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Abstract: Long non-coding RNA (lncRNA) genes are known to have diverse impacts on gene 

regulation. However, it is still a major challenge to distinguish functional lncRNAs from those 

that are byproducts of surrounding transcriptional activity. To systematically identify hallmarks 

of biological function, we used the GTEx v8 data to profile the expression, regulation, network 

relationships and trait associations of lncRNA genes across 49 tissues encompassing 87 distinct 5 

traits. In addition to revealing widespread differences in regulatory patterns between lncRNA 

and protein-coding genes, we identified novel disease-associated lncRNAs, such as C6orf3 for 

psoriasis and LINC01475/RP11-129J12.1 for ulcerative colitis. This work provides a 

comprehensive resource to interrogate lncRNA genes of interest and annotate cell type and 

human trait relevance. 10 

 

One Sentence Summary: lncRNA genes have distinctive regulatory patterns and unique trait 

associations compared to protein-coding genes. 

 

Main Text: 15 

 

Long non-coding RNA (lncRNA) genes are a prevalent and heterogeneous group of RNA 

molecules that lack protein-coding potential. They vary in their epigenetic marks, splicing and 

transcript structure (1-4). Previous studies have demonstrated that lncRNA genes have lower 

expression, increased tissue-specificity, and greater variability in expression across individuals 20 

than protein-coding genes (1, 5-8). Despite these differences, many lncRNA genes have been 

demonstrated to have important roles in gene regulation from epigenetic reprogramming to post-

transcriptional regulation (4, 9). Although the number of annotated lncRNA genes is increasing 

as a result of more sensitive transcriptomic profiling in a wide range of contexts (1, 5, 10, 11), it 

is not known how many of these lncRNAs have important functional consequences.  25 

In this study, we used the Genotype-Tissue Expression (GTEx) project v8 data to profile 

genetic regulation of lncRNA genes across 49 human tissues. We combine multiple approaches, 

including expression quantitative trait loci (eQTL) analysis, gene expression outlier analysis, co-

expression networks, and colocalization, to identify putative functional lncRNAs, their cellular 

contexts, and their relevance to human traits. 30 

 

Literature and database curation produced relevant and comparable sets of lncRNA and 

protein-coding genes 

lncRNA genes are difficult to study because of their low expression patterns and 

heterogeneity. To mitigate this challenge, we incorporated three subgroups of genes into our 35 

comparisons (Fig. 1A): protein-coding genes that were expression-matched to lncRNA genes 

(Fig. S1); high-confidence non-coding lncRNA genes, which passed an especially stringent set of 

criteria to be classified as non-coding (12); and a set of 713 lncRNAs with strong prior evidence 

of function (13, 14) (Table S1) (see Methods). Poly(A) selection was performed prior to RNA-

sequencing, which can affect the types of lncRNA genes quantified: RNA-sequencing libraries 40 

prepared by ribosomal RNA depletion and by poly(A) selection quantify similar numbers of 

lncRNA genes, but lncRNA genes unique to poly(A) selection tend to be antisense transcripts, 
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whereas lncRNA genes unique to ribosomal RNA depletion tend to be intergenic or intronic 

lncRNA genes (15). 

Before comparing patterns of expression and regulation in these gene groups, we first 

compared the physical properties of these genes. As has been previously described (6, 16), 

protein-coding genes tended to be longer than lncRNA genes (with median transcript lengths of 5 

3,513 and 657 bases, respectively) and have higher numbers of exons (medians of 10 and 2, 

respectively) (Fig. S2A-C). Lower proportions of lncRNA genes were expressed in each tissue 

compared to protein-coding genes, and lncRNA isoforms generally had higher transcript support 

level scores (Fig. S2D-E). Transcript support level scores reflect the quality of primary data 

supporting the transcript structure, with lower scores indicating a more well-supported transcript 10 

model. The higher scores of lncRNA genes are likely related to the relative scarcity of lncRNA 

transcripts. Many of these physical differences likely informed the more complex regulatory 

differences we saw throughout these analyses. 

 

lncRNA genes have greater tissue-specificity in gene expression and eQTLs 15 

The well-established tissue-specificity of lncRNA gene expression (1, 5, 6, 8, 11), was 

apparent across the 49 analyzed tissues. At an expression threshold of TPM ≥0.5 in at least 20% 

of samples, most of the genes in both the total lncRNA and the high-confidence non-coding 

lncRNA gene groups are either not expressed, or only expressed in 1-5 tissues (Fig. 1B). In 

contrast, the majority of both protein-coding gene groups are expressed in all or nearly all 20 

tissues. Expression of lncRNA genes with known function showed intermediate tissue-

specificity, with the proportion of genes expressed in only 1-5 tissues significantly lower than 

total lncRNA genes (χ2 = 36.8, p = 1.3x10-9, test of equal proportions) but significantly greater 

than total coding genes (χ2 = 266.7, p <2.2x10-16, test of equal proportions). This may reflect the 

biases in functional lncRNA identification: namely, genes that are operating in many different 25 

contexts are more likely to have their functions discovered. 

