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 11 

The evolutionary history of the South American anteaters, Vermilingua, is incompletely 12 

known as consequence of the fragmentary and geographically biased nature of the fossil 13 

record of this group. The only record of a nominal extinct species for northern South 14 

America is Neotamandua borealis, from the Middle Miocene of La Venta area, 15 

southwestern Colombia (Hirschfeld 1976). A new genus and species of myrmecophagid for 16 

La Venta is described here from a new partial skull. Additionally, the taxonomic status of 17 

the genus to which was referred the co-occurrent species of Gen. et sp. nov., i.e. 18 

Neotamandua, is revised. The morphological and taxonomic analyses of these taxa indicate 19 

that Gen. et sp. nov. may be related to Tamandua and that the justification of the generic 20 

assignments of the referred species to Neotamandua is weak, with high probability of 21 
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reassigning some of them to a new genus. Two species previously referred to Neotamandua 22 

(N. magna and N.? australis) were designated as species inquirendae and new diagnostic 23 

information for the redefined genus and its type species, N. conspicua, is provided. 24 

Together, these results suggest that the diversification of Myrmecophagidae was 25 

taxonomically and biogeographically more complex than that what has been proposed so 26 

far. Considering the new evidence, it is proposed a synthetic model on the diversification of 27 

these xenartrans during the late Cenozoic based on the probable relationship between their 28 

intrinsic ecological constraints and some major abiotic changes in the Americas. 29 

Key words: Vermilingua, Myrmecophagidae, diversification, Neotamandua, La Venta 30 

area, Neogene. 31 

 32 

Introduction 33 

The anteaters of the suborder Vermilingua are part of Xenarthra, one of the more inclusive 34 

clades in the evolutionary tree of the placental mammals (Eutheria) and a characteristic 35 

group in the land mammal assemblages of the middle-late Cenozoic of the Americas 36 

(McDonald et al. 2008; Foley et al. 2016; Halliday et al. 2016; Feijoo & Parada 2017). 37 

Within Xenarthra, Vermilingua belongs to Pilosa, a clade that also includes the sloths, i.e. 38 

Tardigrada. Today, Vemilingua comprises the genera Cyclopes (pygmy anteaters), 39 

Tamandua (collared anteaters) and Myrmecophaga (giant anteaters). These genera groups 40 

ten extant species, the most of them (seven) belonging to Cyclopes, according to the most 41 

recent exhaustive taxonomic revision (Miranda et al. 2017). The classic phylogenetic 42 

hypothesis reunites Tamandua and Myrmecophaga in the family Myrmecophagidae, while 43 
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Cyclopes is located in a basal position with respect to Myrmecophagidae as the only recent 44 

form of the family Cyclopedidae (Engelmann 1985). With the connotation of a superior 45 

taxonomic hierarchy (i.e. at the family level; Barros et al. 2008; Gibb et al. 2015) by an 46 

early evolutionary divergence (Hirschfeld 1976; Delsuc et al. 2001; Gibb et al. 2016) and in 47 

acknowledgment of a more extended use in the scientific literature, the names 48 

Myrmecophagidae and Cyclopedidae are used here, instead of Myrmecophaginae and 49 

Cyclopinae sensu Gaudin & Branham (1998), respectively. However, the taxonomic 50 

content of Myrmecophaginae and Cyclopinae, including extinct forms, is considered as 51 

transferable to their counterparties (McDonald et al. 2008).   52 

The living anteaters, whose mean body mass ranges from ~0.4 and 30 kilograms (Gaudin et 53 

al. 2018), are highly, morphologically specialized mammals by exhibiting remarkable 54 

skeleton and soft-anatomy modifications, which are closely linked to their 55 

myrmecophagous diets, i.e. diets consisting of at least 90% of ants/termites (Redford 1987; 56 

McDonald et al. 2008). Many of these adaptations, anatomically located in the skull and 57 

jaws, are associated between them in several ways by being part of the architecture of an 58 

integrated functional system of food apprehension and ingestion. Among these features, the 59 

following are some of the most noteworthy: rostral elongation and narrowing, basicranial-60 

basifacial axis curvature, complete loss of teeth, gracile jaw, reduction of the adductor jaw 61 

muscles, unfused jaw symphysis and protrusible long tongue (Reiss 2001; Gaudin & 62 

McDonald 2008; McDonald et al. 2008). Several of these morphological specializations are 63 

convergent with those described for other myrmecophagous mammals such as the 64 

pangolins (Pholidota) and the aardvarks (Tubulidentata), so it is not surprising that early 65 

systematic researchers erroneously proposed close common ancestry of Vermilingua with 66 
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these Old world groups from their superficial similarities (e.g. Engelmann 1978; Norman & 67 

Ashley 1994). 68 

Despite their unique biology and ecology, at least in the context of the land mammals of the 69 

Americas, the evolutionary history of the anteaters is largely obscured by their poor, 70 

fragmentary and geographically biased fossil record (Hirschfeld 1976; Gaudin & Branham 71 

1998; McDonald et al. 2008). Generally, five valid genera and nine species are recognized 72 

in the fossil record of Vermilingua, of which two genera and two species have extant 73 

representatives, i.e. Myrmecophaga tridactyla and Tamandua tetradactyla. 74 

Myrmecophagidae groups nearly all these fossil taxa (only one genus and one species for 75 

Cyclopedidae) in a general biochron beginning c. 18 million years before present, most of 76 

them distributed throughout the Neogene (McDonald et al. 2008). But while the record of 77 

this family for the latter period is taxonomically more diverse than that for the Quaternary, 78 

it also poses more difficulties in the systematic framework of the implicated taxa. The 79 

oldest member of Myrmecophagidae is Protamandua rothi, from the late Early Miocene of 80 

the Santa Cruz Province, southern Argentina (Ameghino 1904). This species has been well 81 

validated from a pair of incomplete skulls and several postcranial bones, but the validity of 82 

other co-occurrent putative vermilinguan (myrmecophagid?) taxa is, at least, questionable 83 

(Hirschfeld 1976; McDonald et al. 2008). For the early Middle Miocene has been reported 84 

a myrmecophagid doubtfully assigned to Neotamandua, and yet used to create a new 85 

species from isolated humeral remains (N.? australis; Scillato-Yané & Carlini 1998). In the 86 

latter genus was also allocated, with some uncertainty, postcranial material of a middle-to-87 

large sized anteater recorded in the late Middle Miocene of La Venta area, southwestern 88 

Colombia, whose description includes the only nominal extinct species for northern South 89 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/793307doi: bioRxiv preprint 

https://doi.org/10.1101/793307
http://creativecommons.org/licenses/by-nc-nd/4.0/


America, i.e. N. borealis (Hirschfeld 1976). Neotamandua chronologically extends to the 90 

Late Miocene and Early Pliocene with the species N. magna (Ameghino 1919), N. 91 

greslebini (Kraglievich 1940) and N. conspicua (type species; Rovereto 1914), all of them 92 

from northwestern Argentina (provinces of Catamarca and Tucumán). This genus is 93 

typically recognized as morphologically similar (even directly ancestral) to Myrmecophaga, 94 

although smaller in body size (Hirschfeld 1976; Gaudin & Branham 1998). Considering the 95 

very few anatomically correlatable elements in which are based the different species 96 

referred to Neotamandua, Hirschfeld (1976) and Scillato-Yané & Carlini (1998) have 97 

suggested that this genus could be paraphyletic. Furthermore, the latter authors proposed 98 

the hypothesis that Neotamandua is composed by two distinct evolutionary lineages: one 99 

more closely related to Myrmecophaga and other one to Tamandua. In turn, these two 100 

lineages would have diverged in allopatry in South America, in such a way that the 101 

geographical origin of Myrmecophaga is located in northern South America, while that of 102 

Tamandua is in southern South America. 103 

In this article, we describe the first fossil skull of a myrmecophagid (and vermilinguan) 104 

from northern South America. This specimen was collected in the Middle Miocene La 105 

Victoria Formation of La Venta area, Colombia. Additionally, in coming to analysis 106 

because it is the only nominal taxon reported for the same region and geological unit, the 107 

taxonomic status of Neotamandua is revised. The results prompt the development of a 108 

discussion on a model of diversification for Myrmecophagidae in which new and previous 109 

hypothesis about this evolutionary event are synthesized. This contribution is intended to 110 

revaluate, expand and integrate biotic and abiotic evidence related to the diversification of 111 
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this fascinating mammal group, with emphasis on the biogeographic role of tropical, low 112 

latitude regions of the Americas. 113 

 114 

Material and methods 115 

The cranial specimen described for the first time here for Colombia (VPPLT 975) comes 116 

from a light-brown mudstone layer in the Llano Largo field, around 2 Km northeast of La 117 

Victoria town, Municipality of Villavieja, Department of Huila (Fig. 1A-C). Strata of the 118 

La Victoria Formation outcrop there, within the palaeontologically relevant area of La 119 

Venta. The La Victoria Formation is a geological unit of ~500 meters in thickness which is 120 

mainly composed by bioturbated mudstones (Anderson et al. 2016). These sedimentites are 121 

interrupted by very continuous, coarse-to-fine grained sandstones with crossbedding and 122 

erosive bases. According to the lithostratigraphic scheme of Guerrero (1997; Fig. 1D), the 123 

new skull is from a level stratigraphically close (<20 m) and below the Chunchullo 124 

sandstone beds, i.e. the lower part of the La Victoria Formation. This corresponds to the 125 

unit referred as “Unit between the Cerro Gordo and Chunchullo sandstone beds”. As 126 

described by the same author, this unit, whose thickness ranges from ~80 to 160 m, is 127 

predominantly composed of mudstones and some interlayers of sandstones. This 128 

sedimentary body bears abundant plutonic and volcanic fragments from the lower Jurassic 129 

basement of the Honda Group (Saldaña Formation), as well as clasts of volcanic rocks 130 

formed in the magmatic arc of the Cordillera Central of Colombia during the Middle 131 

