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Abstract: 

Numerous plants and animals harbor selfish B chromosomes that “drive,” or transmit themselves 

at higher-than-Mendelian frequencies, despite long-term fitness costs to the organism. Currently 

it is unknown how B chromosome drive is mediated, and whether B-gene expression plays a 

role. We used modern sequencing technologies to analyze the fine-scale sequence composition 

and expression of Paternal Sex Ratio (PSR), a B chromosome in the jewel wasp Nasonia 

vitripennis. PSR causes female-to-male conversion by destroying the sperm’s hereditary material 

in young embryos in order to drive. Using RNA interference, we show that testis-specific 

expression of a PSR-linked gene, named haploidizer, facilitates this genome elimination-and-sex 

conversion effect. Haploidizer shares homology with a gene in Candidatus cardinium, a bacterial 

symbiont that also induces genome elimination in its insect host. 

 

One Sentence Summary: 

haploidizer mediates B chromosome drive  
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Main Text: 

In eukaryotes, the genome contains a core set of chromosomes that are indispensable for 

viability. However, thousands of plant and animal species also harbor non-essential 

chromosomes termed B chromosomes, consisting of both coding and non-coding sequences 

thought to be mostly copied from the essential, or A, chromosomes. Despite their non-essential 

nature, B chromosomes presumably carry no needed genes and therefore are, in principle, prone 

to loss over successive generations (1–5). To counter the tendency to be lost, many B 

chromosomes possess the extraordinary ability to “drive,” or transmit themselves at frequencies 

above those predicted by Mendelian rules (reviewed in (6, 7)). Although drive is necessary for B 

chromosome transmission, it can impose deleterious effects on the inheritance of other genomic 

regions, thus having potentially strong influences on organismal fitness (5, 6, 8). Currently, it is 

not understood how B chromosomes can behave so differently in their transmission from other, 

non-driving chromosomes. 

  

One of the most striking examples of drive is caused by a B chromosome known as PSR (for 

Paternal Sex Ratio), which has been detected at moderate frequencies (6-11%) within certain 

populations of the jewel wasp Nasonia vitripennis (9). PSR is transmitted strictly paternally (i.e., 

via sperm), and its presence leads to the complete elimination of the sperm’s essential 

chromosomes, but not PSR itself, during the mitotic division immediately following fertilization 

(10). Genome elimination results directly from failure of the sperm’s chromatin to resolve into 

individualized chromosomes upon entry into mitosis and is preceded by distinct chemical 

markers that indicate a disrupted chromatin state (11–14). This effect is critical for the 

transmission of PSR. Wasps, like all hymenopteran insects (also including ants and bees), 

reproduce through haplo-diploidy, in which unfertilized eggs develop into haploid males while 

fertilized eggs become diploid females. Therefore, elimination of the sperm’s hereditary material 

by PSR converts all diploid, female-destined eggs into haploid males, the PSR-transmitting sex 

(9). Broadly, this effect results in severely male-biased sex ratios at the deme level, which can 

negatively impact wasp metapopulations (15). 

  

A fundamental biological question is how PSR and, more broadly, other B chromosomes are 

capable of interacting uniquely with the cellular environment in order to drive. Previous studies 

identified three distinct ~180 DNA-base pair repeats, termed PSR2, PSR18, and PSR22, which 
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are abundant in copy number on PSR, but not present on any of the five essential wasp 

chromosomes (16, 17). Each of these repeats contains a highly conserved, 8-bp palindromic 

motif that is reminiscent of those found in some transcription factor-binding sequences (16, 17). 

These characteristics have led to speculation that PSR-specific sequences may act as a sink for 

some limited chromatin factor(s), drawing them away from the rest of the genome and causing 

defective chromatin structure (16). An underlying aspect of this scenario is that the driving effect 

of PSR is the result of intrinsic properties that are unique to its sequence composition. For this 

reason, we refer to such an effect as passive. Alternatively, PSR’s drive may involve the active 

expression of B-linked sequences. Recent studies have begun to identify individual sequences 

that are expressed from a number of different B chromosomes, including PSR (18, 19). While no 

studies have, to date, demonstrated functionality for any B-linked sequence, it is plausible that an 

RNA or protein expressed by PSR functions as an effector of drive by disrupting normal 

transmission of the paternal chromatin. 