To explore which tissues had the highest numbers of uniquely expressed genes, we 

focused on the 28 “broad tissue” categories; these are more general tissue types defined by the 

GTEx Consortium, to which each of the 49 tissues are assigned. There were 4,114 genes that 

were broad tissue-specific, that is they were expressed in only one broad tissue type (Table S2). 30 

Of these uniquely expressed genes, 3,301 were lncRNA genes and only 813 were protein-coding 

genes (Fig. 1C). Both groups were dominated by genes with testis-specific expression; this may 

reflect the “transcriptional scanning” suggested to occur during spermatogenesis to reduce the 

male germline mutation rate (17). The next highest numbers of broad tissue-specific genes came 

from the brain, skin, and blood. 35 

In GTEx v8, 94.7% of protein-coding genes and 67.3% of lncRNA genes were identified 

as eGenes (i.e. having at least one eQTL at FDR ≤0.05) in at least one tissue (18). Per tissue, 

approximately 85% of expressed protein-coding genes and 50% of expressed lncRNA genes are 

eGenes (at an expression threshold of TPM ≥0.5 in >20% of samples) (Fig. 2A). The lower 

frequency of lncRNA eGenes may be partly due to their low gene expression, which limited 40 

eQTL detection. However, the fact that approximately 75% of expression-matched protein-

coding genes expressed in each tissue were eGenes suggests that there are other factors involved. 

One such factor could be simpler regulatory mechanisms, which have been reported in certain 

types of lncRNAs (19). With fewer modifiers of their expression, eQTLs for lncRNA genes may 
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occur less frequently, but have stronger effects when present. This is supported by our 

observation that lead eVariants (the genetic variants with the most significant associations for 

each gene) for lncRNA genes had larger effect sizes than expression-matched protein-coding 

genes, with a median log2(allelic fold-change) of 0.805 for lncRNA lead eVariants and 0.579 for 

expression-matched protein-coding lead eVariants (Wilcoxon rank-sum test W =4.88x109, p 5 

<2.2x10-16; Fig. 2B) (20). Higher effect sizes were also reported in a previous study of intergenic 

long non-coding RNA (lincRNA) eQTLs compared to protein-coding genes, which the authors 

attributed to less constraint on lincRNA gene expression (21). Intriguingly, however, the 

proportion of eGenes with >1 independent eQTL is comparable between lncRNA and protein-

coding eGenes (Fig. 2C).  10 

The tissue-specificity of eGenes across all gene groups (Fig. 2D) follows the patterns of 

tissue-specificity in gene expression (Fig. 1D), with lncRNA eGenes generally observed in fewer 

tissues than protein-coding eGenes. There were more broad tissue-specific eGenes than there 

were genes with broad tissue-specific expression: 2,783 lncRNA eGenes, and 1,267 protein-

coding eGenes (Fig. 2E; Table S3). Given the similar patterns of tissue-specificity in both gene 15 

expression and the presence of eGenes, a natural assumption would be that many of the tissue-

specific eGenes are simply genes with tissue-specific expression that have eQTLs. Surprisingly, 

this was rarely the case: except for the testis-specific eGenes and prostate-specific lncRNA 

eGenes, fewer than 25% of tissue-specific eGenes also showed tissue-specific gene expression 

(median overlap 4.5%) (Fig. S3).  20 

Previous studies have found that different subtypes of lncRNA genes have different 

promoter structure and expression patterns (1, 19). Of the GENCODE lncRNA biotypes, we 

noted that 62% of lncRNAs with tissue-specific expression were lincRNAs, which was higher 

than their proportion in total lncRNAs (53%; χ2 = 142.5, p <2.2x10-16, test of equal proportions) 

(Fig. S4A). In contrast, antisense lncRNAs were depleted for tissue-specific expression: 31% of 25 

lncRNA genes with tissue-specific expression were antisense, compared to 37% of the total set 

(χ2 = 66.2, p = 4.1x10-16, test of equal proportions). This is consistent with previous reports of 

lincRNAs having notably high tissue-specificity in comparison to lncRNA genes that diverge 

from another gene (via bidirectional transcription) (19), since many of the GENCODE-annotated 

antisense lncRNA genes are identified to actually be promoter-divergent in the FANTOM 30 

CAGE-associated transcriptome (FANTOM-CAT) (1) (Fig. S4B). It was also interesting to note 

that 15% of GENCODE intergenic lncRNAs were identified as promoter-divergent in 

FANTOM-CAT. This highlights the importance of maintaining updated gene annotations, 

especially when examining the frequently updated lncRNA genetic landscape (22). 