Miocene (Anderson et al. 2016).  132 
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The general palaeoenvironment inferred for the La Victoria Formation is a meandering 133 

fluvial system (except for the Cerbatana conglomerate, associated to an anastomosed 134 

system) with significant soil development in flood plain zones (Guerrero 1997). The ages 135 

calculated by Guerrero (1997) and Flynn et al. (1997) using magnetic polarity stratigraphy 136 

and geochronology indicate sedimentary deposition during the interval 13.8�12.5 million 137 

years ago (mya). These results have recently been reinforced by the U-Pb geochronology of 138 

detrital zircons recovered in this formation (Anderson et al. 2016). The age range obtained 139 

is 14.4 ± 1.9 � 13.2 ± 1.3 mya. This interval coincides approximately with the early 140 

Serravalian, sub-stage of the Middle Miocene [Insert Fig. 1 here]. 141 

Cranial measurements, with some nomenclatural modifications, are based on those of 142 

Hossotani et al. (2017) (Fig. 2; see Anatomical Abbreviations). All these measurements are 143 

in millimetres (mm). The description of the new skull of La Venta includes a rough body 144 

mass estimation of the respective individual from a traditional allometric approach. All 145 

these data and analyses are compiled in the Supplementary material (Appendices S1 and 146 

S3). For the taxonomic analysis of the genus Neotamandua were revised the justifications 147 

of generic allocations for the referred species (at least doubtfully) in all the relevant 148 

scientific literature. These species are: Neotamandua conspicua Rovereto 1914 (type 149 

species); Neotamandua magna Ameghino 1919; Neotamandua greslebini Kraglievich 150 

1940; Neotamandua borealis Hirschfeld 1976; Neotamandua? australis Scillato-Yané & 151 

Carlini 1998. Additionally, some observations were made on the holotypes of N. conspicua 152 

(MACN 8097) and N. borealis (UCMP 39847) to reexamine the described characteristics 153 

for these species in the original publications (Rovereto 1914 and Hirschfeld 1976, 154 

respectively). The conceptual model of Plotcnick & Warner (2006) to recognize taxonomic 155 
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wastebaskets was applied to Neotamandua. From the foregoing and the designation of the 156 

specimen FMNH P14419 as epitype of N. conspicua, it was proposed a diagnosis for 157 

Neotamandua. See a list of all the studied fossil specimens in the Appendix S1 of the 158 

Supplementary material [Insert Fig. 2 here]. 159 

On other hand, considering that Hirschfeld (1976), in her description of N. borealis, did not 160 

include morphological comparisons from postcranial bones of this species and homologous 161 

elements of the species referred to Neotamandua for southern South America, we 162 

performed this task and a preliminary character distribution analysis from postcrania of 163 

these taxa to explore the hypothesis that they are closely related. Forcibly, N. magna and 164 

N.? australis are excluded from the comparisons since they do not have osteological 165 

elements correlated with those of N. borealis (or any other species referred to 166 

Neotamandua). Additionally, as a result of loss of its holotype (McDonald et al. 2008), 167 

comparisons with N. greslebini are based exclusively on the non-illustrated description by 168 

Kraglievich (1940). Other comparisons include postcranium collected by Juan Méndez in 169 

1911 in the upper Miocene of the Andalhuala locality, Catamarca Province, Argentina. This 170 

material was assigned to Neotamandua (Neotamandua sp.) without a reference publication. 171 

McDonald et al. (2008) manifested doubt about this taxonomic assignment 172 

(Neotamandua?), but these authors simultaneously speculated that it might be the lost 173 

holotype of N. greslebini.  174 

Following to McKenna & Bell (1997), the genus Nunezia is considered a junior synonym 175 

of Myrmecophaga. Myological inferences are based on Hirschfeld (1976) and Gambaryan 176 

et al. (2009). 177 

 178 
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Institutional abbreviations 179 

CAC: Cátedra de Anatomía Comparada, Facultad de Ciencias Naturales y Museo, 180 

Universidad Nacional de La Plata; FMNH: Field Museum, Chicago, IL., USA; ICN: 181 

Instituto de Ciencias Naturales, Facultad de Ciencias, Universidad Nacional, Bogotá, 182 

Colombia; MACN: Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, 183 

Buenos Aires, Argentina; MLP: Museo de La Plata, Facultad de Ciencias Naturales y 184 

Museo, Universidad Nacional de La Plata, La Plata, Argentina; MPT: Museo Provincial de 185 

Tucumán, Tucumán, Argentina; UCMP: University of California Museum of 186 

Paleontology, Berkeley, CA., USA; VPPLT: Museo de Historia Natural La Tatacoa, La 187 

Victoria, Huila, Colombia; YPM: Peabody Museum, Yale University, New Haven, CT, 188 

USA. 189 

 190 

Anatomical abbreviations 191 

Abbreviations of equivalent measurements by Hossotani et al. (2017) in parenthesis. FL, 192 

frontal length; GSL (SL), greatest skull length; MBW (NC), maximum braincase width; 193 

ML, maxilla length; NL, nasal length; NW (NB), nasal width; PL, parietal length. 194 

 195 

SYSTEMATIC PALAEONTOLOGY 196 

Xenarthra Cope, 1889 197 

Pilosa Flower, 1883 198 

Vermilingua Illiger, 1811 199 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/793307doi: bioRxiv preprint 

https://doi.org/10.1101/793307
http://creativecommons.org/licenses/by-nc-nd/4.0/


Myrmecophagidae Gray, 1825 200 

Gen. nov. 201 

Etymology. [intentionally in blank]. 202 

Diagnosis. Same as that of the type and only known species. 203 

 204 

Gen. et sp. nov. 205 

(Fig. 3) 206 

Etymology. [intentionally in blank] 207 

Holotype. VPPLT 975, anterior portion of a skull, without jugals nor premaxillae. 208 

Diagnosis. Middle sized myrmecophagid, slightly smaller than Tamandua and even more 209 

than Neotamandua. It can be differentiated from other genera/species of anteaters by the 210 

following combination of cranial features: relatively width rostrum, similar to Tamandua; 211 

narrow and strongly tapered nasals toward their anterior end; anteroposterior length of the 212 

pre-orbital section of frontals equal to more than two thirds of the anteroposterior length of 213 

nasals; jugals inserted from the same level of the most anterior border of the lacrimal; 214 

anterior portion of the orbit more laterally extended in the superior wall in the inferior one, 215 

without forming a conspicuous dome as in Neotamandua conspicua. 216 

Comparative description of the holotype of Gen. et sp. nov. The specimen VPPLT 975 217 

consists of a partial skull that preserves nearly all the anatomical elements from the anterior 218 

section of the frontals (at the mid anteroposterior level of the orbit) to the anterior end of 219 

the rostrum. See cranial measurements taken for this new taxon and other myrmecophagids 220 
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in the Table 1. The estimated body mass for this individual is around 3.9 Kg (Appendix S3 221 

of the Supplementary material). As consequence of the preservation, some sutures are 222 

distinguishable in dorsal and lateral views, but virtually no suture is clearly detectable in 223 

ventral view. The rostrum is proportionally shorter and more robust than those in 224 

Myrmecophaga and N. conspicua (see below), but less than in Tamandua. In dorsal view, it 225 

is very similar to the skull of Tamandua, with at least four characteristics remarkably 226 

different with respect this extant genus: (1) lower rostrum; (2) rostrum more regularly 227 

tapered; (3) narrower and more anteriorly tapered nasals; (4) pre-orbital section of the 228 

frontals more anteroposteriorly elongated. In dorsal view, the rostrum shows a slight bulge 229 

in its middle part, similar to that in Tamandua and Myrmecophaga. However, in VPPLT 230 

975 this bulge is even subtler than in the living myrmecophagids. Apparently, the nasals are 231 

shorter than frontals and are poorly exposed in lateral view. The jugals are absent by 232 

preservation, but it is possible to recognize their insertion location. This is more anterior 233 

than in Myrmecophaga, but more posterior than in Tamandua. Associated to the insertion 234 

of the jugal, there is a reduced posterolateral process of the maxilla in comparison with that 235 

of Myrmecophaga, similar in Tamandua. The right side of the skull preserves better the 236 

lacrimal zone, but it is simultaneously more deformed around the fronto-maxillary suture 237 

than in the left side. The lacrimal is longer in its anteroposterior axis than in that 238 

dorsoventral. The same bone is proportionally smaller than in Tamandua and even more 239 

than in N. conspicua. It has a triangular outline (at least anteriorly), similar to 240 

Myrmecophaga and unlike Tamandua (irregularly rounded, ovated, or, infrequently, sub-241 

triangular lacrimal). The maxilla is not part of the orbit. The superior wall of the orbit is 242 

more laterally expanded than the inferior wall, without forming a conspicuous dome as in 243 

N. conspicua. This is similar to the condition observed in Myrmecophaga and differs from 244 
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that in Tamandua, in which the inferior wall is prominent given that it is more laterally 245 

expanded. It is not possible to recognize lacrimal nor orbital foramina. In ventral view, the 246 

dorsal border of the orbit is regularly concave. The palatines are less laterally extended than 247 

in Tamandua and apparently there are no palatine “wings” (noticeable lateral expansions of 248 

the palatines), unlike N. conspicua [Insert Fig. 3 here]. 249 

 250 

Taxonomic reanalysis of the genus Neotamandua  251 

Taxonomic history and discussion on the taxonomic status of Neotamandua 252 

The genus Neotamandua was proposed by Rovereto (1914) from a posterior portion of a 253 

skull (MACN 8097), which was collected in upper Miocene-to-Pliocene strata of the 254 

Catamarca Province, Argentina. The name Neotamandua, literally meaning ‘new 255 

tamandua’, was coined by Rovereto in allusion to the cranial similarity of the type species, 256 

N. conspicua, with the extant genus Tamandua, rather than with Myrmecophaga. This 257 

detail would be historically paradoxical, as will be shown below. It is important to note that 258 

