes, the fixation probabilities become vanishingly small, whereas for small and
moderate effect sizes, the difference in the fixation probabilities of alleles with opposing effects is
small. B) The proportional excess of fixations of aligned alleles as a function of effect size. C)
Polygenic adaptation typically adds a small number of fixations relative to the number at steady
state. For large effect sizes, the proportional increase in number is large, but their absolute number
and the corresponding contribution to phenotypic adaptation are extremely small.

approach to steady-state is the ’fixed distance from the optimum’, defined as the phenotypic
distance of an individual that is homozygote for the ancestral allele at every segregating
site; at steady-state, we expect the fixed distance to be 0. Our simulations suggest that,
under a broad set of parameter values, the change in fixed distance after the shift is well
approximated by an exponential decay with a rate of 1/(2N) generations (Figs. 8 and
S7.4 ). This approximation is remarkably accurate in the Lande case. In the non-Lande
case, the decay is initially slower than the approximation suggests, possibly because the
long-term contribution of new mutations (as opposed to standing variation) takes longer to
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amass. In both cases, the return to steady-state occurs on a time scale of 2N generations
after the shift (Figs. 8 and S7.4 ).

Figure 8. A steady-state around the new optimum is restored on a time-scale of 2N generations
after the shift. The change in fixed distance after the shift estimated using simulations is compared
with an exponential decay with a rate of 1/(2N) generations. Model parameters and other details
of the simulations are the same in Fig. 2. See Fig. S7.4 for similar comparisons using a broad
range of model parameter values.

Discussion
Here, we investigated the phenotypic and genetic adaptive response to selection on a highly
polygenic quantitative trait in a simple yet highly relevant setting, in which a sudden change
in environment shifts the trait’s optimal value. The phenotypic response to selection was
previously studied by Lande (1976). Assuming that phenotypes are normally distributed
in the population, he predicted that after the shift the population’s mean phenotype will
approach the new optimum exponentially, at a rate that is proportional to the additive
genetic variance in the trait. We found that this prediction is accurate when the trait is
sufficiently polygenic, the shift in optimum is not too large (relative to genetic variance in
the trait), and the variance is dominated by loci with small and moderate effect sizes, which
are defined based on the selection acting on them before the shift. When these conditions are
violated, most notably when loci with large effects contribute markedly to genetic variance,
the initial, rapid change in mean phenotype is followed by a pronounced quasi-static phase,
governed by changes to the 3rd moment of the phenotypic distribution, in which the mean
phenotype takes much longer to catch up to the new optimum.

We also characterized the genetic basis of these adaptive phenotypic changes. The clos-
est previous work assumed an infinite population size (de Vladar and Barton, 2014; Jain
and Stephan, 2015, 2017a,b), and we found that relaxing this assumption leads to entirely
different behavior. Notably, in infinite populations, small effect alleles whose frequencies
before the shift are dominated by mutation and equal 1/2 make the greatest contribution to
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phenotypic change after the shift (see introduction). In contrast, in any real (finite) popula-
tion, the frequencies of such small effect alleles are dominated by genetic drift rather than
mutation. More generally, variation in allele frequencies due to genetic drift, which is absent
in infinite populations, critically affects the allelic response to selection.

To study the allelic response, we divided it into two periods: a rapid phase, immediately
after the shift, and a subsequent, prolonged equilibration phase. During the rapid phase, the
population’s mean distance to the optimum is substantial and changes rapidly. Directional
selection on the trait increases the frequency of minor alleles whose effects are aligned with
the shift relative to minor alleles with opposing effects (given the same effect size and initial
frequency). By the end of the rapid phase, the cumulative effect of these frequency differences
pushes the mean phenotype close to the new optimum, but because this effect is spread over
myriad alleles, the frequency difference between any individual pair of opposing alleles is
fairly small. Specifically, we found that an allele’s contribution to phenotypic change is
proportional to its contribution to phenotypic variance before the shift, implying that alleles
with moderate and large effect sizes make the greatest per site contributions to phenotypic
change, while alleles with moderate effect sizes experience the greatest frequency changes.
The expected frequency differences between opposing alleles is amplified by prolonged, weak
directional selection during the subsequent equilibration phase, and this amplification is
pronounced when the phenotypic approach to the new optimum deviates markedly from
Lande’s approximation.

