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Abstract: 15 

We present ProteoClade, a Python toolkit that performs taxa-specific peptide assignment, protein infer-16 

ence, and quantitation for multi-species proteomics experiments. ProteoClade scales to hundreds of 17 

millions of protein sequences, requires minimal computational resources, and is open source, multi-18 

platform, and accessible to non-programmers. We demonstrate its utility for processing quantitative 19 

proteomic data derived from patient-derived xenografts and its speed and scalability enable a novel de 20 

novo proteomic workflow for complex microbiota samples.  21 

 22 

Main Text: 23 

The goal of metaproteomic and multispecies proteomic studies is to characterize the proteomes of sam-24 

ples containing multiple, comingled species, which can provide insight into the complex interactions at 25 

the interface between organisms. Proteomic analysis of these samples can quantify thousands of pro-26 

teins from hundreds of species in a single mass spectrometry experiment1, characterize education of 27 

stromal tissue by patient-derived xenografts (PDXs)2, and extensively characterize the human oral mi-28 

crobiome3.  29 

Metaproteomic and multispecies data analyses depend on the ability to integrate reference protein se-30 

quence databases, taxonomic lineages, in silico proteolytic digestion, peptide identification, and quanti-31 

tation. These studies universally perform bottom-up analysis, where proteins are digested into peptides 32 

with a protease, and therefore require assignment of peptides to proteins based on their taxonomic 33 

specificity.  Several software tools provide one or more of these features, but have practical and tech-34 

nical limitations that render them unable to facilitate complete analysis pipelines of quantitative prote-35 

omics data and scale to the rapidly increasing number of available reference protein sequences4,5. With 36 

regard to annotating peptides to taxa, Unipept is a commonly used taxonomic annotation tool that can 37 

provide access to the entire UniProt sequence repository, provides web-based visualizations and a 38 
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command line interface, and was demonstrated to annotate peptides orders of magnitude faster than a 39 

prior UniProt-based application, Peptide Match6,7. However, the Unipept database is unavailable for the 40 

end-user to customize, is restricted to a fixed set of assumed experimental parameters such as protease, 41 

cannot be used with custom protein databases such as those generated by sequencing, and lacks capa-42 

bility for protein quantitation which limits its utility for analyzing many experimental data sets. Addi-43 

tionally, the Unipept database was generated using high performance computing resources which poses 44 

a technical challenge as the number of sequences in UniProt grows exponentially5,8. Other tools offering 45 

more complete metaproteomic pipelines such as MetaProteomeAnalyzer (MPA) support database gen-46 

eration, peptide spectral matching, and taxonomic parsing. However, these tools restrict the user to 47 

bundled open-source targeted database search engines which scale poorly when using large reference 48 

database sizes such as the entirety of UniProt9. MPA also lacks support for post-translational modifica-49 

tions and common MS2-based quantitation approaches, limiting its applicability. 50 

To overcome these limitations, we developed ProteoClade, an open-source Python library that enables 51 

flexible, rapid, and easy taxon-specific quantification for proteomic experiments. ProteoClade utilizes 52 

standard taxonomic and protein sequence repositories and is optimized for large databases. Proteo-53 

Clade is the first tool to 1) enable users to generate and search customizable, in silico digested peptide-54 

to-taxa mapped databases that can scale to the entire UniProt database with the optional inclusion of 55 

user-specified reference protein sequences; and 2) provide a novel de novo workflow to efficiently an-56 

notate peptides sequenced without defining the taxonomic composition a priori. Additionally, Proteo-57 

Clade allows the user to choose their preferred commercial or open-source search engine, as well as 58 

preserves MS1-, MS2-, and spectral count-based quantitation from the experiment to calculate gene-59 

level, taxon-specific quantitative results. Together, ProteoClade uniquely enables fast, taxon-specific 60 

quantitation of database-targeted multispecies experiments as well de novo searches enhanced by large 61 

databases for complex metaproteomic experiments. The ProteoClade software is freely available at 62 
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http://github.com/HeldLab/ProteoClade . 63 

ProteoClade retrieves complete taxonomic lineages from the NCBI, and interfaces directly with the Uni-64 