Rovereto did not provide a diagnosis for Neotamandua, but he just briefly described the 259 

holotype of N. conspicua, emphasizing its elongated parietals. However, this feature, more 260 

comparable with that in Myrmecophaga than that in any other myrmecophagid, was 261 

correlated with the anteroposterior length of the parietals in Tamandua. A few years after 262 

the Rovereto’s work, Carlos Ameghino (Ameghino 1919) used a pelvis (MPT 58) 263 

recovered in contemporary strata of the Tucuman Province, Argentina, to create a new 264 

species, N. magna. Despite the taxonomic assignment of this pelvis to Neotamandua, 265 

Ameghino discussed that, alternatively, this species could belong to other genus of larger 266 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/793307doi: bioRxiv preprint 

https://doi.org/10.1101/793307
http://creativecommons.org/licenses/by-nc-nd/4.0/


body size, as Kraglievich (1940) also held. Formally, N. magna has not been reevaluated, 267 

but McDonald et al. (2008) suggested that, given that this species was transferred to 268 

Nunezia by Kraglievich (1934), and Nunezia is considered a junior synonym of 269 

Myrmecophaga (Hirschfeld 1976; McKenna & Bell 1997), then N. magna should be 270 

included in the latter genus, i.e. Myrmecophaga magna comb. nov. (unpublished). Indeed, 271 

the morphological differences cited by Ameghino (1919) and Kraglievich (1940) between 272 

the pelvis of N. magna and that of M. tridactyla (e.g. greater width and ventral flattening of 273 

the intermediate sacral vertebrae) do not seem sufficient to consider a generic distinction 274 

between these species. 275 

Two decades later, Kraglievich (1940) proposed a new species from postcranium collected 276 

in the upper Miocene of the Catamarca Province. This was initially assigned to N. 277 

conspicua. According to Kraglievich, the then new species, N. greslebini, is easily 278 

identifiable by its large size, intermediate between those of N. conspicua and N. magna. 279 

Like Rovereto (1914), this author also correlated his generic assignment of N. greslebini to 280 

Neotamandua from the similarity between the fossil specimens of this species and 281 

homologous elements of Tamandua (Kraglievich, p. 633). The holotype of N. greslebini is 282 

missing or mixed up with material labelled with generic names of extinct anteaters (i.e. 283 

Neotamandua and Palaeomyrmidon) in the Museo Argentino de Ciencias Naturales 284 

(MACN), in Buenos Aires, Argentina (McDonald et al. 2008). 285 

Already in the second half of the XX century, a controversy about the possible synonymy 286 

between Neotamandua and Myrmecophaga arose. This means that there was a radical 287 

paradigmatic shift in myrmecophagid systematics, from that in early XX century, in which 288 

Neotamandua was considered closely related to Tamandua, to that in late XX century, in 289 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/793307doi: bioRxiv preprint 

https://doi.org/10.1101/793307
http://creativecommons.org/licenses/by-nc-nd/4.0/


which Neotamandua was even a serious candidate to be a junior synonym of 290 

Myrmecophaga. This historical change began with the non-cladistic systematic analysis of 291 

Hirschfeld (1976), in which Neotamandua was originally proposed as the direct ancestor 292 

(anagenetic form) of Myrmecophaga. In the same work, Hirschfeld created the first and, 293 

until now, only nominal extinct species of Vermilingua and Myrmecophagidae for northern 294 

South America, N. borealis (Middle Miocene of Colombia). Given the scarcity and 295 

fragmentation of the specimens referred to Neotamandua, Hirschfeld recognized the need 296 

to revise the taxonomic validity of N. conspicua, N. magna and N. greslebini. Indeed, she 297 

went beyond and stated that Neotamandua species could be representatives of more than 298 

one single genus. However, her assignment of N. borealis to Neotamandua was based 299 

primarily on the idea that the fossils she studied are ‘considerably more advanced than 300 

those known from the Santacruzian [late Early Miocene], closer to the Araucanian [Late 301 

Miocene-Pliocene] species and…to the line leading to Myrmecophaga than Tamandua’ 302 

(Hirschfeld, p. 421). For this author, many postcranial traits of N. borealis are intermediate 303 

between Tamandua and Myrmecophaga. As a questionable methodological aspect, it is 304 

important to note that Hirschfeld did not make osteological comparisons with the southern 305 

species of Neotamandua, only with postcranium of Protamandua, Tamandua and 306 

Myrmecophaga (extant species of the two latter genera).  307 

In implicit reply to Hirschfeld (1976), Patterson et al. (1992) highlighted the morphological 308 

similarities between the unpublished skull FMNH P14419, catalogued as N. conspicua in 309 

the Field Museum, and the modern skulls of Myrmecophaga. For these authors, FMNH 310 

P14419 only differs from skulls of the living giant anteater in its smaller size. 311 

Consequently, Patterson et al. (1992) suggested synonymize Neotamandua and 312 
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Myrmecophaga, with nomenclatural priority for the latter. Nevertheless, Gaudin & 313 

Branham (1998) provided (weak) support for the validity of Neotamandua through a 314 

comprehensive phylogenetic analysis of Vermilingua. Their results indicate that 315 

Neotamandua is an independent taxon based on two autapomorphies, being one of them 316 

ambiguous and the other one unambiguous. The latter is the horizontal inclination of the 317 

glenoid. In the only most parsimonious tree recovered by Gaudin & Branham (1998), 318 

Neotamandua is closely related to Myrmecophaga, not Tamandua, as opposed to Rovereto 319 

(1914) and Kraglievich (1940). 320 

Finally, the last species referred, with doubt, to the genus was N.? australis (Scillato-Yané 321 

& Carlini 1998). The holotype of this species consists only of a humerus (MLP 91-IX-6-5) 322 

collected in the lower Middle Miocene of the Río Negro Province, Argentina. Scillato-Yané 323 

& Carlini (1998) highlighted some similarities of this material with the humerus of 324 

Tamandua. They also expressed considerably uncertainty in assigning it to Neotamandua, 325 

not only by its fragmentary nature, but from the idea of Hirschfeld about the non-natural 326 

(i.e. non-monophyletic) status of this genus. Without performing a phylogenetic analysis, 327 

these authors proposed a hypothesis that N. borealis is closely related to Myrmecophaga, 328 

while N. conspicua and N.? australis are closer to Tamandua. If this hypothesis is correct, 329 

N. borealis does not belong to Neotamandua as consequence of the application of the 330 

nomenclatural priority principle. 331 

In summary, multiple historical factors, including the lack of a diagnosis, insufficient 332 

number of anatomically correlatable/highly diagnostic postcranial elements and, especially, 333 

absence of cranial-postcranial associations, aroused the relatively arbitrary use of 334 

Neotamandua as a wastebasket taxon, i.e. a residual genus deriving from weak and/or 335 
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inadequate systematic analysis. According to the conceptual model of Plotnick & Warner 336 

(2006), Neotamandua has five (from a total of seven) properties of a genus potentially 337 

classifiable as wastebasket: (1) it is an old name (i.e. more than one century to the present); 338 

(2) it is [relatively] rich in species (five species, i.e. the most speciose extinct genus of 339 

Vermilingua); (3) it has a [relatively] high number of occurrences; (4) it has wide temporal 340 

and geographical distributions; (5) it [primarily] groups together specimens poorly 341 

preserved and/or difficult to identify. To these five properties we may add the lack of a 342 

diagnosis, which is related in some way to the property number two of the Plotnick-Warner 343 

model, i.e. genera diagnosed from generalized characters, probably plesiomophies or easily 344 

recognizable characters. 345 

As it was shown, Neotamandua has been invoked as a directly ancestral form of 346 

Tamandua, or, more recently, of Myrmecophaga, from its morphological characteristics in 347 

common with these two extant genera. But precisely because of this character mosaic, the 348 

generic allocation of isolated postcranial remains of myrmecophagids potentially referable 349 

to Neotamandua should not be reduced or exclusively focused on their comparison with the 350 

crown-group, but should also consider the effect of possible homoplasies (e.g. those related 351 

to ecological convergences), plesiomorphies and limitations of the fossil record (Plotnick & 352 

Warner 2006). In other words, the apparent affinity between isolated postcranial elements 353 

of any Neogene anteater and their homologous in Myrmecophaga is not enough to make a 354 

reliable generic allocation in Neotamandua; diagnostic information of the latter genus is 355 

needed, preferably autapomorphies, which allow it to be individually identified and not 356 

simply as a set of forms similar to Myrmecophaga. 357 

 358 
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Comparisons between northern and southern species referred to Neotamandua 359 

N. borealis and N. greslebini. See the Table 2 for comparison of postcranial measurements 360 

between these species. 361 

Radius.  Both N. borealis and N. greslebini show two longitudinal, parallel radial 362 

ridges, of which the lateral ridge is higher and reaches a more distal level than the 363 

cranial one. This is similar to the condition observed in Myrmecophaga and differs 364 

from the distally convergent radial ridges of Tamandua. In N. borealis, the lateral 365 

ridge is even more distally extended than in N. greslebini, in such a way that the 366 

flanks of this structure contact the lateral border of the styloid process. According to 367 

Kraglievich (1940), in the Argentinean species this ridge ends at an intermediate level 368 

between the distal end of the cranial ridge and the styloid process.  369 

Tibia. The type material of N. borealis includes a proximal epiphysis and part of the 370 

diaphysis of a right tibia. According to Kraglievich (1940), the holotype of N. 371 

greslebini includes two fragments of a tibia, one of them proximal and the other one 372 

distal. Both Hirschfeld and Kraglievich claimed greater overall similarity between the 373 

tibial fragments of these species and the homologous parts of Tamandua, rather than 374 

Myrmecophaga. This way, the mid-section of the tibias both of N. borealis and N. 375 

greslebini is not as strongly triangular as in Myrmecophaga. Rather, this bone 376 

segment is from gently triangular to sub-rounded in these two species referred to 377 

Neotamandua, without being rounded as in Tamandua.  378 

Astragalus. Hirschfeld (1976) described the astragalus of N. borealis (Fig. 4A-B, 4E-379 

F) as intermediate in morphology and size between those in Tamandua and 380 
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Myrmecophaga. In contrast, Kraglievich (1940) stated that the astragalus of N. 381 

greslebini closely resembles that of Tamandua. New observations allow to 382 

determinate that, in dorsal view, the astragalus of N. borealis is more similar to that in 383 

