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Abstract

Characterization of the coding sequences (CDSs) is an essential step on tran-
scriptome annotation. Incorrect characterization of CDSs can lead to the pre-
diction of non-existent proteins that can eventually compromise knowledge if
databases are populated with similar incorrect predictions made in different
genomes. Even though some recent methods have succeeded in correctly pre-
diction of the stop codon position in strand-specific sequences, prediction of
the complete CDS is still far from a gold standard. More importantly, pre-
diction in strand-blind sequences and in partial sequences is deficient, pre-
senting very low accuracy. Here, we present CodAn, a new computational
approach to predict CDS and UTR, that significantly pushes the boundaries
of CDS prediction in strand-blind and in partial sequences, increases strand-
specific full-CDS predictions and matches or surpasses gold-standard results in
strand-specific stop codon predictions. CodAn is freely available for download
at https://github.com/pedronachtigall/CodAn.

keywords: transcriptome, computational prediction, gene annotation, cod-
ing sequence, untranslated sequence
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Introduction

The complete characterization of sequences resulting from a transcriptome as-
sembly is an important step to understand the profile of genes expressed in the
sample [3]. The coding regions (CDS) of the transcripts represent the functional
part of the protein-coding genes, which correlates to the biological function of
that gene [16]. Also, the untranslated regions (UTRs) are considered crucial
to understanding the genetic regulatory networks involved in specific biologi-
cal pathways [20, 7, 21]. UTRs have been shown to be major components
on post-transcriptional regulation of gene expression (reviewed by [1]). UTRs
are responsible to regulate mRNA stability, export, cellular localization, and
translation efficiency, which influence directly the final amount of protein (re-
viewed by [23]). Moreover, the complex pattern of UTR regulation is strongly
associated with embryogenesis, cellular diversity and diseases [27, 7, 33]. The
correct characterization of the UTR and CDS landscape is, therefore, an essen-
tial initial step in correctly identifying regulatory elements that can determine
the final protein output.

Currently, there are several computational tools to detect the CDSs and
UTRs of transcripts. Some of these tools focus on characterizing the CDS [19,
6, 29] and others in characterizing the UTR regions [5, 13, 14, 9, 32]. Addition-
ally, some widely used machine learning approaches were developed to classify
transcripts as protein-coding genes or non-coding genes [18, 34, 26, 11], but
these methods are only classifiers and do not perform annotation of the coding
sequences.

There are basically two strategies for the implementation of these predictors:
similarity search, and ab initio predictors. Similarity-based methods [9, 31, 22]
rely on the existence of curated proteins and are useful for genes that code
for closely related curated proteins, but fail to characterize CDS for novel pro-
teins. We can separate ab initio prediction methods in two categories: (i) pre-
trained methods [19, 25], that generally require curated sequences to estimate
specific parameters or the use of the pre-computed parameters of the closely-
related species available; and (ii) self-training methods, which detect putative
long ORFs in the transcripts to train a prediction model specific to that set of
sequences [6, 29, 2, 4, 10, 30].

The design of a computational tool that can be easily and automatically ap-
plicable to any species and to strand-specific, strand-blind or partial sequences,
is necessary for a wide and confident characterization of CDS and UTR land-
scape in all novel transcriptome projects. Three previous approaches circum-
vent this problem with a self-training approach, where predictors first perform
an expectation maximization (EM) interactive procedure to train the predic-
tion model using the target data and can be appied to any organism. Of these,
GeneMarkS-T [9] presents a performance closer to a gold standard in stop-
codon prediction, with an average of more than 90% of correct predictions of
stop codons [29]. However, as we will show below, performance decreases when
considering full CDS prediction (i.e., correct start and stop codon identification),
strand-blind prediction (where the orientation of the transcript is unknown) or

2

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 7, 2019. ; https://doi.org/10.1101/794107doi: bioRxiv preprint 

https://doi.org/10.1101/794107


partial sequence prediction, indicating the need for new approaches that can
reliably characterize CDS in all sequencing scenarios.

Here we present CodAn, a new transcript characterization software that can
be applied to any eukaryotic organism and that dramatically increases the cur-
rent accuracy boundaries in partial and in strand-blind sequences, increases the
accuracy in start codon predicion, and matches or surpassing gold-standard ac-
curacy for stop codon predicion in strand-specific sequences. CodAn has four
different probabilistic models for four groups of Eukaryotes: vertebrates, in-
vertebrates, plants, and fungi. We show that with these pre-designed models,
CodAn can perform highly confident predictions of the full CDS and UTR re-
gions not only in strand-specific full transcript sequences but also in strand-blind
and partial sequences in a rate far higher than other available software.