Prot API to download and concatenate reference protein sequence databases based on the organism IDs 65 

and database parameters supplied by the user. To assign peptide-spectral matches from mass spectra 66 

search engines to both taxon and gene identifiers, ProteoClade creates a SQLite database (ProteoClade 67 

Database: PCDB) by digesting reference proteomes in silico with proteolytic parameters that can be cus-68 

tomized according to the user’s experimental conditions (Fig. S1). The PCDB addresses scalability issues 69 

by storing peptide sequences as hashed integer values which compresses the average peptide storage 70 

requirement by 62.8%. ProteoClade leverages multiple CPUs for parallel processing to speed both the 71 

PCDB creation and search functions, and indexes the database to quickly assign peptides to taxon-72 

specific genes. ProteoClade’s implementation is further detailed in the STAR methods. 73 

Metaproteomic experiments involving communities of many organisms present substantial computa-74 

tional challenges since more sequence information available to aid in the identification and quantitation 75 

of the experimental data requires more computational resources. Thus, it is imperative to efficiently 76 

store and parse these data for taxonomic assignment and protein quantitation in light of the dramatic 77 

increase in the number of organisms with proteomic annotation.  We evaluated ProteoClade’s scalability 78 

by creating a tryptic PCDB from the November 2018 release of UniProt containing 140.2 million protein 79 

entries (UniProt PCDB). The resultant database contained 10.7 billion peptides, 5.02 billion of which 80 

were unique, from 1,040,460 organisms. PCDB creation, including indexing, took only 11 hours on mod-81 

est consumer-grade hardware and resulted in a 515GB file (Fig. S2a), demonstrating that ProteoClade 82 

enables the use of large, customizable peptide databases. 83 

We compared the database indexing and taxonomic annotation features of Unipept, MetaProteomeAn-84 

alyzer (MPA), and ProteoClade to highlight ProteoClade’s optimizations and improvements over prior 85 
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taxonomic tools. For peptide database creation and indexing, ProteoClade uses 32-fold less RAM and 6-86 

fold less time than Unipept, and > 60-fold less RAM and > 120 fold less time than MPA (Fig. S2a, S2b).  87 

We found that ProteoClade annotates experiments at 8.8x the speed of Unipept and preserves quantita-88 

tive information with the ability to sum the peptides’ quantitation to the gene level as is common in 89 

multispecies experiments, while MPA lacked the ability to annotate peptides outside of database-90 

targeted searches (Fig. S2c). ProteoClade’s technical optimizations enable taxonomic annotation and 91 

quantitation of peptides at a speed and scale that exceed previously used tools. 92 

To demonstrate ProteoClade’s ability to perform integrated, species-specific quantitation of multi-93 

species samples, we analyzed publicly available TMT-labeled global proteomics data from Patient-94 

derived xenograft (PDX) lines in which six triple-negative breast cancer tumors were each grafted into 95 

three mice, but were originally analyzed without considering mouse-specific peptides10. PDXs are a bur-96 

geoning, mixed-species model of tumor biology11 in which the stromal microenvironment of tumors, 97 

comprised of fibroblasts, immune-related cells, and vasculature, is originally human but is replaced after 98 

several passages by murine cells. Thus, species-specific proteomic analysis of PDX data can simultane-99 

ously and independently characterize the tumor and the invasive murine stroma to examine how tu-100 

mors remodel stromal proteomes in a process known as stromal education2. 101 

ProteoClade was used to create a customized, concatenated human and mouse UniProtKB/Swiss-Prot 102 

database for both peptide-spectral matching with MaxQuant and creation of a PCDB for species-specific 103 

taxonomic annotation and filtering (Fig. 1a). In addition, ProteoClade’s quantitation module flexibly al-104 

lows for species-specific summation of TMT reporter ions to each peptide’s assigned gene symbol to 105 

generate quantitative proteomic maps of the tumor and stromal proteomes. 106 

Taxon-specific peptide assignment with a tool such as ProteoClade is important in multi-species samples 107 

since peptides with shared amino acid sequences between human and mouse may bias proteomic quan-108 
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titation of PDXs. By digesting peptides in silico, we found that 71.1% of genes in the human proteome 109 

produce tryptic peptides with sequences identical to their murine homolog, and thus most human and 110 

mouse proteins are potentially susceptible to quantitative interference by the presence of the other or-111 