Tamandua than Myrmecophaga as consequence of a lateral side of the trochlea larger 384 

than the medial one (trochlear asymmetry). Like N. greslebini, the regular concavity 385 

in which is inserted the flexor digitorum fibularis tendon extends posteroventrally 386 

like a well-defined wedge (“pointed shape” in Kraglievich’s words) and it contacts 387 

the calcaneal facets across the entire width of the latter. In ventral view, the 388 

arrangement of the calcaneal facets in N. borealis is a kind of ‘transition’ between 389 

that in Myrmecophaga and Tamandua. In N. borealis, the ectal and sustentacular are 390 

largely separated by a wide and deep sulcus, but there is an incipient connection. This 391 

condition is approximately comparable to that described by Kraglievich (1940) for N. 392 

greslebini and differs from the fully separated calcaneal facets in Protamandua and 393 

Tamandua. In this sense, Kraglievich was not very explicit in pointing out the degree 394 

of development of the connection between these facets, but it is inferred that it is not 395 

exactly wide as in Myrmecophaga when he wrote that ‘…these calcaneal articulations 396 

are, apparently, posteriorly fused…’ (italics are ours; Kraglievich, p. 635). 397 

Calcaneum. Like N. greslebini, N. borealis has a narrow fibular calcaneal facet, 398 

which is located laterally and in a slightly different plane with respect to that of the 399 

ectal facet (Fig. 4C-D, 4G-H). In both of the former species, the sustentaculum is less 400 

medially projected than in Myrmecophaga. They also show an accessory facet in the 401 

anterior end of the calcaneum that articulates with the astragalar head, similarly to 402 

Tamandua. In all the aforementioned taxa, this facet is closer (even in contact) to the 403 
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cuboid facet. In N. borealis and N. greslebini, the cuboid facet is transversely ovate 404 

and concave. A unique feature in common for them is the presence of a short 405 

tendinous groove (shorter than in Myrmecophaga) and strongly concave (Fig. 4H). It 406 

is the continuation of the longitudinal and conspicuous ridge that runs the calcaneum 407 

in its lateral side. The latter separates tendons of the fibularis longus and accesorius 408 

muscles (Hirschfeld 1976; Gambaryan et al. 2009). In N. borealis, this ridge is more 409 

conspicuous than in Tamandua and less than in Myrmecophaga [Insert Fig. 4 here]. 410 

 411 

N. borealis and Neotamandua sp. See the Table 3 for comparison of postcranial 412 

measurements between these species. 413 

Radius. The distal epiphysis of the radius in Neotamandua sp. (MACN 2408) is more 414 

massive than that in N. borealis. In the latter species, the distal end of the radius is 415 

relatively stylized, like Tamandua. However, the morphologies of N. borealis and 416 

Neotamandua sp. are more comparable between them. In distal view, the styloid 417 

process of these species is more elongated and posteriorly oriented than in 418 

Tamandua. In the latter extant genus, the transverse axis (longer axis) of the facet for 419 

distal articulation is forming an angle close to 45° with respect to the plane of the 420 

anterior side of the radius, while this axis is nearly parallel with respect that plane in 421 

N. borealis and Neotamandua sp. This difference gives to the distal radius of the 422 

compared Neotamandua species a non-rotated appearance, unlike the same epiphysis 423 

in Tamandua. In anterior view, the distal articulation facet of N. borealis and 424 

Neotamandua sp. is visible in wedge shape pointing towards the medial border. 425 

Additionally, in the same view, this facet exhibits comparable exposures in both of 426 
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the latter species, considerably more than in Tamandua. The posterior side of the 427 

distal epiphysis is from flat to slightly concave in N. borealis and Neotamandua sp., 428 

unlike the convex posterior side in N. greslebini (this observation could suggest that 429 

the material of Neotamandua sp. is not the holotype of N. greslebini, as speculated by 430 

McDonald et al. 2008) and Tamandua. The distal extension of the lateral ridge in N. 431 

borealis and Neotamandua sp. is similar.  432 

Astragalus. The astragalus of Neotamandua sp. (MACN 2406) is only represented 433 

by the astragalar body. The medial trochlea is smaller than the lateral trochlea, but 434 

this asymmetry is less than in N. borealis. In addition, these sections of the trochlea 435 

are proportionally less separated in the latter species than in Neotamandua sp. 436 

Calcaneum. The calcaneum is fragmentary in Neotamandua sp. (MACN 2411). As 437 

in the case of the astragalus, the preserved portion is the bone body. The ectal facet is 438 

sub-triangular in shape in Neotamandua sp., while it is approximately sub-oval in N. 439 

borealis. The sustentacular facet is more medially extended in the latter species than 440 

in Neotamandua sp. In both species, the cuboid facet is partially visible in dorsal 441 

view, particularly in Neotamandua sp. In the same view, the lateral ridge is slightly 442 

exposed in N. borealis, but not so in Neotamandua sp. 443 

Discussion. The former comparisons allow to recognize a few morphological similarities 444 

and differences between homologous postcranial elements of N. borealis, N. greslebini and 445 

Neotamandua sp. It is considered that some similarities in these species are potentially 446 

diagnostic at the genus level, namely the sub-rounded to gently triangular shape of the tibial 447 

mid-section; ectal and sustentacular facets incipiently connected in the astragalus; and a 448 

short tendinous groove in the lateral side of the calcaneum (Table 4). These similarities 449 
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seem to provide support to the hypothesis that these northern and southern South American 450 

species referred to Neotamandua are closely related and, consequently, that they are 451 

correctly included in the same genus. Alternatively, these common features could be 452 

symplesiomorphies of a hypothetical lineage of myrmecophagids more late diverging than 453 

Protamandua and apparently closer to Myrmecophaga than Tamandua. Provisionally, from 454 

the analysis presented, it is proposed to circumscribe the genus Neotamandua to the 455 

nominal species N. conspicua (type species), N. greslebini and N. borealis. Since N. magna 456 

and N.? australis are doubtfully assigned to Neotamandua or its allocation in this genus has 457 

been seriously questioned (McDonald et al. 2008; this work), they are considered species 458 

inquirendae, following the International Code of Zoological Nomenclature (Ride et al. 459 

1999). To denote the questionable generic allocation of N. magna is suggested the use of 460 

inverted commas, i.e. ‘N.’ magna. The material referred to Neotamandua sp. seems 461 

correctly referred to this genus, but it should be further tested. It is possible that these 462 

specimens correspond to a new species. 463 

The diagnosis for Neotamandua proposed below is largely based on the designation of the 464 

specimen FMNH P14419 as epitype for the type species, N. conspicua, after considering 465 

the fragmentary nature of the holotype of this taxon (MACN 8097; Rovereto 1914), and, 466 

consequently, its ambiguity or lack of some taxonomically relevant features, particularly in 467 

the rostrum. In addition, the potentially diagnostic postcranial features for Neotamandua 468 

that has been identified above are also incorporated in the new diagnosis until cranial-469 

postcranial associations are found and studied. 470 

 471 

Neotamandua Rovereto, 1914 472 
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LSID. urn:lsid:zoobank.org:act:4EC0ABE1-C013-4113-9956-5DBD6E79FCEA 473 

Type species. N. conspicua Rovereto, 1914. 474 

Other referred species. N. greslebini Kraglievich 1940; N. borealis Hirschfeld 1976. 475 

Related species inquirendae. ‘N.’ magna Ameghino 1919 (Myrmecophaga magna new 476 

combination? See McDonald et al. 2008); N.? australis Scillato-Yané & Carlini 1998. 477 

Diagnosis. Middle-to-large sized myrmecophagid, larger than Tamandua but smaller than 478 

Myrmecophaga. It can be differentiated from other vermilinguans by the following 479 

combination of characteristics: in dorsal view, rostrum strongly tapered towards its anterior 480 

end (more than in any other myrmecophagid), with a regular transition in width from the 481 

anterior portion of frontals to the anterior end of nasals; reduced lacrimal which is not part 482 

of the orbit; jugal inserted in posteroventral position with respect to the lacrimal and 483 

slightly projected in posterodorsal direction; frontal forming a dorsal dome at the orbit 484 

level; hard palate well extended towards the posterior end of the skull, close to the ventral 485 

border of the occipital condyles; squamosal (= posterior) zygomatic process dorsally 486 

inclined; presence of palatine “wings”; horizontal inclination of the glenoid (Gaudin & 487 

Branham 1998); sub-oval to gently triangular shape of the tibial mid-section; ectal and 488 

sustentacular facets incipiently connected in the astragalus; short tendinous groove in the 489 

lateral side of the calcaneum. 490 

 491 

Neotamandua conspicua Rovereto, 1914 492 

(Fig. 5) 493 
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LSID. urn:lsid:zoobank.org:act:C4DC62D5-6470-4A04-B152-D42ED3BA332C 494 

Holotype. MACN 8097, posterior portion of a skull. 495 

Epitype. FMNH P14419, nearly complete skull but with fractured rostrum and partially 496 

eroded frontals and parietals. 497 

Geographical and stratigraphic provenance. MACN 8097 is from an indeterminate 498 

locality in the Santa María Valley, Catamarca Province, Argentina (Rovereto 1914). 499 

Probably Andalhuala Formation. Upper Miocene (McDonald et al. 2008; Bonini 2014; 500 

Esteban et al. 2014).  501 

FMNH P 14419 is from the Corral Quemado area, Catamarca Province, Argentina. Corral 502 

Quemado Formation. Lower Pliocene (Bonini 2014; Esteban et al. 2014). This specimen 503 

was collected by Robert Thorne and Felipe Méndez during the Second Captain Marshall 504 

Field Palaeontological Expedition, which was led by Elmer S. Riggs and developed in 505 

Argentina and Bolivia in 1926�1927 (Simpson, pers. comm.; Riggs 1928). In the Field 506 

Museum, where it is deposited, has been catalogued as N. conspicua. No known reference 507 

publication exists as support for the taxonomic assignation to this species, except in Gaudin 508 

& Branham (1998) and, now, in this work from direct comparison with the holotype. 509 