Results and discussion

CodAn is a stand alone software that can be used to reliably predict the loca-
tion of UTR and CDS regions in full or partial transcripts. CodAn uses two
Generalized Hidden Markov Models, one for a full CDS and another for partial
transcripts.

We compared CodAn’s performance against that of ESTScan [19], Trans-
Decoder [6], Prodigal [10] and GeneMarkS-T [29] in 34 different organisms of
four groups: vertebrates, invertebrates, plants, and fungi (Table 1). For each
organism, the performance was measured in transcripts of eight different test
sets: two sets of strand-specific full transcripts, one set of strand-blind full tran-
scripts, three sets of partial transcripts (“No Start”, “No Stop”, “No Start & No
Stop”, and two different negative sets (3’UTR partial transcripts and ncRNA
transcripts).

Prediction accuracy assessment: full transcripts

For strand-specific stope codon prediction, CodAn presents a higher perfor-
mance in all 4 groups as we can see in Table 2. Average F1-scores for each
category were all above 97%, constantly higher than other approaches. Low
standard deviation values in all four organism groups (equal or lower than 0.01)
indicate the robustness of the method. This performance is confirmed when
examining a summary of the results for each species, as depicted in Figure 1A,
which shows the values obtained for Precision, Sensitivity, and F1-score. For
complete strand-specific sets, CodAn presented a higher performance for the
majority of the organisms in all 4 categories (Tables S2 A and S2 B at Supple-
mental Table S2).

When considering strand-blind sets CodAn significantly outperforms all other
applications in stop codon prediction (Table 3; Figure 1B), the F1-scores are at
least 40% higher than other approaches, with consistently higher Precision and
Recall values in all organisms (Table S2 C and S2 D at Supplemental Table S2).
In fact, CodAn is the only software for which strand-specific and strand-blind
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Table 1: Species with validated annotations at RefSeq and used in the present
study.
Kingdom Group Species Common Name
Animals Vert. Anolis carolinensis Lizard

Bos taurus Cow
Danio rerio Zebrafish
Gallus gallus Chicken
Homo sapiens Human
Mus musculus Mouse
Oreochromis niloticus Nile tilapia
Rattus norvegicus Rat
Salmo salar Salmon
Xenopus tropicalis Frog

Inv. Aedes aegypti Mosquito
Apis mellifera Bee
Caenorhabditis elegans Worm
Ciona intestinalis Ascidian
Drosophila melanogaster Fruitfly
Nematostella vectensis Sea anemone
Schistosoma mansoni Blood Fluke
Tribolium castaneum Beetle

Plants Dico. Arabidopsis thaliana Arabidopsis
Glycine max Soybean
Olea europaea Olive
Theobroma cacao Cocoa Tree

Mono. Oryza sativa Rice
Sorghum bicolor Sorghum
Setaria italica Millet
Zea mays Maize

Fungi Agaricus bisporus Mushroom
Aspergillus niger Fungus
Cryptococcus neoformans Encapsulated yeast
Neurospora crassa Red bread mold
Puccinia graminis Stem rust
Rhizopus microsporus Fungal plant pathogen
Schizosaccharomyces pombe Fission yeast
Schizophyllum commune Fungus

Note: Vert.: Vertebrates; Inv.: Invertebrates; Dico.: Dicots; Mono.: Monocots.

results are almost the same, with F1-score values consistently over 95%. Con-
sidering that most RNA-seq projects perform sequencing with an unknown ori-
entation of the transcript being sequenced, it is relevant to use predictors that
present high precision independently the orientation of the CDS in the tran-
scripts.
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Table 2: Average and standard deviation of precision, Recall and F1-score ob-
tained by each tool in the strand-specific full transcript sets analyzed. Bold font
highlight the higher value for each group.