ganism. We examined the consequences of normalizing and quantifying the human and mouse compo-112 

nents of the data by comparing a naive informatic assumption that only one organism was present to 113 

utilizing ProteoClade for species-specific peptide filtering and protein quantification (Fig. 1b). The rela-114 

tive protein abundance varied by more than 1.5-fold for 262 genes in the human-specific data and 891 115 

genes in the murine-specific data, highlighting the large bias that the inclusion or exclusion of species-116 

shared peptides can have on the quantitation. Overall, genes share a higher proportion of tryptic pep-117 

tides have larger differences in gene-level quantitation indicating that taxonomic interference has a sub-118 

stantial effect on the resulting data (Fig. 1b).  119 

ProteoClade greatly facilitated species-specific quantitation of this PDX dataset10, identifying 2,326 mu-120 

rine proteins in the microenvironment that are significantly altered by patient-derived tumors, the most 121 

expansive set of tumor-educated stromal proteins to date. The murine proteins clustered by biological 122 

replicate, confirming that tumor-intrinsic factors drive tumors to persistently educate the stromal pro-123 

teome as previously observed (Fig. 1c)2. ANOVA revealed that stromal education by tumors is wide-124 

spread, with 77.1% of stromal proteins differentially regulated by the embedded tumors. Differentially-125 

regulated stromal proteins combined from this analysis and a prior study (n = 3,015 proteins) were en-126 

riched for proteins in the extracellular matrix, cytoskeletal processes, and myeloid-derived immune 127 

components which are important contributors to tumor growth and metastasis (Fig. 1d)2,10. 128 

Beyond two-species systems, we examined ProteoClade’s applicability to large-scale metaproteomics 129 

workflows using the entire UniProt repository, which enables taxonomic annotation to all potential or-130 

ganisms in the sample (Fig. 2a). One important consideration for metaproteomic analysis is that all se-131 
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quence databases are biased by the inclusion and exclusion criteria selected by their curators. 132 

Overrepresentation of peptidomes from certain genera and peptide sequence similarity between relat-133 

ed organisms can result in misattributing taxon-specific peptides due to errors in mass spectrometry-134 

based detection and sequencing. We establish that UniProt has a substantial sequence bias from the 135 

perspective of bottom-up proteomics experiments by quantifying the number of peptides contained in 136 

the UniProt PCDB for each genus as well as the proportion of peptide sequences that were unique (Fig. 137 

2b). By mapping all 5.02 billion unique peptides back to their respective genera, we found that taxonom-138 

ic redundancy from the inclusion of thousands of bacterial strains results in vast overrepresentation of 139 

tryptic peptides from several genera, including Streptomyces, Pseudomonas, and Bacillus. These 140 

overrepresented genera are likely to be identified in nearly every genus-specific proteomic analysis re-141 

gardless of their presence or absence in the sample, highlighting the importance of user-customization 142 

to database generation. We provide a table of these data to help inform when selecting a narrower da-143 

tabase scope for certain genera in UniProt may be appropriate (Table S1).  144 

De novo proteomic analysis is advantageous for metaproteomics since it does not require pre-specifying 145 

which organisms are present, which is a requirement for the database-targeted MS2 search approaches 146 

universally utilized in metaproteomics. ProteoClade integrates with de novo searches since it can taxo-147 

nomically annotate and quantify de novo search results in a unique workflow that can identify organisms 148 

and proteins without a priori specification, obviating the need for 16s rRNA sequencing or metagenomic 149 

assembly for proteomics studies. ProteoClade enables this unique informatic workflow by assigning mil-150 

lions of candidate peptide sequences from de novo searched spectra unbiasedly to all possible organ-151 

isms, which ProteoClade makes possible without the use of high performance computing resources (Fig. 152 

S2).  153 
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We evaluated using ProteoClade for de novo peptide assignment of a large oral microbiome proteomic 154 

data set3 previously analyzed with a standard database-targeted approaches by coupling the UniProt 155 

