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Abstract

Motivation: Antibiotic resistance is widely recognized as a severe threat to current medical practice. Each
antibiotic therapy drives the emergence and subsequent retention of antibiotics resistance genes within
the human gut microbiome. However, the details on how the resistance spreads between bacteria within
the human gut remain unknown, as does the role of horizontal gene transfer in this process, too.
Results: We present a novel approach to the analysis of time-series whole-genome metagenomic
sequencing data. This involves partitioning the scaffolds from the metagenomic assembly into groups
corresponding to bacterial chromosomes, plasmids and those with prophages and transposons. Using
specialized sequencing of the bacteriophages we were able to track the flow of ciprofloxacin resistance
genes from bacterial chromosomes, through the plasmids, to prophages and phages.
Contact: anna.gorska@univr.it

1 Introduction
Antibiotics are one of the most critical and successful classes
of drugs in the history of medicine (Martinez, 2009). However,
growing antibiotic resistance is recognized as a severe threat to
modern medical practice by global agencies such as the World
Health Organisation (WHO, 2014). It is established that the
antibiotic usage drives emergence of antibiotic resistance (World
Health Orginisation, 2017). Currently, metagenomic studies
of the human gut microbiome provide insights into the
microbiome’s response to antibiotic therapy and resistance
emergence.

Therapy with antibiotics strongly disturbs the patient’s
gut microbiome, in terms of both taxonomic and functional
profiles (Huse et al., 2008; Modi et al., 2014). However, a healthy
gut microbiome should be able to restore its taxonomic structure
up to six months after the therapy (Raymond et al., 2016).
Yet, in a functional sense, each singular antibiotic therapy has
a long-term impact on the patients’ gut microbiome.

Antibiotic treatment interacts with the gut bacteria in two
ways. It selects the resistant bacteria and exerts environmental

pressure promoting horizontal gene transfer (Broaders et al.,
2013). Those two phenomena lead to a permanent increase in
the number and diversity of antibiotic-resistant genes. This, in
turn, worsens the microbiome’s response to future antibiotic
therapies (Penders et al., 2013; Schaik, 2015; Francino, 2016).

The gut microbiome is a dynamic network of bacteria
and bacteriophages, connected by occurrences of horizontal
gene transfer (HGT). Using metagenomic sequencing, we can
estimate the relative abundance of bacterial genomes and
mobile genetic elements (MGEs) such as plasmids, phages, and
transposons. Antibiotic treatment impacts the bacterial cells,
and therefore the abundance of the chromosome, plasmid, and
transposon sequences, but not directly those of the phages.
Although resistance emergence in response to antibiotic therapy
in the gut microbiome has been reliably observed, detailed
mechanisms have not yet been described.

We studied the role of HGT in the emergence of antibiotic
resistance within the gut microbiome of two healthy volunteers
throughout a six-day ciprofloxacin therapy. To analyze
the phages in the gut microbiome, phage-only sequencing
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(Phageome) was carried out alongside the standard whole-
genome microbiome sequencing (Microbiome) for the stool
samples.

In Górska et al. (2018) we described the analysis of
these data focused on the Phageome. Here, we provide a
more detailed analysis including machine learning approaches
(Random Forest). We have divided the assembly of the
Microbiome samples into bacterial chromosomes and MGE
classes, and show the transfer of the resistant genes between
them. The data comprises information on only two participants,
therefore the presented results are not statistically robust.
However, using this example, we present a novel approach
to bioinformatic analysis of such a time-series metagenomic
sequencing datasets.

2 Methods
Twelve stool samples collected from two participants at six time
points were each sequenced twice, using two protocols, namely
an ultra-deep microbiome sequencing (Microbiome set) and the
sequencing of the DNA-phage fraction (Phageome set). The
samples were taken before the start of ciprofloxacin therapy
(0th day), during (1st, 3rd and 6th days) and two samples
after the therapy ended (+2nd and +28th days). Details on
the sequencing protocol can be found in Górska et al. (2018)
and Willmann et al. (2015). In brief, virus-like particles (VLPs)
were extracted following the protocol described in (Thurber
et al., 2009) including two filtration and an ultracentrifugation
step. Library preparation was performed using the Nextera
XT DNA Library Preparation Kit (Illumina), followed by
sequencing on the NextSeq 500 System (2x150 bp). For the
microbiome dataset, DNA was extracted according to the
human microbiome project protocol, followed by sequencing at
GATC Biotech AG (Constance, Germany) using an Illumina
MiSeq system (2x300 bp). In total, 24 datasets underwent
bioinformatics analysis.