 35 

Multi-tissue outliers for intergenic lncRNA gene expression are frequently overexpressed 

Given that lncRNA regulation is often tissue-specific, we were interested in whether 

individuals can defy these patterns and display outlier lncRNA gene expression in non-canonical 

tissues. To test this, we confined the outlier gene expression analysis performed in the GTEx rare 

variants paper (23) to only examine lincRNA genes, the lncRNA gene subtype that most 40 

commonly displayed tissue-specific expression (Fig. S4A). To identify multi-tissue outliers, we 

also limited our analysis to individuals with expression data available for the given gene in at 

least 5 tissues. Overall, 2,535 individual-lincRNA combinations were found to be expressed at 

more than 2 standard deviations above or below the mean in a majority of tested tissues; these 
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were termed multi-tissue outliers (|median Z-score| > 2) (Table S4). These outlier events (with an 

event being an individual-lincRNA combination) involved 1,009 unique lincRNAs out of the 

4,236 tested. The majority of lincRNA outliers (86%) have a positive median Z-score, which 

means that the outlier individuals typically over-expressed that lincRNA gene (Fig. 3A). For 

protein-coding genes, only 61% of outliers at the same threshold are over-expressed (23). This is 5 

mostly attributable to the lower expression of lincRNA genes compared to protein-coding genes; 

lowly expressed genes are more likely to fluctuate upward, and their under-expression is difficult 

to detect. 

For each outlier, we identified variants within 10kb of the outlier gene for individuals 

with self-reported European ancestry, as allele frequencies may not be consistent across 10 

populations (23). Outlier individuals were more enriched for nearby variants with lower allele 

frequencies (MAF < 1%; see Methods), with relative risks (RRs) of 1.12 for SNPs, 1.28 for 

indels, and 9.56 for SVs (Fig. 3B). In both over- and under-expression outliers, higher 

proportions of nearby rare variants were observed compared to non-outliers (54.4% of over-

expression outliers, 50% of under-expression outliers, and 47% of non-outliers), though the 15 

proportion of overall rare variants nearby under-expression outliers vs non-outliers was not 

significantly enriched (RR over = 1.16, p = 2.82x10-9, RR under = 1.06, p = 0.37, Wald test). 

Rare structural variants were more often associated with under-expression of the lincRNA (RR = 

10.53, p = 5.59x10-20, Wald test), and rare variants in transcription start sites (TSS) were 

enriched in both directions (Fig. 3C). Of the rare structural variants driving the enrichment 20 

nearby outliers (Fig. 3B), we found that deletions, CNVs, and duplications were specifically 

enriched in outlier individuals near their outlier genes (Fig. 3D). However, rare splice variants 

were also strongly enriched nearby outlier genes (RR = 6.78, p = 5.20x10-8) - even more so than 

rare TSS variants (RR = 2.92, p = 4.35x10-26). This indicates that transcript structure is a key 

influence on overall expression; splicing variation may mediate this by affecting transcript 25 

maintenance and decay. This is also supported by the similarly strong enrichment for rare splice 

variants observed near protein-coding gene outliers (23), as well as the strong enrichment of 

splice-related annotations for cis-eQTLs, including those that were distinct from splice QTLs 

(18). 

We next investigated how many multi-tissue outliers disrupted the tissue-specific patterns 30 

of lincRNA gene expression. Of the 2,535 outliers, 675 involve lincRNAs that were only 

expressed in 1-5 of the 49 GTEx tissues (301 unique genes). Per-tissue Z-scores were lower in 

the tissues that typically expressed these outlier genes compared to those that did not (median in 

expressing tissues = 2.1, median in non-expressing tissues = 2.5, Wilcoxon rank-sum test p 

<2.2e-16) (Fig. 3E). This suggests that outlier events involving tissue-specific lincRNAs could 35 

have particularly dramatic effects by involving aberrant expression in tissues that do not usually 

express the lincRNA. This occurred in 296 outlier events in which lincRNAs with tissue-specific 

expression had TPM ≥0.5 in at least one non-canonical tissue (in which the lincRNA gene’s 

TPM <0.1 in >80% of samples) (Fig. 3F). 

One notable outlier involves the gene RP11-276M12.1 (ENSG00000259445). This 40 

lincRNA gene was typically expressed in three tissues: thyroid, testis, and vagina. There were 13 

over-expression outlier individuals for this gene, of whom 12 were assessed for the presence of 

rare variants. Of these 12 individuals, 11 had rare variants nearby the gene, and 8 of these 

individuals had the same rare variant located in the first exon, within 100 bases of the TSS (Fig. 

3G). RP11-276M12.1 was expressed at TPM ≥0.5 in 0 to 4 non-canonical tissues, depending on 45 
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the outlier individual (median =1). This was spread across eight different tissues, with tibial 

artery showing non-canonical expression of the gene in eight outlier individuals. The individual 

who expressed RP11-276M12.1 at TPM ≥0.5 in four different non-canonical tissues did so in the 

two cerebellum tissues, spinal cord (cervical-C1), and cultured fibroblast cells. This gene is 

interesting not just because of the high number of outlier individuals, but also that many of them 5 

share the same rare variant. This variant, a G>C substitution at chromosome 15 position 

81,995,598 (hg38 assembly), has a frequency of 0.0063 in GTEx and 0.0066 in gnomAD non-

Finnish Europeans (0.0045 overall). It is associated with a significant difference in expression 

(Wilcoxon rank-sum test p =1.2e-06; Fig. 3G), but was missed by traditional eQTL testing that 

filters out variants with MAF <0.01. 10 

 

eVariants can be shared between lncRNA and protein-coding genes 

Since many lncRNA genes have cis-regulatory effects on other nearby genes (24), we 

assessed the prevalence of shared genetic effects. Across all independent lead eVariants, 7.5% 

were associated with >1 gene in the same tissue (Fig. 4A). The other 92.5% were only associated 15 

with 1 gene, most of which were protein-coding genes (65.2%, compared to 17.3% for lncRNAs 

and 10.0% for all other gene types).  