Over the long run, stabilizing selection on the trait and genetic drift transform these small
frequency differences into a small excess of fixed aligned alleles relative to opposing ones,
and cumulatively this excess moves the population mean all the way to the new optimum.
This transformation process involves a massive turnover in the properties of the contributing
alleles. Notably, the transient contributions of large effect alleles are supplanted by contri-
butions of fixed moderate, and to a lesser extent, small effect alleles. In the non-Lande
cases, the fixation of mutations that arise after the shift in optimum can also contribute
substantially to long-term phenotypic adaptation. These processes take on the order of 2Ne

generations, after which the steady-state architecture of genetic variation around the new
optimum is restored.

Our finding that large effect alleles almost never sweep to fixation appears at odds with
the results of previous studies of similar models. These discrepancies are largely explained by
earlier papers considering settings that violate our assumptions, notably about evolutionary
parameter ranges. For instance, some studies assume that large effect alleles segregate at
high frequencies before the shift in optimum (e.g., Christodoulaki et al., 2019), which is
presumably uncommon in natural populations and in any case, violates our assumption that
the trait is at steady-state before the shift. Other models implicitly consider quantitative
traits of intermediate genetic complexity; while such traits likely exist, there are to our
knowledge few well-established examples. Notably, Thornton (2019) observes sweeps in
cases in which the trait is not highly polygenic (violating our assumption that

√
2NU >> 1).

Relatedly, Chevin and Hospital (2008) observe sweeps in cases in which a single newly arising
mutation of large effect contributes substantially to genetic variance, which violates our
assumptions that genetic variation is highly polygenic and is not predominantly effectively
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neutral (i.e., that alleles with S ' 1 contribute substantially). Although it remains to
be seen, we believe that this architecture is much less common, given mounting evidence,
reviewed in the introduction, which suggests that traits are often highly polygenic, and other
considerations, notably estimates of persistence time (Walsh and Lynch, 2018; Sella and
Barton, 2019) and inferences based on human GWASs (Simons et al., 2018; Zeng et al.,
2018), which indicate that quantitative genetic variation is not predominantly neutral.

Lastly, Stetter et al. (2018) considered a huge shift in the optimal trait value (e.g., of
∼90 phenotypic standard deviations), resulting in a massive drop in fitness (violating our
assumption that Λ /

√
VS—although shifts in optimum need not be that large to result in

the fixations of some large effect alleles. While there are many examples of rapid and large
environmental fluctuations, e.g., seasonal fluctuations or shifting weather systems, they occur
on a much shorter time scale than fixation (although they might have some effect on genetic
architecture; see below). In turn, little is known about the magnitude of shifts in optimal
trait values over the time scales of large effect, beneficial fixations. While it seems plausible
that moderate shifts, which fall within our assumed parameter ranges, are common, we
cannot rule out that larger shifts are common as well. The response to such larger shifts is
not covered by our analysis and clearly warrants further study.

Other factors that we have not considered may also affect polygenic adaptation. Most
notable among them is pleiotropy. Given that quantitative genetic variation affecting one
trait often affects many other traits (Bulik-Sullivan et al., 2015; Pickrell et al., 2016; Boyle
et al., 2017; Sella and Barton, 2019; Liu et al., 2019), alleles that would have been posi-
tively selected because of their effect on the trait under directional selection may be selected
against because of their adverse effects on other traits. Moreover, pleiotropy is known to
affect the genetic architecture of a given trait at steady-state (Simons et al., 2018), which
we have shown to shape the allelic response to selection on that trait. Pleiotropy is there-
fore likely to affect which alleles contribute to phenotypic change at the different phases of
polygenic adaptation (see Otto, 2004, for related considerations for simple traits). Linkage
disequilibrium (LD) may have an effect as well, perhaps most notably for minor alleles with
large effects, which start at low frequencies and experience strong directional selection dur-
ing the rapid phase. Before the shift, large effect alleles located in genomic regions with low
recombination and high functional density are more likely to be in LD with, for example,
alleles with countervailing effects on the focal trait (Lande, 1975) or deleterious effects on
other traits. If this were the case, then directional selection during the rapid phase might be
effectively weaker, because it would act on extended haplotypes rather than on individual
alleles.