Diagnosis. See the diagnosis for Neotamandua above. The postcranial diagnostic features 510 

included there do not belong to material known for this species. 511 

Comparative description of the epitype. The skull FMNH P14419 is anteroposteriorly 512 

elongated, with a general architecture more similar to that in Myrmecophaga than 513 

Tamandua. The cranial measurements taken for this specimen are shown in the Table 1. In 514 

dorsal view, both the rostrum, in general, as well as the nasals, in particular, are anteriorly 515 
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tapered. The pre-orbital section of the frontals is proportionally less elongated than in 516 

Myrmecophaga. The lacrimal has a sub-triangular outline and its anteroposterior and 517 

dorsoventral lengths are similar, unlike Myrmecophaga, in which the lacrimal is triangular 518 

and more anteroposteriorly elongated. The insertion of the jugals is more ventral and 519 

posterior than in Myrmecophaga and even more than Tamandua. Each jugal is slightly 520 

tapered by mediolateral compression in its posterior end and it is posterodorsally projected, 521 

instead of posteroventrally like Myrmecophaga. The posterolateral process of the maxilla 522 

contacts the entire anterior and ventral borders of the lacrimal. The orbital ridge is less 523 

prominent than in Myrmecophaga. The superior orbital wall is laterally expanded, forming 524 

a roof more developed than in Myrmecophaga. At the orbit level, the palatines are also 525 

laterally expanded, forming palatine “wings”. These structures make the anterior hard 526 

palate look wider than the posterior palate. The posterior end of the hard palate is less 527 

ventrally projected, unlike Tamandua and Myrmecophaga. In lateral view, the squamosal 528 

zygomatic processes are dorsally inclined, unlike the ventral inclination of the same bone 529 

projection in Tamandua and Myrmecophaga. This feature would be a convergence with 530 

Cyclopes. The braincase is proportionally larger than in Myrmecophaga, but smaller than in 531 

Tamandua. The tympanic bulla is less developed than in Tamandua. The external auditory 532 

meatus has subcircular to circular shape, like Myrmecophaga (ovated in Tamandua). In N. 533 

conspicua the same opening is located in a posterodorsal position, like Myrmecophaga and 534 

in contrast with Tamandua, in which it has an anterodorsal position. Despite the 535 

palatopterygoid suture is not well preserved, appears to be more similar to the irregular 536 

suture in Myrmecophaga, with a posteriorly opened, asymmetrical “V” shape, than the 537 

regular suture in Tamandua, with an anteriorly opened, symmetrical “V” shape. There is no 538 
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interpterygoid vacuity in which it could be established a soft palate, like Myrmecophaga. 539 

The occipital condyles are proportionally larger than in Myrmecophaga [Insert Fig. 5 here].   540 

 541 

Discussion 542 

Systematic implications 543 

This works includes the first description of a new, valid extinct genus for 544 

Myrmecophagidae in the last century, i.e. Gen. nov. Likewise, it constitutes a novel 545 

taxonomic comprehensive reassessment for Neotamandua from Hirschfeld (1976). The 546 

results suggest that there are still critical gaps in our knowledge on the composition and 547 

diversity of the Neogene assemblages of these xenartrans, particularly in the tropical region 548 

of South America. With the inclusion of Gen. et sp. nov. (Fig. 6), Myrmecophagidae now 549 

comprises at least five genera (three of them fully extinct) and 11 nominal species (eight 550 

extinct species), namely [the dagger means extinct species]: Protamandua rothi†; 551 

Neotamandua? australis†; Neotamandua borealis†; Gen. et sp. nov.†; ‘Neotamandua’ 552 

magna†; Neotamandua greslebini†; Neotamandua conspicua†; Myrmecophaga 553 

caroloameghinoi†; Myrmecophaga tridactyla; Tamandua tetradactyla; and Tamandua 554 

mexicana. Of these taxa, only two genera and two species have fossil occurrence in 555 

northern South America: N. borealis (Middle Miocene of Colombia; Hirschfeld 1976) and 556 

Gen. et sp. nov. (Middle Miocene of Colombia; this work) (Fig. 7). The latter taxon is a 557 

small-to-middle sized myrmecophagid, comparable but slightly smaller than Tamandua. 558 

The general morphology of the skull of this new anteater resembles more to that of 559 

Tamandua than any other known taxon. It shows remarkable features such as: (1) strongly 560 
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tapered nasals toward its anterior rostrum; (2) relatively low rostrum and anterior section of 561 

frontals; (3) large pre-orbital section of frontals; and (4) strongly triangulated (anterior) 562 

lacrimal. The tapering of nasals is a characteristic in common with N. conspicua, but in the 563 

latter species the entire rostrum is tapered, not only the nasals, like Gen. et sp. nov. The 564 

relatively low rostrum and anterior section of frontals seems to indicate a plesiomorphy, 565 

given that this feature is apparently present in P. rothi. A large pre-orbital section of 566 

frontals is shared, in (nearly) extreme condition, by N. conspicua and, especially, 567 

Myrmecophaga, but it should be noted that in Gen. et sp. nov. there is no such as elongated 568 

skull. And, finally, the strongly triangulated (anterior) lacrimal in the latter species is 569 

superficially similar to that in Myrmecophaga. Estimates of cranial measurements and 570 

features (rostrum length, exposure of the maxilla in the orbit and curvature of the 571 

basicranial-basifacial axis) used for coding the characters with numbers 4, 8, 9 and 42 of 572 

the character list by Gaudin & Branham (1998), allow tentatively infer the phylogenetic 573 

position of Gen. et sp. nov. as a taxon included within the clade Tamandua + Neotamandua 574 

+ Myrmecophaga and located in a polytomy with Tamandua. Under this preliminary 575 

phylogenetic analysis, which is not presented in the results section because there is no 576 

enough information for coding the new taxon, Protamandua is well supported as the most 577 

basal myrmecophagid as consequence of sharing several character states with non-578 

Myrmecophagidae Vermilingua (i.e. Cyclopes and Palaeomyrmidon; for more details, see 579 

Gaudin & Branham 1998). For future studies, it is tentatively suggested the subfamilial 580 

name “Myrmecophaginae” for all the Myrmecophagidae more late diverging than 581 

Protamandua, including possibly Gen. et sp. nov. In this sense, new and more complete 582 

material referable to the latter taxon is required to shed light on its phylogenetic position 583 

[Insert Fig. 6 here]. 584 
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On other hand, the taxonomic analysis of Neotamandua and its referred species indicates 585 

that these taxa were based on a poorly supported taxonomy. Other case of extinct 586 

vermilinguans with flawed systematics in low levels of the taxonomic hierarchy was noted 587 

by McDonald et al. (2008) with regard to genera and species proposed from isolated 588 

postcranial elements of putative myrmecophagids or even members of new, distinct 589 

families from the Early Miocene of Santa Cruz, southern Argentina. These authors, 590 

partially based on comparisons by Hirschfeld (1976), argued that the number of taxa 591 

claimed for that area and interval (seven genera and nine species; e.g. Promyrmephagus, 592 

Adiastaltus; Ameghino 1894) has been artificially inflated, even though it is still possible to 593 

revalidate taxa other than the well validated species P. rothi (McDonald et al. 2008). All 594 

these research problems in systematics imply the need to regularly reevaluate the taxonomy 595 

of extinct anteaters through reexamination, when possible, of previously described material 596 

and the study of new specimens. While it is true that the fossil record of Vermilingua is 597 

poor and fragmentary in comparison, for instance, with that of other xenartrans such as 598 

Tardigrada, the sampling effort should be increased in order to have greater recovery of 599 

fossil material for this group, especially in areas known for their preservation potential (e.g. 600 

southern and northwestern Argentina, southwestern Colombia).  601 

The reevaluation of the taxonomic status of Neotamandua found that there was no 602 

diagnosis for this genus. The newly proposed diagnosis includes multiple cranial and 603 

potential postcranial characteristics, which uphold that Neotamandua, independently 604 

whether it is a natural group or not, certainly contains species that do not belong to 605 

Myrmecophaga, despite their great resemblance with the latter. This outcome is congruent 606 

with the taxonomic opinion of Gaudin & Branham (1998) and is at odds with Patterson et 607 
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al. (1992). Now, can we confidently say that Neotamandua is monophyletic from current 608 

evidence? Neotamandua, as previously defined by other workers, may be composed of 609 

successive basal species or genera in relation to the hypothetical clade of Myrmecophaga 610 

(i.e. My. tridactyla + My. caroloameghinoi). If that is correct, Neotamandua would be 611 

paraphyletic by definition, since it excludes some of its descendants (Sereno et al. 1991). 612 

This possible pattern of basal paraphyly is consequence of a taxonomy not defined by 613 

clades, but grades (Huxley 1958; Wood & Lonergan 2008). The monophyly of 614 

Neotamandua, as was redefined here (i.e. N. conspicua + N. greslebini + N. borealis), is 615 

tentatively supported by three potential synapomorphies shared by two of its species whose 616 

postcranium is known (N. greslebini and N. borealis): (1) sub-oval to gently triangular mid-617 

section of the tibia; (2) ectal and sustentacular facets incipiently connected in the 618 

astragalus; (3) short tendinous groove in the lateral side of the calcaneum. However, the 619 

synapomorphic condition of these features for Neotamandua need to be further tested from 620 

systematic analysis of new, more complete and/or associated material of Gen. et sp. nov. 621 

and species referred to Neotamandua. That would allow to assess more adequately the 622 

global morphological variability and character distribution in Miocene myrmecophagids 623 

more late diverging than Protamandua. In turn, knowing this distribution better, it is more 624 

likely to disentangle the taxonomic identities and affinities of the Neotamandua species in 625 

order to corroborate the monophyly of this genus. For the moment, the hypothesis of 626 