Group Predictor Precision Recall F1-score
Vertebrates CodAn 1.00 ± 0.00 0.98 ± 0.01 0.99 ± 0.01

ESTscan 0.71 ± 0.05 0.71 ± 0.05 0.71 ± 0.05
TransDecoder 0.70 ± 0.11 0.69 ± 0.11 0.70 ± 0.11
Prodigal 0.53 ± 0.08 0.53 ± 0.08 0.53 ± 0.08
GeneMarkS-T 0.99 ± 0.00 0.98 ± 0.01 0.98 ± 0.01

Invertebrates CodAn 0.99 ± 0.01 0.96 ± 0.03 0.97 ± 0.02
ESTscan 0.60 ± 0.19 0.41 ± 0.26 0.47 ± 0.25
TransDecoder 0.83 ± 0.09 0.80 ± 0.09 0.82 ± 0.09
Prodigal 0.77 ± 0.10 0.76 ± 0.10 0.77 ± 0.10
GeneMarkS-T 0.99 ± 0.02 0.95 ± 0.03 0.97 ± 0.02

Plants CodAn 1.00 ± 0.00 0.97 ± 0.04 0.98 ± 0.02
ESTscan 0.71 ± 0.12 0.70 ± 0.12 0.70 ± 0.12
TransDecoder 0.70 ± 0.19 0.68 ± 0.18 0.69 ± 0.18
Prodigal 0.69 ± 0.11 0.69 ± 0.11 0.69 ± 0.11
GeneMarkS-T 0.98 ± 0.01 0.96 ± 0.03 0.97 ± 0.02

Fungi CodAn 0.99 ± 0.01 0.95 ± 0.04 0.97 ± 0.02
ESTscan NA NA NA
TransDecoder 0.67 ± 0.17 0.64 ± 0.15 0.65 ± 0.16
Prodigal 0.71 ± 0.13 0.71 ± 0.13 0.71 ± 0.13
GeneMarkS-T 0.98 ± 0.01 0.94 ± 0.04 0.96 ± 0.02

Prediction accuracy assessment: experimentally validated
strand-specific full transcripts

Next, we evaluated the accuracy for complete CDS prediction using a set of
full transcripts of H. sapiens, M. musculus, D. rerio, D. melanogaster and A.
thaliana with their respective start codons validated and annotated by Ribo-seq
experiments [15, 17].

The tests revealed that GeneMarkS-T and CodAn presented higher perfor-
mance than the other tools, but this time with a clear advantage for CodAn, with
a higher percentage of correct predictions in 5 of the 7 benchmarks and small
advantage in two (Table˜4, Figure 2; Table S2 E at Supplemental Table S2).
CodAn presented higher rates of correct predictions and an almost perfect
score for predicting the stop codon position (over 97% of the predictions in
all datasets). These results confirm the consistent advantage of CodAn in full
CDS prediction obtained in the first 34 benchmarks (Tables S2 A and S2 B in
Supplemental Table S2).

In summary, for full transcripts CodAn significantly outperforms other avail-
able software in predicting CDS for full transcript of unknown orientation, and
increases precision in full CDS prediction, while still matching the best stop
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A

B

Strand-Specific FL transcripts

Strand-Blind FL transcripts

Figure 1: Scatter plot of the Full transcript test results. Each dot represents a
different organism, coded by organism group. Results are grouped vertically by
predictor. (A) Precision, Sensibility and F1-Score obtained by each tool in the
strand-specific test; each dot represnts. (B) Precision, Sensibility and F1-Score
obtained by each tool in the strand-blind test.

codon precision measurements. This indicates that CodAn it the best choice
when the annotation of the whole coding sequence is necessary for the subse-
quent analysis.

Prediction accuracy assessment: partial transcripts

In most real-life situations, transcript sequencing programs produce initially a
high rate of partial transcripts. It is therefore relevant to measure the accuracy
of predictions also for these sequences. To form a more precise picture we sepa-
rately measure the accuracy for prediction in transcripts consisting of: (i) only
CDS nucleotides; (ii) 5’UTR and CDS nucleotides, (iii) CDS and 3’UTR nu-
cleotides. These data sets presented a much harder challenge for all of the appli-
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Table 3: Average and standard deviation of precision, Recall and F1-score ob-
tained by each tool in the Strand-Blind full transcript sets analyzed. Bold font
highlight the higher value for each group.