When the shared eVariants were broken down by which types of genes shared them, a 

notable proportion (26.3%) were shared between protein-coding and lncRNA genes, which was 

second only to the proportion shared between multiple protein-coding genes (32.8%). This high 20 

occurrence of shared eVariants with lncRNA genes may be partly driven by both antisense-sense 

gene pairs (13.4% of protein-coding-lncRNA gene pairs that share an eVariant are antisense-

sense gene pairs), cis-regulatory relationships or shorter distances between lncRNA and protein-

coding gene pairs (Fig. 4B).  

Of the 26,469 gene pairs sharing eVariants in at least one tissue, 3,568 (13.5%) had 25 

cross-mappability scores greater than zero (24). Higher cross-mappability scores between gene 

pairs indicate a greater amount of sequence similarity, and thus greater potential for incorrect 

read alignment to have affected quantification. Our observed percentage of cross-mapping pairs 

is higher than the 2.45-4.92% of evaluated gene pairs in the GTEx v7 dataset that were reported 

as cross-mappable (25), suggesting that some of the eVariant sharing may actually be due to 30 

cross-mapping. Although the eVariant-sharing gene pair types involving lncRNA genes actually 

have the lowest proportions of cross-mappable gene pairs (Fig. S5A), this is still an important 

technical factor to consider; as such, we reported the symmetric cross-mappability score results 

for all eVariant-sharing gene pairs (Table S5). 

Several lncRNA genes shared eVariants across multiple tissues. One such gene was 35 

KANSL1-AS1 (ENSG00000214401), which was connected to 5 different protein-coding genes 

across many tissues, with the genes sometimes even sharing more than one eVariant (Fig. S5B). 

These recurring connections may highlight key sets of co-regulated genes. 

 

Most cis-regulation by lncRNA genes operates on a local scale 40 

One of the best-known lncRNA genes, XIST, operates in cis on a massive scale, 

inhibiting almost the entire X-chromosome from which its expressed (26, 27). We were curious 

about other lncRNA genes’ range of local regulation, which we assessed via allele-specific 
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expression (ASE). We defined genes with strong ASE (multiple test-adjusted binomial p-value 

≤0.05 and allele ratio either 0.02-0.15 or 0.85-0.98 for any variant in the gene) as “central 

genes”, and then tracked how often significant ASE (multiple test-adjusted binomial p-value 

≤0.05, no allele ratio threshold) was maintained in the same tissue in non-overlapping, protein-

coding gene neighbors.  5 

Extending out from both protein-coding and lncRNA central genes, over half of all non-

overlapping protein-coding gene neighbors also showed significant ASE, with the degree of 

sharing decreasing as the distance between the genes increased. Nearby downstream neighbors 

of lncRNA genes had the highest proportions of ASE, and the drop-off in ASE maintenance with 

distance was greatest from lncRNA central genes (Fig S6A), potentially reflecting antisense-10 

sense gene pair relationships or other mechanisms for cis-effects, such as localized epigenetic 

changes. 

Pairs of genes that shared eVariants were more likely to share ASE, compared to central 

genes and gene neighbors with unshared eQTLs (χ2 = 157.7 for lncRNA central genes and 403.4 

for protein-coding central genes, both p <2.2x10-16, test of equal proportions) (Fig. 4C). For 15 

lncRNA central genes, this relationship appeared to be dependent on distance. Altogether, these 

patterns of ASE suggest that most lncRNA genes operate differently than XIST, and tend to 

affect the genes immediately around themselves, if at all, rather than have more far-reaching 

effects. One interesting example of local ASE was with the lncRNA gene RP4-568C11.4 

(ENSG00000274173), in which 52/59 individuals also displayed ASE in two nearby protein-20 

coding genes (Fig. S6B). Remarkably, for all of these individuals the significant ASE occurred in 

the same tissue (whole blood). 

Despite these overall patterns, there were some examples of lncRNA genes surrounded 

by large regions of ASE. One such example was the central lncRNA gene MIR210HG 

(ENSG00000247095), for which ASE was seen in protein-coding genes over a range of 358kb 25 

downstream to 444kb upstream of the gene in 48 individuals (Fig. S6C).  

 

Co-expression networks identify highly connected lncRNA genes with specialized cell type 

associations 

For each tissue, we built co-expression networks using weighted correlation gene 30 

network analysis (WGCNA) (28). Since the goal was to identify lncRNA genes with cell type 

associations, each module was annotated based on enrichment for gene sets associated with Gene 

Ontology Cellular Compartments and cell types from blood, the central nervous system, and the 

Mouse Cell Atlas (29) (see Methods). The number of modules created per tissue was not 

associated with the sample size of the tissue (Fig. S7A). A median of 48% of modules in each 35 

tissue were annotated, ranging from 18% of modules in the ovary to 85% of modules in the 

stomach (Fig. S7B). 