Hirschfeld (1976) that Neotamandua is not monophyletic is, in principle, less probable if 627 

the species inquirendae ‘N.’ magna and N.? australis are excluded from the genus, as it 628 

was decided here, than if they are retained within it. The exclusion of the species 629 

inquirendae does not affect the hypothesis that Neotamandua is closer to Myrmecophaga 630 

than any other known nominal genus. Consequently, the type species of Neotamandua, N. 631 
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conspicua, is reiterated as closer to Myrmecophaga than Tamandua, in line with the 632 

phylogeny of Gaudin & Branham (1998) and unlike the hypothesis of Carlini & Scillato-633 

Yané (1998).  634 

Finally, the material referred to Neotamandua sp. and used in this study to make 635 

comparisons with N. borealis, seems correctly allocated in that genus, but it might 636 

eventually be assigned to a new species with very large body size, larger than N. greslebini. 637 

This is partially conditioned to the clarification of the taxonomic status of ‘N.’ magna, 638 

which is a species comparable in body size to Neotamandua sp., so they could be (or not) 639 

the same taxon. 640 

 641 

The diversification of Myrmecophagidae 642 

McDonald et al. (2008) pointed out that since the highly incomplete fossil record of 643 

Vermilingua, several fundamental questions on the evolution of this group, including 644 

morphological trends and the acquisition of ecological preferences in its distinct taxa, are 645 

largely unknown. Likewise, they highlighted some uncertainty related to the divergence 646 

times of possible sub-clades. However, several inferences and hypotheses about the 647 

evolutionary history of anteaters and, particularly, the myrmecophagids, can be outlined 648 

from the current evidence, including that presented in this work. Following to Pascual & 649 

Ortiz-Jaureguizar (1990), McDonald et al. (2008) and Toledo et al. (2017), the next 650 

discussion is based on multiple palaeobiological, ecological and biogeographical aspects as 651 

major constraints and/or consequences of the myrmecophagid evolution.  652 
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The diversification of Myrmecophagidae was an macroevolutionary event that occurred 653 

through the Neogene, at least as early as the Burdigalian (Early Miocene), according to the 654 

minimal age estimated for the most basal genus, i.e. Protamandua. The beginning of this 655 

diversification is approximately overlapped in time with the onset or development of 656 

similar events in other higher taxa in South America, such as the xenartrans 657 

Megatherioidea, Mylodontidae, Glyptodontidae and Dasypodini (Croft et al. 2007; 658 

McDonald & De Iuliis 2008; Bargo et al. 2012; Carlini et al. 2014; Boscaini et al. 2019), or 659 

the South American native ungulates Pachyrukhinae, Mesotheriinae and Toxodontidae 660 

related to Pericotoxodon and Mixotoxodon (Seoane et al. 2017; Armella et al. 2018a; 661 

Armella et al. 2018b). This pattern shows the importance of the Early Miocene, particularly 662 

the Burdigalian, as a critical interval for the diversification of multiple South American 663 

land mammal lineages. In light of the geographical provenance of Protamandua, the most 664 

probable ancestral area for Myrmecophagidae is southern South America (Fig. 7). The 665 

palaeonvironmental conditions inferred for the Early Miocene of this area are considerably 666 

warmer and more humid (1000�1500 mm/year) than today, with presence of a subtropical 667 

dry forest (Iglesias et al. 2011; Quattrocchio et al. 2011; Kay et al. 2012; Brea et al. 2017; 668 

Raigenborm et al. 2018). In line with this reconstruction, Palazzesi et al. (2014), using a 669 

rarefied richness analysis from palynological evidence, reported that southern Argentina 670 

harboured in the Early Miocene a plant richness comparable to that documented today for 671 

the Brazilian Atlantic Forest, in southeastern Brazil. Similar to Tamandua, Protamandua 672 

would have preferred forested habitats and would have had semiarboreal habits (Gaudin & 673 

Branham 1998; McDonald et al. 2008; Kay et al. 2012). Whether the ancestral condition of 674 

substrate use in Myrmecophagidae is arboreal, as held by Gaudin & Branham (1998), the 675 

preference for open biomes (e.g. savannah) and terrestriality in Myrmecophaga (and 676 
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possibly in Neotamandua) is a derived condition (McDonald et al. 2008; Toledo et al. 677 

2017). The semiarboreal habits of Tamandua are explained from niche conservatism or, 678 

alternatively, from convergence with Protamandua if the ancestor of Tamandua was 679 

hypothetically terrestrial [Insert Fig. 7 here].  680 

Since their particular, low basal metabolic rates and myrmecophagous diets (McNab 1984, 681 

1985), it is likely that the global warm recovery during the early Neogene (Early Miocene 682 

to early Middle Miocene; including the Middle Miocene Climatic Optimum or MMCO; 683 

Fig. 8), linked to latitudinal temperature gradient reduction and expansion of the tropical 684 

(warm) forest belt towards higher latitudes in the continents (including South America; see 685 

Anderson 2009; Herold et al. 2011; Morley 2011; Palazzesi et al. 2014), has influenced on 686 

the evolutionary differentiation of the myrmecophagids, maybe predominantly in situ as in 687 

the climatically-induced evolution of other small Cenozoic mammals (Fortelius et al. 688 

2014), such as Protamandua. This differentiation would have been triggered by increase in 689 

suitable area in terms of preferred biomes (warm forests in this case) and, especially, 690 

temporarily sustained availability of social insects for their feeding (McDonald et al. 2008; 691 

Kay et al. 2012; Toledo et al. 2017). Indeed, extant termites and ants (Termitidae and 692 

Formicidae, respectively) concentrate the vast majority of their biomass (and species 693 

richness) in the tropics and warm subtropical regions (Hölldobler & Wilson 1990; Tobin 694 

1995; Davidson & Patrell-Kim 1996; Eggleton et al. 1996; Davidson et al. 2003; Ellwood 695 

& Foster 2004; Keller & Gordon 2009). This ecogeographical pattern is consistent with the 696 

fossil record of the former higher taxa, which shows a strong tropical niche conservatism 697 

from their respective evolutionary origins in the Late Cretaceous/Early Paleogene (see 698 
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below; Archibald et al. 2011; LaPolla et al. 2013; Guénard et al. 2015; Bourguignon et al. 699 

2017). 700 

According to Blois & Hadly (2009), the responses of mammalian taxa to climate change 701 

throughout the Cenozoic are causally interconnected. These responses at the level of 702 

individual taxa may include changes in abundance, genetics, morphology and/or 703 

distributional range, and they may instigate multitaxa responses such as diversification 704 

events comparable to that placed on the root of the evolutionary tree of Myrmecophagidae. 705 

This case of a cladogenetic event possibly induced by climate contrasts in kind of biome 706 

with those that have been repeatedly documented for intervals of grassland expansion (e.g. 707 

Equidae, Bovidae, Cervidae, Ochotonidae, Hippopotaminae; MacFadden 2000; 708 

Bouchenak-Khelladi et al. 2009; Boisserie & Merceron, 2011; Ge et al. 2013).  709 

In the Middle Miocene, N.? australis, N. borealis and Gen. et sp. nov. exhibit a mosaic of 710 

morphological features in common with Tamandua and/or Myrmecophaga, as well as some 711 

exclusive characteristics, which suggest an early, important increase in morphological 712 

disparity in Myrmecophagidae and possibly the evolutionary divergence of those lineages 713 

comprising its crown-group. This coincides with the interpretation of Hirschfeld (1976), 714 

according to which the lineages including the extant genera of Myrmecophagidae 715 

differentiated morphologically at least from the Friasian (Middle Miocene). Same way, it is 716 

compatible with the results of the molecular phylogenies by Delsuc et al. (2001, 2012) and 717 

Gibb et al. (2016), which estimated that the evolutionary divergence of Tamandua and 718 

Myrmecophaga occurred in the late Middle Miocene, c. 13 mya. On the other hand, relative 719 

body sizes inferred for the Middle Miocene taxa show an apparent trend towards increase in 720 

body size in comparison with the basal taxon Protamandua. During this interval, the 721 
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myrmecophagids have a wide geographical distribution in South America (Fig. 7), from 722 

low to medium-high latitudes. This is in line with the evolution of larger body sizes since 723 

when this attribute increases, the foraging area also increases and, with it, the distributional 724 

range, according the general foraging strategy of the extant myrmecophagids (Naples 1999; 725 

Toledo et al. 2017; Gaudin et al. 2018). The co-occurrence pattern of N. borealis and Gen. 726 

et sp. nov. in La Venta area in Colombia constitutes the earliest pattern of this kind for 727 

Myrmecophagidae until pending systematic revisions for putative taxa from the Early 728 

Miocene of Santa Cruz, Argentina, are carried out. These revisions would allow to 729 

determine whether there are two or more co-occurrent myrmecophagid taxa in the latter 730 

area. Given that N. borealis and Gen. et sp. nov. probably are not sister taxa, it would imply 731 

a non-sympatric diversification followed by dispersal of at least one of the involved taxa. 732 

The habitat preference of Gen. et sp. nov. in the palaeoenvironmental mosaic of La Venta 733 

area (Kay & Madden 1997; Spradley et al. 2019) is speculated as tropical forest 734 

(semiarboreal?) by analogy with Protamandua, while it is proposed a more generalized 735 

habitat selection for N. borealis in line with the palaeobiological inference of 736 

predominantly terrestrial locomotion for the latter taxon by Hirschfeld (1976). If this hold 737 

true, opens the possibility that N. borealis is the oldest myrmecophagid inhabiting zones 738 

with semi-open or even open vegetation (see below). 739 

The morphological and probably taxonomic diversification of Myrmecophagidae continued 740 

in the Late Miocene. Inferred body sizes range from larger than Tamandua and nearly 741 

comparable to Myrmecophaga. Considering the wide geographical distribution during the 742 

Middle Miocene, there is probably a geographical bias in the fossil record of the 743 

myrmecophagids during the Late Miocene as the only known occurrences are 744 
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Myrmecophaga-like forms from northwestern Argentina (Fig. 7). If N. borealis and N. 745 

greslebini are sister taxa, as it seems, that means there was a biogeographical connection 746 

for Myrmecophagidae between northern and southern South America in the late 747 

Middle/early Late Miocene. This inference is congruent with the palaeobiogeographical 748 

analyses of Cozzuol (2006) and Carrillo et al. (2015), according to which the affinities 749 

between several Late Miocene, northern and southern South American land mammal 750 

assemblages are strong or, at least, not so distant as those between Middle Miocene 751 

assemblages from the same regions. This pattern might be explained from the geographical 752 

shrinks of the Pebas Mega-Wetland System and the Paranean Sea in the Middle-Late 753 