The standard pipeline for analysis of such metagenomic
datasets relies on reads alignment against NCBI-nr
database (Huson et al., 2016). Here we aimed at associating
antibiotic-resistance genes with mobile genetic elements. MGEs
do not carry any specific genes or other genetic markers,
that enable their identification within a metagenomic dataset.
Therefore, the analysis relied on metagenomic assembly
followed by thorough annotation of the scaffolds. Here we
discuss further developments of the previous pipeline including
concepts and methods that enabled gene-level analysis of the
dynamics of MGEs within a human gut microbiome. In all
instances sequencing reads were used, those were the cleaned
reads sets, with removed contamination sequences (as described
in Górska et al. (2018)). Python (v. 3.5.2) was used for pipeline
programming along with the Matplotlib package (Hunter, 2007)
that was used for plotting.

2.1 Diversity measurements

Alpha diversity is often employed for the first general description
of time-series metagenomic datasets. We used it to compare
the general diversity trends in the Microbiome and Phageome
sets. Phages have high diversity, and their genomes are
under-represented in the databases. Therefore, taxonomy-based
diversity measurements are inadequate in the case of the

Phageome set. Accordingly, the diversity was measured based
on the clustered scaffolds.

First, all scaffolds longer than 200 bp for all samples within
a variant, defined by a participant and sequencing run, were
clustered (≥ 90% sequence similarity) using CD-HIT (Li and
Godzik, 2006). Next, the longest scaffolds within a cluster
were extracted. Subsequently, the reads were mapped onto the
cluster representatives for of each sample separately. Finally,
the cluster representatives were treated as the unit of diversity,
and the portion of reads mapped onto them as an abundance.
For these data, the Shannon diversity index (Shannon, 1948)
was computed. The diversity values were arranged by the time
point within a variant so that the diversity trajectories for the
Phageome and Microbiome sets could be plotted.

2.2 Annotation

In the analysis, we treated each of the scaffolds as a multi-
dimensional data vector. The dimensions correspond to the
various features, depicted in Fig. 1.

Fig. 1. Features annotated for each of the scaffolds grouped by the category.
Features marked with a tree icon were later used for phage prediction using
a Random Forest.

First, the data vectors included essential characteristics,
such as scaffold length, GC content, and abundance (short
read coverage averaged by the scaffold length and the number
of reads in the sample). Second, the vector contained features
derived from the gene prediction (using prodigal (Hyatt et al.,
2010)), such as the number and density of genes and a portion of
the reverse-oriented genes. The predicted genes were annotated
based on the alignment to several databases, and separately
by the functional annotation system MyRast (Overbeek et al.,
2014).

The third class of the features informed on the antibiotic
resistance. Sequences of the predicted genes were aligned against
two databases of antibiotic-resistant genes: CARD (Jia et al.,
2017) and ResFam (Gibson et al., 2014). The first database was
used for the protein-protein alignment, and only hits with high
identity (≥ 80%) and coverage regarding length (≥ 80%) were
accepted. The second database comprised HMM profiles of the
resistant genes classes (alignment with HMMER (Eddy, 2011)).
The HMM profile alignment provides higher sensitivity with
lower specificity and allows alignments to the gene fragments.

Other features addressed the presence of MGEs, such
as alignment to two specific databases of MGE proteins:
ACLAME (Leplae et al., 2009), and PHASTER (Arndt et al.,
2016), and scores provided by two k-mer based methods for
predicting Plasmids and phages, PlasFlow (Krawczyk et al.,
2018) and VirFinder (Ren et al., 2017) respectively. Finally,
features included a taxonomic assignment by the MEGAN-LR
pipeline (Huson et al., 2018).
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2.3 Identification of mobile genetic elements

Based on the annotations the Microbiome set was partitioned
into bacterial chromosomes, plasmids, and scaffolds containing
(pro)phages, or transposons. We assumed that the Phageme set
contained only DNA of VLPs.