 

Previous transcriptional profiling uncovered a handful of long, polyadenylated RNAs expressed 

uniquely by PSR in the wasp testis (18). To further this work, we used modern genome 

sequencing technologies to generate large scaffolds of the PSR chromosome, onto which we 

mapped these PSR-expressed transcripts. These efforts produced a comprehensive portrayal of 

PSR’s sequence composition, models for its individual genes, and its transcribed loci. Using 

RNA interference (RNAi), we show that genome elimination requires the expression of one of 

these PSR-linked loci, demonstrating an active (i.e., gene expression-based) involvement of this 

B chromosome in its own drive. 

 

To deduce PSR’s sequence composition, we sequenced the genome of both wildtype and PSR-

carrying wasps separately using a combination of PacBio, Oxford Nanopore and Illumina 

technologies, generating a 297Mb assembly comprising 444 contigs with an N50 length of 6.6 

Mb representing a 13.9 fold decrease in contig number and 9.3 fold increase in N50 length 

compared to the current N. vitripennis genome assembly (20). Using the hymenoptera-specific 

set of universal single-copy orthologs, the genome completeness is estimated to be 96.5% (Table 

S1) (21). PSR-specific contigs were identified using the chromosome quotient method, which 

calculates the ratio of the number of wild type and PSR+ reads mapping to a contig (Table S2, 

Fig. S1) (22)) (see Methods). This approach yielded 120 contigs (9.2 MB in total, N50 of 124 
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kb) that were specific to PSR (Table S3). In addition, 73 contigs totaling 272 Mb (91.58% of 

total genome) were assigned to the five essential N. vitripennis chromosomes using the 

previously developed genetic markers (23) (Fig. S2, Table S4, Data S1.tar).  

 

To better understand the sequence composition and organization of PSR (Table S5), we 

performed a detailed computational assessment of PSR’s repetitive content with RepeatModeler 

and RepeatMasker (24, 25). These analyses revealed that 89.80% of PSR is composed of 

repetitive DNAs (Fig.1A, Table S6). The most abundant repeats (70.32%) are complex satellites 

that belong to four main families. Three of these satellites, PSR2 (49.54%), PSR18 (42.64%) and 

PSR22 (17.22%), are specific to PSR. PSR2 and PSR18 are typically found together on gene-

coding contigs and they mostly overlap, whereas PSR22 is found on different sets of contigs 

without coding genes. A fourth repeat, NV79 (2.71%), is located on four PSR scaffolds, not 

overlapping with other repeats, and also on all five essential chromosomes (Fig. 1B). 

Additionally, PSR contains DNA and RNA (retro-) transposable elements (TEs) (13.97%), 

simple repeats (0.36%) and other low complexity regions (0.03%), and uncharacterized 

sequences (3.81%) (Fig.1A; Table S5, S6). Two PSR contigs contain telomeric sequences that 

cover 3.5-3.9 kb at one of the ends of each contig. Interestingly, the telomeric repeat found on 

PSR and at the ends of all five A-chromosomes of N. vitripennis is ‘TTATTGGG,’ which is 

different from the canonical sequence ‘TTAGGG’ (26) that is found in other insect species (Fig 

S3).  

 

Using Nanopore RNA sequencing from PSR-carrying testes and whole animals, we identified 68 

transcripts (Table S7) encoded by 44 loci located on 14 of the 120 scaffolds and covering 8.57% 

of the total length of PSR (Table S8). The majority of the intronic regions are represented by TEs 

and low complexity regions; thus, the coding sequences corresponding to exonic regions 

represent only 0.51% of the entire PSR chromosome. Fifty of the PSR-encoded transcripts have 

identifiable open reading frames longer than 100 aa and 34 of those possess Pfam domains 

suggesting putative molecular functions that may be performed by these genes (Table S7). Fifty-

eight transcripts produced significant blast hits when searched against the non-redundant protein 

database. Thirty-one sequences had matches to proteins encoded by the wild-type N. vitripennis 

genome, although N. vitripennis genes were the best hits for only 13 of them. The corresponding 

genes are located in different regions across all 5 essential chromosomes (Fig. 1C) and span a 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/793273doi: bioRxiv preprint 

https://doi.org/10.1101/793273
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