Miocene transition (Aceñolaza & Sprechmann 2002; Cozzuol 2006; Salas-Gismondi et al. 754 

2015). It is also possible that the expansion of open biomes in South America during the 755 

Late Miocene has facilitated this biotic connection, as has been acknowledged in the case 756 

of other mammal taxa (e.g. Glyptodontinae, a xenartran group like Myrmecophagidae; 757 

Ortiz-Jaureguizar & Cladera 2008; Oliva et al. 2010). Indeed, from a palaeoenvironmental 758 

viewpoint, the (partial?) co-occurrence of ‘N.’ magna, N. greslebini and N. conspicua in 759 

northwestern Argentina is important inasmuch as this pattern is related, for the first time in 760 

the evolutionary history of Myrmecophagidae, to savannahs well developed with respect to 761 

other kinds of vegetation cover (Latorre et al. 1997; Brandoni et al. 2012; Cotton et al. 762 

2014; Amidon et al. 2017; Zimicz et al. 2018). On the basis of the foregoing and by 763 

generalization of morphological and ecological features of the living vermilinguans, e.g. 764 

less dependence on trees related to greater taxonomic and/or ecological diversity of 765 

consumed insects (Hirschfeld 1976; Montgomery 1985a; Rodrigues et al. 2008; Toledo et 766 

al. 2017; Table 5), it is hypothesized that, as early as the late Middle Miocene, with the 767 

triggering of a global cooling (Fig. 8), Neotamandua was involved in a niche evolution 768 
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process within Myrmecophagidae which implied a significative increase in dietary diversity 769 

as myrmecophagous and expansion of substrate use and biome selection. Probably the 770 

species of this genus preferred the frequent use of the ground by biomechanical constraints 771 

and made inroads into largely open environments as humid savannahs, without excluding 772 

use of forested environments, like Myrmecophaga (Fuster et al. 2018; Gaudin et al. 2018). 773 

The former model is further supported from the evolutionary response pattern to major 774 

climatic-vegetational changes documented by Badgley et al. (2008) in a faunal sequence of 775 

mammals from the Late Miocene of southern Asia, according to which the trophic niche 776 

evolution and, particularly the expansion of this attribute, in conjunction with habitat 777 

changes, is related to increase in the probabilities of local and regional survivorship in the 778 

studied lineages [Insert Fig. 8 here].  779 

On other hand, the fossil record of the crown-group genera, Tamandua and Myrmecophaga, 780 

is confined to the Pliocene-Pleistocene, but the evolutionary (morphological) divergence of 781 

Myrmecophaga would date back at least to the late Middle Miocene according the first 782 

appearance of Neotamandua, i.e. N. borealis. Under this assumption, the hypothesis of ‘N.’ 783 

magna as a species of Myrmecophaga is perfectly feasible. In any case, the biogeographical 784 

dynamics of the two extant myrmecophagid genera may have been constrained by their 785 

respective ecological tolerances and, they, in turn, by the rapidly changing habitat and 786 

biome distribution in the Americas during at least the last five or six million years (de Vivo 787 

& Carmignotto 2004; Salzmann et al. 2011; Sniderman et al. 2016; Amidon et al. 2017; 788 

Roberts et al. 2018; Grimmer et al. 2018). This applies especially to the case of Tamandua 789 

since this taxon is less generalist in relation to habitat selection than Myrmecophaga 790 

(McDonald 2005). Considering the hypothesis of niche expansion for Neotamandua, the 791 
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differentiation of Myrmecophaga would have accentuated this putative evolutionary trend 792 

through stronger preference for open environments, which is consistent with the general 793 

palaeoenvironment of savannah in the Early Pliocene of the area where occurs the oldest 794 

species of the latter genus, i.e. My. caroloameghinoi (Zavala & Navarro 1993; McDonald et 795 

al. 2008).  796 

The myrmecophagid evolution has a late episode with the complete formation of the 797 

Panama Land Bridge (PLB) in the terminal Neogene (Coates & Stallard 2013; O’dea et al. 798 

2016; Jaramillo 2018). Myrmecophaga tridactyla invaded and colonized Central- and 799 

southern North America (northern Mexico) at least as early as the Early Pleistocene (Shaw 800 

& McDonald 1987; Fig. 7). This dispersal event is part of the Great American Biotic 801 

Interchange (GABI), specifically the episode referred as GABI 2 (Woodburne 2010). 802 

Today, the northern boundary of this species is located in northern Central America, over 803 

3000 Km to the south of the northernmost fossil record (Gaudin et al. 2018). This 804 

distributional difference was interpreted by Shaw & McDonald (1987) from the occurrence 805 

of warmer and more humid conditions in the Early Pleistocene of southern North America 806 

(southern United States-northern Mexico) than today in the same area. These conditions 807 

would have allowed that Myrmecophaga colonize subtropical savannahs with permanent 808 

availability of insects included in its diet (Croxen III et al. 2007; McDonald 2005), but 809 

subsequent climatic-vegetational shifts (desertification) during the Late Pleistocene would 810 

have forced from extirpation a range shrinkage of this taxon towards lower latitudes 811 

(McDonald 2005; Ferrusquía-Villafranca et al. 2017). The distributional range pattern of 812 

tropical taxa expanded towards southern North America during some intervals of the 813 

Pleistocene has been well supported from the records of multiple taxa other than 814 
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Myrmecophaga, including mammals and sauropsids (Shaw & McDonald 1987; Moscato & 815 

Jasinski 2016; Ferrusquía-Villafranca et al. 2017).  816 

Like Myrmecophaga, Tamandua also colonized (or evolved in) northern continental 817 

territories outside South America. This is supported from the occurrence of Tamandua sp. 818 

in the terminal Pleistocene of Central Mexico (Arroyo-Cabrales et al. 2004; Ferrusquía-819 

Villafranca et al. 2010; Fig. 7). In its northern zone, the current distributional area of T. 820 

mexicana includes latitudes comparable with that of the referred fossil record for this 821 

species (Navarrete & Ortega 2011). Central Mexico is part of the transitional area between 822 

the current Neotropical and Neartic regions, called Mexican Transition Zone (MTZ; 823 

Halffter & Morrone 2017). All these observations, in conjunction with the above 824 

interpretation of the Neogene biogeographical and environmental patterns, suggest that 825 

Myrmecophagidae kept throughout its evolutionary history a niche conservatism associated 826 

with tropical (warm) habitats (a case of phylogenetic niche conservatism or PNC; see 827 

Cooper et al. 2011; Fig. 8), possibly in parallel with the same pattern in species groups of 828 

its prey insects (Thompson 1994). Even more, the fact that Myrmecophagidae currently 829 

accumulates its highest species richness in the warmest and wettest belt of the Americas 830 

(Hayssen 2011; Navarrete & Ortega 2011; Miranda et al. 2017; Gaudin et al. 2018) is 831 

further interpreted as evidence that this higher taxon represents support for the tropical 832 

niche conservatism hypothesis (TCH; Wiens & Donoghue 2004; Wiens & Graham 2005). 833 

However, in line with the discussion above, this major ecological constraint in 834 

Myrmecophagidae is not only related to environmental thermal tolerance (see McNab 835 

[1985] for an analysis on the thermophysiological constraints of the Xenarthra; McNab 836 

[1984] also discussed the same issue for myrmecophagous mammals), as emphasized by 837 
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TCH, but it is also driven by food availability, at least by limiting or preventing historical 838 

colonization of low-productivity regions far from the tropics (Shaw & McDonald 1987; 839 

McDonald 2005; Šímová & Storch 2017; Fig. 8). 840 

 841 

Conclusion 842 

The systematic evidence presented here suggests that probably the diversification of 843 

Myrmecophagidae is taxonomically and biogeographically more complex than previously 844 

thought. This insight is based on the description of the new taxon Gen. et sp. nov. for the 845 

Middle Miocene of Colombia (co-occurrent species of N. borealis) and the determination 846 

of Neotamandua, as previously defined, as a wastebasket taxon which is probably formed 847 

by species belonging to more than one single genus. While Gen. et sp. nov. possibly has 848 

affinities with Tamandua, more information is needed to test its phylogenetic position 849 

within Myrmecophagidae. On the other hand, N. borealis, N. greslebini and Neotamandua 850 

sp. share postcranial features (potential synapomorphies) that imply some grade of kinship 851 

between them. Therefore, the two nominal species among the former ones are provisionally 852 

kept within Neotamandua. Alternatively, these features also may constitute 853 

symplesiomorphies of a hypothetical lineage which is apparently close to Myrmecophaga. 854 

The remaining nominal species referred to Neotamandua, i.e. ‘N.’ magna and N.? australis 855 

were designated as species inquirendae. Overall, it is necessary to develop new systematic 856 

revisions, including new phylogenetic analyses similar to that of Gaudin & Branham 857 

(1998), from new material referable to Gen. et sp. nov. and the referred species to 858 

Neotamandua, so as to obtain enough evidence to solidly determine the phylogenetic 859 

position of the new species from La Venta and corroborate the putative monophyletic status 860 
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of Neotamandua. In line with the foregoing considerations, the paleontological exploration 861 

of Neogene sedimentary units in northern South America and northern Argentina is crucial 862 

to improve our understanding of the diversification of Myrmecophagidae. 863 
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 1358 

Figure captions  1359 

Figure 1. Geographical and stratigraphic provenance of the skull VPPLT 975 of the new 1360 

taxon described here and the holotype of Neotamandua borealis (Hirschfeld 1976). A, 1361 

location of the Department of Huila in Colombia; B, location of the fossil area of interest, 1362 

i.e. northern of La Venta area, in the Department of Huila (small rectangle); C, location of 1363 
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the fossil site (black star), near the La Victoria town; D, stratigraphic scheme of Guerrero 1364 