PCDB with de novo MS2 assignment (Fig. 2a)3. ProteoClade parsed 8.13 million peptide-spectral match 156 

candidates to annotate 1.83 million MS/MS scans in 1.94 hours (261 spectra per second), making this 157 

time-efficient even when challenged with large data sets and reference databases.  We identified genus-158 

unique peptides for 39 genera from the oral microbiome in this dataset without prior specification of 159 

the bacterial taxa present in the sample, despite the fact that our criteria for identification included ge-160 

nus-specificity in the context of more than 72,000 genera compared to the 108 genera present in the 161 

Human Oral Microbiome Database used for the original publication (Fig. 2c)12. 162 

We next developed an approach to serially check every candidate sequence for each MS2 spectrum until 163 

a match in the PCDB was found, and compared these results to an approach which only considers the 164 

top scoring candidate for each spectrum. As de novo search engines lack a reference database and do 165 

not provide false discovery correction for peptide sequencing, we additionally used ProteoClade to gen-166 

erate a reverse 'decoy' sequence PCDB, and annotated the peptide sequence candidates using the pa-167 

rameters we chose for our forward search. We then compared the proportion of annotations to the 168 

forward database to the reverse database for each genus, which is the same strategy that is used for 169 

most targeted database searches, but is novel to de novo searches13. The combination of considering 170 

multiple candidate amino acid sequences for every spectrum and offsetting false discovery with a decoy 171 

database increased the number of identified genus-unique human peptides by 32.6% in the forward 172 

PCDB annotations, while we observed no increase in the reverse, decoy PCDB annotations (Fig. 2c). This 173 

demonstrates that ProteoClade can identify more biologically-valid peptide sequences than would oth-174 

erwise be offered by upstream de novo search software. For several bacterial genera, including Prevotel-175 

la and Lactobacillus, we found an increase in both the forward and reverse PCDB annotations, indicating 176 

that while the number of peptide candidate sequences increased, those candidates are likely false posi-177 
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tives. By comparing all forward and reverse annotations, we observed a threshold (>7 Δforward-reverse 178 

genus specific peptides) above which only genera known to have been identified in the human oral cavi-179 

ty are present. We identified human and 14 bacterial genera above this threshold without prior specifi-180 

cation, including Streptococcus, which was previously reported as the most abundant genus in the oral 181 

microbiome (Fig. 2d)14.  182 

ProteoClade enables taxon-specific analysis of targeted database and de novo proteomic experiments. It 183 

functions on all major operating systems and operates at a speed and scale that enable fast and novel 184 

forms of proteomic data processing using consumer hardware. We expect ProteoClade’s ease of use, 185 

applicability to a broad set of biological model systems such as PDXs and metaproteomics, and its novel 186 

integration with de novo spectral searches4 provides a unique and powerful tool to researchers perform-187 

ing quantitative proteomic analysis of multiple mixed species. 188 
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1 
 

Materials and Methods 1 

 2 

ProteoClade implementation and testing 3 

ProteoClade was developed using Python 3.6 (64-bit) and has been tested on Windows 7, MacOS High 4 

Sierra (10.13), and Ubuntu Linux (18.04).  All functions have been run and timed using a computer with 5 

an Intel i7-2600k processor, 16 gigabytes of RAM, and a Samsung 860 EVO solid state drive. Taxonomic 6 

rankings are retrieved directly from the NCBI FTP servers and are assembled as a pickled Python 7 

dictionary object which is stored in RAM and allows the software to rapidly assign higher level 8 

taxonomies from organism taxonomy cross-reference (OX) IDs with O(1) time complexity. Protein 9 

sequences are retrieved using UniProt’s REST API to enable the selection of specific combinations of taxa 10 

or database sources (SwissProt, TrEMBL, and/or Reference) using the OX IDs.   11 

 12 

The ProteoClade Database (PCDB) and all analyses we performed used the default digest parameters of 13 

peptides that range from 7-55 amino acids in length, trypsin with C-terminal proline allowed (trypsin/p), 14 

protein N-terminal methionine excision, leucine-isoleucine interconversion, and all combinations up to 15 

two missed cleavages; however, we enable the user to select from any variation of these rules, including 16 

alternative built-in or custom proteases and alternative ranges of amino acid lengths. Peptides are 17 

stored as hashed integers in the PCDB in order to reduce the on-disk storage size.  The PCDB creation 18 

process was optimized with the use of multiprocessing for computing the hashed peptide integers and 19 

integrating them into the database. Similarly, peptide indexing makes use of multiple threads which 20 

reduces the total time required for database creation, and is saved as a separate step at the end of 21 

database creation to allow the database creation time to scale linearly with the number of protein 22 

sequences inserted into it.  23 

 24 
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2 
 

Peptide annotation was implemented as a multithreaded process and pushes the bottleneck of 25 