Phage identification
VirFinder (Ren et al., 2017) was used for initial identification of
phage scaffolds. VirFinder is trained based on k-mers extracted
from the genomes of known phages, from the NCBI database (as
of 2017). Therefore, its model does not encapsulate the entire
space of the phage genetic diversity.

To enrich the phage scaffolds we trained a Random
Forest (RF) classifier (Tin Kam Ho, 1995) using the Python
sklearn package (Pedregosa and Varoquaux, 2011). The positive
class consisted of all those scaffolds that had a low p-value in
the VirFinder prediction. The data matrix comprised thirteen
features representing the sequence, phage, and gene-related, and
annotation-based features (labeled with a tree icon in Fig. 1).

Random Forest parameters were selected automatically
using an inbuilt mechanism (final sklearn parameters: n_trees:
10000, max_depth: 5, max_features: 3, min_samples_split:
2). Overfitting was controlled with two tests. The first test
measured advantage of the accuracy of the classifier’s prediction
for the train set over the test set (train − test) across all runs.
The second test measured portions of scaffolds denoted as phage
by the entire RF set across a range of the cutoff values. The
rationale is that better RF classifiers produce trajectories that
plateau.

We used the Out-Of-Bag accuracy (OOB-accuracy) to
evaluate the performance of the classifier, and mean decrease in
accuracy to investigate feature importance. The classifier was
trained on the under-sampled dataset containing the positive
(phage) scaffolds and an equal number of the randomly chosen
negative scaffolds (non-phage). Therefore, in each run, there is
a large number of scaffolds not used for the training. Those
are input in the newly trained classifier to predict whether
a scaffold is a phage. The cycle was repeated 500 times so that
for each negative scaffold the prediction was performed hundreds
of times. Finally, we iterated through all negative scaffolds, and
if the majority of the RF predictions were positive, we denoted
a scaffold as a phage.

Plasmid identification
Plasmid scaffolds from the Microbiome set were defined as
scaffolds, that did not contain phages (as defined above), were
predicted as plasmid by PlasFlow (Krawczyk et al., 2018) with
a 95% cutoff and contained at least one protein annotated as
plasmid in the ACLAME database (Leplae et al., 2009).

Bacterial chromosome identification
Non-plasmid scaffolds, namely those that did not fulfill both
criteria for plasmid, were denoted as bacterial chromosomes.
Hence, the bacterial chromosome scaffolds can contain
prophages and transposons.

Transposon identification
ISEScan (Xie and Tang, 2017) was used to annotate insertion
sequences (IS). The scaffold was annotated as containing
transposon if there were at least two ISes detected.

Dynamics analysis

Scaffolds filtering
In this analysis, a single scaffold is represented by a multi-
dimensional vector of features of different types. We can query
features using various filters depending on the type of feature.
The more complex features, such as taxonomic assignment, are
hierarchically organized. The filter can be parametrized by the
name of the feature, its level, and the value. The features can
also be combined.

Such definition provides great freedom in choosing the
groups of scaffolds. E.g., we could analyze a fraction of scaffolds
denoted as a plasmid, carrying at least one resistant gene, and
belonging to Bacteroides genus.

Feature-abundance trajectories
Feature-abundance was defined as a sum of the average coverage
values for scaffolds that passed a defined filter. A feature-
abundance trajectory is a vector of feature abundance at all
consecutive timepoints. In the case of filters with hierarchical
features, a decreasing number of scaffolds is used, and the higher
level trajectories incorporate lower level trajectories.

We applied several trajectory levels to the analysis of
this dataset. Starting from the most general using the most
significant number of scaffolds, we progressed to the most
precise filters, looking at the presence of the single genes.

The first level included a vast majority of the scaffolds
and described a division between the main taxa affected by
ciprofloxacin. Next, we analyzed trajectories for MGE selections
and carriage of antibiotic-resistant genes. We also analyzed
the trajectories for ciprofloxacin-resistant genes within the
functional annotations.