Group Predictor Precision Recall F1-score
Vertebrates CodAn 0.99 ± 0.00 0.98 ± 0.01 0.99 ± 0.01

ESTscan 0.36 ± 0.02 0.36 ± 0.02 0.88 ± 0.13
TransDecoder 0.18 ± 0.04 0.18 ± 0.04 0.93 ± 0.05
Prodigal 0.27 ± 0.05 0.27 ± 0.05 0.93 ± 0.02
GeneMarkS-T 0.50 ± 0.00 0.49 ± 0.00 0.49 ± 0.00

Invertebrates CodAn 0.99 ± 0.02 0.95 ± 0.03 0.97 ± 0.02
ESTscan 0.31 ± 0.10 0.21 ± 0.13 0.24 ± 0.12
TransDecoder 0.29 ± 0.08 0.28 ± 0.07 0.29 ± 0.08
Prodigal 0.39 ± 0.05 0.39 ± 0.05 0.39 ± 0.05
GeneMarkS-T 0.49 ± 0.01 0.48 ± 0.01 0.48 ± 0.01

Plants CodAn 0.99 ± 0.01 0.96 ± 0.04 0.98 ± 0.02
ESTscan 0.35 ± 0.06 0.35 ± 0.06 0.35 ± 0.06
TransDecoder 0.22 ± 0.13 0.21 ± 0.12 0.21 ± 0.12
Prodigal 0.35 ± 0.05 0.35 ± 0.05 0.35 ± 0.05
GeneMarkS-T 0.49 ± 0.01 0.48 ± 0.02 0.49 ± 0.01

Fungi CodAn 0.98 ± 0.01 0.94 ± 0.04 0.96 ± 0.02
ESTscan NA NA NA
TransDecoder 0.21 ± 0.11 0.20 ± 0.10 0.21 ± 0.11
Prodigal 0.36 ± 0.06 0.35 ± 0.06 0.36 ± 0.06
GeneMarkS-T 0.49 ± 0.01 0.47 ± 0.02 0.48 ± 0.01

CodAn
ESTsca

n

TransDecoder

Prodigal

GeneMarkS-T
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Precision

CodAn
ESTsca

n

TransDecoder

Prodigal

GeneMarkS-T

Sensitivity

CodAn
ESTsca

n

TransDecoder

Prodigal

GeneMarkS-T

F1-Score

DATASET
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M.musculus_Lim_etal_2018
M.musculus_Lee_etal_2012
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D.melanogaster_Lim_etal_2018
A.thaliana_Lim_etal_2018

Figure 2: Scatter plot of the precision, sensitivity and F1-score obtained by each
tool in the Ribo-seq experimentally validated datasets considering the full CDS
region.

cations used in the comparison Figure 3; Table S2 F in Supplemental Table S2).
For the NoStart dataset, only CodAn was able to correctly identify a significant
number of CDSs, in this case with very good results, averaging over 97% in
F1 score values. The situation changed for the NoStop datasets, but still with
clear advantage for CodAn: average F1 score for CodAn was above 58%, in
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Table 4: Precision, recall and F1-score for the prediction in datasets with start
codons confirmed by riboseq experiments. True positives are sequences with the
whole CDS predicted correctly (start and stop codon). Bold font highlight the
higher value for each dataset.
Species Reference Dataset Predictor Precision Recall F1-score

size
H.sapiens Lim et al.. 2018 14193 CodAn 0.81 0.75 0.78

ESTScan 0.23 0.22 0.23
TransDecoder 0.37 0.35 0.36

Prodigal 0.27 0.27 0.27
GeneMarkS-T 0.67 0.63 0.65

H.sapiens Lee et al.. 2012 5727 CodAn 0.99 0.97 0.98
ESTScan 0.68 0.68 0.68

TransDecoder 0.60 0.59 0.60
Prodigal 0.49 0.49 0.49

GeneMarkS-T 0.98 0.96 0.97
M.musculus Lim et al.. 2018 20326 CodAn 0.85 0.83 0.84

ESTScan 0.30 0.30 0.30
TransDecoder 0.39 0.38 0.39

Prodigal 0.29 0.29 0.29
GeneMarkS-T 0.70 0.68 0.69

M.musculus Lee et al.. 2012 2701 CodAn 1.00 0.98 0.99
ESTScan 0.74 0.74 0.74

TransDecoder 0.67 0.65 0.66
Prodigal 0.52 0.52 0.52

GeneMarkS-T 0.97 0.95 0.97
D.rerio Lim et al.. 2018 13954 CodAn 0.86 0.85 0.86

ESTScan 0.44 0.44 0.44
TransDecoder 0.67 0.65 0.66

Prodigal 0.47 0.47 0.47
GeneMarkS-T 0.80 0.78 0.79

D.melanogaster Lim et al.. 2018 13653 CodAn 0.90 0.90 0.90
ESTScan 0.68 0.66 0.67