ProteoClade’s performance to the input-output operations per second (IOPS) of the harddrive. 26 

Annotation can be performed at any combination of taxa the user requests. Quantitative information 27 

from search engine outputs is preserved during annotation, and is assigned to gene symbols on the basis 28 

of filters supplied by the user. These filters include specifying a taxonomic level to determine the 29 

taxonomic uniqueness of a sequence, inclusion and exclusion lists for taxa that the use may want to 30 

include or exclude, and a default taxon that can be used to assign quantitative information in the event 31 

that multiple taxa are present but only one is of interest to the user, all of which allow the user to create 32 

taxon-specific data sets with flexible criteria. Detailed documentation for user-facing functions is 33 

included at https://proteoclade.readthedocs.io. 34 

 35 

ProteoClade was benchmarked against MetaProteomeAnalyzer (MPA Portable v. 1.9) and Unipept (v. 36 

1.4.1) to assess database creation and taxon annotation speeds. Benchmarking hardware was the same 37 

as described above for ProteoClade’s testing. For MPA, time and RAM requirements for peptide indexing 38 

were monitored over a 24 hour period of attempting to search a simple mass spectra file using the 39 

November 2018 UniProt repository, and figures listed in Fig. S2 are based on the projected estimates, as 40 

the software had consumed 14 GB out of 16 GB available RAM in the first 24 hours while only processing 41 

the first 2 million (out of 140 million) protein sequences. Unipept times and RAM requirements are 42 

taken from the latest Unipept publication1 as the Unipept team reported using a high performance 43 

computer, and additionally database creation is not a feature of the software that is available for end 44 

users to perform. For taxa annotation speed, three files of 5,000 peptides were randomly drawn from 45 

the database, and were taxonomically annotated using Unipept’s “pept2taxa” and ProteoClade’s 46 

“annotate_peptides” functions. 47 

 48 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 7, 2019. ; https://doi.org/10.1101/793455doi: bioRxiv preprint 

https://proteoclade.readthedocs.io/
https://doi.org/10.1101/793455


3 
 

PDX proteomic search 49 

Raw spectra files for the Mundt et al. study2 were downloaded from the Clinical Proteomics Tumor 50 

Analysis Consortium (CPTAC) data portal (https://cptac-data-portal.georgetown.edu/cptac/public). 51 

ProteoClade was used to retrieve and concatenate the January 2018 human and mouse SwissProt 52 

proteome references into a single FASTA file. A PCDB was generated using the same concatenated 53 

database with default settings to enable quick annotation.  Spectra were searched using MaxQuant 54 

1.6.0.16 with the following parameters: the instrument acquisition settings were set to the default 55 

Orbitrap parameters and the protease selected was trypsin/p. Cysteine carbamidomethylation was set 56 

as a fixed modification, with protein N-terminal acetylation and methionine oxidation set as variable 57 

modifications. TMT 6-plex MS2 ions were used for quantification. The PSM and peptide FDRs were set to 58 

0.01. 59 

 60 

ProteoClade PDX annotation and quantitation 61 

ProteoClade was used to annotate the resultant peptide (“peptides.txt”) files by organism and gene 62 

symbol. For each of the mouse and human tissue perspectives, data were analyzed two ways: 1) one in 63 

which peptides were included assuming only the organism of interest was present, and 2) one in which 64 

both organisms were assumed present for data normalization but separated into species-specific data 65 

sets. For method 1, ProteoClade filtered peptides into a data set in which the organism of interest only 66 

had to be a plausible assignment for each peptide and the other organism was excluded, simulating a 67 

targeted proteomics search in which only a single organism’s proteome was used as a reference. 68 