Feature-abundance trajectory profiles
Feature-abundance trajectory profiles enable simultaneous
analysis of the trajectories from the selected level of taxonomical
and functional annotation methods. For taxonomic features,
we analyzed genera, for functional assignments, we focused
at genes. The average feature-abundance trajectories were
extracted for all of the most detailed features. Three annotation
methods were used for this step: taxonomic assignment
(MEGAN), functional features (myRAST), and antibiotic-
resistant genes (CARD).

The trajectories were normalized and clustered (using
the Python scipy package AgglomerativeClustering with four
clusters, complete linkage, cosine affinity). For each cluster,
the average scaled trajectory was computed. Subsequently,
the features were grouped based on the trajectory cluster.
Next, we computed a feature-abundance trajectory profile
reflecting portions of genes characterized by the most common
trajectories.

The feature-abundance trajectory profiles differed depending
on the underlying selection of the scaffolds. We analyzed the
trajectory abundance for features amongst all scaffolds in the
Phageome set and several scaffold groups in the Microbiome
set, namely: bacterial chromosomes, plasmids, (pro)phage and
transposon-carrying scaffolds.

3 Results
The number of input reads and portion of reads used in assembly
are presented in Fig. S1. Sequencing and assembly statistics
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have been described before in (Górska et al., 2018). Here we
present the results of the extended analysis.

Diversity trajectories

As expected, the Microbiome diversity decreased in response
to the antibiotics therapy, from the 3rd until the 6th day,
for both participants. It restored on the last day of sampling.
The Phageome diversity displayed the opposite pattern. The
diversity increased between the 3rd and 6th days of therapy
and decreased on the last day in the case of participant A, and
increased in the case of participant B (Fig. 2).

Fig. 2. Diversity trajectories. The numbers and colors correspond to the Shannon
index values. Colors are scaled separately for each trajectory. The gray bar indicates
days of ciprofloxacin therapy.

The diversity measurements suggest that the changes are
a response to the therapy. However, the response was shifted
with respect to the therapy. Namely, the disturbance started
on the 3rd day of therapy and ended two days after the end of
therapy (+2nd day).

Phage identification

Average OOB-accuracy of the RF runs with the best parameters
was 69% for participant A and 68% for participant B, in
both sets. In all runs, the number of MyRast functional
genes, CRISPR spacers, and GC content were among the most
influential features (Table S1). Feature selection, i.e., removing
the features with low mean decrease in accuracy from the
dataset, resulted in decreasing the accuracy. No single feature
drove the scaffolds to be classified as phage. Hence the full set
was used. In the Phage set, the CRISPR number and viral
genes are differentiating. Whereas, in the Microbiome set, the
viral genes of the ACLAME family and prodigal coverage were
highly ranked.

Mobile genetic element components

As predicted, the assembly of the Microbiome set consisted
foremost of bacterial (∼ 90%), then (pro)phage, including
both integrated phages and phage particles (∼ 10%), plasmid
(∼ 2%), transposon (∼ 0.5%) and integron (∼ 0.3%) scaffolds.
The break-down was similar between the participants. We
assumed all scaffolds in the Phageome set were phages.

We assigned a known functional gene to ∼ 60% of scaffolds in
both groups: the Phageome scaffolds and bacterial scaffolds in
Microbiome. We detected a nearly complete antibiotic-resistant
gene (CARD) on ∼ 0.3% of the scaffolds in Phageome and on
an even smaller portion of the bacterial scaffolds. However,
∼ 5% of scaffolds in the Phageome and Microbiome sets had an
alignment to a ResFam HMM profile, i.e., they carried a partial,
or potentially unknown antibiotic-resistant gene.

Feature-abundance trajectories

General taxonomic analysis
The taxonomic changes in the human gut microbiome
prompted by the therapy with ciprofloxacin were characterized
before (Stewardson et al., 2015; Pérez-Cobas et al., 2012).
The authors reported that the abundances of Bifidobacterium,
Faecalibacterium, Alistipes, Ruminococcus, and Dialister
decreases in response to ciprofloxacin, whereas the abundance
of Lachnospiraceae increases. This pattern was also observed for
the Microbiome sets of the two participants (Fig. 3(a)).