In addition, the demography of a population, notably its size, as well as the selection
pressures on quantitative traits are likely to change over a shorter time scale than it takes
the genetic architecture of complex traits to equilibrate. When these changes occur over
the ∼2Ne generations preceding a shift in optimal trait value, they could affect the genetic
architecture of the trait and consequently its response to selection. Changes in popula-
tion size influence the number of segregating sites affecting a trait and the distribution of
their frequencies and contributions to variance, with more recent population sizes affecting
strongly selected variation more than weakly selected variation (Lohmueller, 2014; Simons
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et al., 2014; Simons and Sella, 2016; Sella and Barton, 2019). The effects of varying selection
will depend on the attributes of this variation in ways that await further study.

While the effects of all of these factors on the response to a shift in optimum warrant
investigation, we expect the response to follow from the principles we outlined. Notably,
we expect the short-term contribution of alleles to phenotypic change to be proportional to
their contribution to variance before the shift, and their long-term contribution to arise from
differences between the fixation probabilities of alleles with opposite effects, caused by the
opposing effects of directional selection on their frequencies. Thus, while all of these factors
are likely to affect the response, we expect the main features of the dynamics we portrayed
to remain largely intact. These features include the role of the 3rd moment of the phenotypic
distribution in slowing down phenotypic adaptation near the new optimum; the transient
contribution of large effect alleles to phenotypic adaptation; and the long-term importance
of alleles with moderate effects.

As polygenic adaptation in quantitative traits is likely ubiquitous, our conclusions have
potentially important implications. One is that, contrary to adaptation mediated by selective
sweeps of initially rare, large effect, beneficial alleles (Smith and Haigh, 1974; Kaplan et al.,
1989; Braverman et al., 1995; Hermisson and Pennings, 2005; Coop and Ralph, 2012; Berg
and Coop, 2015), polygenic adaptation might have minor effects on patterns of neutral
diversity at any given point in time (but may affect temporal diversity patterns (Buffalo and
Coop, 2019, 2020). The effects of selected alleles on neutral diversity at linked loci follow from
their trajectories (Barton, 2000). Our results indicate that directional selection on a highly
polygenic trait introduces only small changes to allele frequencies at individual loci, which
amount to minor perturbations to the allele trajectories expected under stabilizing selection
at steady-state (also see Chevin and Hospital, 2008; Thornton, 2019). Indeed, alleles with
large effects exhibit only small, transient changes. For those with more moderate effects,
there is a modest, long-term excess of fixations of those alleles whose effects are aligned with
the shift relative to those whose effects are opposed, accompanied by a small increase in the
total number of fixations(Fig. 7). The trajectories of the alleles that fix are largely driven
by weak stabilizing selection and tend to be drawn out (Fig. 8). Thus, our results indicate
that the effects of polygenic adaptation on neutral diversity should be minor (other than
perhaps for massive shifts in optimal trait values, as noted above).

In contrast, long-term stabilizing selection on quantitative traits likely has substantial
effects on neutral diversity patterns. Specifically, selection against minor alleles induced by
stabilizing selection may well be a major source of background selection and is expected to
affect neutral diversity patterns in ways that are similar to those of background (purifying)
selection from other selective origins (Charlesworth et al., 1993; Hudson and Kaplan, 1995;
McVean and Charlesworth, 2000).