ProteoClade assigned peptide sequences and summed the MS2 intensities to gene symbols and then 69 

data were normalized by taking the relative intensities of each TMT channel compared to the internal 70 

reference pool for each TMT-plex used in the experiment, log2-transforming the data, centering the 71 

data by each channel’s median, and dividing the relative intensities of each channel by the channel’s 72 
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4 
 

standard deviation. For method 2, ProteoClade assigned peptides to organisms only if the peptide was 73 

unique to that organism in the context of the combined human and mouse proteomes. Downstream 74 

processing was similar to method 1, but the human and mouse genes quantified using species-unique 75 

peptides were separated to yield two distinct data sets after gene assignment and data normalization. 76 

Mouse and human data processing approaches were compared using the absolute difference between 77 

methods 1 and 2, and plotted using matplotlib 3.0.2. 78 

 79 

To obtain a theoretical perspective of tryptic peptide similarity, the human and mouse Swiss-Prot 80 

(release 2018_01) reference databases were digested using a modified version of ProteoClade’s digest 81 

function. This yielded raw (i.e., non-compressed) peptide sequences which could be compared across 82 

homologs using their respective gene symbols. 83 

 84 

Differential gene expression of PDX stroma 85 

The species-specific murine data set from Mundt et al.2  was selected for differential gene expression 86 

analysis. For each PDX WHIM sample, TMT channels corresponding to 2 hour vehicle, 50 hour vehicle, 87 

and “washout” were used as replicates. Genes were compared across WHIM samples using one-way 88 

analysis of variance (ANOVA), and the FDR was calculated and set to a limit of 0.05 using the Benjamini-89 

Hochberg method (RStudio 1.0.153). Data were graphed using ggplot. 90 

 91 

Pathway analysis of PDX stroma 92 

Differentially-regulated stromal gene lists from both PDX studies2,3 as determined by FDR-corrected 93 

ANOVA were combined for pathway analysis. Mouse genes were further filtered by removing plasma4 94 

and abundant erythrocyte proteins identified by proteomics5 prior to downstream analysis. The web-95 

based gene set analysis toolkit WebGestalt6 was used for overrepresentation analysis of the stromal 96 
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5 
 

proteins differentially regulated by PDX tumors in either dataset (2,2293 genes) versus those that were 97 

not (671 genes) using the default parameters, Homo sapiens as the organism, redundant datasets, and 98 

the affinity propagation option for redundancy reduction.   99 

 100 

Genus-level peptidome diversity 101 

Taxonomic representation and sequence diversity at the tryptic peptide level was calculated using a 102 

modified version of ProteoClade’s PCDB module. A tryptic digest of the complete Swiss-Prot and TrEMBL 103 

sequences (release 2018_11) using ProteoClade’s default parameters was performed, but rather than 104 

assign peptides to organisms, non-compressed peptides were assigned directly to genera. Each peptide 105 

in the resultant database was checked for genus specificity, and the number of unique and shared 106 

peptides for each genus was tallied using custom scripts. Data for the number of unique peptides and 107 

fraction shared between genera were plotted using matplotlib. 108 

 109 

Oral microbiome de novo search 110 

Raw spectra from the Grassl et al. study7 were retrieved from ProteomeXchange under ID PXD003028. A 111 

de novo search was performed using PEAKS Studio X (10) with the following parameters: the parent 112 

mass error tolerance was set to 10 ppm, the fragment mass error tolerance was set to 0.05 Da, the 113 

enzyme was set to trypsin, and MS2 fragmentation was set to higher energy collision-induced 114 

dissociation (HCD). Cysteine carbamidomethylation was set as a fixed modification and methionine 115 

oxidation was set as a variable modification. ProteoClade was used to make a PCDB of all 140.2 million 116 

Swiss-Prot and TrEMBL (release 2018_11) sequences for annotation using its default parameters as 117 

described in the implementation section. 118 

 119 
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ProteoClade de novo annotation and genus identification 120 

The searched results file (‘all de novo candidates.csv’) was filtered to only include candidate PSMs with a 121 

minimum average local confidence (ALC) score of 50.  ProteoClade was used to annotate these PSM 122 

candidates using the “Database-Constrained” method, and assigned peptides to the species, genus, and 123 

superkingdom ranks. For the Database-Constrained method, candidates for each MS/MS spectra were 124 

ordered by descending confidence score, and the sequences were serially checked against the UniProt 125 