With the exception of testis tissue, approximately 50% of lncRNAs did not meet the 

expression requirements to be included in the co-expression networks (median of excluded 

lncRNA genes across tissues = 47%) (Fig. 5A). The proportion of excluded genes was lower for 40 

lncRNA genes with known function (median = 35%). Greater proportions of protein-coding 

genes (both the total group and the expression-matched group) were assigned to modules 

compared to lncRNA genes (Fig. 5A). Generally, larger modules included higher proportions of 
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lncRNA genes (Fig. 5B); however, there were also some smaller modules mostly made up of 

lncRNA genes, which may be worthy of further exploration as potential hubs of lncRNA 

regulatory activity in those tissues. 

We evaluated how strongly connected genes were based on their intramodular 

connectivity (kin) values, which were converted to a rank and grouped into deciles within each 5 

module. Higher proportions of protein-coding genes were among the highest-ranked (most 

connected) genes, although this was expression-dependent (Fig. 5C). The majority of lncRNA 

genes in each module were not highly connected, indicating that most lncRNAs only have 

potential regulatory relationships with one or few nearby genes. However, although they were in 

the minority, there were also some highly connected lncRNA genes that may represent lncRNAs 10 

with potentially far-reaching regulatory effects (Table S6). We also incorporated an “all other 

gene types” group, which included all non-coding genes that are not lncRNAs as well as 

pseudogenes. Since many of the quantifications in this group are of poor quality, it served as a 

measure of noise in the networks. As expected, lncRNAs were generally better connected than 

this “all other gene types” category (Fig. 5C; p <2.2x10-16, Wilcoxon rank-sum test of decile 15 

rankings between the “total lncRNA genes” group and “all other genes” group). With module 

membership values, which reflect how well a gene’s expression correlates with its assigned 

module, the same trend was observed of protein-coding genes having the highest scores and 

lncRNA genes having lower module membership, but not as low as the catch-all “all other gene 

types” category (Fig. S7C). 20 

We next examined the most common annotations of highly connected genes. To be 

considered “highly connected”, a gene had to be within the top decile of its module based on kin 

values and have a scaled kin value ≥0.5. Of the highly connected lncRNAs (5,141 gene-tissue 

combinations), only 1,960 were assigned to annotated modules (Fig. 5D). The high proportion of 

well-connected lncRNA genes in unannotated modules suggests that many of the pathways 25 

involving lncRNAs have yet to be identified. 

Compared to the modules that protein-coding genes were assigned to, a higher proportion 

of lncRNA annotation terms related to specialized cell types such as secretory alveoli cells of 

lungs, B cells of the immune system, pit cells of the liver, spermatocytes, and kidney regions like 

tubule cell, loop of Henle, and distal convoluted tubule (Fig. 5D, Fig. S7D). In contrast, protein-30 

coding genes were more frequently assigned to modules annotated with common cell types and 

ubiquitous cell compartments terms such as endothelium, resident macrophages, mitochondria, 

and nucleolus. Although lncRNA genes rarely formed the hubs of a given module, the annotation 

of these networks provides a resource to identify cell type or compartment-related lncRNA 

genes. 35 

There were >1.5x106 unique lncRNA/protein-coding gene pairs that shared modules in 

>12 tissues, which was 3*IQR of module sharing across all lncRNA-coding gene pairs (Fig. 5E; 

Table S7). 614 of these gene pairs also shared at least 1 multi-tissue outlier individual for both 

genes (Fig. S7E). Of these 614 co-expressed genes with shared outliers, 71 of them involved a 

rare variant within 10kb of the lncRNA gene (Fig. S7F). These 614 gene pairs are compelling 40 

candidates to explore further for functional links. 

There were some notable candidate lncRNA/protein-coding gene pairs due to a high 

degree of module sharing (N >12) and multiple outlier events. The first pair, MICA and 

AL645933.2 (ENSG00000272221), were both over-expression outliers in two individuals, and 
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both under-expression outliers in one individual. One of these individuals had different rare 

SNVs within 10kb of both genes (Fig. 5F). MICA encodes major histocompatability complex 

class I chain-related protein A, a highly polymorphic stress-induced antigen that is associated 

with inflammatory responses and cancer (30-32). The co-expression of AL645933.2 with MICA 

suggests that it may also have a role in these processes, although 13 of the modules they share 5 

across 19 tissues are unannotated. Another gene pair, ACOT1 and AC007228.9 

(ENSG00000268568), was intriguing because they are present on separate chromosomes. These 

genes shared two under-expression outlier individuals. In both cases, the individual had a rare 

SNV within 10kb of AC007228.9. ACOT1, which encodes acyl-CoA thioesterase 1, is involved 

in lipid metabolism. Given that these two genes’ shared modules were frequently annotated as 10 

mitochondria modules, as well as being assigned to the adipocyte module in the adipose (visceral 

omentum) tissue, AC007228.9 may also be involved in lipid metabolism. 