(a) Genera known to be influenced by ciprofloxacin therapy.

(b) The most abundant antibiotic resistant genes grouped by the antibiotic.

(c) Transfer of the ciprofloxacin resistance gyrase gyrA (CARD ARO:3003931) for
bacterial chromosomes, plasmids, scaffolds with (pro)phages from the Microbiome
set, and the VLPs from the Phageome set. For the purpose of this plot the bacterial
chromosomes did not contain (pro)phages.

Fig. 3. Feature abundance trajectories. The numbers and colors correspond to
the feature abundance values. Colors suggest the general pattern of the trajectory,
are assigned to one row at the time. The gray bars denote days of antibiotic
therapy.

Antibiotic resistance dynamics
Among the antibiotic-grouped trajectories of antibiotic-resistant
genes in the Microbiome set (Fig. 3(b)), fluoroquinolone and
beta-lactams were the most abundant. In both participants,
the resistance had antibiotic-related trajectories, i.e., their
abundance increased between 3rd and +2nd days.

Virus-like-particles (VLPs) constituting the Phageome set
also carried antibiotic-resistance genes. However, the increase
of the trajectories of the two resistance classes started later
in respect to the corresponding trajectories in the Microbiome
set. That suggests that the phages picked up resistance after it
was enriched within the bacterial cells. Moreover, the resistance
genes persisted within the Phageome until the end of sampling.
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Cirpofloxacin resistance
Resistance to ciprofloxacin can be conferred by a point mutation
in the gyrase DNA, that inhibits binding by target alteration.
Fig. 3(c) presents feature abundance trajectories for the most
abundant gyrase conferring resistance to ciprofloxacin. The gene
gyrA conferring resistance to fluoroquinolones was present on
bacterial chromosomes in both participants. However, prompted
by therapy with the antibiotic, it transferred onto plasmids,
(pro)phages and phages in participant A. In the case of
participant B, the resistance could not be detected in plasmids
but in phages, indicating that a direct transfer from the
bacterial chromosome might have occurred. Protein alignment
and read mapping confirmed the mutation conferring resistance
to the reference sequence (Fig. S2).

Feature-abundance trajectory profiles

We identified ten patterns of trajectories, indicated by different
colors in Fig. 4(a). First, there are trajectories that are flat
or slightly fluctuating. Those correspond to genes, profiles or
viral assignments with constant abundance. Next, there are
trajectories with the strong dominance of a single day across
the sampling. Such trajectories with the dominant maximum
were divided into those that increase during the therapy-related
days, so from 3rd to +2nd days, or outside them on the 0th, 1st

and +28th days.
We also identified three antibiotic-related trajectories. The

first was characterized by an increase between the 3rd and
+2nd days, analogous to the pattern revealed by the diversity
trajectories (type a). The second antibiotic-related trajectory
increased on the 6th day of therapy and remained elevated
until the end of sampling (type b). The last antibiotic-related
trajectory decreased between the 3rd and +2nd days (Fig. 2).

All genes from CARD and myRAST as well as taxa assigned
by MEGAN were annotated with a trajectory number. The
table is available as a supplementary file (gene2trajectory.xlsx).

The diversity measurements discussed above suggested that
the participant B’s microbiome did not restore its structure
after the antibiotic therapy. This is confirmed by the feature-
abundance trajectory profiles analysis, as B’s profiles were
dominated by the trajectories that maximized on the last day
of sampling (Fig. 4(b)).

In this analysis, no genus annotated for bacterial
chromosomes or plasmids displayed strictly antibiotic-related
trajectories. Rather, a considerable portion (55% for A and
32% for B) of the bacterial-chromosomes genera had trajectories
that were high in the first two time points and subsequently
decreased but did not manage to restore their abundance within
the 28 days of recovery.

The overall patterns of genus annotations differed from the
patterns of the functional annotations for the same scaffold
selections. The majority of functional genes (MyRast) on
bacterial chromosomes (62% for A and 35% for B) had flat
trajectories. That suggests that a change of the taxonomic
structure does not necessarily cause an equivalent shift in the
functional landscape.