Another implication of our results pertains to the search for the genetic basis of human
adaptation, as well as adaptation in other species. Efforts to uncover the identity of indi-
vidual adaptive genetic changes on the human lineage were guided by the notion that their
identity would offer insight into what "made us human". Under the plausible assumption
that many adaptive changes on the human lineage arose from selection on complex, quanti-
tative traits, this approach may not be as informative as it appears (Pritchard et al., 2010;
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Boyle et al., 2017). Our results indicate that after a shift in the optimal trait value, the
number of fixations of alleles whose effects are aligned to the shift are typically nearly equal
to the number of alleles that are opposed (Fig. 7A). Moreover, the alleles that fix are a
largely random draw from the vastly greater number of alleles that affect the trait, both in
the sense of being those that happened to segregate at high MAFs at the onset of selection
and because of the stochasticity of fixation. Thus, in this plausible scenario, it becomes
meaningless to say that any given fixation was adaptive, and arguably uninteresting to focus
on the particular subset of alleles that happened to reach fixation. In contrast, identifying
the traits that experienced adaptive changes promises to provide important insights. Recent
efforts to do so pool the signatures of frequency changes over many loci that were found to be
associated with a given trait in GWAS (Turchin et al., 2012; Berg and Coop, 2014; Robinson
et al., 2015; Field et al., 2016; Berg et al., 2017; Edge and Coop, 2019; Speidel et al., 2019),
an exciting approach that has also proven to be technically challenging (Berg et al., 2019;
Sohail et al., 2019). A better understanding of the process of polygenic adaptation should
help to guide such efforts.
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A ADDITIONAL TABLES

A. Additional Tables

Table 1. Summary of notation.

Symbol Definition

N Population size
U Expected number of mutations per gamete per generation affecting the trait
VS Width of the Gaussian fitness function (1/VS is the quadratic selection gradient)
δ Magnitude of fluctuations around the optimum at steady state (=

√
VS/(2N))

a An allele’s effect on the trait
S An allele’s scaled selection coefficient at steady-state (= a2 in units of δ2)
g(a) The mutational distribution of phenotypic effects
Λ The size of the shift in optimum
t Time after shift in optimum
VA (t) The additive genetic variance
µ3 (t) The 3rd central moment of the trait distribution
D(t) Distance of the mean phenotype from the optimum
DL(t) Lande’s approximation for D(t)
t1 The time at the end of the rapid phase
xt(a, x0) Expected frequency of an allele with effect a and initial MAF x0
∆x∗t (a, x0) Expected frequency difference between opposite alleles (≡xt (a, x0)−xt(−a, x0))
∆z∗t (a, x0) Expected contribution to phenotypic change of a pair of opposite alleles
v∗ (a, x) An allele’s contribution to phenotypic variance (= 2a2x(1− x))

∆x∗d(a, x0) Expected frequency difference between opposite alleles (= xd (a, x0)− xd(−a, x0))
due to an instantaneous pulse of directional selection

∆z∗d(a, x0) Expected contribution to phenotypic change of a pair of opposite alleles after an
instantaneous pulse of directional selection

∆zt(a, x0),

∆zt(a) Expected contribution to phenotypic change per unit mutational input of opposite
alleles with effect size a, or with effect size a and initial MAF x0

v(a, x0),

v(a) Steady state density of phenotypic variance per unit mutational input of alleles
with effect size a, or with effect size a, or with effect size a and initial MAF x0

π(a, x) Fixation probability of an allele with effect size a and initial frequency x under
stationary stabilizing selection and genetic drift

f(a) Relative long-term contribution to phenotypic change

A
Amplification of the long-term contribution to phenotypic change from standing
variation

C Amplification of the long-term contribution to phenotypic change
(=
∫
v(a)g(a)da/

∫
f(a)g(a)da− 1)
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A ADDITIONAL TABLES

Table 2. Summary of assumptions on parameters.

Assumption Interpretation
√

2NU >> 1 High polygenicity

U = Lu� 0.2 Mutation rate per gamete per generation is substantially
smaller than 0.2

a/
√
VS � 1 Allele effect sizes are substantially smaller than the width

of the fitness function

g(a) A substantial proportion of incoming mutations are not ef-
fectively neutral

g(a) with a substantial
portion satisfying a2 ' 1

A substantial proportion of incoming mutations are not
effectively neutral

g(a) = g(−a) The number of trait-increasing mutations is equal to the
number of trait-decreasing mutations

Λ > δ
The shift is larger than the expected steady-state fluctua-
tions in mean phenotype

Λ /
√
VS

The shift is not much larger than the width of the fitness
function

Λ/
√
VA(0) / 1/2 ·

√
2NU The shift is not massive relative to the initial phenotypic

standard deviation
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B ADDITIONAL FIGURES