5 

range of functional groups, including transposon activity, transcription regulation, DNA binding, 

and protein binding. Importantly, 20 transcript sequences were best matched to genes found in 

the genome of a closely related parasitoid wasp, Trichomalopsis sarcophagae, which represents 

the most common lineage identified by the blast searches. The remaining 25 best matches are 

distributed mostly among the genomes of other insects, although other non-insect lineages, 

including bacteria, are represented as well (Table S8), and they mainly correspond to protein-

coding regions of transposons. Thus, unlike some B chromosomes, whose sequences derived 

largely from one or a few large regions of essential chromosomes within their resident genomes 

(27–29), PSR consists primarily of three complex repeats (70.32%) and other sequences that are 

absent from the N. vitripennis genome and, in some cases, derived from other organisms.  

 

Quantification of the RNAseq data revealed that 25 of the 44 PSR-encoded loci are expressed at 

moderate to high levels (TPM >= 10) in Nasonia testes (Table S8). The three highest-expressed 

loci were selected for further analysis (Fig. 1D, Table S8). Two of these sequences were 

previously identified in an earlier transcriptome profiling study as PSR4317 and PSR1539 (18), 

whereas the third highest-expressed gene, PSR-tra, has a predicted ORF with limited homology 

to part of the wasp’s sex-determining gene, transformer. Based on their transcript sequences and 

chromosomal gene models (Fig. S4), PSR4317 and PSR1539 may contain translational open 

reading frames (ORFs) of 279 and 242 amino acids, respectively (18). Although neither of these 

two PSR sequences matches any gene present in the N. vitripennis genome, PSR4317 shows 

some homology to a nuclear hormone receptor of several invertebrates and contains several 

putative functional domains, including a zinc finger C4 type DNA binding domain, RNA 

polymerase I specific transcription initiation factor RRN3 domain, and a transcription factor IIB 

zinc-binding domain. Interestingly, the highest homology covering the whole length of PSR4317 

corresponds to a gene present in the endosymbiont Candidatus cardinium, which is known to 

produce reproductive manipulations, including cytoplasmic incompatibility (CI), 

parthenogenesis, and feminization, in certain arthropod host species (30). The observation that 

the majority of expressed transcripts encoded by PSR are most homologous to T. sarcophagae 

genes (Table S7, S8) is consistent with the previously proposed hypothesis that Nasonia PSR 

originated from the Trichomalopsis lineage by interspecific hybridization (31).  
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Using RT-qPCR (Real time quantitative PCR), we detected expression of these three genes in the 

male germ line, as well as in all tested embryonic and adult male somatic tissues, demonstrating 

that their expression is not regulated to a specific developmental time (Fig. S5). If any of these 

genes play a role in PSR’s drive, their action on the paternally inherited chromatin could, in 

principle, occur either during sperm formation or instead in the egg’s cytoplasm, immediately 

following fertilization. To address these possibilities, we used RNAi to transiently reduce 

transcript levels for each of these genes (PSR-4317, PSR-1539, PSR-tra) in the male germ line, 

and assessed for an effect on drive by measuring the sex ratio of F1 progeny (Fig. 2A, 2B). 

Knock-down of PSR4317 transcripts in the testes yielded a striking effect on F1 sex ratio: 46% 

of treated males produced broods that ranged between 10% and 90% F1 females (Fig. 2B). In 

contrast, RNAi targeting of the other two genes resulted in all-male broods similar to those from 

control (untreated) PSR+ wasps, despite the fact that their transcript levels were effectively 

reduced to levels comparable to RNAi-targeted PSR4317 transcript levels (Fig. 2A, 2B, Fig. S6). 

Maternal RNAi (32) targeting of PSR4317 in the egg’s cytoplasm had no effect on F1 sex ratio 

(Fig. S7; see Methods). Thus, the effect of RNAi on sex ratio appears to be limited to the male 

germ line.  