 

The majority of significant lncRNA colocalization events have a stronger signal than 

nearby protein-coding genes 15 

Colocalization analyses connect genetic variation, gene expression, and traits by 

integrating results from eQTL analyses and genome-wide association studies (GWAS). As part 

of the main GTEx paper (18) and GWAS companion paper (33), colocalization analyses were 

performed for 87 traits in each tissue. There were 4,694 significant events (posterior probability 

of a shared predicted causal variant between eQTL and GWAS (PP4) ≥0.5) involving lncRNA 20 

genes, which encompassed 48 traits and 690 lncRNA genes (Table S8). As a point of reference, 

there were 20,281 significant protein-coding gene colocalization events, involving 53 traits and 

2,785 unique genes. 

For most of the lncRNA gene colocalization events (3,757, 80.0%), there was no 

significant protein-coding gene colocalization within 500kb up or downstream of the lncRNA 25 

gene (Fig. 6A). This is not due to an absence of in-range protein-coding genes; there were only 

32 events (0.7%) in which there was no annotated protein-coding gene within this range, and 

those events were excluded from Fig. 6A. Of the lncRNA colocalizations that also had a 

significant in-range protein-coding gene colocalization, most pairs had similar PP4 values (479, 

10.2%), followed by a nearly even split between events with a notably higher protein-coding 30 

gene PP4 (239, 5.1%) and ones with a notably higher lncRNA gene PP4 (187, 4.0%). Compared 

to the total set of lncRNA genes, lincRNA genes alone had an even greater proportion of 

colocalization events with no in-range significant protein-coding gene, reflecting their 

independent regulation. In contrast, fewer colocalization events involving antisense lncRNAs 

had no in-range significant protein-coding genes. 35 

Across all significant colocalization events, lncRNA genes were depleted compared to 

their proportion in the gene set tested (Fig. 6B). However, the proportion of lncRNA 

colocalization events varied by trait type, with the highest percentages occurring in migraine 

(31%), and psoriasis (50%). For psoriasis, colocalization events were dominated by one lncRNA 

gene. The single-exon lncRNA C6orf3 (ENSG00000255389), which runs sense intronic to the 40 

protein-coding gene TRAF3IP2, showed significant colocalization in 35 tissues. No protein-

coding genes in the 1Mb neighborhood around C6orf3 had a significant colocalization with 

psoriasis in any tissue (Fig. S8A). The tissue with the highest PP4 value (0.996) was sun-exposed 

skin, which is compelling given that psoriasis is a chronic skin condition. Notably, top 
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significant eQTLs for C6orf3 are the exact top GWAS variants, which does not always occur 

with colocalization (Fig. S8B). In both skin tissues (sun-exposed and not sun-exposed), C6orf3 

clustered in the “endothelial cell”-annotated co-expression module (Fig. S7C). 

For significant lncRNA colocalizations, the in-range protein-coding gene with the highest 

PP4 was not always the closest gene (Fig. S8A). This indicates that many of these connections 5 

(i.e. the sharing of a significant colocalization) were not just the result of proximity, but may also 

reflect some regulatory relationship. For the events in which there was no in-range protein-

coding gene with a significant colocalization, this connection was essentially arbitrary, since the 

protein-coding genes’ PP4 was <0.5 in these cases. Thus, these lncRNA/protein-coding gene 

pairings have limited relevance, which is reflected in the wide range of distances between the 10 

two genes (Fig. S8A). It is also worth noting that, for 1,435 of the 3,757 events with no in-range 

significant protein-coding gene, the significant lncRNA gene actually overlapped a protein-

coding gene, but it still did not have a significant colocalization. For example, this was the case 

with C6orf3 and TRAF3IP2. 

Another interesting case involved the lncRNA genes LINC01475 (ENSG00000257582) 15 

and RP11-129J12.1 (ENSG00000228778) and the protein-coding gene NKX2-3 in relation to 

ulcerative colitis. The two lncRNA genes have antisense overlap with each other, and are just 

upstream from NKX2-3 (Fig. 6Ci). NKX2-3 has received attention related to the significant colitis 

GWAS results in this genomic region (34). However, it did not have a significant colocalization 

in any tissue, whereas the two lncRNA genes had the best colocalizations in the transverse colon 20 

(PP4 = 0.749 for both genes) and the spleen (PP4 = 0.732 for both genes) (Fig. 6Cii, Fig. S9B). 

Both of the tissues in which colocalization occurred are logical for ulcerative colitis: the 

colon has an obvious role, and the spleen could be connected via immune system regulation. In 

the co-expression network for the transverse colon, all three genes were assigned to the same 

“smooth muscle cell” module, which was unsurprising given their correlated gene expression 25 

(Fig. S9C). In the spleen co-expression network, NKX2-3 was assigned to one “endothelial cell” 

module, and the two lncRNA genes were assigned to a different “endothelial cell” module (Fig. 

6Ciii-iv). NKX2-3 is a homeobox gene that is key for the development of the spleen and the 

visceral mesoderm, which develops several essential cell types of the gastrointestinal tract 

including endothelial cells, immune cells, and - notably - smooth muscle cells. Knockout mouse 30 

studies have shown that loss of this gene affects spleen architecture, and lymphocyte maturation 

and homing (35-39). These findings make a compelling case that lncRNA regulation of NKX2-3 

in both the colon and spleen influences ulcerative colitis susceptibility. 