B. Additional Figures

Figure 1. While directional selection during the rapid phase increases the frequency of aligned
alleles relative to opposing ones, the frequency of aligned alleles does not necessarily increase. Here
we show an example of the trajectories of (A) moderate and (B) large effect alleles in response to
a relatively small shift in optimum; the trajectories were calculated using Eqs. S3.5 , S3.6 and
S3.14 . When directional selection is sufficiently weak (the shift is small), the frequency of aligned
alleles with sufficiently large effects will decrease (B). However, the frequency of opposing alleles
decreases more, and the frequency difference (in red) contributes to the change in mean phenotype.
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B ADDITIONAL FIGURES

Figure 2. Stabilizing selection during the equilibration phase causes turnover in the genetic basis
of adaptation. The cartoons depict the trajectories of alleles with opposing effects of a given
magnitude, and a given initial MAF. For the purpose of illustration, we focus on alleles with large
(A) and moderate (B) effects, with initial MAFs in the tail of the corresponding steady state
MAF distribution (the 99.5th percentile), and a shift size of Λ = 2 ·

√
VA(0) with

√
VA(0) =

17δ. Directional selection during the rapid phase increases the frequency of aligned alleles relative
to those with opposing effects, and these frequency differences underlie short-term phenotypic
adaptation. A) The initial MAF of large effect alleles, even those in the 99.5th percentile, is
sufficiently low such that both aligned and opposing alleles still have low MAFs at the end of
the rapid phase. Consequently, they are both strongly selected against during the equilibration
phase and almost certainly go extinct, thereby erasing their short-term contribution to phenotypic
adaptation. B) Moderate effect alleles start at much higher initial MAFs. In the extreme, this initial
frequency is sufficiently high for directional selection during the rapid phase to push aligned alleles
above frequency 1/2, thereby reversing the direction of (under-dominant) selection on them, but not
on the opposing alleles, during the equilibration phase. Consequently, the expected contribution
of moderate effect alleles with sufficiently high initial MAF to phenotypic adaptation is amplified
during the equilibration phase.
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B ADDITIONAL FIGURES

Figure 3. The long-term phenotypic contribution of alleles is amplified if they start above a
critical initial MAF, which depends on their effect size, and it is diminished if they start below this
critical MAF. In the instantaneous pulse approximation, we found that

∆z∞ (a, x0) ≈ (1 +A) ·∆zL
∞ (a, x0) = (1 +A) · ∂π/∂x(a, x0) ·∆zL

d (a, x0) 29

(Eq. 24). Further assuming that ∆zt1 (a, x0) ≈ ∆zL
d (a, x0) (which holds if the shift is not

miniscule, i.e., Λ � δ), we find that the (multiplicative) amplification/reduction of the pheno-
typic contribution is approximated by (1 + A) · ∂π/∂x(a, x0). In this approximation, the critical
MAF for alleles with effect size a satisfies

(1 +A) · ∂π/∂x(a,xc) = 1. 30

A) The amplification/reduction for alleles with small (left), moderate (middle), and large (right)
effects as a function of initial MAF, in the Lande (red) and a non-Lande (blue) case. The curves
and critical MAFs are calculated from Eqs. 29 and 30, respectively. Given a factor A > 0, the con-
tribution of alleles with sufficiently small effect sizes are amplified for any initial MAF x0 (Fig. 6),
because ∂π/∂x(a, x0) ≈ 1 and thus ∆zL

∞ (a, x0) ≈ ∆zL
d (a, x0) and ∆zv

∞ (a, x0) > ∆zt1 (a, x0)
(Eq. 29). In turn, for sufficiently large effect sizes, the curves for ∆zv

∞ (a, x0) and ∆zL
d (a, x0)
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B ADDITIONAL FIGURES

(≈ ∆zt1 (a, x0)) intersect (Fig. 6B) and thus a critical MAF exists (i.e., 0 < xc < 1/2). These
considerations explain why, for sufficiently large effect sizes, the long-term contribution of alleles
with low initial MAFs is diminished relative to their short-term contribution. B) The critical MAF
as a function of effect size in the Lande and a non-Lande case (based on Eq. 30). The critical
MAF is lower in the non-Lande case, because A > 0 (see Eq. 30). This proportion declined with
increasing effect size both because initial MAFs at steady state decrease and because the critical
MAF increases (panel B). It is greater in the non-Lande case because the critical MAF is lower
(panel B).
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