 

The production of F1 female progeny by RNAi-treated fathers could result from suppression of 

the genome eliminating activity, but it could also occur from destabilization and loss of PSR 

before the genome-eliminating activity has occurred. Several observations strongly argue against 

this latter possibility. First, individual sperm produced by RNAi-treated males contained a single 

copy of the PSR chromosome (Fig. 2C, Fig. S8), and PSR also was present in the nuclei of 

young fertilized embryos sired by these males (Fig. 2D, Fig. S9). Additionally, using PCR, we 

confirmed that the F1 adult females produced in our crosses were positive for multiple different 

PSR-specific sequences, suggesting that they inherited the B chromosome from their fathers 

(Fig. S7C, Fig. S10, Table S9). Together, these findings led us to speculate that the appearance 

of F1 female progeny may result from failure of paternal genome elimination when PSR4317 

transcripts are knocked down, thus implicating PSR4317 as an active facilitator of PSR’s drive.  

 

To further test this possibility, we examined the mitotic behavior of the sperm- and egg-derived 

nuclei and their mitotic descendants in young embryos produced by RNAi-treated fathers. 

Normally, in embryos from control PSR+ fathers, the sperm-derived nuclear material fails to 
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resolve into individual chromosomes upon entry into the first mitosis, forming a mass of 

unresolved chromatin that remains distinct from the maternally derived nuclei ((13, 14) Fig. 2D). 

This paternal chromatin mass (PCM) never segregates, eventually becoming lost within the 

embryo, as the egg-derived nuclei continue to divide (13, 14). Remarkably, in nearly all of the 

embryos from PSR+ fathers RNAi-treated for PSR4317, there was no distinct PCM (Fig 2D, Fig. 

S9). Instead, in about 68% (26 out of 38) of these embryos the paternal chromatin formed 

bridges that spanned between dividing nuclei (Fig. 2D, Fig. S9). Such bridges were never 

observed in control PSR+ embryos (Fig. 2D). Additionally, some embryos from RNAi-treated 

fathers contained multiple nuclei that varied widely in size, suggesting that they were mosaics of 

nuclei with varying ploidy levels. In support of this idea, we observed one, two, and in some 

cases more rDNA (ribosomal DNA) foci per nucleus in these embryos (Figure 2D). We also 

examined two different histone post-translational modifications (PTMs), H3K9me3 (tri-

methylation of histone 3 lysine 9) and H4K20me1 (methylation of histone 4 lysine 20), which 

under control (PSR+) conditions become abnormally distributed across the paternal chromatin in 

the presence of PSR (11). In young embryos from RNAi-treated fathers, however, both of these 

histone PTMs appeared more similar to patterns that are present in wild type (non-PSR) embryos 

(Fig. 2E). Taken together, these observations suggest that RNAi-targeting of PSR4317 alleviates 

the defective state of the sperm-derived chromatin caused by PSR, thereby allowing the sperm-

derived chromatin to partially segregate with the egg-derived chromatin, giving rise to embryos 

that are mosaics of nuclei with differing amounts hereditary material derived from the two 

parents. Thus, we named this gene haploidizer because its expression is required for conversion 

of diploid embryos into haploids by causing paternal genome elimination. 

  

We further speculated that the PSR+ females generated by RNAi-treated, PSR+ fathers arise 

from a portion of the mosaic embryos in which genome elimination is partially suppressed. 

Consistent with this hypothesis, using RT-PCR we were able to amplify both female- and male-

specific transcript isoforms of the sex-determining genes, transformer (tra) and doublesex (dsx), 

in all tested PSR+ F1 females, but only male-specific isoforms in control PSR+ and wild type 

males (Fig. S10). In N. vitripennis, initiation of female sex determination is regulated 

epigenetically (33) and requires an unknown trans-acting factor termed womanizer (wom). This 

factor promotes female specific splicing of transformer (traF), whose presence, in turn, directs 

female-specific splicing of doublesex (dsxF), thereby promoting female development (33). It has 
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been hypothesized that wom is epigenetically silenced during oogenesis, and its absence in 

unfertilized eggs ensures male-specific development (33). We therefore propose that the PSR-

induced alteration of the sperm-derived chromatin in control (PSR+) embryos is sufficient to 

block the production of dsxF, thereby facilitating male development. However, in fertilized 

embryos from RNAi-treated, PSR+ fathers, a less defective state of the paternal chromatin may 

allow some expression of wom and subsequently of traF and dsxF (Fig. 3). We note that F1 

PSR+ females were unable to transmit PSR to their progeny, unlike their male siblings (Fig. 3). 