PCDB until a match, if any, was found. Peptides that did not belong to either to the bacteria 126 

superkingdom or human species were removed prior to further processing. Peptides with post-127 

translational modifications were combined with their unmodified sequences for spectral counting, and 128 

peptides were only kept in the data set if they were unique to a single genus and had a minimum of two 129 

spectral counts across all samples.  For FDR control, a PCDB with reversed protein sequences was 130 

created with ProteoClade, and the annotation steps were repeated against this database.  131 

 132 

Genus-unique assignments from the de novo search that were compared to Grassl et al.’s original 133 

targeted database search if the genera were found in both data sets. Additionally, a comparison of 134 

ProteoClade’s top-scoring PSM annotation option to its Database-Constrained option was made. Genus-135 

specific assignments were ranked by taking the difference between their forward and reversed PCDB 136 

annotations. Plots were made using Plotly. 137 

 138 
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Figure 1: ProteoClade easily interrogates the interaction between comingled species, including PDX 
tumors’ education of their microenvironment. a) The ProteoClade workflow for targeted database 
searches. ProteoClade downloads and concatenates reference FASTA sequence databases and builds a 
ProteoClade database for fast taxon-specific protein quantitation. b) Comparison between taxon-specific 
and taxon-shared data processing approaches for a PDX data set. The theoretical fraction of shared 
peptides for each proteome (grey) correlates with the observed quantitative difference between the 
approaches. A baseline difference between these two analytic approaches was present due to how the 
assumptions made when assigning peptides to genes affected data normalization.  c) A significant portion 
of the murine stromal proteome is differentially regulated by tumors. 3 biological replicates ‘Rep’ per 
tumor, indicated with circles. d) Pathway enrichment analysis of differentially regulated stromal proteins 
indicates an enrichment in proteins involved in cellular adhesion and the immune response. 
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Figure 2 

Figure 2: ProteoClade enables identification of taxa-specific peptides in metaproteomic samples by de novo 
sequencing. a) The schematic for ProteoClade’s de novo pipeline supports the entire UniProt database and the 
conversion of peptide-spectral candidates to taxon-specific peptides. b) A characterization of the entire UniProt 
peptidome reveals the overrepresentation in the number of peptides contributed by bacterial genera (left), and 
the significant peptide diversity of microorganisms present in the repository (right). c) 39 bacterial genera from 
the Human Oral Microbiome Database were identified by the de novo search in addition to human. DB-
Constraned: ProteoClade enhances de novo searches by providing the ability to constrain sequence candidates 
to a database for biological plausibility. “Reverse”: ProteoClade controls the false discovery rate by generating a 
reversed sequence database. d) Comparing the forward and reverse UniProt databases resulted in human and 
14 oral bacterial genera being identified by the de novo approach. Additional organisms were annotated but 
these annotations lacked statistical confidence. 
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SQL Field Type Description 

RowID Integer Row Identifier 

Protein Text Full protein sequence 

Organism Integer Organism Taxon Identifier 

Gene Text Gene Symbol 
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RowID Integer Row Identifier 

HashPeptide Integer Hashed Peptide Sequence 

ProtRowID Integer RowID of Protein 

SQL Field Type Description 

RowID Integer Row Identifier 

min_length Integer Minimum Peptide Length 

max_length Integer Maximum Peptide Length 
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li_swap Boolean Leucine to Isoleucine Conversion 
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Figure S1 

Figure S1: Database schema for the ProteoClade Database (PCDB). The database stores information 
across three tables: “MainData” stores complete protein sequences, organisms, and genes; “Reference” 
contains all peptide information and a key back to the protein table (black arrow); “DBParams” stores all 
database parameters at the time of database creation. The indexed column, “HashPeptide,” is indicated in 
red. 
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Figure S2: Technical comparisons between metaproteomic analysis tools. a) In silico 
digestion of peptides and indexing for ProteoClade’s default settings (ProteoClade-D) is faster 
than previous tools when using the entire UniProt repository. A database using the same 
parameters as Unipept (ProteoClade-UM) was faster still, due to the absence of missed 
cleaved peptides. b) Database RAM requirements for ProteoClade enable users to generate 
large databases without using high performance computers. c) Annotating all taxa for 
experimental results is 8.8x faster for ProteoClade than Unipept. 
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