TransDecoder 0.57 0.56 0.56
Prodigal 0.56 0.56 0.56

GeneMarkS-T 0.86 0.83 0.85
A.thaliana Lim et al.. 2018 6947 CodAn 0.87 0.85 0.86

ESTScan 0.59 0.58 0.58
TransDecoder 0.67 0.65 0.66

Prodigal 0.56 0.56 0.56
GeneMarkS-T 0.82 0.79 0.80

comparison to a maximum of 27% for the other applications. Finally, for the
NoStartNoStop (CDS only) sequences, CodAn F1 scores were, again, averaged
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more than 96%, while F1 scores for the other applications was always below
13%.

Figure 3: Scatter plot of the partial transcript test results. Each dot represents
a different organism, coded by organism group. Results are grouped vertically
by predictor. From right to left the plots represent the Spider plots showing the
Percentage of correct predictions on “No Start”, “No Stop” and “No Start &
No Stop” tests performed on all species analyzed in the present study.

These results showed that other approaches fail to obtain even modest preci-
sion or recall rates for the prediction of CDSs in partial transcripts, with CodAn
achiving consistently higher rates. This clearly indicte CodAn as the best ap-
proach to handle cases where the partial transcripts are highly abundant in the
transcriptome assembly. In fact, it is a common feature in de novo assemblies,
which partial transcripts can represent up to 50% of the sequences assembled [8].

False-positives assessment using partial 3’UTR and ncRNA
transcripts

Different sequencing protocols can produce two types of negative sequences when
considering CDS prediction: UTR-only sequences or ncRNA sequences.

To estimate the rate in which such transcripts have false-positive predic-
tions in the first case we ran all applications in the 3’UTR sequences of the
previous data sets. The results show that CodAn and TransDecoder, as a
rule, presented the lowest number of false-positives, whereas Prodigal presented
the highest number of false-positives (Figure 4A; Table S2 G at Supplemen-
tal Table S2). TransDecoder presented the best overall performance with bet-
ter average specificity values for Invertebrates (95% vs 90%), Plants (95% vs
90%) and Fungi(95% vs 90%). The only exception was for Vertebrates with
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GeneMarkS-T presenting a Specificity of 97%, against 95% of CodAn and 90%
of TransDecoder.

A

B

Figure 4: Scatter plot of Specificity obtained by each tool in the prediction.
Each dot represents a differnt organism, color-coded by organism group.Results
are grouped vertically by predictor. We used two negative datasets (A) 3’UTR
region datasets and (B) Full ncRNA datasets.
Each dot represents a differnt organism, color-coded by organism group.Results
are grouped vertically by predictor.

Specificity assessment for ncRNA sequences showed that the full transcript
model of CodAn presents the best performance of all predictors. If, instead,
we use the partial model of CodAn, its performance is higher for Vertebrates,
whereas Transdecoder presented a slightly better performance in the other
groups (Figure 4B; Supplementary Table S2 H at Supplemental Table S2). Over-
all, both models of CodAn presented satisfactory results on specificity tests.
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Conclusions

We presented CodAn, a software that generates highly confident transcript char-
acterization in Eukaryote species in all common sequencing project situations.
This high confidence is achieved by the use of multiple probabilistic models in-
tegrated using a Generalized Hidden Markov Model (GHMM). The design of
CodAn was based on the development of model parameters for four groups of
Eukaryotes: Vertebrates, Invertebrates, Plands and Fungui. Each parameter
set was estimated based on a mix of reference transcripts from several species of
one of the organism groups. CodAn can run in any Desktops/Laptops or take
advantage of large multi-processor servers based on UNIX OS.

We showed that these generic models work well and result in a reliable
characterization of transcripts on a wide range of Eukaryote species. Considering
the benchmarks used in the present analysis, CodAn had a clear performance
advantage when considering all common RNA sequecing projects situations, in
particular with strand-blind full sequences and partial sequences.

In summary, our data indicates that CodAn is the best approach to be
applied on studies focusing to characterize the CDS regions and the UTR land-
scape of partial and/or full transcripts, an can help the improvement of current
and future gene annotation for transcriptomes of Eukaryote species, whic is a
field under constant expansion [24].