It is unlikely that the mosaic nature of these PSR+ females is the cause of this transmission 

failure because these individuals produce viable offspring, thus indicating normal transmission of 

the five essential chromosomes. Instead, this effect may reflect an intrinsic block to PSR 

transmission through the female germ line. 

 

Although it is not yet known how haploidizer’s expression in the male germ line leads to 

alteration and eventual elimination of the sperm-derived chromatin, our study suggests an 

intriguing possibility: that haploidizer may be derived from a symbiont’s gene that causes 

cytoplasmic incompatibility (CI) in its insect host. While speculative, this hypothesis is 

consistent with the fact that both symbiont-induced CI (30) and PSR’s effect similarly involve 

disruption of the paternally inherited chromatin, and they occur at the same mitotic division. 
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Figures 

 
Fig. 1 Composition and origin of PSR chromosome 

A) Circular visualization of the PSR chromosome scaffolds. The outermost circle represents repetitive satellites with

outer bars representing the positive DNA strand and the inner bars representing those on the negative DNA strand.

The colors represent the four major (70.32%) satellite families. The middle track represents other repetitive

sequences (17.89%) including TE’s, low complexity regions and telomeric sequences. The innermost track

represents protein coding sequences (8.57%) and the color ranges from black to red for low to high expression,

respectively. B) The relationship of NV79 repeats between PSR scaffolds and host chromosomes 1-5 indicating that

PSR repeats are homologous to sequences found on all chromosomes. C) The relationship of PSR protein coding

sequences and host chromosomes. The links are colored by blast bit scores from red (highest) and blue (lowest).

Note: the PSR scaffolds are not placed in order and there is no correlation between the relationship in B and C

despite the appearance of the graph. D) Heatmap of PSR gene with expression values higher than 10 TPM.
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Expression ranges from yellow to blue from low to high expression. PSR genes that were disrupted with RNAi in

this study are shown in red. 

 

Fig. 2.  Effects of haploidizer targeted by RNAi in early embryos 

A) Efficiency of RNA interference measured by relative gene expression of the targeted genes. Asterisks indicate

significant expression differences between control and RNAi-treated individuals (n=5, P < 0.05, one-way ANOVA

with Tukey’s multiple-comparisons test). B) Female F1 sex ratio was measured for controls and RNAi-treated

wasps. The box plots depict the median (thick horizontal line within the box), the 25 and 75 percentiles (box

margins) and the 1.5 interquartile range (thin horizontal line). C) Confocal imaging of sperm from wild type, PSR+

and haploidizer RNAi-treated PSR+ males. D) Embryos from wild type, PSR+ and haploidizer RNAi-treated PSR+

fathers, stained for with PSR (red) and rDNA (green). E) Embryos from wild type, PSR+ and haploidizer RNAi-
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treated PSR+ fathers, stained for the histone marks, H3K9me2,3 (top panels, red) and H4K20me1 (bottom panels,

also red). DNA is blue in all panels.. PCM= Paternal chromatin mass, 2N= diploid nuclei,  N= Haploid nuclei. 

 

Fig. 3. Genetics and active model of PSR-induced genome elimination 

A) The effects of RNAi knockdown of haploidizer on PSR transmission and sex ratio. The pie charts indicate male

(grey) and female (purple) sex ratios B) Model for involvement of haploidizer in paternal genome elimination.

Expression of PSR’s haploidizer gene leads to failure of the paternal chromatin to resolve into chromosomes. This

action inhibits the activation of female transformer (traF) and, thus, female development. As a result, these

fertilized eggs develop into haploid male offspring that carry PSR. RNAi treatment of haploidizer alleviates the
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chromatin defects, allowing partial expression of traF from the paternal set. This action re-establishes the female 

developmental pathway. 
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