The profile analysis co-discovered the pattern of the gyrA
transfer. In participant A, the gyrA gene had a different
trajectory for each of the scaffold selections corresponding to the
MGEs (see supplementary gene2trajectory.xlsx). For plasmids,
it had an antibiotic-related trajectory type a (number 78), for
VLPs type b (number 82), and for the bacterial chromosomes

a trajectory starting with low abundance and increasing on the
last day of sampling (number 60).

A higher portion of antibiotic-related genes had antibiotic-
related trajectories than of the overall functional genes. This
portion was also more substantial for the MGEs. However, one
has to keep in mind that the number of any annotated genes on
the MGEs is lower than those of the bacterial chromosomes.

4 Discussion
The human gut microbiome can be analyzed from
different perspectives using taxonomic or various functional
classifications (Huson et al., 2016). With the presented
approach utilizing feature abundance trajectory profiles, all
possible diverse features can be extracted and analyzed at once,
providing a complex, but much more comprehensive view. This
approach could be extended to a larger datasets of metagenomic
samples. In that case, the number of trajectories and possibly
their types would increase, but extracting groups of patients
with similar trajectory profiles would be straightforward.

The trajectory profiles are only as informative as the
underlying annotation methods are reliable. However, several
annotation methods can be applied at once, and their results
can be compared. Contrary to the classic approach, where the
annotation methods have to be selected, here we can easily
merge various sources, and extend the list of filters to create
new selections.

Detection and analysis of mobile genetic elements (MGEs)
within the human fecal metagenome sequencing data is
a complex task, and the proposed MGE detection methods
can surely be improved. Identification of MGEs requires
information on several features of the sequence in the same time.
Hence, machine learning methods are suited for solving this
problem. We considered training the random forest classifier for
identification of phage-carrying scaffolds using the Phageome
set as ground truth, rather than the VirFinder results. The
Phageome set was with 2x150 bp reads, compared to the
Microbiome dataset for which 2x300 bp reads were obtained.

In this study, we demonstrated that the approach taken even
enabled us to follow the dynamics of ciprofloxacin resistance
on the level of point mutation in the gyrA gene. However, the
entire analysis relies on the association of features, which is only
possible for long scaffolds. Metagenome assembly can be error
prone, due to the short sequencing reads and the unsaturated
sequencing depth of the complex fecal samples.

Therefore the application of long read sequencing technology
(e.g. Oxford Nanopore) in future studies, might enable more
detailed plasmid analysis and phageome analysis without
the need for independent sequencing and purification of
VLPs (Bertrand et al., 2018). However, the error rate so far
is too high to use the k-mer based plasmid and phage detection
methods.

5 Conclusion
The analysis of this small dataset shows that the presented
approach enables both very detailed, and also global analysis
of dynamics within the gut microbiome. To the best of our
knowledge the approach is new. It was validated by a taxonomic
analysis that aligned well with previous studies. We provide a
gene-level analysis of the changes on the MGEs in the context
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(a) Average scaled trajectories. Colors denote general type of the trajectory, starting from the flat trajectories (green), to pink and red corresponding to the
antibiotic-related trajectories type a, and type b respectively.

(b) Feature-abundance trajectory profiles for assigned genera (MEGAN), functional genes (MyRast), and antibiotic resistant genes (CARD) for both sets, both
patients and scaffold selections representing bacterial chromosomes, plasmids, transposons (Microbiome) and VLPs (Phageome). Each bar represents the proportion of
genes sharing a trajectory within the selected annotation and scaffold group. The horizontal bars are annotated with a trajectory number and proportion (if proportion
< 4%, then only trajectory number is presented). The trajectory color and number correspond to the average scaled trajectories from (a).

Fig. 4. Global dynamics analysis.

of the entire human microbiome in a time-dependent manner
in response to antibiotic the antibiotic therapy. We were able
to show that specific antibiotic resistance genes transfer from
the bacterial chromosomes, to plasmids and phages, where they
persisted until the last day of sampling.
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