Methods

Algorithm implementation

CodAn uses two different architectures for analysing transcripts, one for full
and one for partial transcripts (Figure 5. Both architectures are described using
Generalized Hidden Markov Models implemented using the ToPS probabilistic
framewok [12]. Of note, we partition our probabilistic model in GG content
specific sub-models [28]. More details on the probabilistic model are described
in the supplementary file Supplemental Methods.

CodAn uses ToPS [12] to implement the Generalized Hidden Markov Model
architectures, Python (v.3.6.8) and Perl (v5.26.1) scripts to prepare and process
data for the ToPS probabilistic framework.

For each architecture four different sets of parameters were estimated, corre-
sponding to four organism groups: Vertebrates, Invertebrates, Plants and Fungi.

By default, CodAn takes as input transcripts in FASTA format, performs
the prediction and returns three FASTA files, containing the CDS, 3’UTR and
5’UTR sequences predicted for each transcript, and a GTF file, containing the
annotations of the predictions for each transcript.

Training Sets

CodAn uses probabilistic models for which we need to estimate the parame-
ters. For this, we used training sets with reference sequences from different
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Figure 5: The two GHMMs representing transcripts. A) Full Transcript model,
grey figures represent final states, the arrows represent the flow of the architec-
ture, indicating only one initial state, 5’UTR. B) Parcial transcript model, grey
figures represent final states, the arrows represent the flow of the architecture.
The four states represented by circles are states with explicit duration distribu-
tion that emit the protein-coding region: fullCDS, pCDS0, pCDS1, and pCDS2.
The state fullCDS models a complete coding region. The states pCDS0, pCDS1,
pCDS2 represent partial coding regions that start, respectively, at frame 0, 1,
and 2. The state labeled UTR can be used to represent either the 5’UTR or
the 3’UTR. The 3’UTR state represents 3’UTRs. The states Start and Stop in
diamonds have a fixed length duration, and they represent the start codon and
stop codon, respectively.

species downloaded from the RefSeq Database at NCBI (release number 94;
ftp://ftp.ncbi.nlm.nih.gov/refseq/). Due to lack of complete annotations of
transcripts for C. elegans at RefSeq, we used the sequences deposited at the
WormBase (release WS270; ftp://ftp.wormbase.org/pub/wormbase/). We re-
trieved sequences following three criteria: (1) presence of a reviewed and/or
curated status; (2) validated expression status; and (3) full-length transcripts.
We estimated 4 different parameter sets, each one targeted to a different group
of Eukaryotic organisms: vertebrates, invertebrates, plants, and fungi. The
training sets for each parameter set contained reference transcript sequences of
a mix of species from each group (detailed in Supplementary Table S1 A at
Supplemental Table§1).
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Comparison protocol

We compared the prediction performance of CodAn against that of ESTscan
(v3.0.3; [19]), TransDecoder (v5.5.0; [6]), Prodigal (v2.6.3; [10]) and GeneMarkS-
T (v5.1; [29]). We used all tools with default parameters following their usage
guidelines, as the fine-tuning of parameters of each tool are beyond the scope of
this analysis. For ESTscan we used the pre-trained models either of the species
being tested or the closest related species when the species-specific model was
not available (the pre-trained models used for each species are specified in Table
S1 B at Supplemental Table S1). Since there was no Fungi model for ESTScan,
we did not perform comparison tests for this tool in the Fungi group. For
Prodigal, we used the mode directed to predict intron-less genes (“switched-off
RBS model”), which can be applied to predict coding regions in transcripts of
Eukaryotes.

We performed a comparison in both full transcript and partial transcript
sets. Following Tang and collaborators [29], we used both annotated and Ribo-
seq validated full transcripts. The first for evaluating accuracy of stop codon
prediction, the second for evaluating full CDS prediction accuracy. In all tests we
measured the Precision (computed as TruePositives / (TruePositives + FalsePos-
itives), Recall (computed as TruePositives / (TruePositives + FalseNegatives))
and F1-score (computed as 2 * (Precision * Recall) / (Precision + Recall)). Fol-
lowing [29], we considered True Positives as the predictions that exactly matched
the reference annotation, False Positives as the predictions that presented any
difference from the reference annotation, and False Negatives as the sequences
with no predictions. In this sense, for the annotated full transcripts we con-
sidered as True Positives the predictions that correctly matched the annotated
stop codon, and false positives all other predictions. For both the Ribo-seq val-
idated sequences and for the partial sequences we considered True Positives all
predictions that correctly matched the whole CDS of the transcripts.