(1997) for La Venta area, with approximate stratigraphic provenance of VPPLT 975 and 1365 

the holotype of N. borealis. 1366 

Figure 2. Cranial measurements used in this work. All are based on Hossotani et al. (2017). 1367 

Nomenclatural modifications from these measurements are shown in the section of 1368 

Anatomical Abbreviations. A, skull of Tamandua in dorsal view; B, the same skull in 1369 

ventral view. Abbreviations: FL, frontal length; GSL, greatest skull length; MBW, 1370 

maximum braincase width; ML, maxilla length; NL, nasal length; NW, nasal width; PL, 1371 

parietal length. 1372 

Figure 3. Holotypic skull (VPPLT 975) of Gen. et sp. nov. A, dorsal view; B, right lateral 1373 

view; C, ventral view; D, left lateral view; E, anatomical drawing in dorsal view; F, 1374 

anatomical drawing in right lateral view. Abbreviations: fr, frontals; ji, jugal insertion; la, 1375 

lacrimal; mx, maxilla; na, nasals; or, orbit. Scale bar equal to 30 mm. 1376 

Figure 4. Two very informative postcranial bones of the holotype (UCMP 39847) of 1377 

Neotamandua borealis (Hirschfeld 1976). A, right astragalus, dorsal view; B, right 1378 

astragalus, ventral view; C, left calcaneum, dorsal view; D, left calcaneum, lateral view; E, 1379 

anatomical drawing of the astragalus in dorsal view; F, anatomical drawing of the 1380 

astragalus in ventral view; G, anatomical drawing of the calcaneum in dorsal view; H, 1381 

anatomical drawing of the calcaneum in lateral view. Abbreviations: af, calcaneal 1382 

accessory facet; ct, calcaneal tuber; ef, ectal facet; ff, fibular facet; h, astragalar head; lr, 1383 

lateral ridge; lt, lateral trochlea; mt, medial trochlea; sf, sustentacular facet. Scale bar equal 1384 

to 20 mm. 1385 
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Figure 5. Epitype (FMNH P14419) of Neotamandua conspicua. A, dorsal view; B, right 1386 

lateral view; C, ventral view; D, left lateral view; E, right hemimandible; F, left 1387 

hemimandible; G, anatomical drawing in dorsal view; H, anatomical drawing in ventral 1388 

view; I, anatomical drawing in left lateral view. Abbreviations: ab, auditory bullae; fr, 1389 

frontals; j, jugal; mx, maxilla; na, nasals; oc, occipital condyles; pal, palatines; ptb, 1390 

pterygoid bullae; pte, pterygoids; szp, squamosal zygomatic process. Scale bar equal to 80 1391 

mm. 1392 

Figure 6. Reconstruction the external appearance in life of Gen. et sp. nov. (close-up view). 1393 

In the background, individuals of the macraucheniid Theosodon (left) and the alouattine 1394 

Stirtonia (upper right corner) in the tropical forest of La Venta, late Middle Miocene of 1395 

Colombia. 1396 

Figure 7. Geographic and chronological distribution of the myrmecophagid fossil records 1397 

during the Late Cenozoic. Note the only two fossil records of these xenartrans outside 1398 

South America in the Pleistocene of southern and northern Mexico (Tamandua sp. and 1399 

Myrmecophaga tridactyla, respectively). Based on information compiled by McDonald et 1400 

al. (2008). Original references in the same work and, largely, in the main text here. 1401 

Figure 8. Chronological collation of data on: A, biochrons of the myrmecophagid genera or 1402 

questionable grouping (horizontal solid bars and dashed line); B, distribution of the highest 1403 

latitudinal fossil records (northern and/or southern) of myrmecophagids (horizontal solid 1404 

bars) and approximate, chronologically discrete latitudinal ranges of tropical rainforest plus 1405 

tropical and subtropical dry broadleaf forest (i.e. frost-free areas [mean annual temperatures 1406 

higher than 15°C] with significant rainfall, at least seasonally; large vertical rectangles); C, 1407 

general trend curve of global temperature and climatic episodes during the Late Cenozoic: 1408 
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a, early Neogene warm recovery, including the thermal peak in the late Early-early Middle 1409 

Miocene known as Middle Miocene Climatic Optimum or MMCO; b, Middle Miocene 1410 

climatic transition; c, late Middle-Late Miocene cooling; d, Early Pliocene warming; e, 1411 

Late Pliocene-Pleistocene cooling and glaciations. The vertical dashed line indicates the 1412 

time of complete formation of the Panama Land Bridge, which represented thereafter a 1413 

fundamentally continuous physical connection between South- and North America. 1414 

Palaeocological data used for the plot in ‘B’ is from the following references: Huntley & 1415 

Webb III (1988); Toby Pennington et al. (2000); Williams et al. (2004); Williams (2009); 1416 

Chan et al. (2011); Morley (2011); Kay et al. (2012); Pound (2012); Pound et al. (2012); 1417 

Forrest et al. (2015); Lohmann et al. (2015); Dowsett et al. (2016); Sniderman et al. (2016); 1418 

Henrot et al. (2017); Frigola et al. (2018). The temperature curve in ‘C’ is based on Zachos 1419 

et al. (2001, 2008) and it is reproduced with permission. 1420 

 1421 

 1422 

 1423 

 1424 

 1425 

 1426 

 1427 

 1428 

 1429 
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TABLES 

 

Table 1. Cranial measurements (in mm) for the holotype of Gen. et sp. nov. and other 
myrmecophagid species 

 

a. VPPLT 975 (holotype) 
b. YPM-15267 
c. FMNH P14419 
d. Mean of a sample of (sub) adults, n = 8 (Appendix 2, Supplementary material) 
e. Mean of a sample of (sub) adults, n = 10 (Appendix 2, Supplementary material) 

*Incomplete skull. Rough estimate of GSL for Gen. et sp. nov. from a simple linear model based on 
some skull measurements for Tamandua (see Supplementary Material) is equal to 118.6 mm. 

**Fractured rostrum 

 

 

 

 

 

 

 

 

 

 

Measurement Gen. et sp. nov. a P. rothi b N. conspicua c T. tetradactyla d M. tridactyla e 

GSL  80.7* 77* 210** 125.7 327.5 

NL 30.9 � ~110 38.2 127.5 

NW 4.8 � 11.1 7.7 14.2 

FL � ~27 � 53.1 143.9 

MBW � 36 ~51 42.2 60.4 

PL � ~20 � 20.1 26 
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Table 2. Comparison of some postcranial measurements (in mm) between N. borealis and 

N. greslebini. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measurement N. borealis N. greslebini 

Maximum distal width of the 
radius 16.5 29 

Maximum proximal width of 
the tibia 29.5 46 

Proximo-distal length of the 
astragalus 41.5 55 

Maximum width of the 
astragalus 16.4 20.5 
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Table 3. Comparison of some postcranial measurements (in mm) between N. borealis and 

Neotamandua sp. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measurement N. borealis Neotamandua sp. 

Maximum distal width of the 
radius 16.5 35 

Maximum width of the tibial 
articulation of the astragalus 20 24 

Maximum width of the 
calcaneum 20 ~21 
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Table 4. Distribution of some postcranial characters of species referred to Neotamandua and other myrmecophagid taxa. The 

 N. borealis N. greslebini Neotamandua sp. Protamandua Tamandua Myrmecophaga 

Relative body 
size 

Medium to large Large Very large Small Medium Very large 

Character       

1. Arrangement 
of the radial 
ridges 

Parallel ridges Parallel ridges Parallel ridges NA 
Distally 
convergent 
ridges 

Parallel ridges 

2. Rotated 
appearance of 
the distal radius 

Absent Absent Absent Absent Present Absent 

3. Tibial mid-
section*  

Sub-rounded to 
gently triangular 

Sub-rounded to 
gently triangular 

NA NA Rounded 
Strongly 
triangular 

4. Arrangement 
of the ectal and 
sustentacular 
facets in the 
astragalus* 

Largely separated, 
but with an 
incipient 
connection 

Largely separated, 
but with an 
incipient 
connection 

NA Fully separated Fully separated 
Widely 
connected 

5. Tendinous 
groove in the 
lateral side of 
the calcaneum* 

Short Short NA Absent Absent Long 

.
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characters marked with asterisk contain potentially diagnostic character states (synapomorphies?) for Neotamandua.  
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Table 5. Taxonomic breadth in diet (genus level) of extant genera of Vermilingua and 
habitat preference of their MDCs (genera or species groups considered main dietary 
components). Key for the references: (1) Best & Harada (1985); (2) Fuster et al. 2018; (3) 
Gallo et al. (2017); (4) Gaudin et al. (2018); (5) Gómez et al. (2012); (6) Hayssen (2011); 
(7) Hayssen et al. (2012); (8) Jiménez et al. (2018); (9) Lubin & Montgomery (1981); (10) 
Medri et al. (2003); (11) Miranda et al. (2009); (12) Montgomery (1981); (13) Montgomery 
(1985a); (14) Montgomery (1985b); (15) Morales-Sandoval (2010); (16) Navarrete & 
Ortega (2011); (17) Redford (1985); (18) Rodrigues et al. (2008); (19) Sandoval-Gómez et 
al. (2012). 

 

Extant anteater 
genera 

Termite 
genera 

Ant 
genera 

Some MDCs 
Habitat 
preference of 
MDCs 

References 

Cyclopes 0 8 
Camponotus 
Dolichoderus 
Solenopsis 

Rainforest, 
seasonally dry 
tropical forest; 
trees 

1, 7, 11, 13, 
19 

Tamandua 7 17 

Nasutitermes 
Camponotus 
Crematogaster 
Solenopsis 

Seasonally dry 
tropical forest, 
rainforest; trees 
and ground 

3, 6, 9, 12, 
14, 15, 16 

Myrmecophaga 
 
8 
 

 
31 
 

Cornitermes 
Syntermes 
Atta 
Solenopsis 
Camponotus 
Acromyrmex 
Pheidole 

savannah, 
grassland; 
ground 

2, 3, 4, 5, 8, 
10, 14, 17, 
18, 19 
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