 

Discussion 35 

lncRNA genes differed from protein-coding genes at nearly all levels of regulation. 

Compared to protein-coding genes, lncRNAs showed greater tissue-specificity in both 

expression and presence of eQTLs, with the latter not entirely attributable to differences in 

expression levels, as well as lower intramodular connectivity in gene co-expression networks. 

Setting lncRNA genes apart even more was the striking number of significant lncRNA 40 

colocalization events where there was no significant protein-coding colocalization within 1 Mb 

(3,757/4,694, 80%). There were often differences between lncRNA subtypes as well: intergenic 

lncRNA genes more frequently showed tissue-specific expression and significant colocalization 

events with no nearby significant protein-coding gene colocalizations, whereas antisense 
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lncRNA genes more frequently shared eVariants with other genes. These subtype-specific trends 

show the importance of maintaining updated lncRNA gene annotation, and interpreting them 

cautiously. For instance, many lncRNA subtype assignments did not coincide between 

FANTOM-CAT and GENCODE (1). In the current version of GENCODE (v31), they have 

dispensed with subtype categorization entirely, referring to them all as gene type ‘lncRNA’. It is 5 

clear that different subtypes of lncRNA genes have different regulatory patterns and perhaps 

different roles, and subtype should be considered in any analysis of these genes. 

Not only do these analyses highlight the differences between lncRNA and protein-coding 

genes, but they can also be used to interrogate lncRNA genes of interest and systematically 

identify lncRNAs associated with certain cell types or traits. There are other resources that 10 

provide lncRNA gene networks, conservation data, or expression-based assessments (11, 40-43); 

our analyses examine several of these characteristics, and also provide trait association 

information. Searching for convergence of evidence across multiple lncRNA resources here 

enabled identification of the most compelling candidate genes for further study.  

Although exploring non-coding genetic variation has become increasingly important, 15 

efforts to date have mostly focused on regulatory effects on protein-coding genes. This work 

provides an important pathway to enhance these efforts towards evaluating non-coding genes and 

their roles in complex traits and diseases. 

 

 20 
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Fig. 1. Tissue-specificity of lncRNA and protein-coding gene expression in GTEx. (A) The protein-coding and 

lncRNA gene groups compared in this paper. The “Expression-matched protein-coding genes” group is a subset of 

the “Total protein-coding genes”, and the “High-confidence non-coding lncRNA genes” and “lncRNA genes with 

known function” groups are subsets of the “Total lncRNA genes”. (B) Proportion of each gene group expressed in a 5 

certain number of tissues. Bar labels show the number of genes. (C) Numbers of lncRNA and protein-coding genes 

expressed in only one of the 28 broad tissues. For (B) and (C), the expression threshold is TPM ≥0.5 in >20% of 

samples. 
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Fig. 2. Frequency, effect size, and tissue-specificity of eQTLs in lncRNA genes and protein-coding genes. (A) 

Proportion of expressed genes that are eGenes (MashR LFSR ≤0.05). Box plots reflect the proportions across the 49 

GTEx tissues. (B) Absolute effect size of the most significant eQTL for each gene in each tissue. Effect size is 

measured as log2(allelic fold-change). at the bottom of the plot indicate significant differences in effect size 5 

(Wilcoxon rank-sum test, p-value ≤0.05), with the fill color matching the group with larger eQTL effect size. (C) 

Distribution of the number of independent eQTLs for eGenes in each gene group. Circles represent the median 

proportion of eGenes across the 49 GTEx tissues with that number of independent eQTLs, and whiskers extend the 

interquartile range. (D) Proportion of each gene group that is an eGene in a certain number of tissues. Bar labels 

show the number of genes. Total numbers in the legend reflect the number of genes that were tested for an eQTL in 10 

at least one tissue, and thus differ from the numbers in Figure 1D. (E) Numbers of lncRNA and protein-coding 

eGenes specific to one of the 28 broad tissues. For (A), (B), (D) and (E), eQTLs were identified using the MashR 

method with a significance threshold of LFSR ≤0.05. For (C), independent eQTLs were identified using the forward 

stepwise regression-backwards selection method (see Methods). p.-c. genes = protein-coding genes. 

  15 
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Fig. 3. Outliers in lincRNA expression. (A) Percent of multi-tissue lincRNA gene outliers (gene-individual 

combinations) out of all gene-individual combinations tested. Labels indicate the number of outliers. (B) Enrichment 

of variants within 10kb of the outlier gene in outlier individuals. (C) Presence of rare variants (MAF <1%) within 

10kb of the outlier gene based on outlier status. (D) Enrichment of rare variants (MAF <1%) within 10 kb of the 5 

outlier gene in outlier individuals. (E) Tissue-specific Z-scores for outlier events involving lincRNAs with tissue-

specific gene expression (as identified in Fig. 1), separated by whether or not the tissue typically expresses that 

lincRNA. (F) For outlier events involving tissue-specific lincRNA genes, the number of non-canonical tissues 

expressing the gene in the outlier individual versus the number of their tissues that were tested for outlier status. 