We adopted the most common interpretation of the concepts of True Posi-
tive, False Positive and False Negatives used in gene prediction. These measures
would be sufficient in the ideal situation where all sequences are mRNA tran-
scripts with a CDS region. However, in transcriptomic projects sequences with
no CDS region can be present, either being just UTRs or, depending on se-
quencing protocol, ncRNAs. To evaluate the rate of false discoveries, we also
compared Specificity (computed as FalsePositives / (FalsePositives + TrueNeg-
atives)) of the various approaches. For this, we used two different negative
datasets: 3’UTR regions and ncRNAs. It is important to note that here the
definition of False Positives is somewhat different from that used in computing
Precision, Recall, and F1-score.

Testing sets

The test sets for comparison against other approaches consisted of transcript
data from 34 Eukaryote species that are of interest in the fields of evolutionary
and biomedical studies and/or highly used in food production (Table 1). For
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each of the 34 organisms, we retrieved 2000 randomly selected full transcripts
presenting the following three criteria: (1) validated expression status; (2) full
length; and (3) full CDS annotation. None of these sequences included any of
the transcripts used for training the probabilistic model. For each transcript
set, we generated 7 distinct validation sets: two sets with full transcripts, four
sets with partial transcripts and one set with ncRNA sequences.

The first full transcript set (Full Strand-Specific) included all 2000 tran-
scripts as downloaded from the database. For the second, full transcript set
(Full Strand-Blind), intended to measure the performance of the predictors in
sequences with unknown translation direction, we randomly selected half of the
sequences in the previous datasets (1000 transcripts) and replaced it for its
reverse complement.

To compare the prediction of complete CDSs, we followed the approach of
Tang and collaborators [29], using a set of full transcripts with their respective
start codons validated and annotated by Ribo-seq experiments [15]. We, how-
ever, extended the number of species in the validation including H. sapiens, M.
musculus, D. rerio, D. melanogaster and A. thaliana [17]. For the data previ-
ously analyzed by [15], we selected transcripts where the annotated start codon
at RefSeq matched to the start codon confirmed by the Ribo-seq data resulting
in 5727 and 2701 sequences for H. sapiens and M. musculus, respectively. On
the data analyzed by [17], we considered only the full transcripts with the cu-
rated annotation by the Ribo-seq data, which led to 14193, 20326, 13954, 13653
and 6947 sequences for H. sapiens, M. musculus, D. rerio, D. melanogaster and
A. thaliana, respectively.

For the partial transcripts datasets, we considered that the de novo assem-
blies can result in partial transcripts with no start codon and/or no stop codons.
For the first partial transcript set (No Start), we randomly selected, for each
transcript of the full transcript data set, a cutting point in the CDS region and
pruned the 5’ part, eliminating the start codon. In the second partial transcript
set (No Stop), we randomly selected, for each transcript a new cutting point
in the CDS region and pruned the 3’ part, eliminating the stop codon. In the
third partial transcript set (No Start & No Stop), we randomly selected, for
each transcript two cutting points and eliminated the 5’ and the 3’ ends of the
transcript, retaining only part of the CDS region. Cutting points were selected
to guarantee a minimum size of 150nt for the resulting sequences. In cases where
the whole transcript was smaller than 150nt we only pruned the sequence at the
start and/or stop codon, depending on the dataset.

We used two different data sets to evaluate Specificity: 3’UTR sequences and
ncRNA sequences. The 3’UTR data set consisted of the complete 3’UTR regions
of each transcript in the original full transcript dataset. The 3’UTR set was
designed to be a realistic negative set for protein-coding transcriptome projects,
when the experimental design leads to a selection of mRNA transcripts based
on poly-A selection. Additionally, to test the specificity in RNASeq projects
with no poly-a specificity we used ncRNA sequences. For this we created a data
set containing all ncRNA sequences longer than 200nt length available for each
species in the RFAM database (release 14.1;https://rfam.xfam.org/). To make
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the specificity test more close to a real transcriptome assembly and fair for the
self-training algorithms, we used a mix of sequences containing a proportion of
500 sequences of full-length transcripts and 500 sequences of partial transcripts
within the ncRNA sequences.
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