Non-canonical expression was TPM ≥0.5 in the outlier individual’s sample, for a tissue had TPM <0.1 in >80% of 10 

samples. Calling non-canonical expression was not limited to the tissues that were tested for outliers (so an 

individual could have more tissues with non-canonical expression than tissues tested). (G) Normalized expression of 

RP11-276M12.1, a gene that was a multi-tissue outlier for 13 individuals. Each value on the histogram is one 

individual’s median expression of the gene across all tissues. Of these individuals, 8 had the same rare variant in the 

first exon (filled in red). Inset: Individuals’ median Z-scores for this gene separated by presence or absence of the 15 

rare variant. DUP = duplication, CNV = copy number variation, DEL = deletion, BND = breakend, TE = 

transposable element insertion, TSS = transcription splice site. 
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Fig. 4. Connecting genes through shared eVariants. (A) Summary of eVariant sharing using the independent eQTLs 

(see Methods). Genes shared an eVariant if their expression was associated with either the same eVariant, or with 

eVariants that were within 500kb of each other with an R2 ≥0.85, in the same tissue. (top) percentage of eQTLs only 

associated with one gene (“single”) versus how many were associated with >1 gene (“shared”). (bottom) The shared 5 

eVariants categorized based on which types of genes they were associated with. (B) (top) Proportion of eVariant-

sharing gene pairs that have overlapping genomic location. (bottom) Distance between TSS’s of non-overlapping 

gene pairs that share an eVariant. (C) Extension of allele-specific expression (ASE) from a central gene with strong 

ASE (adjusted binomial p-value ≤0.05, allelic ratio deviation from 0.5 of 0.35-0.48). The line colors indicate 

whether the neighboring gene has an eQTL, and whether its associated variant is shared with the central gene. 10 

Neighboring genes were limited to non-overlapping protein-coding genes only, and were checked for significant 

ASE (adjusted binomial p-value ≤0.05). Bars indicate the 95% CI across different central genes, with ASE status 

being collapsed by individuals and tissues. p.-c. gene = protein-coding gene. 
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Fig. 5. Connecting genes through weighted gene co-expression network analysis (WGCNA). (A) Summary of gene 

assignment to modules by gene group and tissue. The underlying box plot shows the proportion of a gene group 

falling into that module status across tissues. Outlier point color indicates the tissue. (B) Proportion of lncRNA 
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genes in modules across all tissues, binned by module size. Horizontal dashed lines indicate the highest and lowest 

proportions of lncRNA genes that met the expression threshold for WGCNA across all tissues (0.29 = testis, 0.20 = 

whole blood). (C) Proportion of gene groups by intra-modular connectivity (kin) ranking. The most-connected genes 

within their module are in the first kin rank decile, and the least-connected genes within their module are in the tenth 

kin rank decile. (D) Module annotations of genes with high intra-modular connectivity (the gene is in the top kin rank 5 

decile of its module, and has scaled kin ≥0.5). Box fill reflects the proportion of genes assigned to a module with that 

annotation. Since genes are assigned to modules in multiple tissues, the labels reflect gene-tissue combinations, not 

individual genes. (E) Distribution of the number of modules shared between unique lncRNA/protein-coding gene 

pairs. (F) Location of the protein-coding gene MICA and the lncRNA gene AL645933.2, which share modules in 19 

tissues and also are both outlier genes in 3 individuals. 10 
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Fig. 6. GWAS-eQTL colocalization events involving lncRNA genes. (A) Summary of significant lncRNA 

colocalization events (event = gene-tissue-GWAS combination) by their relationship to the protein-coding gene with 

the highest PP4 within 1Mb of the significant lncRNA gene. There were 32 significant lncRNA colocalization 

events where there was no protein-coding gene in range, which are not included in this plot. (B) Contribution of 5 

each gene type to significant colocalization events, collapsed across tissues (i.e. gene-GWAS combinations). 
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GWASes were grouped on the y-axis by more general trait categories, and any traits with fewer than 5 significant 

gene-GWAS combinations were not included in this plot. The dashed line is the proportion of genes tested for 

colocalization that were lncRNAs (0.31). The numbers to the right of each bar show the total number of significant 

colocalization events (gene-trait-tissue combinations), followed by the number of unique significant lncRNA genes / 

the total number of unique significant genes in brackets. (C) Exemplar significant colocalizations with LINC01475 5 

and RP11-129J12.1 and ulcerative colitis. i) Location of the lncRNA genes, as well as nearby protein-coding genes. 

Locations of the most significant ulcerative colitis GWAS variant and the top eQTL for both lncRNA genes in the 

transverse colon are indicated. ii) Colocalization posterior probability values across each tissue for LINC01475 and 

RP11-129J12.1, as well as all protein-coding genes within 1Mb of the lncRNA genes, with ulcerative colitis. The 

dashed line indicates the threshold for significance, PP4 ≥0.5. iii) Scaled intramodular connectivity (kin) of 10 

LINC01475, RP11-129J12.1, and NKX2-3 within their assigned smooth muscle cell module in the transverse colon 

gene co-expression network. iv) Scaled intramodular connectivity (kin) of LINC01475, RP11-129J12.1, and NKX2-3 

within their assigned endothelial cell modules (two separate modules) of the spleen gene co-expression network. 
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